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Abstract
Chicken Swarm Optimization (CSO) is a novel swarm intelligence-based algorithm known for its good performance on

many benchmark functions as well as real-world optimization problems. However, it is observed that CSO sometimes gets

trapped in local optima. This work proposes an improved version of the CSO algorithm with modified update equation of

the roosters and a novel constraint-handling mechanism. Further, the work also proposes synergy of the improved version

of CSO with Teaching–Learning-based Optimization (TLBO) algorithm. The proposed ICSOTLBO algorithm possesses

the strengths of both CSO and TLBO. The efficacy of the proposed algorithm is tested on eight basic benchmark functions,

fifteen computationally expensive benchmark functions as well as two real-world problems. Further, the performance of

ICSOTLBO is also compared with a number of state-of-the-art algorithms. It is observed that the proposed algorithm

performs better than or as good as many of the existing algorithms.
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BPSOGSA Binary Particle Swarm Optimization

Gravitational Search Algorithm

BGSA Binary Gravitational Search Algorithm

SD Standard Deviation

EV Electric Vehicle

RCCRO Real-Coded Chemical Reaction

Optimization

HSA Harmony Search Algorithm

1 Introduction

In recent years, nature-inspired optimization methods have

gathered attention of the masses. Most of the nature-in-

spired optimization approaches mimic a natural phe-

nomenon or social behaviour of a group of animals. For

example, Genetic Algorithm (GA) mimics the natural

phenomenon of survival of the fittest (Goldberg and Hol-

land 1988), Simulated Annealing (SA) is inspired from the

process of annealing of solids (Van Laarhoven and Aarts

1987), Gravitational Search Algorithm (GSA) is inspired

by the gravitational laws and interaction between the

masses (Rashedi et al. 2009), Particle Swarm Optimization

(PSO) mimics the phenomenon of bird flocking (Poli et al.

2007), Cuckoo Search (CS) mimics the brood parasitism of

cuckoo (Yang and Deb 2009; 2014), Elephant Herding

Optimization (EHO) uses the herding behaviour of ele-

phants (Wang et al. 2015a, 2016), Earthworm Optimization

(EWA) inspired by the burrowing action of earthworms in

the soil (Wang et al. 2015b), Grey Wolf Optimization

(GWO) mimics the hunting of grey wolf (Mirjalili et al.

2014a; Faris et al. 2018), Whale Optimization Algorithm

(WOA) mimics the social behaviour of whales (Mirjalili

and Lewis 2016), Artificial Bee Colony (ABC) imitates the

foraging behaviour of honeybee (Karaboga and Basturk

2008), Bird Swarm Algorithm (BSA) utilizes the social

interaction in a bird swarm(Meng et al. 2016), Bat Algo-

rithm (BA) mimics the echolocation behaviour of bats (Cai

et al. 2016), Harmony Search Algorithm (HSA) mimics the

natural phenomenon of musicians improvization of the

harmony (Gao et al. 2015), etc.

One such nature-inspired algorithm that has gained

popularity in the recent years is CSO (Meng et al. 2014).

CSO efficiently exploits the hierarchal order in the chicken

swarm and the food-searching process of the chicken

swarm. In the aforementioned algorithm, the positions of

the members of the chicken swarm are regarded as the

candidate solutions of the optimization problem to be

solved. The chicken swarm is divided into rooster, hens,

and chicks depending upon the food-searching capability.

The competition between different chickens under a

specific hierarchal order and mother–child relationship is

also taken into account in this algorithm. A number of

variants of the CSO algorithm are also available in the

existing literature. Deb et al. (2019a) presented a compre-

hensive overview of different variants of CSO algorithm

and concluded that there is still a scope for improving the

algorithm. Chen et al. (2015) proposed an improved ver-

sion of CSO with modified update equation of the hen.

Wang et al. (2017) introduced the mutation strategy in the

update phenomenon of chicks to enhance their food-

searching ability. Han et al. (2017) also proposed an

improved binary version of CSO where the mutation

operator is applied to the population with the worst fitness

value. Ahmed et al. (2017) combined chaos tent map and

logistic map with CSO and used the algorithm to solve

feature selection problem. Liang et al. (2016) replaced the

update mechanism of roosters with the update mechanism

of Bat Algorithm (BA) and proposed hybrid Bat CSO.

Kumar and Veni (2018) hybridized CSO with Differential

Evolution (DE) and applied the proposed algorithm for

solving routing problem. Experimental results showed that

the proposed algorithm performed better than the stan-

dalone algorithms as the solutions obtained by CSO were

further fine-tuned by DE to avoid premature convergence.

Torabi and Safi-Esfahani (2018) hybridized Improved

Raven Rooster Optimization (IRRO) with CSO and utilized

the proposed algorithm for solving task scheduling

problems.

It is observed that in the existing literature, a number of

nature-inspired algorithms are available. Despite the

availability of such a wide range of nature-inspired algo-

rithms, researchers are still trying to develop new more

efficient algorithms, improve the existing algorithms by

hybridization or modify some algorithmic components of

the methods. The main motivation behind this lies in the

No Free Lunch (NFL) theorem (Wolpert and Macready

1997). NFL theorem concludes that a single algorithm

cannot perform well on all the optimization problems.

Hence, there is necessity of developing new more efficient

algorithms and improving the existing algorithms. The

present work is also concerned with improving CSO and its

hybridization with TLBO. CSO has good utilization rate of

population. However, the algorithm may sometimes get

trapped in local optima. Researchers have tried to over-

come this inherent drawback of CSO by variety of ways

(Chen et al. 2015; Wang et al. 2017; Han and Liu 2017;

Liang et al. 2016; Kumar and Veni 2018; Torabi and Safi-

Esfahani 2018). Some of the variants of CSO are listed in

Table 1. The present work also makes an attempt to

improve the basic CSO by modifying the update equation

of roosters and introducing a novel constraint-handling

mechanism. Further, the work also proposes synergy of the

improved version of CSO (ICSO) with Teaching–Learn-

ing-based Optimization (TLBO) algorithm. The salient
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features of the proposed algorithm in comparison with the

existing improvements of CSO are modified update equa-

tion of rooster, novel constraint-handling mechanism, and

hybridization with TLBO. The contributions of the work as

compared to the existing works on CSO are summarized as

follows:

1. Improvement of CSO by modifying the update equa-

tion of rooster and introduction of a novel constraint-

handling mechanism.

2. Hybridization of ICSO with TLBO. It is expected that

synergy of ICSO and TLBO will enhance the utiliza-

tion rate of population and overcome the premature

convergence of the algorithm.

3. The proposed algorithm is used for solving eight basic

benchmark functions, fifteen computationally expen-

sive benchmark functions as well as two real-world

problems.

4. The performance of the proposed algorithm is statis-

tically compared with other state-of-the-art algorithms

like PSO and its variants, DE and its variants, GA,

TLBO and its variants.

The remainder of the paper is organized as follows.

Section 2, Sect. 3, and Sect. 4 illustrate the fundamentals

of CSO, ICSO, and TLBO, respectively. Section 5 elabo-

rates the hybridization of ICSO with TLBO. Section 6 and

Sect. 7 illustrate the results related to the performance of

the proposed algorithm on basic benchmark functions and

computationally expensive benchmark functions, respec-

tively. Section 8 discusses the computational complexity of

the proposed algorithm. Section 9 illustrates the perfor-

mance of the proposed algorithm on real-world problems

like charging station placement and economic load dis-

patch problem. Section 10 presents the future direction of

research on CSO. Finally, Sect. 11 concludes the work.

2 CSO

CSO is one of the latest swarm intelligence-based algo-

rithms developed by Meng et al. in the year 2014. The

hierarchal order prevalent in the chicken swarm and the

collective food-searching mechanism of the swarm is

mimicked by the algorithm. The entire populace of chicken

in the group is segregated into dominant rooster, hens, and

chicks depending upon the fitness values of the chickens.

The chickens with highest food-searching ability or fitness

are designated as roosters, chickens with least food-

searching ability or fitness are designated as chicks, and the

chickens with intermediate food-searching ability or fitness

are assigned as hens. The mother–child relationship is also

established randomly. The hierarchal order and mother–

child relationship are updated after every G time steps. The

natal behaviour of hens to go behind their group mate

rooster and chicks to go behind their mother in the quest for

food is utilized effectively in the algorithm. It is also pre-

sumed that the chickens would try to scratch the food found

by others thereby giving rise to a competition for food in

the group. The algorithm is divided into two steps, namely

initialization and update.

In initialization, the population size and other related

parameters of CSO like number of roosters, number of

hens, number of chicks, number of mother hens, G is first

defined. The fitness values of the randomly generated ini-

tial population of chicken are evaluated, and a hierarchal

order is established based on this fitness value. The algo-

rithm is based on the following assumptions:

• The number of hens is the highest in the group

• All the hens are not mother hens

• The mother hens are selected randomly from the set of

hens

• The number of chicks is less than hen

There is variation in the food-searching capacity of

roosters, hens, and chicks. In the update step, the fitness

values of the initial population are updated depending on

the food-searching capacity of the different members of the

group. Food-searching capacity of rooster depends on their

fitness value, and their update formula is as follows:

xtþ1
i;j ¼ xti;j � ð1þ randnð0; r2ÞÞ ð1Þ

If fi B fk

Table 1 Variants of CSO
Author Improvement

Chen et al. (2015) Modification in the update equation of the hen

Wang et al. (2017) Introduction of mutation strategy in the update equation of chicks

Han and Liu (2017) Development of binary version of CSO

Ahmed et al. (2017) Development of chaotic CSO

Liang et al. (2016) Hybridization of Bat algorithm with CSO

Kumar and Veni (2018) Hybridization of DE with CSO

Torabi and Safi-Esfahani (2018) Hybridization of IRRO with CSO

A New Teaching–Learning-based Chicken Swarm Optimization Algorithm 5315

123



r2 ¼ 1 ð2Þ

else

r2 ¼ exp
ðfk � fiÞ
fij j þ e

� �
ð3Þ

where randn(0,r2) is a Gaussian distribution function with

mean 0 and standard deviation r2. f is the fitness value of

corresponding x, k is randomly selected rooster’s index.e is
a small constant value which is used to avoid zero division

error.

Hens follow their group mate roosters in their quest for

food. Moreover, there is also a tendency among the

chickens to steal the food found by other chickens. The

mathematical representation of their update formula is as

follows:

xtþ1
i;j ¼ xti;j þ S1� rand� ðxtr1;j � xti;jÞ þ S2� randðxtr2;j

� xti;jÞ
ð4Þ

S1 ¼ exp
fi � fr1

absðfiÞ þ e

� �
ð5Þ

S2 ¼ expðfr2 � fiÞ ð6Þ

where rand is a randomly generated number between 0 and

1. r1 2 ½1;N� is an index of rooster which is ith hen’s group
mate, and r2 2 ½1;N� is an index of rooster or hen which is

randomly chosen such that r1 is not equal to r2.

The natural tendency of chicks to follow their mother is

mathematically formulated as follows:

xtþ1
i;j ¼ xti;j þ FL� ðxtm;j � xti;jÞ ð7Þ

where xtm;j represents the position of ith chick’s mother. FL

is a parameter which signifies that the chick would follow

its mother. FL is generally chosen between 0 and 2.

The pseudocode of CSO is shown in Algorithm 1.

3 ICSO

The key features of ICSO are modification in the update

mechanism of roosters and a novel constraint-handling

mechanism. In the basic CSO, hens follow their group mate

rooster in the food-searching process. And the chicks fol-

low their mother hen. Thus, it is obvious that the perfor-

mance of the algorithm is very much dependent on

roosters. If the roosters get struck in local optima, then

there is possibility of premature convergence. Hence, in

order to overcome this drawback, authors have modified

the update equation of roosters. The algorithm considers

that the roosters would utilize its previous experience in the

food-searching process. In the quest for food, each rooster

can record and update its best experience from the past and

the swarms’ previous best experience about food avail-

ability. Social information is shared instantaneously among

the roosters. Thus, the update equation of the roosters is

modified as:

Algorithm 1-Pseudo code of CSO(Meng et al. 2014)
Initialize the population of chicken having size N and define other algorithm specific parameters like G, size of RN, 
HN,CN, and MN;
Evaluate the fitness value of N chicken, t=0 , establish the hierarchal order in the swarm as well as mother child 
relationship;
While (t<gen)
t=t+1;
If(t%G==0)
Establish the hierarchal order in the swarm as well as mother child relationship;
Else
For i=1:PN
If i==rooster
Update its solution by Eq.(1);
End if
If i==hen
Update its solution by Eq.(4);
End if
If i==chick
Update its solution by Eq.(7);
End if
Evaluate the new solutions;
Update the new solutions if they are better than the previous one;
End for
End if else
End while
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xtþ1
i;j ¼ xti;j þ C � rand� ðpi;j � xti;jÞ þ S� randðgj � xti;jÞ

ð8Þ

where pi,j represents the best previous position of ith

rooster, gj represents the best previous position of the

swarm, C represents cognitive coefficient, and S represents

social coefficient.

Another salient feature of ICSO is a novel constraint-

handling mechanism. In the basic CSO, whenever the

updated value of the decision variable exceeds the upper or

lower limit of the decision variable, it is fixed to upper or

lower limit, respectively. In ICSO, an improved efficient

methodology of constraint handling is used to improve the

convergence speed. This improved methodology of con-

straint handling is shown in Algorithm 2. The pseudocode

of ICSO is shown in Algorithm 3.

4 TLBO

TLBO is a latest evolutionary algorithm introduced by Rao

and Kalyankar in the year 2011. TLBO is a population-

based evolutionary algorithm which mimics the interactive

process of teaching and learning. A class of learners con-

stitutes the population here. The teacher transfers his/her

knowledge to the learners. The performance of the learners

Algorithm 3-Pseudo code of ICSO
Initialize the population of chicken having size N and define other algorithm specific parameters like G, size of RN, 
HN,CN, and MN;
Evaluate the fitness value of N chicken, t=0 , establish the hierarchal order in the swarm as well as mother child 
relationship;
While (t<gen)
t=t+1;
If(t%G==0)
Establish the hierarchal order in the swarm as well as mother child relationship;
Else
For i=1:PN
If i==rooster
Update its solution by Eq. (8);
End if
Perform constraint handling by Algorithm 2
If i==hen
Update its solution by Eq.(4);
End if
Perform constraint handling by Algorithm 2
If i==chick
Update its solution by Eq.(7);
End if
Perform constraint handling by Algorithm 2
Evaluate the new solutions;
Update the new solutions if they are better than the previous one;
End for
Perform constraint handling by Algorithm 2
End if else
End while
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depends on the knowledge and capability of the teacher.

The students can learn from the teacher as well as learn

from each other through mutual interaction. Thus, the

algorithm is divided into two parts: teacher phase and

learner phase (Rao and Kalyankar 2011; Rao 2016).

In the teacher phase, the students learn from the teacher

who is an erudite scholar with profound knowledge and

skill. The learner having the best fitness in a randomly

generated population of teachers is generally assigned the

role of teacher. Each learner learns from the teacher and is

modified as follows:

Zdiff ¼ rand� ðTk � RtmkÞ ð9Þ
Znew ¼ Zold þ Zdiff ð10Þ

Tk represents teacher, Rt is a random number between 0

and 2, mk represents mean of the decision variable

And, the objective function value for each learner set

modified by transfer of knowledge by the teacher is recal-

culated. If the new value of the objective function for any

learner is better than the previous one, then it is replaced by

the new value. Else, the old learner is kept as it is.

In the learner phase, the learner learns by mutual

interaction among themselves. For each learner Zi, any

learner Zj is chosen arbitrarily from the learner matrix. The

objective function values are compared arbitrarily for the

two aforementioned learners. If the value of the objective

function of Zi is lower than the objective function of Zj,

then the ith learner is modified as follows:

Znew ¼ Zold þ rand� ðZi � ZjÞ ð11Þ

else, it is modified as

Znew ¼ Zold þ rand� ðZj � ZiÞ ð12Þ

The pseudocode and flow chart of TLBO is shown in

Algorithm 4.

5 ICSOTLBO

Standalone Nature-Inspired Optimization (NIO) algorithms

are sometimes not efficient enough to handle the uncer-

tainty of the practical optimization problems. Hybridiza-

tion of NIO algorithms offers competitive solutions than

standalone NIO algorithms in case of practical problems.

Also, the hybrid algorithms inherit the advantages of two

standalone algorithms, eliminate the limitations of the

standalone algorithms, and perform better than the stan-

dalone algorithms. A good balance between exploration

and exploitation is maintained in the hybrid algorithms.

Hybridization of CSO and TLBO is also presented in the

work. It is expected that the grading mechanism of ICSO

when introduced in TLBO, the utilization rate of popula-

tion will increase. Hence, in ICSOTLBO, TLBO is per-

formed in all the generations and ICSO is periodically

invoked in some generations. The salient features of the

proposed ICSOTLBO algorithm are:

1. In the hybridization scheme, TLBO is performed in all

generations and CSO is periodically invoked.

2. The algorithm is expected to have good utilization rate

of population due to the grading mechanism of CSO

Algorithm 4- Pseudo code of TLBO(Rao et al. 2011; Rao et al. 2016)
Set k=1;
Initialize the population size and generate the initial population of students randomly;
Compute the objective function for all the individuals of the population;
while(k<gen)
{Teacher Phase}
Assign the teacher based on the fitness value;
for i=1:pop
Modify each learner by Eq.(9), Eq.(10);
Evaluate the new solutions;
Update the new solutions if they are better than the previous one;
{End of teacher phase}
{Learner Phase}
Choose two learners Zi and Zj, i≠j;
if(fitness of Zi better than Zj)
Replace ith learner by Eq.(11);
Else
Replace ith learner by Eq. (12);
End if else
End for
k=k+1
End while
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3. The premature convergence that is a drawback of CSO

can be avoided in ICSOTLBO because of amalgama-

tion of CSO with TLBO

4. The modified update equation of CSO utilizing the best

experience from the past and the swarms’ previous best

experience about food availability will also enhance

the performance of the algorithm

5. The new constraint-handling mechanism will improve

the convergence speed of the algorithm

The scheme for hybridizing ICSO and TLBO is elabo-

rated in Algorithm 5.

6 Performance of ICSOTLBO on basic
benchmark functions

The proposed algorithm was first tested on eight basic

benchmark functions as shown in Table 2. In Table 2, f1,

f2, f3, f4, and f6 are unimodal functions and f5, f7, and f8

are a multimodal function. The detailed formulations of

these benchmark functions can be found in the reference

(Mirjalili 2016). The different algorithm-specific parame-

ters of ICSOTLBO were tuned as given in Table 3. The

performance of ICSOTLBO on these basic benchmark

functions was compared with a number of state-of-the-art

algorithms like different variants of PSO, DE, GA, etc. The

results related to these comparisons are presented in the

subsequent subsections.

6.1 Comparison of ICSOTLBO with different
variants of DE

The performance of ICSOTLBO was compared with

SaDE, jDE, and EPSDE on eight benchmark functions as

shown in Table 2. The results of SaDE, jDE, and EPSDE

were directly taken from the reference (Satapathy and Naik

2014). For fair comparison, the population size and number

of function evaluations of ICSOTLBO were kept same as

in the reference (Satapathy and Naik 2014). The mean and

standard deviations of the errors are reported in Table 4 for

each of the basic benchmark functions as shown in Table 2.

Further, Wilcoxon rank sum test was conducted at 0.05

significance level between ICSOTLBO and each of SaDE,

jDE, and EPSDE. The results of the Wilcoxon rank sum

test are reported in the last three rows of Table 4. It was

observed that ICSOTLBO was always better than SaDE

and jDE. And, ICSOTLBO was better than EPSDE for five

benchmark functions and equivalent to EPSDE for three

benchmark functions. For comparing the performance of

the proposed algorithm with the variants of DE, Friedman

test was performed. The ranks of the different algorithms

obtained by Friedman test are shown in Fig. 1. It was

observed that ICSOTLBO had obtained the best rank in

comparison with the different variants of DE.

Table 2 List of basic benchmark functions

Function no Function name Bounds f_min

F1 Sphere [- 100 100] 0

F2 Schwefel 2.22 [- 10 10] 0

F3 Schwefel 1.2 [- 100 100] 0

F4 Step [- 100 100] 0

F5 Rastrigin [- 5.12 5.12] 0

F6 Schwefel 2.21 [- 100 100] 0

F7 Ackley [- 32 32] 0

F8 Griewank [- 600 600] 0

Table 3 Algorithm-specific

parameters of ICSOTLBO
Parameter Value

RN 0.2PN

HN 0.6PN

CN PN-RN-HN

MN 0.1PN

S 2

C 2

G 10

INV 25

Algorithm 5- Pseudo code of hybridizing scheme utilized in ICSOTLBO
Initialize the population size, gen and the other algorithm specific parameters of ICSOTLBO 
Set t=1
While (t<gen)
Activate TLBO
If (t mod INV)>0
Activate ICSO
End if
t=t+1
End while
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6.2 Comparison of ICSOTLBO with different
variants of PSO

The performance of ICSOTLBO was compared with

APSO, OLPSO, and CLPSO on the benchmark functions

as shown in Table 2. The results of APSO, OLPSO, and

CLPSO were directly taken from the reference (Satapathy

and Naik 2014). For fair comparison, the population size

and number of function evaluations of ICSOTLBO were

kept same as in the reference (Satapathy and Naik 2014).

The mean and standard deviations of the errors are

reported in Table 5 for each of the basic benchmark

functions as shown in Table 2. Further, Wilcoxon rank

sum test was conducted at 0.05 significance level between

ICSOTLBO and each of APSO, OLPSO, and CLPSO.

The results of the Wilcoxon rank sum test are reported in

the last three rows of Table 5. It was observed that

ICSOTLBO was always better than APSO, OLPSO, and

CLPSO on 6, 3, and 6 benchmark functions, respectively.

ICSOTLBO performed equivalent to APSO, OLPSO, and

CLPSO on 1, 2, and 1 benchmark functions, respectively.

For comparing the performance of the proposed algorithm

with the variants of PSO, Friedman test was also per-

formed. The ranks of the different algorithms obtained by

Friedman test are shown in Fig. 2. It was observed that

ICSOTLBO had obtained the best rank in comparison

with the different variants of PSO.

Table 4 Comparison of ICSOTLBO with different variants of DE (D = 30, PN = 20)

Function FE SaDE jDE EPSDE ICSOTLBO

Mean SD ?,-,= Mean SD ?,-,= Mean SD ?,-,= Mean SD

F1 1.5e?05 4.5e-20 1.9e-14 - 2.5e-28 3.5e-28 - 1.53e-85 9.01e-86 - 0 0

F2 2e?05 1.9e-14 1.1e-14 - 1.5e-23 1.0e-23 - 3.18e-54 3.11e-54 - 0 0

F3 5e?05 9e-37 5.4e-36 - 5.2e-14 1.1e-13 - 4.81e-76 1.9e-76 - 0 0

F4 1e?04 9.3e?02 1.8e?02 - 1e?03 2.2e?02 - 0 0 = 0 0

F5 1e?05 1.2e-03 6.5e-04 - 1.5e-04 2e-04 - 0 0 = 0 0

F6 5e?05 7.4e-11 1.82e-10 - 1.4e-15 1e-15 - 1.94e-02 8.90e-4 - 0 0

F7 5e?04 2.7e-03 5.1e-04 - 3.5e-04 1e-04 - 5.36e-13 4.77e-14 - 0 0

F8 5e?04 7.8e-04 1.2e-03 - 1.9e-05 5.8e-05 - 0 0 - 0 0

- 8 8 5 ? indicates better

- indicates worse

= indicates equivalent

? 0 0 0

= 0 0 3

3.125
2.625 2.5

1.75

SaDE jDE EPSDE ICSOTLBO

Rank

Fig. 1 Comparison of Friedman ranks of ICSOTLBO with different

variants of DE for basic benchmark functions

Table 5 Comparison of ICSOTLBO with different variants of PSO (D = 30, PN = 20, FE = 2e?05)

Function APSO OLPSO CLPSO ICSOTLBO

Mean SD ?,-,= Mean SD ?,-,= Mean SD ?,-,= Mean SD

F1 1.5e-150 5.73e-150 - 1.11e-38 1.28e-128 - 1.89e-19 1.49e-19 - 0 0

F2 5.15e-84 1.44e-83 - 7.67e-22 5.63e-22 - 1.01e-13 6.54e-14 - 0 0

F3 1.1e-10 2.13e-10 - NA NA NA 3.97e?02 1.42e?02 - 0 0

F4 0 0 = NA NA NA 0 0 = 0 0

F5 5.8e-15 1.01e-14 - 0 0 = 2.57e-01 6.64e-11 - 0 0

F7 1.11e-14 3.55e-15 - 4.14e-05 0 - 2.01e-12 9.22e-13 - 0 0

F8 1.67e-02 2.41e-02 - 0 0 = 6.45e-13 2.07e-12 - 0 0

- 6 3 6 ? indicates better

- indicates worse

= indicates equivalent

? 0 0 0

= 1 2 1
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6.3 Comparison of ICSOTLBO with BPSOGSA,
BGSA, and GA

The performance of ICSOTLBO was compared with

BPSOGSA, BGSA, and GA on the benchmark functions as

shown in Table 2. The results of BPSOGSA, BGSA, and

GA were directly taken from the reference (Mirjalili et al.

2014b). For fair comparison, the population size and

number of function evaluations of ICSOTLBO were kept

same as in the reference (Mirjalili et al. 2014b). The mean

and standard deviations of the errors are reported in

Table 6 for each of the basic benchmark functions as

shown in Table 2. Further, Wilcoxon rank sum test was

conducted at 0.05 significance level between ICSOTLBO

and each of BPSOGSA, BGSA, and GA. The results of the

Wilcoxon rank sum test are reported in the last three rows

of Table 6. It was observed that ICSOTLBO was always

better than BPSOGSA, BGSA, and GA. Further, for

comparing the performance of the proposed algorithm with

the BPSOGSA, BGSA, and GA, Friedman test was per-

formed. The ranks of the different algorithms obtained by

Friedman test are shown in Fig. 3. It was observed that

ICSOTLBO had obtained the best rank in comparison with

BPSOGSA, BGSA, and GA.

7 Performance of ICSOTLBO
on computationally expensive benchmark
functions

The proposed algorithm was further tested on 15 compu-

tationally expensive benchmark functions as shown in

Table 7. The benchmark functions reported in Table 7

were taken from the set of computationally expensive

benchmark functions of various years of Congress on

Evolutionary Competition (CEC). Most of the test func-

tions reported in Table 7 are complex functions repre-

senting shifted, rotated, and expanded versions of basic

benchmark functions. In Table 7, F1–F5 are unimodal

functions, F6–F13 are multimodal functions, and F14, F15

are hybrid functions. The detailed formulations of these

benchmark functions can be found in the reference (Su-

ganthan et al. 2005). The different algorithm-specific

parameters of ICSOTLBO were tuned as shown in Table 3.

The performance of ICSOTLBO on these computationally

expensive benchmark functions was compared with a

number of state-of-the-art algorithms like different variants

of PSO, DE, GA, TLBO and its variants, etc. The results

related to these comparisons are presented in the subse-

quent subsections.

2.2
3 3.2

1.6

APSO OLPSO CLPSO ICSOTLBO

Rank

Fig. 2 Comparison of Friedman ranks of ICSOTLBO with different

variants of PSO for basic benchmark functions

Table 6 Comparison of ICSOTLBO with BPSOGSA, BGSA, and GA(D = 5, PN = 30, FE = 500)

Function BPSOGSA BGSA GA ICSOTLBO

Mean SD ?,-,= Mean SD ?,-,= Mean SD ?,-,= Mean SD

F1 0.753881836 0.744054218 - 2052.005 41.45277 - 10.0750 24.9445 - 3.1296e-61 1.3963e-60

F2 0.158447266 0.121911192 - 1.32569 0.67277 - 0.226948 0.23788 - 1.2360e-32 5.4264e-32

F3 45.2867 94.45 - 509.0988 266.3714 - 555.9039 250.693 - 1.8293e-71 8.1809e-71

F4 2.464062500 2.429516395 - 7.999 3.45 - 1.59375 1.21348 - 7.8294e-15 3.5014e-14

F5 1.875194 1.271683 - 5.999694 2.963102 - 2.1896 0.8330273 - 0.9950 0.757

F6 2.464062500 2.429516395 - 7.999 3.45 - 1.59375 1.21348 - 9.7504e-25 4.3473e-24

F7 0.541234 0.800463 - 2.947044 1.481999 - 1.399853 1.338105 - 0.1646 0.5067

F8 0.179551 0.092974 - 0.647846 0.228547 - 0.7067 0.3223 - 0.0666 0.0506

- 8 8 8 ? indicates better

- indicates worse

= indicates equivalent

? 0 0 0

= 0 0 0

2.125

4 

2.875

1 

BPSOGSA BGSA GA ICSOTLBO

Rank

Fig. 3 Comparison of Friedman ranks of ICSOTLBO with

BPSOGSA, BGSA, and GA for basic benchmark functions
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7.1 Comparison of ICSOTLBO with TLBO and its
variants

The performance of ICSOTLBO was compared with

TLBO and mTLBO on the benchmark functions as shown

in Table 7. The results of TLBO were directly taken from

the reference (Zhai et al. 2015; Rao and Waghmare 2013),

and the results of mTLBO were directly taken from the

reference (Satapathy and Naik 2014). For fair comparison,

the population size and number of function evaluations of

ICSOTLBO were kept same as in the references(Satapathy

and Naik 2014; Zhai et al. 2015; Rao and Waghmare

2013).The mean and standard deviations of the errors are

reported in Table 8 for each of the benchmark functions as

shown in Table 7. Further, Wilcoxon rank sum test was

conducted at 0.05 significance level between ICSOTLBO

and each of TLBO and mTLBO. The results of the Wil-

coxon rank sum test are reported in the last three rows of

Table 8. It was observed that ICSOTLBO performed better

than TLBO on eight benchmark functions, worse than

Table 7 List of computationally

expensive benchmark functions
Function no Function name Bounds f_bias

F1 Shifted sphere [- 100 100] - 450

F2 Shifted Schwefel’s problem 1.2 [- 100 100] - 450

F3 Shifted rotated high conditioned elliptic [- 100 100] - 450

F4 Shifted Schwefel’s problem 1.2 with noise in fitness [- 100 100] - 450

F5 Schwefel’s problem 2.6 with global optimum on bounds [- 100 100] 310

F6 Shifted Rosenbrock’s function [- 100 100] 390

F7 Shifted rotated Ackley’s function with global optimum on bounds [- 32 32] - 140

F8 Shifted Rastrigin function [- 5 5] - 330

F9 Shifted rotated Rastrigin’s function [- 5 5] - 330

F10 Shifted rotated Weierstrass function [0.5 - 0.5] 90

F11 Schwefel’s problem 2.13 [- 100 100] - 460

F12 Expanded extended Griewank’s plus Rosenbrock’s function [- 3 1] - 130

F13 Expanded rotated extended Scaffe’s function [- 100 100] - 300

F14 Hybrid composition function 1 [- 5 5] 120

F15 Rotated hybrid composition function 3 [- 5 5] 360

Table 8 Comparison of ICSOTLBO with TLBO and its variants (D = 30, FE = 3e?05)

Function TLBO mTLBO ICSOTLBO

Mean SD ?,-,= Mean SD ?,-,= Mean SD

F1 3.39e-27 1.49e-27 - 0.00e?00 0.00e?00 = 0.00e?00 0.00e?00

F2 1.56e-09 4.20e-09 ? 1.79e-08 3.46e-08 - 1.717e-08 3.41e-08

F3 6.81e?05 4.08e?04 - 2.02e?05 1.72e?05 - 1.8507e?05 6.2989e?04

F4 7.35e?01 9.78e?01 - 1.92e?02 1.47e?02 - 6.87e?01 5.98e?01

F5 3.16e?03 6.77e?02 - 4.21e?03 1.13e?03 - 1.7156e?03 5.19e?02

F6 5.36e?01 4.12e?01 - 1.82e?01 5.79e?00 - 9.5287e?00 5.4702e?00

F7 2.09e?01 3.52e-02 - 2.07e?01 3.92e-02 = 2.07e?01 3.92e-02

F8 8.59e?01 1.92e?01 ? 6.34e?01 1.76e?01 ? 3.02e?02 9.327e?01

F9 1.23e?02 3.30e?01 - 6.14e?01 6.13e?00 ? 1.09e?02 2.6e?01

F10 3.09e?01 3.39e?00 ? 3.15e?01 1.11e?00 ? 3.7e?01 1.2747e?00

F11 9.93e?03 1.17e?04 ? 1.67e?03 3.61e?03 ? 3.864e?05 1.35e?05

F12 4.33e?00 9.27e-01 ? 3.19e?00 3.4e-01 ? 6.91e?01 4.4e?01

F13 1.29e?01 1.87e-01 - 1.20e?01 2.11e-01 = 1.20e?01 2.01e-01

F14 2.80e?02 7.48e?01 ? 3.05e?02 6.46e?01 ? 3.76e?02 5.04e?02

F15 5.002e?02 1.92e?00 = 5.002e?02 2.08e-13 = 5.002e?02 0.00e?00

? 6 6 ? indicates better

- indicates worse

= indicates equivalent

- 8 5

= 1 4
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TLBO on five benchmark functions and equivalent to

TLBO on one benchmark function. And, ICSOTLBO

performed better than mTLBO on six benchmark functions,

worse than TLBO on five benchmark functions and

equivalent to TLBO on four benchmark functions. For

comparing the performance of the proposed algorithm with

TLBO and its variants, Friedman test was also performed.

The ranks of the different algorithms obtained by Friedman

test are shown in Fig. 4. It was observed that ICSOTLBO

was the second best performing algorithm in comparison

with TLBO and mTLBO.

7.2 Comparison of ICSOTLBO with different
variants of PSO

The performance of ICSOTLBO was compared with

APSO, OLPSO, and CLPSO on the benchmark functions

as shown in Table 7. The results of APSO, OLPSO, and

CLPSO were directly taken from the reference (Li et al.

2015). For fair comparison, the population size and number

of function evaluations of ICSOTLBO were kept same as

in the reference (Li et al. 2015). The mean and standard

deviations of the errors are reported in Table 9 for each of

the benchmark functions as shown in Table 7. Further,

Wilcoxon rank sum test was conducted at 0.05 significance

level between ICSOTLBO and each of APSO, OLPSO, and

CLPSO. The results of the Wilcoxon rank sum test are

reported in the last three rows of Table 9. ICSOTLBO

performed better than APSO on seven benchmark func-

tions, worse than APSO on seven benchmark functions,

and equivalent to APSO on one benchmark function.

ICSOTLBO performed better than OPSO on eight bench-

mark functions, worse than OPSO on five benchmark

functions, and equivalent to OPSO on two benchmark

functions. And, ICSOTLBO performed better than CLPSO

on eight benchmark functions, worse than CLPSO on six

benchmark functions, and equivalent to CLPSO on one

benchmark function. For comparing the performance of the

proposed algorithm with different variants of PSO, Fried-

man test was also performed. The ranks of the different

algorithms obtained by Friedman test are shown in Fig. 5.

It was observed that ICSOTLBO was the best performing

algorithm in comparison with different variants of PSO.

2.3846
1.7308 1.8846

TLBO mTLBO ICSOTLBO

Rank

Fig. 4 Comparison of Friedman ranks of ICSOTLBO with TLBO and

its variants for unimodal and multimodal computationally expensive

benchmark functions

Table 9 Comparison of ICSOTLBO with different variants of PSO (- = 30, FE = 3e?05)

Function APSO OLPSO CLPSO ICSOTLBO

Mean SD ?,-,= Mean SD ?,-,= Mean SD ?,-,= Mean SD

F1 7.01e-14 2.45e-14 - 0.00e?00 0.00e?00 = 5.68e-14 0.00e?00 - 0.00e?00 0.00e?00

F2 9.97e-13 1.79e-12 ? 1.50e?01 1.23e?01 - 8.79e?02 1.79e?02 - 1.717e-08 3.41e-08

F3 3.96e?05 1.59e?05 - 1.46e?07 5.33e?06 - 1.67e?07 4.66e?06 - 1.8507e?05 6.2989e?04

F4 7.23e?01 6.02e?01 - 2.26e?03 9.70e?02 - 6.61e?03 1.14e?03 - 6.87e?01 5.98e?01

F5 5.85e?03 1.45e?03 - 3.28e?03 5.54e?02 - 3.86e?03 5.32e?02 - 1.7156e?03 5.19e?02

F6 6.94e?00 1.68e?01 ? 2.63e?01 2.50e?01 - 5.10e?00 5.43e?00 - 9.5287e?00 5.4702e?00

F7 2.07e?01 2.97e-02 = 2.09e?01 6.90e-02 - 2.09e?01 5.46e-02 - 2.07e?01 3.92e-02

F8 1.48e-13 5.90e-14 ? 0.00e?00 0.00e?00 ? 1.08e-11 1.02e-11 ? 3.02e?02 9.327e?01

F9 1.50e?02 6.25e?01 - 1.10e?02 3.12e?01 - 1.14e?02 1.50e?01 - 1.09e?02 2.6e?01

F10 2.78e?01 3.16e?00 ? 2.55e?01 2.95e?00 ? 2.7e?01 1.71e?00 ? 3.7e?01 1.2747e?00

F11 1.27e?04 1.70e?04 ? 1.33e?04 6.95e?03 ? 2.81e?04 6.59e?03 ? 3.864e?05 1.35e?05

F12 1.54e?00 4.05e-01 ? 1.92e?00 3.28e-01 ? 1.66e?00 5.68e-01 ? 6.91e?01 4.4e?01

F13 1.30e?01 5.24e-01 - 1.31e?01 2.57e-01 - 1.29e?01 1.72e-01 - 1.20e?01 2.01e-01

F14 3.48e?02 1.50e?02 ? 2.5e?02 9.21e?01 ? 1.06e?02 5.34e?01 ? 3.76e?02 5.04e?02

F15 7.66e?02 3.23e?02 - 5.002e?02 2.86e-13 = 5.002e?02 4.14e-13 = 5.002e?02 0.00e?00

? 7 5 6 ? indicates better

- indicates worse

= indicates equivalent

- 7 8 8

= 1 2 1
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7.3 Comparison of ICSOTLBO with different
variants of DE

The performance of ICSOTLBO was compared with

SaDE, jDE, and EPSDE on 15 benchmark functions as

shown in Table 7. The results of SaDE, jDE, and EPSDE

were directly taken from the reference (Satapathy and Naik

2014). For fair comparison, the population size and number

of function evaluations of ICSOTLBO were kept same as

in the reference (Satapathy and Naik 2014). The mean and

standard deviations of the errors are reported in Table 10

for each of the basic benchmark functions as shown in

Table 7. Further, Wilcoxon rank sum test was conducted at

0.05 significance level between ICSOTLBO and each of

SaDE, jDE, and EPSDE. The results of the Wilcoxon rank

sum test are reported in the last three rows of Table 10.

ICSOTLBO performed better than SaDE on five bench-

mark functions, worse than SaDE on seven benchmark

functions, and equivalent to SaDE on three benchmark

functions. ICSOTLBO performed better than jDE on eight

benchmark functions, worse than jDE on six benchmark

functions, and equivalent to jDE on one benchmark func-

tion. And, ICSOTLBO performed better than EPSDE on

six benchmark functions, worse than EPSDE on seven

benchmark functions, and equivalent to EPSDE on two

benchmark functions. For comparing the performance of

the proposed algorithm with different variants of DE,

Friedman test was also performed. The ranks of the dif-

ferent algorithms obtained by Friedman test are shown in

Fig. 6. It was observed that jDE was the best performing

algorithm followed by SaDE, and the rank of ICSOTLBO

was equivalent to EPSDE.

2.2692 2.4615 2.8077

4.5

APSO OLPSO CLPSO ICSOTLBO

Rank

Fig. 5 Comparison of Friedman ranks of ICSOTLBO with different

variants of PSO for unimodal and multimodal computationally

expensive benchmark functions

Table 10 Comparison of ICSOTLBO with different variants of DE (D = 30, FE = 3e?05)

Function jDE SaDE EPSDE ICSOTLBO

Mean SD ?,-,= Mean SD ?,-,= Mean SD ?,-,= Mean SD

F1 0.00e?00 0.00e?00 = 0.00e?00 0.00e?00 = 0.00e?00 0.00e?00 = 0.00e?00 0.00e?00

F2 1.11e-06 1.10e-06 - 8.26e-06 1.65e-06 - 4.23e-26 4.07e-26 ? 1.717e-08 3.41e-08

F3 1.98e?05 1.10e?05 - 4.27e?05 2.08e?05 - 8.74e?05 3.28e?06 - 1.8507e?05 6.2989e?04

F4 4.40e-02 1.26e-01 ? 1.77e?02 2.67e?02 - 3.49e?02 2.23e?03 - 6.87e?01 5.98e?01

F5 5.11e?02 4.40e?02 ? 3.25e?03 5.90e?02 - 1.40e?03 7.12e?02 ? 1.7156e?03 5.19e?02

F6 2.35e?01 2.50e?01 - 5.31e?01 3.25e?01 - 6.38e?01 1.49e?00 - 9.5287e?00 5.4702e?00

F7 2.09e?01 4.86e-02 - 2.09e?01 4.95e-02 - 2.09e?01 5.81e-02 - 2.07e?01 3.92e-02

F8 0.00e?00 0.00e?00 ? 2.39e-01 4.33e-01 ? 3.98e-02 1.99e-01 ? 3.02e?02 9.327e?01

F9 5.54e?01 8.46e?00 ? 4.72e?01 1.01e?01 ? 5.36e?01 3.03e?01 ? 1.09e?02 2.6e?01

F10 2.79e?01 1.61e?00 ? 1.65e?01 2.42e?00 ? 3.76e?01 3.88e?00 = 3.7e?01 1.2747e?00

F11 8.63e?03 8.31e?03 ? 3.02e?03 2.33e?03 ? 3.58e?04 7.05e?03 ? 3.864e?05 1.35e?05

F12 1.66e?00 1.35e-01 ? 3.94e?00 2.81e-01 ? 1.94e?00 1.46e_01 ? 6.91e?01 4.4e?01

F13 1.30e?01 2.00e-01 - 1.26e?01 2.38e-01 - 1.35e?01 2.09e-01 - 1.20e?01 2.01e-01

F14 3.77e?02 8.02e?01 = 3.76e?02 7.83e?01 ? 2.12e?02 1.98e?01 ? 3.76e?02 5.04e?02

F15 5.002e?02 4.80e-13 = 5.52e?02 1.82e?02 - 8.33e?02 1.00e?02 - 5.002e?02 0.00e?00

? 7 6 7 ? indicates better

- indicates worse

= indicates equivalent

- 5 8 6

= 3 1 2

1.8077
2.4231 2.4615 2.4615

jDE SaDE EPSDE ICSOTLBO

Rank

Fig. 6 Comparison of Friedman ranks of ICSOTLBO with different

variants of DE for unimodal and multimodal computationally

expensive benchmark functions
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7.4 Comparison of ICSOTLBO with SPC-PNX
and CMA-ES

The performance of ICSOTLBO was compared with SPC-

PNX and CMA-ES on 15 benchmark functions as shown in

Table 7. The results of SPC-PNX and CMA-ES were

directly taken from the references (Ballester et al. 2005;

Satapathy and Naik 2014). For fair comparison, the pop-

ulation size and number of function evaluations of

ICSOTLBO were kept same as in the reference (Ballester

et al. 2005; Satapathy and Naik 2014). The mean and

standard deviations of the errors are reported in Table 11

for each of the basic benchmark functions as shown in

Table 7. Further, Wilcoxon rank sum test was conducted at

0.05 significance level between ICSOTLBO and each of

SPC-PNX and CMA-ES. The results of the Wilcoxon rank

sum test are reported in the last three rows of Table 11. It

was observed that ICSOTLBO performed better than SPC-

PNX on seven benchmark functions, worse than SPC-NX

on seven benchmark functions, and equivalent to SPC-NX

on one benchmark function. And, ICSOTLBO performed

better than CMA-ES on six benchmark functions, worse

than CMA-ES on seven benchmark functions, and equiv-

alent to CMA-ES on two benchmark functions. For com-

paring the performance of the proposed algorithm with

SPC-PNX and CMA-ES, Friedman test was also per-

formed. The ranks of the different algorithms obtained by

Friedman test are shown in Fig. 7. It was observed that

CMA-ES was the best performing algorithm, and the rank

of ICSOTLBO was equivalent to SPC-PNX.

8 Computational complexity of ICSOTLBO

The complexity of the proposed ICSOTLBO algorithm was

compared with other state-of-the-art algorithms like basic

PSO, TLBO, GA, and DE. The details related to the

evaluation criterion of computational complexity of algo-

rithms used in the present work can be found in the ref-

erence (Suganthan et al. 2005). The proposed algorithms

were tested in MATLAB 2016a software installed on a

computer with the processor of 64 bit Intel i7 CPU. The

results related to the computational complexity of the

aforesaid algorithms are presented in Table 12. In

Table 11 Comparison of ICSOTLBO with SPC-PNX and CMA-ES (D = 30, FE = 3e?05)

Function SPC-PNX CMA-ES ICSOTLBO

Mean SD ?,-,= Mean SD ?,-,= Mean SD

F1 9.3524e-9 4.6327e-10 - 1.58e-25 3.35e-26 - 0.00e?00 0.00e?00

F2 6.9482e-7 1.4911e-6 - 1.12e-24 2.93e-25 ? 1.717e-08 3.41e-08

F3 1.1020e?6 4.2081e?5 - 5.54e-21 1.69e-21 ? 1.8507e?05 6.2989e?04

F4 8.1320e-7 1.7457e-6 ? 9.15e?05 2.16e?06 - 6.87e?01 5.98e?01

F5 4.2374e?3 1.3752e?3 - 2.77e-10 5.04e-11 ? 1.7156e?03 5.19e?02

F6 1.5197e?1 1.4903e?1 - 4.78e-01 1.32e?00 ? 9.5287e?00 5.4702e?00

F7 2.0932e?1 4.5876e-2 - 2.07e?01 5.72e-01 = 2.07e?01 3.92e-02

F8 2.3934e?1 6.2477e?0 ? 4.45e?02 7.12e?01 - 3.02e?02 9.327e?01

F9 6.0297e?1 4.0576e?1 ? 4.63e?01 1.16e?01 ? 1.09e?02 2.6e?01

F10 1 1255e?1 3.2979e?00 ? 7.11e?01 2.14e?00 - 3.7e?01 1.2747e?00

F11 1.31e?04 1.3346e?04 ? 1.26e?04 1.74e?04 ? 3.864e?05 1.35e?05

F12 3.5881e?00 1.0857e?00 ? 3.43e?00 7.60e-01 ? 6.91e?01 4.4e?01

F13 1.3131e?1 2.6887e-1 - 1.47e?01 3.31e-01 - 1.20e?01 2.01e-01

F14 3.6822e?02 9.45e?01 ? 5.55e?02 3.32e?02 - 3.76e?02 5.04e?02

F15 5.002e?02 0.00e?00 = 5.002e?02 2.68e-12 = 5.002e?02 0.00e?00

? 7 7 ? indicates better

- indicates worse

= indicates equivalent

- 7 6

= 1 2

2 
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Fig. 7 Comparison of Friedman ranks of ICSOTLBO with SPC-PNX

and CMA-ES for unimodal and multimodal computationally expen-

sive benchmark functions
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Table 12, T0 represents the computing time of the base

program given by CEC. T1 represents the computing time

of F3 for 2e?05 function evaluations. T2 represents the

mean of the computing time of F3 for 2e?05 function

evaluations obtained by running the program 5 times. From

Table 12, it can be observed that the computational com-

plexity of ICSOTLBO is less than TLBO and GA but more

than PSO and DE. It must be noted that the computational

complexity of the algorithm increase with the increasing

size of the data set. Thus, the computational complexity of

all the algorithms may increase if we increase the value of

D.

9 Performance of ICSOTLBO on real-world
problems

The performance of the proposed ICSOTLBO algorithm

was further tested on real-world problems like charging

station placement problem and economic load dispatch

problem. The performance of ICSOTLBO on these real-

world problems is illustrated in this section.

9.1 Performance of ICSOTLBO on charging
station placement problem

The performance of the proposed ICSOTLBO algorithm

was appraised by applying it on solving the complex and

demanding problem of charging station placement for

Electric Vehicles (EVs). EVs are an environment friendly

alternative to gasoline fuelled vehicles. However, the

limited driving range is one of the drawbacks of EVs. The

EVs need to recharge their batteries in the charging stations

after travelling certain distance. These charging stations

augment the load of the power grid (Deb et al.

2018a, 2019b). Thus, the charging station placement must

take into consideration security of the power distribution

network as well as EV user’s convenience. There are dif-

ferent formulations of charging station placement present

in the existing literature (Deb et al. 2018b). In this work,

the charging station placement problem present in the

reference (Deb et al. 2017) was solved by ICSOTLBO. The

decision variables of the charging station placement prob-

lem were:

• Position where charging stations will be placed, b

• Number of fast charging stations placed at b, NFb

• Number of slow charging stations placed at b, NSb

It was considered that the charging stations would be

placed at the superimposed nodes (TS) of the road and

distribution network. Also, it was assumed that the charg-

ing stations would only be placed at the strong nodes (S) of

the distribution network that was not prone to voltage

instability.

The optimization aimed at minimization of the overall

cost associated with charging stations. Moreover, the cost

was divided into the direct and indirect costs. Direct cost

considered the installation and operation cost associated

with charging stations. Indirect cost considered the penalty

paid by the utilities for violating the safe limits of distri-

bution network parameters like voltage profile, reliability,

and the travelling distance cost from point of charging

station to point of placement of charging station.

The objective function is

J ¼ MinðCinstallation þ Coperation þ Cpenalty þ CtravelÞ ð13Þ

where Cinstallation represents installation cost of chargers,

Coperation represents operating cost of the charging stations,

Cpenalty represents the penalty paid by utility for violating

safe limits of voltage profile and Average Energy Not

Served (AENS), and Ctravel represents the travelling dis-

tance cost from point of charging station to point of

placement of charging station.

Subject to

0\NFb � nfastCS ð14Þ
0\NSb � nslowCS ð15Þ
Smin � Si � Smax ð16Þ
L� Lmax ð17Þ

where nfastCS and nslowCS represent the maximum number

of fast and slow charging stations that can be placed, Smin

and Smax represent lower and upper limits of reactive power

flow of each bus, Lmax represents the loading margin of the

network.

Apart from the aforementioned constraints, the power

balance equation must also be considered as an equality

constraint while solving the charging station placement

problem (Deb et al. 2017).

The charging station placement problem was solved for

superimposed IEEE 33 bus distribution network and 25

node road network. The details of the test system and the

input parameters of the charging station placement problem

can be found in the reference (Deb et al. 2017).

Table 12 Computational complexity of ICSOTLBO, PSO, TLBO,

and GA(D = 30, FE = 2e?05)

Algorithm T0 (s) T1(s) T2(s) |(T2 - T1)/T0|

ICSOTLBO 0.2081 61.7467 62.5996 4.098

PSO 29.89 29.87 0.0961

TLBO 55.45 59.98 21.768

GA 57.87 54.22 17.539

DE 32.76 32.54 1.057
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The performance of ICSOTLBO on solving the charging

station placement problem was also compared with other

state-of-the-art algorithms like GA, DE, PSO, CSO, TLBO,

and CSOTLBO. The different algorithm-specific parame-

ters of the aforesaid algorithms are listed in Table 13. For

fair comparison, the population and iteration are fixed to 10

and 50, respectively, for all the aforesaid algorithms. The

optimal value of the decision variables for minimization of

the overall cost and the best value of the fitness function are

reported in Table 14. It was observed that the best fitness

value obtained by ICSOTLBO was 1.3605 that was better

than CSOTLBO, TLBO, CSO, GA, DE, and PSO. A sta-

tistical comparison of the quality of solution was per-

formed for all the algorithms, the results of which are

reported in Table 15. The results reported in Table 15

demonstrate the superiority of ICSOTLBO over CSO,

TLBO, CSOTLBO, GA, PSO, and DE in solving the

complex charging station placement problem. The con-

vergence curve of ICSOTLBO and the aforesaid algorithms

for the best fitness value is shown in Fig. 8.

9.2 Performance of ICSOTLBO on economic load
dispatch problem

Economic load dispatch is considered as one of the com-

plex power system optimization problems. The main

objective of economic load dispatch is to minimize the net

cost of generation under a set of operating constraints. Both

convex and non-convex formulations of economic load

dispatch problem are available in the existing literature

(Bhattacharjee et al. 2014a, b, c). In the present work,

economic load dispatch problem with quadratic fuel cost

function along with operating limits was solved by

ICSOTLBO. The objective function is expressed as:

J ¼ Min
XN
i¼1

ðai þ biPi þ ciP
2
i Þ ð18Þ

where N is the total number of generators in the system, ai,

bi, and ci are the cost coefficients of the ith generator, Pi is

the output power of ith generator.

Subject to

XN
i¼1

Pi � PD ¼ 0 ð19Þ

Pmin
i �Pi �Pmax

i ð20Þ

Table 13 Algorithm-specific parameters of different state-of-the-art algorithms for charging station placement problem

Algorithm Parameters

PSO c1 = c2 = 2, w = 0.1

DE CR = 0.6, F = 1.5

CSO RN = 0.2PN, HN = 0.5PN, CN = PN-RN-HN, MN = 0.3PN, G = 5

CSO TLBO RN = 0.3PN, HN = 0.4PN, CN = PN-RN-HN, MN = 0.3PN, G = 3, INV = 5

ICSOTLBO RN = 0.3PN, HN = 0.4PN, CN = PN-RN-HN, MN = 0.3PN, G = 3, INV = 5, C = 2, S = 2

Table 14 Optimal placement of charging stations by ICSOTLBO and

other state-of-the-art algorithms

Optimization technique Fitness value (best) b NFb NSb

ICSOTLBO 1.3605 6 1 2

3 1 2

23 1 3

CSOTLBO 1.4841 6 1 2

3 1 3

23 1 3

CSO 1.4870 6 1 3

23 1 3

3 1 2

TLBO 1.4878 3 1 3

23 1 3

28 1 2

PSO 1.4898 23 1 2

6 1 3

3 1 3

DE 1.4898 23 1 2

6 1 3

3 1 3

GA 1.5075 23 1 2

3 1 3

28 1 3

Table 15 Statistical comparison

of ICSOTLBO with other algo-

rithms in solving charging sta-

tion placement problem

Algorithm Mean fitness

ICSOTLBO 1.4268

CSOTLBO 1.5241

CSO 1.5430

TLBO 1.5413

PSO 1.5413

DE 1.5497

GA 1.5584
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where PD represents net power demand of the system, Pi
min

and Pi
max represent lower and upper power limits of ith

generator.

The economic load dispatch problem with quadratic cost

function and operating constraints elaborated by Eqs. (18)–

(20) was solved by ICSOTLBO. The test system consid-

ered was a 38 generator test system. The details of the test

system and the input parameters were same as in the

reference (Bhattacharjee et al. 2014a, b, c). The perfor-

mance of ICSOTLBO algorithm in solving economic load

dispatch problem was compared with other algorithms like

RCCRO, TLBO, and DE. The results of RRCO and DE

were taken from (Bhattacharjee et al. 2014c), and the

results of TLBO were taken from (Bhattacharjee et al.

2014b). For fair comparison, the population size and

number of function evaluations of ICSOTLBO were kept

same as in the reference (Bhattacharjee et al. 2014b, c).

The different algorithm-specific parameters of ICSOTLBO

were same as in Table 13; only the value of INV is changed

to 10. The mean of the cost function over 50 trials obtained

by the aforesaid algorithms is reported in Table 16. The

results reported in Table 16 demonstrate the superiority of

ICSOTLBO over TLBO, RRCRO, and DE in solving the

economic load dispatch problem. The convergence curve

of different algorithms for the best fitness value is shown in

Fig. 9.
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Table 16 Statistical comparison of ICSOTLBO with other algorithms

in solving economic load dispatch problem

Algorithm Mean fitness ($/hr)

TLBO 9,411,938.55723

RCCRO 9,412,404.277425

DE 9,417,237.290970

ICSOTLBO 9,411,938.54700
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10 Future directions of work

The work proposes improvement of basic CSO algorithm

and its hybridization with TLBO. The proposed algorithm

performs satisfactorily on basic, computationally expensive

benchmark problems as well as real-world problems.

However, still there is a scope for improving the algorithm

and using the algorithm for complex optimization prob-

lems. Future works that can be undertaken on the proposed

algorithm are listed below:

1. Development of adaptive CSO–CSO has a number of

algorithm-specific parameters. Improper tuning of

these parameters sometimes causes slow convergence

of the algorithm. Also, the tuning of these parameters is

done by trial and error method that is very much time-

consuming. Hence, development of an adaptive version

of CSO is a promising area of research.

2. Solution of complex real-world optimization problems

by ICSOTLBO: There are many complex real-world

optimization problems that are difficult to solve by

conventional algorithms. The proposed ICSOTLBO

algorithm can be utilized to solve real-world complex

problems such as optimization of vehicle-to-vehicle

frontal crash model (Munyazikwiye et al. 2017),

predictive control of nonlinear processes (Bououden

et al. 2015), microgrid control (Goodarzi and Kazemi

2017), optimal configuration of microgrid (Deb et al.

2016; Ghosh et al. 2017).

3. Improvement of the algorithm with information feed-

back models: The proposed ICSOTLBO algorithm

does not fully utilize the information available from

previous iterations. If the information from the previ-

ous iterations can be utilized properly, then it is

expected that the quality of the solutions will signif-

icantly improve. Thus, introduction of the feedback

models suggested by Wang and Tan (2017) in the

proposed ICSOTLBO algorithm is a promising area of

research.

4. Hybridization of CSO with other nature-inspired

algorithms: Standalone Nature-Inspired Optimization

(NIO) algorithms are sometimes not efficient enough to

handle the uncertainty of the practical optimization

problems. Hybridization of NIO algorithms offers

competitive solutions than standalone NIO algorithms

in case of practical problems. Also, the hybrid algo-

rithms inherit the advantages of two standalone algo-

rithms, eliminate the limitations of the standalone

algorithms, and perform better than the standalone

algorithms. A good balance between exploration and

exploitation is maintained in the hybrid algorithms.

There is a scope for hybridizing CSO with other NIO

algorithms. Hybridization of CSO with other NIO

algorithms such as Jaya algorithm and Sine Cosine

Algorithm is a promising area of research.

11 Conclusions

The work proposes improvement of basic CSO algorithm

and its hybridization with TLBO. The performance of the

proposed algorithm is investigated on basic benchmark

functions as well as computationally expensive functions.

It is observed that the proposed algorithm outperforms

many of the state-of-the-art algorithms like PSO, DE, and

GA. Further, the proposed algorithm is used for solving the

complex problem of charging station placement and eco-

nomic load dispatch problem. The superiority of the pro-

posed algorithm in solving complex real-world problems

like charging station placement and economic load dis-

patch problem is also clearly revealed in the work. Our

future work will focus on further improvement of CSO,

development of adaptive CSO, hybridization of CSO with

other evolutionary algorithms, and solution of complex

power system optimization problems by CSO.
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