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Abstract
In this paper, we are reporting a system for detection and classification of road signs. This system consists of two parts. The

first part detects the road signs in real time. The second part classifies the German traffic signs (GTSRB) dataset and makes

the prediction using the road signs detected in the first part to test the effectiveness. We used HOG and SVM in the

detection part to detect the road signs captured by the camera. Then we used a convolutional neural network based on the

LeNet model in which some modifications were added in the classification part. Our system obtains an accuracy rate of

96.85% in the detection part and 96.23% in the classification part.

Keywords Road signs � TSDR � Detection � Classification � Histogram of oriented gradients � Support-vector machine �
Convolutional neural network � LeNet

1 Introduction

Detection and recognition of signs is an automobile

equipment that reads and interprets permanent and tem-

porary signs located at the edge or over the road, in order to

inform the driver in case he could not see them. Speed

limitation and over-ride signs are particularly concerned.

Signs detection and recognition works through a camera

mounted behind the interior rearview mirror. It detects

signs located the left, right or over the road and compares it

with an internal dataset. Once the sign is recognized, the

driver is notified of the situation through a visual on the

GPS or instrumentation. It is a useful aid for the driver

who, in the ambient traffic, will not necessarily have seen

the sign. Depending on the system, the car goes up to

compare its speed with the current limitation and alerts the

driver if he is overspeeding. In the long term, we can also

imagine that the optical reading of the signs can commu-

nicate with the adaptive cruise control. It is the vehicle that

would automatically decide how fast to drive.

Traffic sign detection and recognition (TSDR) has been

very popular in recent years. This is due to the large

number of applications that such a system can provide:

• Maintenance of signs.

• Signs inventory.

• Driving assistance.

• Smart autonomous vehicles.

1.1 Road sign detection

Methods of detection of road signs are divided into three

classes: methods based on color, shape or machine learn-

ing. The dominant colors of most road signs are red, blue or

yellow. Many authors (Lillo-Castellano et al. 2015; Ella-

hyani et al. 2016) use this property to detect signs. An

associated component segmentation based on a color

model is used. The regions of interest are then validated by

a recognition algorithm or an appearance model. These

methods are usually fast and invariant to translation, rota-

tion, and scaling. Since color can be easily affected by

lighting conditions, the main difficulty of color-based
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methods is how to be invariant to different lighting con-

ditions. These methods tend to follow a common pattern:

the image is transformed into a color space and then

thresholded. The two spaces HSV and HSI are often used

by researchers because they are based on human perception

of colors and encode color information in one channel

instead of three (Ardianto et al. 2017).

For shape-based methods, the contours of the image are

analyzed by a structural or global approach. These methods

are generally more robust than color-based ones because

they handle the gradient of the image and can handle

grayscale images. These methods are very sensible to

occlusions and deformation that affects considerably their

performances. To overcome this problem, some researchers

proposed to detect circular road signs using the circle

detection algorithm EDCircles (Berkaya et al. 2016) and

other authors proposed to detect circular and triangular

signs using HOG and Linear SVM (Zaklouta and Stanci-

ulescu 2012). Systems that adopt shape-based methods to

minimize color change due to lighting and climate change

face the problem of detecting occluded and damaged signs

that require color-based methods.

Finally, for methods based on machine learning, a

classifier (cascade, SVM, neural networks) is trained based

on examples. It is applied on a sliding window that tra-

verses the image on several scales. These methods combine

geometry and photometry but can be a costly step in

computing time. They require the constitution of a learning

base by type of signs, tedious step when the number of

objects to be detected is large. Many researchers (Ellahyani

et al. 2016; Brkić et al. 2010; Chen and Lu 2016; Yi et al.

2016; Bouti et al. 2017) adopt this approach of combina-

tion between color-based methods and shape-based meth-

ods that can help to minimize the rate of false positives and

increase the rate of true positives.

1.2 Road sign classification

The methods of classification of road signs are divided into

two classes. Learning methods based on hand-crafted fea-

tures and in-depth learning methods. The basic idea of

learning methods based on hand-crafted features is to

design an algorithm to extract the characteristics of the

image and form a classifier over it. Indeed, the overall

accuracy of traditional methods depends primarily on the

feature extraction algorithm because there are powerful

classifiers, such as SVM or random forest, that can accu-

rately learn nonlinear decision boundaries. However, if

classes overlap in the feature space, classifiers will not be

able to discriminate classes accurately (Aghdam et al.

2016; Zaklouta et al. 2011; Kedkarn et al. 2015). SVM

classifier with HOG represents also one of the most used

techniques for the classification of textual information in

road signs.

As shown in many researches in the literature (Yang

et al. 2018; Kedkarn et al. 2015), in-depth learning meth-

ods such as convolutional neural networks learn a highly

nonlinear function to project the raw image into a function

space where classes are linearly separable and non-over-

lapping (Aghdam et al. 2016).

Our system consists of two main phases, detection and

classification. In the detection phase, we used HOG and

linear SVM to detect road signs. Although deep learning

approaches have proven their superiority in similar image

detection problem, it is interesting to find out how a tra-

ditional computer vision approach performs in a situation

like this. The representation of the HOG features and SVM

greatly improves the results obtained and shows good

results in terms of accuracy. The linear SVM not only

achieves high accuracy but also costs least compared with

another kernel function (Ma and Huang 2015). In the

classification phase, we used the convolutional neural

networks (CNN) technique which has a formidable

capacity to solve this kind of problem (i.e., image classi-

fication). We used an already existing CNN architecture

LeNet and make some modifications to have the best per-

formance and trained it to recognize signs using a dataset

called German Traffic Sign Recognition Benchmark

(GTSRB).

To do this, we have structured our article in 3 sections:

In the first section, we will present the different methods

used in our system among them the convolutional neural

networks as well as their interests in the field of classifi-

cation of images. In the second section, we will describe

our system. Finally, in the third section we will show the

different results obtained with a small comparison with

other systems and in the end, we finish with a general

conclusion.

2 Materials and methods

2.1 Histogram of oriented gradients (HOG)

The HOG feature descriptors were introduced by Dalal and

Triggs (2005), researchers at INRIA Grenoble, at the

CVPR conference in June 2005 in their pedestrian detec-

tion work. The essential idea behind the histogram of ori-

ented gradients is that the local appearance and the object

shape in an image can be described by the intensity dis-

tribution of the gradients or the direction of the contours.

The implementation of these descriptors can be obtained by

dividing the image into small connected regions, called

cells, and for each cell a histogram of the gradient direc-

tions or contour orientations for the pixels in the cell is
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calculated. The combination of these histograms then

represents the descriptor. For best results, the local his-

tograms are normalized in contrast, calculating a measure

of intensity over wider areas than cells, called blocks, and

using this value to normalize all cells in the block. This

normalization allows a better resistance to the changes of

illuminations and shadows.

2.1.1 Gradient computation

The first step of calculation in many feature detectors in

image pre-processing is to ensure normalized color and

gamma values. This step was finally not necessary; the

standardization of the descriptor itself is enough. The first

step of the method is the gradient calculation; the most

common method for doing this is to apply a 1 - D cen-

tered derivative filter in the horizontal and vertical direc-

tions. The following masks are used for this: [- 1, 0, 1]

and [- 1, 0, 1]T. In the case of color images, the gradient is

calculated separately for each component, and for each

pixel the gradient of the largest standard is retained.

2.1.2 Histogram construction

The second step is the creation of histograms of gradient

orientation. This is done in small square cells (4 9 4 to

12 9 12 pixels). Each pixel of the cell then votes for a

class of the histogram, depending on the gradient orienta-

tion at that point. The vote of the pixel is weighted by the

intensity of the gradient at this point. The histograms are

uniform from 0� to 180� (unsigned case) or from 0� to 360�
(signed case).

2.1.3 Descriptor block

An important step is the standardization of descriptors to

avoid disparities due to illumination variations. This step

also introduces redundancy into the descriptor. For this

purpose, authors group several cells in a block, which is the

unit on which the normalization is performed. The blocks

overlap, so the same cell participates several times in the

final descriptor, as a member of different blocks. Two types

of block geometry are available: rectangular (R-HOG) or

circular (C-HOG). The experiments done by Dalal and

Triggs (2005) showed that the best performance was

obtained for rectangular blocks containing 3 9 3 cells of

6 9 6 pixels each. A minor performance improvement is

achieved by weighting the pixels by a Gaussian window on

the block, decreasing the contribution of the pixels to the

edges.

2.1.4 Block normalization

Dalal and Triggs (2005) explored four different methods

for block normalization. Let v be the non-normalized

vector containing all histograms in a given block, vk kk be

its k norm for k = 1, 2 and e be some small constant. Then

the normalization factor can be one of the following:

• L2-norm: f ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vk k22þe2
q ð1Þ

• L2-hys: L2-norm followed by clipping (limiting the

maximum values of v to 0.2) and renormalizing.

• L1-norm: f ¼ v

vj jj j1þe
ð2Þ

• L1-sqrt: f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v

vj jj j1þe

r

ð3Þ

In addition, the scheme L2-hys can be computed by first

taking the L2-norm, clipping the result, and then renor-

malizing. In their experiments, Dalal and Triggs (2005)

found the L2-hys, L2-norm, and L1-sqrt schemes provide

similar performance, while the L1-norm provides slightly

less reliable performance; however, all four methods

showed very significant improvement over the non-nor-

malized data.

2.1.5 Classification

The final step in the object detection process is the use of

HOG descriptors to drive a supervised classifier. This step

is not part of the definition of the HOG descriptor itself,

and different types of classifiers can be used. Dalal and

Triggs (2005) voluntarily choose a simple classifier, a

linear kernel SVM, to essentially measure HOG input.

They specify that it would be interesting to develop a

cascade-based method such as the Viola and Jones

method, using HOGs. They specify that the use of a

Gaussian kernel improves performance by 3%, for a false

positive rate per window of 10-4 but a much higher

computational cost.

2.2 Support-vector machine (SVM)

Support-vector machine (SVM) is a supervised machine

learning algorithm initially defined for discrimination, that

is, predicting a binary qualitative variable. They were then

generalized to the forecast of a quantitative variable. In the

case of discrimination of a dichotomous variable, they are

based on finding the optimal margin hyperplane, where

possible, classifies or separates the data correctly while

being as far as possible from all observations. The principle
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is therefore to find a classifier, or a function of discrimi-

nation, whose capacity of generalization (quality of fore-

casting) is the greatest possible. SVM can be used for

classification, regression SVR and detection outlets.

However, it is mostly used in classification problems. It can

solve linear and nonlinear problems and work well for

many practical problems.

A version of SVM for regression was proposed in 1996 by

Vapnik et al. (Drucker et al. 1996). This method is called

support-vector regression (SVR) which has been developed

to solve nonlinear forecasting problems. Unlike ANN

models, the SVR model can avoid over-learning, local

minima, and dimension disaster problems (Hong et al. 2019).

The first part of the process is to create a model from the

dataset. This is the learning of the class. The dataset is

broken down into a set of positive elements (containing one

element of the class) and a set of negative elements (not

containing any element of the class). A hyperplane sepa-

rating the elements of each of the two sets is calculated in

order to maximize the margin (Fig. 1), that is, the resis-

tance between the samples and the hyperplane. For this, the

study space is transcribed on a larger space where the

existence of a linear separator is possible. Finally, the set of

positive examples is on one side of the hyperplane while

the set of negative examples is on the other side. In the

second part of the process, this model allows decision. If

the vector e of the hyperplane relative to the positive

examples, then it is an element of the class. In the opposite

case, it is not an element of the class. It may be noted that

the distance of the characteristic vector to the hyperplane

gives an evaluation of the reliability of the decision.

Indeed, if this distance is very small, the decision will be

less sharp because the example is very close to the two

classes.

The advantages of support-vector machines are:

• Effective in high-dimensional spaces.

• Still effective in cases where number of dimensions is

greater than the number of samples.

• Uses a subset of training points in the decision function

(called support vectors), so it is also memory efficient.

• Versatile: different kernel functions can be specified for

the decision function. Common kernels are provided,

but it is also possible to specify custom kernels.

2.3 Deep learning

This family of algorithms has made significant progress in

the areas of image classification and language processing.

The deep learning models are built on the same model as

the MLP multilayer perceptron. However, it should be

emphasized that the various intermediate layers are more

numerous. Each of the intermediate layers will be subdi-

vided into sub-part, dealing with a sub-problem, simpler

and providing the result to the next layer, and so on.

There are different algorithms of deep learning. We can

cite:

• Deep Neural Networks These networks are like MLP

(multilayer perceptron) networks but with more hidden

layers. The increase in the number of layers allows a

network of neurons to detect slight variations of the

learning model, favoring over-learning or over-fitting.

• Convolutional Neural Networks (CNN) The problem is

divided into subparts, and for each part, a cluster of

neurons will be created to study this specific portion.

For example, for a color image, it is possible to divide

the image over width, height and depth (colors).

• Deep Belief Network Machine These algorithms work

in a non-supervised first phase, followed by supervised

classical training. This unsupervised learning step,

furthermore, facilitates supervised learning.

2.4 Convolutional neural network (CNN)

Convolutional neural networks are currently the most

efficient models for classifying images. Designated by the

acronym CNN, they have two distinct parts. In input, an

image is provided in the form of a matrix of pixels. It has 2

dimensions for a grayscale image. The color is represented

by a third dimension, of depth 3 to represent the funda-

mental colors (Red, Green, Blue).

Fig. 1 Illustration of the principle of operation of SVMs for a simple

linear case. The elements of a class (white circles) are separated from

elements of another class (black circles) by the separating hyperplane

(solid line) which maximizes the margin (dotted lines)
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The first part of a CNN is the actual convolutive part. It

functions as a feature extractor of images. An image is

passed through a succession of filters, or convolution ker-

nels, creating new images called convolution maps. Some

intermediate filters reduce the resolution of the image by a

local maximum operation. Finally, the convolution maps

are laid flat and concatenated into a feature vector, called

the CNN code. This CNN code at the output of the con-

volutive portion is then connected to the input of a second

portion, consisting of fully connected layers (multilayer

perceptron). The role of this part is to combine the char-

acteristics of the CNN code to classify the image.

The output is a final layer with one neuron per category.

The numerical values obtained are generally normalized

between 0 and 1, of sum 1, to produce a probability dis-

tribution on the categories. Creating a new convolutional

neural network is expensive in terms of the expertise,

material, and amount of annotated data needed.

It is first about fixing the architecture of the network, the

number of layers, their sizes and the matrix operations that

connect them. The training then consists of optimizing the

network coefficients to minimize the output classification

error. This training can take several weeks for the best

CNNs, with many GPUs working on hundreds of thousands

of annotated images.

Research teams specialize in improving CNN. They

publish their technical innovations, as well as the details of

networks driven on databases of references.

CNN architecture is formed by a stack of independent

processing layers:

• Convolutional layer is the key component of convolu-

tional neural networks and is still at least their first

layer. Its purpose is to locate the presence of a set of

features in the images received as input.

• Pooling layer: This type of layer is often placed

between two convolution layers: it receives several

feature maps as input and applies the pooling operation

to each of them. The pooling operation consists of

reducing the size of the images, while preserving their

important characteristics.

• Correction layer (ReLU) often referred to as abuse

‘ReLU’ with reference to the activation function (linear

grinding unit). The function ReLU designates the real

nonlinear function defined by: F(x) = max (0, x). This

function forces the neurons to return positive values.

• Fully connected layer is a perceptron type layer and is

always the last layer of a neural network, convolutional

or not—it is not characteristic of a CNN. This type of

layer receives an input vector and produces a new

output vector. For this, it applies a linear combination

then possibly an activation function to the values

received at the input. The last fully connected layer

classifies the input image of the network

• Loss layer specifies how network training penalizes the

difference between the expected and actual signal. It is

normally the last layer in the network. Various loss

functions suitable for different tasks can be used. The

‘Softmax’ function is used to calculate the probability

distribution on the output classes.

2.4.1 Typical architecture of a convolutional neural
network

A CNN is simply a stack of multiple layers of convolution,

pooling, ReLU correction and the fully connected layer.

Each image received as input will therefore be convolved,

reduced and corrected several times, to finally form a

vector. In the classification problem, this vector contains

the probability of belonging to classes.

2.4.2 Setting the layers

A convolutional neural network is distinguished from

another by the way the layers are stacked, but also

parameterized. In fact, the convolution and pooling layers

have hyperparameters, parameters whose value you must

first define. The size of the feature maps at the output of the

convolution, and pooling layers depend on the hyperpa-

rameters. Each image (or feature map) has dimensions

W 9 H 9 D, where W is its width in pixels, H is its height

in pixels and D is the number of channels (1 for a black and

white image, 3 for an image in colors).

The convolution layer has four hyperparameters:

• The number of filters K.

• The size F of the filters: each filter has dimensions

F 9 F 9 D pixels.

• The step S with which we slide the window corre-

sponding to the filter on the image. For example, a step

of 1 means that the window is moved one pixel at a

time.

• The zero-padding P: we add to the input image of the

layer a black outline of thickness P pixels. Without this

outline, the output dimensions are smaller. Thus, the

more one stack of convolution layers with P = 0, the

more the input image of the network shrinks. So, we

lose a lot of information quickly, which makes the task

of extracting features difficult.

For each image of size W 9 H 9 D at the input, the

convolution layer returns a matrix of dimensions WC 9

HC 9 DC, where WC ¼ W�Fþ2P
S

þ 1, HC ¼ H�Fþ2P
S

þ 1 and

DC = K.
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Choosing P ¼ F�1
2

and S = 1 thus makes it possible to

obtain feature maps of the same width and height as those

received as input.

The pooling layer has only two hyperparameters:

• The size F of the cells: the image is divided into square

cells of size F 9 F pixels.

• Step S: the cells are separated from each other by

S pixels.

For each image size W 9 H 9 D at the input, the pooling

layer returns a matrix of WP 9 HP 9 DP dimensions,

where WP ¼ W�F
S

þ 1, HP ¼ H�F
S

þ 1 and DP = D.

Like stacking, the choice of hyperparameters is done

according to a classical scheme:

• For the convolution layer, the filters are small and

dragged on the image one pixel at a time. The zero-

padding value is chosen so that the width and height of

the input volume are not changed at the output. In

general, we choose F = 3, P = 1, S = 1 or F = 5, P = 2,

S = 1.

• For the pooling layer, F = 2 and S = 2 is a wise choice.

This eliminates 75% of the input pixels. We can also

find F = 3 and S = 2: in this case, the cells overlap.

Choosing larger cells causes too much loss of informa-

tion and performs poorly in practice.

2.4.3 Learning transfer

To train a convolutional neural network is very expensive:

the more layers stack up, the higher the number of con-

volutions and parameters to be optimized. The computer

must be able to store several gigabytes of data and effi-

ciently perform the calculations. That’s why hardware

manufacturers are stepping up their efforts to provide high-

performance graphics processors (GPUs) that can quickly

drive a deep neural network by paralleling calculations.

Transfer learning allows you to do deep learning without

having to spend a month of calculations. The principle is to

use the knowledge acquired by a network of neurons when

solving a problem in order to solve another similar. This is

a transfer of knowledge, hence the name.

2.4.4 LeNet 5

LeNet-5 is LeCun’s latest convolutional network designed

for handwritten and printed character recognition. It is a

convolutional neural network with enough input to receive

multiple objects and multiple outputs called space dis-

placement neural networks (SDNN), capable of recogniz-

ing strings in a single pass without segmentation prior.

Sparse convolutional layers and max pooling are at the

heart of the LeNet family of models. Although the exact

details of the model vary considerably (Fig. 2).

The lower layers are composed of convolution layers

and max pool. The upper layers are, however, fully con-

nected and correspond to a traditional MLP (hidden

layer ? logistic regression). The entry of the fully con-

nected first layer is the set of all feature cards in the lower

layer.

From the point of view of implementation, this means

that the lower layers operate on the 4D tensors. These are

then flattened into a 2D matrix of rasterized feature maps,

to be compatible with the previous MLP implementation.

3 Proposed system

In this paper, we report our built system which is based

essentially on two steps: detection and classification. In the

detection phase, we used the HOG algorithm to describe

the distribution of image gradients in different orientations

and to capture shape and aspect characteristics in detecting

signs. Then the SVM classifier was used to filter false

positives. For the classification phase, we have used con-

volutional neural networks based on LeCun’s model

(1998), and by adding some modifications to improve the

model, to classify the German traffic signs into predefined

classes then we will make a prediction by using the signs

obtained in the detection part to check the efficiency of our

classifier (Fig. 3).

In the detection step, we have performed a histogram of

oriented gradients (HOG) feature extraction on a labeled

training set of images. Then, we trained a classifier with the

set of sign and non-sign images. Finally, we used the

trained classifier to detect signs. In this part linear support-

vector machines (SVM) are used to train a model to clas-

sify if an image contains a sign or not. HOG is used as the

feature representation.

The idea of HOG is instead of using each individual

gradient direction of each individual pixel of an image, we

group the pixels into small cells. For each cell, we compute

all the gradient directions and group them into several

orientation bins. We sum up the gradient magnitude in each

sample. So stronger gradients contribute more weight to

their bins, and effects of small random orientations due to

noise are reduced. This histogram gives us a picture of the

dominant orientation of that cell. Doing this for all cells

gives us a representation of the structure of the image. The

HOG features keep the representation of an object distinct

but also allow for some variations in shape.

We can specify the number of orientations, pixels per

cell, and cells per block for computing the HOG features of

a single channel of an image. The number of orientations is

the number of orientation bins that the gradients of the
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pixels of each cell will be split up in the histogram. The

pixels per cells are the number of pixels of each row, and

column per cell over each gradient the histogram is com-

puted. The cells per block specify the local area over which

the histogram counts in a given cell will be normalized.

Having this parameter is said to generally lead to a more

robust feature set.

The classifier algorithm we used in this step is called a

linear support-vector machine. As a safety measure, we use

a scaler to transform the raw features before feeding them

to our classifier for training or predicting, reducing the

chance of our classifier to behave badly.

In the classification step, we constructed a deep learning

pipeline to classify the German traffic sign dataset

(GTSRB). The initial model is a convolutional neural

network based on LeCun’s LeNet architecture. TensorFlow

and the scikit-learn pipeline framework were used with

various combinations of transformers and estimators. The

scikit-learn pipeline framework is used to manage different

pipeline scenarios.

Pipeline can be used to group multiple estimators into

one. This is useful because there is often a fixed sequence

of steps in data processing, such as feature selection, nor-

malization, and classification. Pipeline serves many pur-

poses here:

• Convenience and encapsulation Simply call fit and

predict once on your data to fit a complete sequence of

estimators.

• Selecting Common Parameters You can search param-

eters of all pipeline estimators at the same time.

• Safety Pipelines help prevent statistical leakage from

your test data in the model formed during cross-

validation, ensuring that the same samples are used to

train transformers and predictors.

Fig. 2 A graphical representation of a model LeNet

Fig. 3 The proposed system for the detection and classification of road signs
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All but one of the pipeline estimators must be transformers

(i.e., they must have a transformation method). The last

estimator can be of any type (transformer, classifier, etc.).

3.1 Training dataset

The dataset used is the German Traffic Sign Recognition

Benchmark (GTSRB) (Stallkamp et al. 2011). This dataset

is composed of 39,209 images and 43 classes. The objec-

tive is to classify the images of the German dataset signs

into the predefined classes (Fig. 4). The images are of

different sizes. The brightness of the image is quite ran-

dom. Images can be rotated slightly. Images may not be

exactly centered.

3.2 Model architecture

Our model (Fig. 5) is based on LeNet by LeCun et al.

(1998). It has 7 layers, including 3 convolutional layers, 2

layers of subsampling (pooling) and 1 fully connected

layer, followed by the output layer. The convolutional

layers use 5 out of 5 convolutions. The subsampling layers

are 2 by 2 average clustering layers. The activation is

ReLU except for the output layer that uses Softmax. The

output has 43 classes. For this model, the network works

well. The performance seems to be pretty good. However,

it shows a problem of over-fitting (due to the lower number

of epochs).

3.3 Optimization of LeNet model parameters

We tried to optimize the basic model (1st model which is

LeNet) by modifying some parameters. We tested 3 models

presented in Table 1. The modified parameters are con-

volution layer filters, fully connected layer neurons,

epochs, learning rate and adding a dropout layer.

• A convolution layer has a weight, which is its filter, and

a bias.

• A fully connected layer is just a regular layer of neurons

in a neural network. Each neuron receives the inputs of

all the neurons of the previous layer, so closely

connected.

• The epoch can be defined as a forward and a backward

pass of all learning data.

Fig. 4 Example of the predefined classes
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• The learning rate defines the step size during the

gradient descent. This is a parameter chosen by the

programmer.

• The dropout layer can be considered as a form of

regulation to prevent over-fitting. This is a technique of

ignoring randomly selected neurons during training.

The following graph (Fig. 6) represents the classification

rate of each model.

From this simulation, we can deduce that the model 4 is

the most efficient compared to other models.

4 Results and discussion

4.1 Experimental results

Our system achieved an overall accuracy of 96.85% in the

detection part and an overall accuracy of 96.23% in the

classification part using a convolutional neural network

model. In Fig. 7, we present some results obtained in the

detection phase.

In the classification phase, after optimizing our CNN

model, we plotted the learning curve and the confusion

matrix (Figs. 8, 9). The learning curve is a comparison of

the model’s performance based on the number of epochs.

The convergence of the model is obtained after 500 epochs.

Fig. 5 Architecture of our model

Table 1 The different models obtained after the modification of the 1st model

Filters in the 1st

convolution layer

Filters in the 2nd

convolution layer

Neurons in fully

connected layer

Epochs Learning rate Adding a dropout

layer

Model 1 5 9 5 9 6 5 9 5 9 16 120 5 1.0 e�3 X

Model 2 5 9 5 9 24 5 9 5 9 64 480 5 1.0 e�3 X

Model 3 5 9 5 9 24 5 9 5 9 64 480 20 0.5 e�3 X

Model 4 5 9 5 9 24 5 9 5 9 64 480 500 1.0 e�4 With a dropout layer
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Fig. 6 The curves of the

classification rate of the 4

models
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The confusion matrix allows us to measure the quality of

the classification system. We plotted the learning curve and

confusion matrix based on the model adopted (see Figs. 8,

9).

In the prediction part, we used the detected signs, in the

detection phase, as input to our CNN classifier. As output,

we get a percentage of belonging to the five most repre-

sentative classes. In Fig. 10, we see some results. We can

understand why it did not correctly identify the 40 km/h

speed limit sign, because we do not have a class of this

category (we just have: 20, 30, 50, 60, 70, 80, 100 and

120).

We can already estimate a success rate of up to 100% if

the sign is German. This result may deteriorate in the

opposite case. It also means that for each country/region, it

would be necessary to train the classifier through a learning

base of its road signs.

Fig. 7 Some results obtained in

the detection phase

Fig. 8 The learning curve
Fig. 9 The confusion matrix
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4.2 Discussion

In this part, we compare our system with other systems

based on the same dataset (GTSRB).

In the paper of Huang et al. (2017), first they filter using

the color information parts of the images that does not

contain panels. Then, they extract the region where image

blocks can be, and then extract the candidate region from

the image block. Finally, they use deep learning to verify

candidate areas of non-road signs and identify the type of

road signs. Their system structure focuses on the HSI color

space and then divides the candidate area into smaller

pieces based on the color, texture, size, and similarity of

the regions. The HSI color space is used to reduce the

impact of changes in light and shadows in the image.

Finally, the convolutional neuron network is used to

identify the candidate region. Their system is designed for

red traffic signs, so they only record red signs as the truth

on the ground. The accuracy of the test depends on the

selection of the candidate area by the selective search and

its correct extraction with a selection frame. The detection

system focuses solely on the correct capture of the location

of traffic signs. The image region of the selected road signs

is integrated into the identification system. In this system,

the part of deep learning is based on Caffe. They use the

gradient descent method to perform the training. The cor-

rect rates for the detection and recognition systems of

Huang et al. (2017) are, respectively, 92.63% and 80.5%,

while we obtained 96.85% and 96.23%, which is a very

satisfactory result knowing that our system handles all

traffic signs, not just red ones.

Fig. 10 The results obtained in the prediction part
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In this article (Yi et al. 2016), they present a real-time

signal recognition system consisting of detection and

classification modules. In the detection module, they first

transform the input color image into probability maps of

the panels using a color probability model. The probability

map is a gray image, in which the pixels of the traffic signs

will have a high intensity and the other pixels a low

intensity. Secondly, they extract the proposed road signs by

looking for extremely stable extreme regions (MSERs)

from probability maps. Third, they filter out false positives

and classify the remaining road sign proposals into their

super classes using support-vector machine (SVM) based

on a new HOG color feature. In the detection module, they

classified the detected signs into their super classes.

However, they still do not know which subclasses they

belong to. In addition, there are false alarms in the detected

signs. Therefore, they further classify the detected signs in

their subclasses or background classes in this module. To

this end, they form three CNNs for the three super classes,

respectively. In the classification module, they further

classify the detected traffic signs in their specific subclasses

using a convolutional neural network. Unlike detection,

color provides little distinctive information for classifica-

tion. They only use gray images to reduce the processing

time. In addition, they resize all 32 9 32 images because

the CNN input should be the same size. This document (Yi

et al. 2016) reach for the detection phase 97.72% and for

the classification 97.75%, which is a performance compa-

rable to that of the state-of-the-art methods.

Table 2 summarizes the success rates found for this

works compared to our system.

5 Conclusion

In this paper, we tried to propose a system for the detection

and classification of road signs. Our system consists of two

phases: a detection phase and a classification phase. In the

sign detection phase, we used HOG and SVM, while in the

classification phase, we adopted an optimized model of a

CNN architecture. The learning of our classifier was done

using the German dataset. In the experimental part, we

tested our system on live video scenes and we proved that

our system can achieve a very high detection and recog-

nition rate, which is a very encouraging result.
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