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Abstract
Up to now, various types of distance measures have been developed and investigated in-depth for hesitant fuzzy sets (HFSs).
The analytical study of the existing distance measures for HFSs shows that they have still some limitations. In an attempt
to overcome the limitations, this study develops a class of Hausdorff-based distances to measure the distance among HFSs
which are not restricted to the same length of their hesitant fuzzy elements (HFEs) and of course the arranging order of values
in the HFEs. Furthermore, these HFS distance measures do satisfy all well-known and essential axioms, specially, the triangle
inequality property. Eventually, we present some examples to illustrate the efficiency of the new developed HFS distance
measures together with a comparative analysis with other existing ones.

Keywords Hesitant fuzzy set · Distance measure · Multiple criteria decision-making

1 Introduction

Cognitive information has been recently paid attention as
a focal topic related to the decision-making literature. For
instance, Farhadinia and Xu (2017) introduced ordered
weighted hesitant fuzzy sets in order to characterize cog-
nitive information. Meng et al. (2016) proposed linguistic
interval hesitant fuzzy sets for deriving cognitive informa-
tion by emphasizing on the application of decision-making
process. Zhao et al. (2016) implemented the concept of dual
hesitant fuzzy preferences for extracting cognitive informa-
tion. Moreover, Liu and Tang (2016) indicated that interval
neutrosophic uncertain linguistic variables are able to be used
in handling the uncertainty in the cognitive processes. The
other contributions focus on the subject of linguistic variables
in decision-making context are those presented byDong et al.
(2015), Wu et al. (2018) and Li et al. (2018).
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However, there exist recently a growing number of stud-
ies that are focused on the distance and interchangeably on
the similaritymeasures for hesitant fuzzy sets (HFSs) (Farha-
dinia 2013b, 2014a, b, 2016;Farhadinia andHerrera-Viedma
2018; Farhadinia and Xu 2017, 2019; Li et al. 2015a, b; Tang
et al. 2018), and of course for some extensions of HFSs
(Farhadinia and Herrera-Viedma 2018; Peng et al. 2013;
Rodriguez et al. 2016; Xu 2012). On the basis of the fact
that a distance measure can be transformed to a similarity
measure and vice versa (Farhadinia 2013a), we here only
deal with the distance measures for HFSs.

Needless to say that the distance measures are fundamen-
tally important in various fields such as decision-making,
market prediction, pattern recognition and distance-based
consensus in multiple criteria decision-making (MCDM)
(Cabrerizo et al. 2017; Moral et al. 2018).

The first attempt was made for extending the theory of
information measures for HFSs by investigating a connec-
tion between distance measures and similarity measures
(Xu and Xia 2011). Then, different kinds of distance mea-
sures for HFSs including hesitant ordered weighted distance
measures, the generalized hesitant fuzzy weighted distance
measure, the generalized hesitant fuzzy ordered weighted
distance measure and the generalized form of hesitant fuzzy
synergeticweighted distancemeasure (Peng et al. 2013)were
introduced and used in developing the methods dealing with
MCDM (Zhou and Li 2012). In the sequel works, the topic of
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HFS distance measures was enhanced by taking the concept
of hesitancy degree of HFS into account (Li et al. 2015a, b;
Zeng et al. 2016; Zhang and Xu 2015). This concept is used
actually to describe the hesitancy feature of the decisionmak-
ers in a decision-making procedure. Subsequently, a class
of HFS distance measures was constructed without judging
about the decision makers’ risk preference, and furthermore,
the involved HFSs do not need to be re-considered by adding
any element into the corresponding smaller HFEs (Hu et al.
2016). However, this attempt is continued and developed
by relaxing the two assumptions of equalizing the length of
involved HFEs and of arranging increasingly or decreasingly
the elements of the HFEs (Tang et al. 2018).

Although the existing distance measures for HFSs may
well offer some advantages, but they are still subject to a
number of limitations: they should be re-ordered before-
hand by the help of arranging in an increasing or decreasing
order together with making equal length of involved HFEs.
Often, the process of making HFEs with equal length is per-
formed by adding several artificial elements in that HFE
with shorter length. In addition to the mentioned shortcom-
ings, some of distance measures for HFSs do not satisfy the
conventional axiom, known as, triangle inequality property.
The above-mentioned analysis provides extra motivation to
develop further the study of HFS distance measures.

The present paper is organized as follows: Firstly, a brief
overview of HFS is given in Sect. 2, and we then present a
through discussion on the existing HFS distance measures
by emphasizing on their shortcomings. Section 3 is devoted
to introducing a variety of novel distance measures for HFSs
on the basis of the Hausdorff metric concept. In Sect. 4, we
apply the proposedHFSdistancemeasures to aMCDMprob-
lem in order to demonstrate the applicability of the proposed
measures. Finally, the conclusion is drawn in Sect. 5.

2 Discussion on the existing distance
measures for HFSs

In this section,wefirst provide a brief overviewof the concept
of hesitant fuzzy set (HFS) (Torra 2010) that usually plays a
basic role in the case where there exist some difficulties in
determining the membership for an element to a set.

Definition 2.1 (Torra 2010) In the case where X stands for
the reference set, we define a hesitant fuzzy set (HFS) on X
in terms of a function that when it is applied to X , it returns
a subset of [0, 1].

In the light of Torra’s (2010) HFS definition, Xia and Xu
(2011) represented the following mathematical form of HFS
for a better understanding:

A = {〈x, hA(x)〉 : x ∈ X},

where hA(x) indicates all possible membership degrees of
x ∈ X belonging to the set A. Moreover, the set hA(x) is
called hesitant fuzzy element (HFE) of A.

Before investigation of the existing distance measures
for HFSs, let us present a general form of HFE arithmetic
operations (Xu 2012) in which the number of elements
included in HFEs is not considered to be the same in
advance.

Let h = {hδ(i) | i = 1, . . . , lh}, h1 = {hδ(i)
1 | i =

1, . . . , lh1} and h2 = {hδ(i)
2 | i = 1, . . . , lh2} be three

HFEs arranged in an increasing order of their elements where
δ : (1, 2, . . . , lh∗) −→ (1, 2, . . . , lh∗) indicates the permu-
tation operator. Then, it is defined that

h1 ⊕ h2 =
⋃

hδ(i)
1 ∈h1,hδ( j)

2 ∈h2

{
hδ(i)
1 + hδ( j)

2 − h(δ(i))
1 h(δ( j))

2

}
;

h1 ⊗ h2 =
⋃

hδ(i)
1 ∈h1,hδ( j)

2 ∈h2

{
hδ(i)
1 hδ( j)

2

}
;

λh =
⋃

hδ(i)∈h

{
1 − (1 − hδ(i))λ

}
, λ > 0;

hλ =
⋃

hδ(i)∈h

{
(hδ(i))λ

}
, λ > 0.

Although up to now most studies on the HFS distance
measures have focused on the unification of the length of
HFSs in computational cases including (i) in the pessimistic
case where the shortest value is repeated until the length
of HFEs is the same; (ii) in the optimistic case in which the
largest value is repeated, and (iii) in the casewhere the convex
combination of maximum and minimum values is taken into
account, but such a unification process is not necessary here
for the reasons to be discussed later.

It is clear that the distance and the similarity measures are
very useful tools in distinguishing the difference between
two objects. By the current portion, we basically intended
to analyse a number of existing distance measures for HFSs
from different aspects. In the first attempt in this regard, Xu
and Xia (2011) proposed a class of distance measures for
HFSs including the Euclidean, the Hamming and the gener-
alized hesitant normalized distances. As a representation, the
generalized hesitant normalized distance for HFSs is given
as:

dgXX (A, B) =
⎡

⎣ 1

N

N∑

k=1

⎛

⎝ 1

lk

lk∑

t=1

|hδ(t)
A (xk)−hδ(t)

B (xk)|λ
⎞

⎠

⎤

⎦

1
λ

,

(1)

in which lk = max{lhA(xk), lhB (xk)} for k = 1, 2, . . . , N .
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In addition to the above distance measure, Xu and
Xia (2011) introduced the following generalized hesitant
weighted distance measure:

dwgX X (A, B) =
⎡

⎣
N∑

k=1

ωk

⎛

⎝ 1

lk

lk∑

t=1

|hδ(t)
A (xk) − hδ(t)

B (xk)|λ
⎞

⎠

⎤

⎦

1
λ

,

(2)

whereωk indicates the weight of xk ∈ X for k = 1, 2, . . . , N
with the property

∑N
k=1 ωk = 1.

Needless to say that the above-mentioned distance mea-
sure dgXX given by (1) is indeed the mean value of distances
between all elements of the HFSs A and B. Taking this
fact into account, some other HFS distance measures were
proposed by Zhou and Li (2012) which are much like that
introduced by Xu and Xia (2011), and they are only different
in the coefficients.

Zhou andLi (2012) defined the type-2 generalized hesitant
distance measure between the HFSs A and B in the form of

dgZL(A, B) =
⎡

⎣
N∑

k=1

⎛

⎝
lk∑

t=1

|hδ(t)
A (xk) − hδ(t)

B (xk)|λ
⎞

⎠

⎤

⎦

1
λ

,

(3)

for λ > 0.
In the sequel, Peng et al. (2013) extended this line of

research by introducing a HFS generalized hesitant fuzzy
synergetic weighted distance measure as

dgh f swP (A, B)

=
⎡

⎣
∑N

k=1 ωk

(
1
lk

∑lk
t=1 |hδ(t)

A (xk) − hδ(t)
B (xk)|λ

)
wρ(k)

∑N
k=1 ωkwρ(k)

⎤

⎦

1
λ

,

(4)

where ρ : (1, 2, . . . , N ) −→ (1, 2, . . . , N ) indicates a per-
mutation operator such that ( 1

lk

∑lk
t=1 |hδ(t)

A (xk)−hδ(t)
B (xk)|)

stands for the ρ(k)-th largest of the individual distances
( 1
lk

∑lk
t=1 |hδ(t)

A (xk)−hδ(t)
B (xk)|) for k = 1, 2, . . . , N . More-

over, the positive relative weighting vector of individual
distances ( 1

lk

∑lk
t=1 |hδ(t)

A (xk)−hδ(t)
B (xk)|), which is denoted

by ωk , satisfies the property of normality in the sense that∑N
k=1 ωk = 1.
A critical shortcoming in calculating the above-mentioned

distance measures for HFEs is that the number of included
elements may be different. This may lead to a problem, spe-
cially in the case where we are going to calculate d(hA, hB)

and d(hA, hC ), and lAB = max{lhA , lhB } 	= lAC =
max{lhA , lhC }.

To eliminate this shortcoming, Li et al. (2015a) extended
initially the set of HFEs {hA1, hA2 , . . . , hAt } including,
respectively, {lhA1

, lhA2
, . . . , lhAt

} numbers of elements as
the points in the same space with the dimension of l =
max{lhA1

, lhA2
, . . . , lhAt

}. Then, they proposed the general-
ized hesitant weighted distance measure in the form of

dgwL (A1, A2) =
⎡

⎣
N∑

k=1

⎛

⎝ωk

lk

lk∑

t=1

|hδ(t)
A1

(xk) − hδ(t)
A2

(xk)|λ
⎞

⎠

⎤

⎦

1
λ

,

(5)

where lk = max{lhA1
, lhA2

, . . . , lhAt
} stands for the number

of elements in the set of HFEs {hA1(xk), hA2(xk), . . . , hAt

(xk)}.
Recently, Li et al. (2015a) and Zeng et al. (2016) showed

that the above-mentioned distance measures only consider
the difference between elements in HFEs and not the differ-
ence between the numbers of values in HFEs. In this regard,
they demonstrated that the above-mentioned distance mea-
sures do not obey the triangle inequality axiom (see Property
3 in Theorem 3.2 below), and therefore tried to overcome this
drawback by appending the concept of hesitancy of HFEs to
the definition of distance measures.

Li et al. (2015a) and Zeng et al. (2016) defined the gener-
alized hesitant weighted distance as follows:

dwgLZ (A, B)= 1

2

⎡

⎣
N∑

k=1

ωk

⎛

⎝ 1

lk

lk∑

t=1

|hδ(t)
A (xk)−hδ(t)

B (xk)|λ
⎞

⎠

+ |�(hA(xk))−�(hB(xk))|λ
⎤

⎦

1
λ

, (6)

where ωk indicates the weight of xk ∈ X for k =
1, 2, . . . , N with the property

∑N
k=1 ωk = 1, and moreover,

�(hA(xk)) = 1 − 1
lhA (xk)

such that lk = max{lhA(xk), lhB
(xk)}.

There exists still a problem that the calculation of the
above-mentioned distancemeasures of HFSs ismainly based
on the extension of HFEs uniformly. Thus, the reasonability
of the original HFEs will be mainly influenced by expanding
them in terms of a number of artificial values.

Tang et al. (2018) relaxed the property given by Farhadinia
(2013a) and Zhou and Li (2012) stating that

if A ≺ B ≺ C then d(A, B)

≤ d(A,C) and d(B,C) ≤ d(A,C), (7)

where A ≺ B means that hA(xk) ≺ hB(xk), that is,
hδ(t)
A (xk) ≤ hδ(s)

B (xk) for each xk ∈ X , and then, they
replaced that property with the conditional reflexivity prop-
erty in terms of

123



5008 B. Farhadinia, Z. Xu

d(A, B) = 0 if and only if

hA(xk) = hB(xk) and lhA(xk) = lhB (xk) = 1 (8)

for the singular-value HFEs hA(xk) and hB(xk) for k =
1, 2, . . . , N .

Later, Tang et al. (2018) defined the generalized hesitant
weighted distance measure between HFSs A and B in the
form of

dwgT (A, B) =
⎡

⎣
N∑

k=1

ωk

⎛

⎝ 1

lhA(xk)lhB (xk)

lhA (xk )∑

t=1

×
lhB (xk )∑

s=1

|hδ(t)
A (xk) − hδ(s)

B (xk)|λ
⎞

⎠

⎤

⎦

1
λ

, (9)

whereωk indicates the weight of xk ∈ X for k = 1, 2, . . . , N
with the property

∑N
k=1 ωk = 1. Moreover, lhA(xk) and

lhB (xk) stand for the number of values in the HFEs hA(xk)
and hB(xk), respectively.

From Tang et al.’s (2018) conditional reflexivity property
given by (8), one can easily deduce that this property holds
true whenever the HFSs A and B are reduced to two equiva-
lent fuzzy sets, and it does not return any result to the general
form of HFSs.

In addition to the above-mentioned distancemeasures, Hu
et al. (2016) presented the following generalized hesitant dis-
tance measure:

dwgH (A, B) = 1

2

⎡

⎣
N∑

k=1

ωk

⎛

⎝ 1

lhA (xk)

lhA (xk )∑

t=1

min
s=1,2,...,lhB (xk )

|hδ(t)
A (xk)

−hδ(s)
B (xk)|λ + 1

lhB (xk)

lhB (xk )∑

s=1

min
t=1,2,...,lhA (xk )

|hδ(t)
A (xk)

−hδ(s)
B (xk)|λ

⎞

⎠

⎤

⎦

1
λ

, (10)

whereωk indicates the weight of xk ∈ X for k = 1, 2, . . . , N
with the property

∑N
k=1 ωk = 1, moreover, lhA(xk) and

lhB (xk) stand for the number of values in the HFEs hA(xk)
and hB(xk), respectively.

Furthermore, Hu et al. (2016) considered a weak form of
properties given in Theorem 3.2 below, that is, they mainly
considered the property given by (7) instead of the triangle
inequality axiom in Theorem 3.2.

Nowwe are in a position to describe a formula that Farha-
dinia (2013a) provided on how the above-mentioned distance
measures for HFSs can be transformed to HFS similarity
measures.

Theorem 2.2 (Farhadinia 2013a) Assume that � : [0, 1] →
[0, 1] is a strictly monotone decreasing real function, and let

d be a distance between HFSs. Then, for any HFSs A and B
on X

Sd(A, B) = �(d(A, B)) − �(1)

�(0) − �(1)
,

defines aHFS similaritymeasure based on the corresponding
distance d.

By the way, if we keep the aforesaid analysis in mind, then
it will be obvious that the distance measure for HFSs needs
to be debated further. In the next section, we are going to
propose a number of distance measures for HFSs that avoid
the aforementioned drawbacks.

3 Novel distancemeasures for HFSs

Let us first review the common interpretation of distance
measure between a single point b and a set of points A.When-
ever we are going to calculate the distance measure θ of b
from A, the Euclidean distance ‖.‖ is usually employed to
show how b is near to the points of A and it is denoted by
θ(b, A) = mina∈A ‖a − b‖.

If we suppose A = {a1, a2, . . . , a|A|} and B = {b1, b2,
v, b|B|}, then many different ways exist that define the
directed distance measure between A and B as follows (see
Dubuisson and Jain (1994)):

	1H (B, A) = min
b∈B θ(b, A) = min

b∈B min
a∈A

‖a − b‖; (11)

	2H (B, A) = max
b∈B θ(b, A) = max

b∈B min
a∈A

‖a − b‖; (12)

	3H (B, A) = 1

|B|
∑

b∈B
θ(b, A) = 1

|B|
∑

b∈B
min
a∈A

‖a − b‖;

(13)

	4H (B, A) = γ κ th
b∈Bθ(b, A) = γ κ th

b∈B min
a∈A

‖a − b‖, (14)

where γ κ th
b∈B indicates the κ th largest value in the set B with

the property κ
|B| = %γ .

For instance, 50κ th
b∈B indicates the median of the distance

measures θ(b, A) = mina∈A ‖a − b‖ for any b ∈ B.
Now, it is interesting to note that there are many different

ways of combining the direct distance measures 	r H (B, A)

and 	r H (A, B) for (r = 1, 2, 3, 4) to obtain a class of undi-
rected distance measures as follows:

�1(	r H (A, B),	r H (B, A))

= min{	r H (A, B),	r H (B, A)}; (15)

�2(	r H (A, B),	r H (B, A))

= max{	r H (A, B),	r H (B, A)}; (16)
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�3(	r H (A, B),	r H (B, A))

= 1

2
(	r H (A, B) + 	r H (B, A)); (17)

�4(	r H (A, B),	r H (B, A))

= 1

|A| + |B| (|A|	r H (A, B) + |B|	r H (B, A)). (18)

For instance, if we take 	2H given by (12) and �2 given by
(16) into account, then we result in

�2(	2H (A, B),	2H (B, A))

= max{	2H (A, B),	2H (B, A)}
= max

{
max
a∈A

min
b∈B ‖a − b‖,max

b∈B min
a∈A

‖a − b‖
}

, (19)

which is known as the Hausdorff distance measure.
The latter formula of Hausdorff distance measure is

interpreted by the help of the two terms 	2H (A, B) and
	2H (B, A) where each of them is, respectively, called
as the direct Hausdorff distance measure from the set
A (respectively, B) to the set B (respectively, A). For
instance, with the term 	2H (A, B) at hand, we can iden-
tify the farthest point a ∈ A from any point b ∈ B,
and measure the distance value of the point a ∈ A from
its nearest neighbour in the set B. Indeed, 	2H (A, B)

ranks each point a ∈ A on the basis of its distance
measure to the nearest point of B, and consequently intro-
duces the largest ranked point as the distance measure.
For more explanation, let 	2H (A, B) = α which means
that any point of A is within the distance α from some
point of B. Then, some point of A has the distance
value α from the nearest point of B. By this explana-
tion, we can say that the Hausdorff distance measure
�2(	2H (A, B),	2H (B, A)) which is shown hereafter by
the notation �2(A, B) in brief, is the maximum value of the
two terms 	2H (A, B) and 	2H (B, A) and further measures
the distance of the point in A being the farthest from any
point of B.

Now, we are in a position to introduce a new class of
distance measures for HFSs by taking the above class of
Hausdorff distance measures into consideration. Let hA =
{hδ(i)

A | i = 1, . . . , lhA } and hB = {hδ(i)
B | i = 1, . . . , lhB }

be two HFEs arranged in an increasing order, where δ :
(1, 2, . . . , lhi ) −→ (1, 2, . . . , lhi ) for i = A, B indicates
the permutation operator.

Needless to say that the assumption of increasing order
of elements in a HFE is not essential in the proposed setting
of Hausdorff distance measures through this contribution,
and therefore, it cannot be seen as a shortcoming of the
theory.

We define

�1(	r H (hA, hB),	r H (hB, hA))

= min{	r H (hA, hB),	r H (hB, hA)}; (20)

�2(	r H (hA, hB),	r H (hB, hA))

= max{	r H (hA, hB),	r H (hB, hA)}; (21)

�3(	r H (hA, hB),	r H (hB, hA))

= 1

2
(	r H (hA, hB) + 	r H (hB, hA)); (22)

�4(	r H (hA, hB),	r H (hB, hA))

= 1

lhA + lhB
(lhA	r H (hA, hB) + lhB	r H (hB, hA)).

(23)

where

	1H (hB, hA) = min
hδ( j)
B ∈hB

θ(hδ( j)
B , hδ(i)

A )

= min
hδ( j)
B ∈hB

min
hδ(i)
A ∈hA

‖hδ(i)
A − hδ( j)

B ‖; (24)

	2H (hB, hA) = max
hδ( j)
B ∈hB

θ(hδ( j)
B , hδ(i)

A )

= max
hδ( j)
B ∈hB

min
hδ(i)
A ∈hA

‖hδ(i)
A − hδ( j)

B ‖; (25)

	3H (hB, hA) = 1

lhB

∑

hδ( j)
B ∈hB

θ(hδ( j)
B , hδ(i)

A )

= 1

lhB

∑

hδ( j)
B ∈hB

min
hδ(i)
A ∈hA

‖hδ(i)
A − hδ( j)

B ‖; (26)

	4H (hB, hA) = γ κ th
hδ( j)
B ∈hB

θ(hδ( j)
B , hδ(i)

A )

= γ κ th
hδ( j)
B ∈hB

min
hδ(i)
A ∈hA

‖hδ(i)
A − hδ( j)

B ‖, (27)

such that γ κ th
hδ( j)
B ∈hB

indicates the κ th largest value in the HFE

hB with the property κ
lhB

= %γ .

As performed in Farhadinia (2013a, b); Farhadinia andXu
(2017); Farhadinia and Herrera-Viedma (2018); Xu and Xia
(2011), we can easily extend the above results of HFEs to
that for HFSs by the following rules:

�1(A, B) =
N∑

k=1

�1(	r H (hA(xk), hB(xk)),

	r H (hB(xk), hA(xk)))

=
N∑

k=1

min{	r H (hA(xk), hB(xk)),

	r H (hB(xk), hA(xk))}; (28)
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�2(A, B) =
N∑

k=1

�2(	r H (hA(xk), hB(xk)),

	r H (hB(xk), hA(xk)))

=
N∑

k=1

max{	r H (hA(xk), hB(xk)),

	r H (hB(xk), hA(xk))}; (29)

�3(A, B) =
N∑

k=1

�3(	r H (hA(xk), hB(xk)),

	r H (hB(xk), hA(xk)))

=
N∑

k=1

1

2
(	r H (hA(xk), hB(xk))

+	r H (hB(xk), hA(xk)); (30)

�4(A, B) =
N∑

k=1

�4(	r H (hA(xk), hB(xk)),

	r H (hB(xk), hA(xk)))

=
N∑

k=1

1

lhA + lhB
(lhA	r H (hA(xk), hB(xk))

+ lhB	r H (hB(xk), hA(xk)), (31)

where

	1H (hB(xk), hA(xk)) = min
hδ( j)
B ∈hB

θ(hδ( j)
B (xk), h

δ(i)
A (xk))

= min
hδ( j)
B ∈hB

min
hδ(i)
A ∈hA

‖hδ(i)
A (xk)−hδ( j)

B (xk)‖; (32)

	2H (hB(xk), hA(xk)) = max
hδ( j)
B ∈hB

θ(hδ( j)
B (xk), h

δ(i)
A (xk))

= max
hδ( j)
B ∈hB

min
hδ(i)
A ∈hA

‖hδ(i)
A (xk) − hδ( j)

B (xk)‖; (33)

	3H (hB(xk), hA(xk)) = 1

lhB

∑

hδ( j)
B ∈hB

θ(hδ( j)
B (xk), h

δ(i)
A (xk))

= 1

lhB

∑

hδ( j)
B ∈hB

min
hδ(i)
A ∈hA

‖hδ(i)
A (xk) − hδ( j)

B (xk)‖; (34)

	4H (hB(xk), hA(xk)) = γ κ th
hδ( j)
B ∈hB

θ(hδ( j)
B (xk), h

δ(i)
A (xk))

= γ κ th
hδ( j)
B ∈hB

min
hδ(i)
A ∈hA

‖hδ(i)
A (xk) − hδ( j)

B (xk)‖. (35)

In the latter formula, γ κ th
hδ( j)
B ∈hB

indicates the κ th largest value

in the HFE hB with the property κ
lhB

= %γ .

We should emphasize here that in defining the above-
proposed Hausdorff distance measures, it is required that all
the combinations of possible values existing in the two HFEs
hA and hB be handled, andmoreover, the restriction of length

equality of HFEs is relaxed in calculating the proposed dis-
tance measures.

Remark 3.1 It needs to be mentioned that only the Hausdorff
distance measure �2 given by (19) is a metric, and the other
combinations do not satisfy the triangle inequality property
3 below:

Theorem 3.2 Suppose that A = {〈x, hA(x)〉 : x ∈ X} =
{〈x, {hδ(i)

A (x) | i = 1, . . . , lhA }〉 : x ∈ X}, B = {〈x, hB(x)〉 :
x ∈ X} = {〈x, {hδ( j)

B (x) | j = 1, . . . , lhB }〉 : x ∈ X}
and C = {〈x, hC (x)〉 : x ∈ X} = {〈x, {hδ(k)

C (x) | k =
1, . . . , lhC }〉 : x ∈ X} are three HFSs, and �2 is that defined
by (29). Then,�2 is a distancemeasure forHFSs and satisfies

1. 0 ≤ �2(A, B) ≤ 1 (Boundedness property)
2. �2(A, B) = �2(B, A) (Symmetric property)
3. �2(A,C) ≤ �2(A, B)+�2(B,C) (Triangle inequality

property)
4. �2(A, B) = 0 if and only if A = B. (Conditional reflex-

ivity property)

Proof From the definition of HFS distancemeasure�2 given
by (29), it can be easily seen that the proofs of the properties
1 and 2 are clear and we do not give them here.

Property 3. First of all, suppose that

‖hδ(i)
A −hδ(k0)

C ‖ = min
hδ(k)
C ∈hC

‖hδ(i)
A −hδ(k)

C ‖, for k0 ∈ {1, 2, . . ., lhC },

(36)

‖hδ(k0)
C −hδ( j0)

B ‖ = min
hδ( j)
B ∈hB

‖hδ(k0)
C − hδ( j)

B ‖, for j0 ∈ {1, 2, . . ., lhB }.

(37)

On the other hand, we get that

min
hδ( j)
B ∈hB

‖hδ(i)
A − hδ( j)

B ‖ ≤ ‖hδ(i)
A − hδ( j0)

B ‖

≤ ‖hδ(i)
A − hδ(k0)

C ‖ + ‖hδ(k0)
C − hδ( j0)

B ‖.

Now, by the use of relations (36) and (37) together with the
above inequality, we conclude that

min
hδ( j)
B ∈hB

‖hδ(i)
A − hδ( j)

B ‖

≤ min
hδ(k)
C ∈hC

‖hδ(i)
A − hδ(k)

C ‖ + min
hδ( j)
B ∈hB

‖hδ(k0)
C − hδ( j)

B ‖

≤ min
hδ(k)
C ∈hC

‖hδ(i)
A −hδ(k)

C ‖+ max
hδ(k)
C ∈hC

min
hδ( j)
B ∈hB

‖hδ(k)
C −hδ( j)

B ‖
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≤ max
hδ(i)
A ∈hA

min
hδ(k)
C ∈hC

‖hδ(i)
A −hδ(k)

C ‖

+ max
hδ(k)
C ∈hC

min
hδ( j)
B ∈hB

‖hδ(k)
C −hδ( j)

B ‖

≤ max{	2H (hA, hC ),	2H (hC , hA)}
+max{	2H (hC , hB),	2H (hB, hC )}

= �2(A,C) + �2(C, B), (38)

for all hδ(i)
A ∈ hA.

If we now consider definition (33) and inequality (38), we
then find that

	2H (hA, hB) = max
hδ(i)
A ∈hA

min
hδ( j)
B ∈hB

‖hδ(i)
A − hδ( j)

B ‖

≤ �2(A,C) + �2(C, B).

By the same procedure described above, it is deduced that

	2H (hB, hA) = max
hδ( j)
B ∈hB

min
hδ(i)
A ∈hA

‖hδ(i)
A − hδ( j)

B ‖

≤ �2(A,C) + �2(C, B),

and thus

�2(A, B) = max{	2H (hA, hB),	2H (hB, hA)}
≤ �2(A,C) + �2(C, B).

Property 4. Follows from definition (29), it is easily con-
cluded that

�2(A, B)

=
N∑

k=1

�2(	2H (hA(xk), hB(xk)),	2H (hB(xk), hA(xk)))

=
N∑

k=1

max{	2H (hA(xk), hB(xk)),	2H (hB(xk), hA(xk))} = 0

(39)

if and only of

	2H (hA(xk), hB(xk)) = 0, (40)

	2H (hB(xk), hA(xk)) = 0. (41)

Now, from equality (40), we find that

	2H (hA(xk), hB(xk)) = max
hδ( j)
B ∈hB

θ(hδ( j)
B (xk), h

δ(i)
A (xk))

= max
hδ( j)
B ∈hB

min
hδ(i)
A ∈hA

‖hδ(i)
A (xk) − hδ( j)

B (xk)‖ = 0,

which means that

‖hδ(i)
A (xk) − hδ( j)

B (xk)‖ = 0,

for any hδ( j)
B ∈ hB and hδ(i)

A ∈ hA. This says that h
δ(i)
A (xk) =

hδ( j)
B (xk) for any xk ∈ X , that is, A = B.
The proof of equality (41) is similar. 
�

In the case where ωk indicates the weight of xk ∈ X
for k = 1, 2, . . . , N with the property

∑N
k=1 ωk = 1, the

following weighted Hausdorff distance measures for HFSs
can be proposed as:

�ω
1 (A, B) =

N∑

k=1

ωk�1(	r H (hA(xk), hB(xk)),

	r H (hB(xk), hA(xk)))

=
N∑

k=1

ωk min{	r H (hA(xk), hB(xk)),

	r H (hB(xk), hA(xk))}; (42)

�ω
2 (A, B) =

N∑

k=1

ωk�2(	r H (hA(xk), hB(xk)),

	r H (hB(xk), hA(xk)))

=
N∑

k=1

ωk max{	r H (hA(xk), hB(xk)),

	r H (hB(xk), hA(xk))}; (43)

�ω
3 (A, B) =

N∑

k=1

ωk�3(	r H (hA(xk), hB(xk)),

	r H (hB(xk), hA(xk)))

=
N∑

k=1

ωk
1

2
(	r H (hA(xk), hB(xk))

+	r H (hB(xk), hA(xk)); (44)

�ω
4 (A, B) =

N∑

k=1

ωk�4(	r H (hA(xk), hB(xk)),

	r H (hB(xk), hA(xk)))

=
N∑

k=1

ωk

(
1

lhA + lhB
(lhA	r H (hA(xk), hB(xk))

+ lhB	r H (hB(xk), hA(xk))

)
. (45)

If the reference set X andmoreover the continuousweights
of elements are taken into account, then the continuous
weighted Hausdorff distance measures for HFSs are given
as follows:
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�ω
1 (A, B) =

∫ b

a
ω(x)�1(	r H (hA(x), hB(x)),

	r H (hB(x), hA(x)))dx

=
∫ b

a
ω(x)min{	r H (hA(x), hB(x)),

	r H (hB(x), hA(x))}dx; (46)

�ω
2 (A, B) =

∫ b

a
ω(x)�2(	r H (hA(x), hB(x)),

	r H (hB(x), hA(x)))dx

=
∫ b

a
ω(x)max{	r H (hA(x), hB(x)),

	r H (hB(x), hA(x))}dx; (47)

�ω
3 (A, B) =

∫ b

a
ω(x)�3(	r H (hA(x), hB(x)),

	r H (hB(x), hA(x)))dx

=
∫ b

a
ω(x)

1

2
(	r H (hA(x), hB(x))

+	r H (hB(x), hA(x))dx; (48)

�ω
4 (A, B) =

∫ b

a
ω(x)�4(	r H (hA(x), hB(x)),

	r H (hB(x), hA(x)))dx

=
∫ b

a
ω(x)(

1

lhA + lhB
(lhA

	r H (hA(x), hB(x))

+ lhB	r H (hB(x), hA(x)))dx, (49)

where any weight of element x ∈ X = [a, b] is denoted by
ω(x) such that 0 ≤ ω(x) ≤ 1 and

∫ b
a ω(x)dx = 1.

4 Applications of the proposed distance
measures

In this section, three portions are provided to demonstrate
the applicability and validity of the proposed distance mea-
sures for HFSs. The first portion relating to the evaluation of
energy policy is taken fromTang et al. (2018) andXu andXia
(2011). The second portion is adapted from Hu et al. (2018)
where they employed the TOPSIS technique to conduct a
hesitant fuzzyMCDMapproach. The third portion deals with
developing an approach for multiple criteria group decision-
making in order to evaluate the classification modes of the
China’s college entrance examination.

4.1 Appropriate energy policy based on the distance
measures

Here, we intend to demonstrate the application of suggested
distance measures for HFSs by the use of two numeri-

cal examples that were discussed previously by Tang et al.
(2018).

Example 4.1 [Adopted from Tang et al. (2018) and Xu and
Xia (2011)] These days, energy roles as an indispensable
parameter in developing the socio-economic scenarios. This
implies that selecting themost appropriate energy policy is so
important. It is assumed thatwe are going to invest five energy
projects (alternatives) Ai (i = 1, 2, 3, 4, 5) with respect to
four criteria as C1: technological; C2: environmental; C3:
sociopolitical; and C4: economic. The criteria weight vector
is supposed to be in the form of ω = (0.15, 0.3, 0.2, 0.35).
In the case where the decision makers return anonymously
their evaluation of each alternative under the four criteria, we
then face to the sets of evaluated values in the form of HFS as
given in Table 1. Let the ideal solution be as the special HFS
A∗ = {1}. This set is seen as the reference set for comparing
all alternatives. In this regard, the best alternative is that with
the least value of distance measure from the ideal solution
A∗ = {1}.

We employ the weighted distance measures proposed in
this contribution as givenbyEqs. (42)–(45) and then calculate
the hesitant weighted distance measure of each alternative
and the ideal solution A∗ = {1} together with the ranking
order of alternatives which are all represented in Table 2.
Besides that, the results of Tang et al.’s (2018) and Xu and
Xia’s (2011) distance measures are given in Table 2.

Example 4.2 By keeping all the data structures used in
Example 4.1, we only update the ideal solution as
A� ={〈C1, {0.7, 0.6}〉, 〈C2, {0.9, 0.6}〉, 〈C3, {0.9, 0.8, 0.7},
〈C4, {0.9, 0.8, 0.6}〉}.

Once again, by the use of the proposed distance measures,
we can obtain the results being shown in Table 3. Also, the
results of applying the two classes of distance measures pro-
posed by Tang et al. (2018) and Xu and Xia (2011) to this
example are shown in Table 3.

By taking a look at the results presented in Tables 2 and
3, it can be observed that although the ranking orders are not
exactly coincided, they often propose that the most appropri-
ate energy policy is A5. The results of Tang et al.’s (2018)
and Xu and Xia’s (2011) distance measures depend highly
on the variation of parameter λ, that is, they return A5 as the
most appropriate energy policy for λ ∈ [1, 3], and A3 for
λ ∈ (3,∞].

It is worthwhile to state that the extra parameter λ does not
play any role in describing the proposed distance measures
for HFSs.

Moreover, what should be noted here is that Tang et al.’s
(2018) and Xu and Xia’s (2011) distance measures only pro-
vide the decision makers with more choices of λ, and do not
explain how we can be aware of λ values. But, the proposed
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Table 1 Hesitant fuzzy decision matrix

Alternative\criteria C1 C2 C3 C4

A1 {0.5, 0.4, 0.3} {0.9, 0.8, 0.7, 0.1} {0.5, 0.4, 0.2} {0.9, 0.6, 0.5, 0.3}
A2 {0.5, 0.3} {0.9, 0.7, 0.6, 0.5, 0.2} {0.8, 0.6, 0.5, 0.1} {0.7, 0.3, 0.4}
A3 {0.7, 0.6} {0.9, 0.6} {0.7, 0.5, 0.3} {0.6, 0.4}
A4 {0.8, 0.7, 0.4, 0.3} {0.7, 0.4, 0.2} {0.8, 0.1} {0.9, 0.8, 0.6}
A5 {0.9, 0.7, 0.6, 0.3, 0.1} {0.8, 0.7, 0.6, 0.4} {0.9, 0.8, 0.7} {0.9, 0.7, 0.6, 0.3}

Table 2 The distance values of the five energy projects

Distance A1 A2 A3 A4 A5 Ranking order

dwgX X (Xu and Xia 2011)

λ = 1 0.4799 0.5027 0.4025 0.4292 0.3558 A5 > A3 > A4 > A2 > A1

λ = 2 0.5378 0.5451 0.4366 0.5052 0.4129 A5 > A3 > A4 > A2 > A1

λ = 6 0.6599 0.6476 0.5156 0.6704 0.5699 A3 > A5 > A2 > A1 > A4

λ = 10 0.7213 0.7046 0.5607 0.7373 0.6537 A3 > A5 > A2 > A1 > A4

dwgT (Tang et al. 2018)

λ = 1 0.4779 0.5027 0.4025 0.4292 0.3558 A5 > A3 > A4 > A1 > A2

λ = 2 0.5378 0.5451 0.4366 0.5052 0.4129 A5 > A3 > A4 > A1 > A2

λ = 6 0.6599 0.6476 0.5156 0.6704 0.5699 A3 > A5 > A2 > A1 > A4

λ = 10 0.7213 0.7047 0.5603 0.7374 0.6537 A3 > A5 > A2 > A1 > A4

Proposed measure

�ω
1 (with r = 1) 0.2400 0.2500 0.2750 0.1950 0.1300 A5 > A4 > A1 > A2 > A3

�ω
2 (with r = 2) 0.7800 0.7350 0.5300 0.6650 0.6200 A3 > A5 > A4 > A2 > A1

�ω
3 (with r = 3) 0.3590 0.3505 0.4363 0.3121 0.2391 A5 > A4 > A2 > A1 > A3

�ω
4 (with r = 4) 0.4002 0.4800 0.3633 0.3204 0.2885 A5 > A4 > A3 > A1 > A2

Table 3 The distance values of the five energy projects

Distance A1 A2 A3 A4 A5 Ranking order

dwgX X (Xu and Xia 2011)

λ = 1 0.2342 0.2335 0.1650 0.1996 0.0980 A5 > A3 > A4 > A2 > A1

λ = 2 0.2850 0.2773 0.2306 0.2949 0.1580 A5 > A3 > A4 > A2 > A1

λ = 6 0.3771 0.3842 0.3105 0.4744 0.2872 A3 > A5 > A2 > A1 > A4

λ = 10 0.4154 0.4475 0.3395 0.5446 0.3530 A3 > A5 > A2 > A1 > A4

dwgT (Tang et al. 2018)

λ = 1 0.2971 0.2886 0.2058 0.2583 0.1940 A5 > A3 > A4 > A2 > A1

λ = 2 0.3577 0.3495 0.2697 0.3449 0.2543 A5 > A3 > A4 > A2 > A1

λ = 6 0.5079 0.4934 0.3775 0.5263 0.3901 A3 > A5 > A2 > A1 > A4

λ = 10 0.5897 0.5687 0.4318 0.6014 0.4512 A3 > A5 > A2 > A1 > A4

Proposed measure

�ω
1 (with r = 1) 0.0550 0.0500 0.0001 0.0300 0.0001 A5 > A3 > A4 > A2 > A1

�ω
2 (with r = 2) 0.1100 0.1200 0.1450 0.0950 0.0600 A5 > A4 > A1 > A2 > A3

�ω
3 (with r = 3) 0.5625 0.4725 0.3525 0.2850 0.2250 A5 > A4 > A3 > A2 > A1

�ω
4 (with r = 4) 0.0695 0.0538 0.0380 0.0390 0.0150 A5 > A3 > A4 > A2 > A1
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Table 4 Hesitant fuzzy decision matrix

Alternative\criteria C1 C2 C3 C4

A1 {0.7, 0.4, 0.2} {0.7, 0.5, 0.2, 0.1} {0.8, 0.7, 0.5, 0.3, 0.2} {0.6, 0.4, 0.1}
A2 {0.7, 0.6, 0.4} {0.6, 0.4, 0.2, 0.1} {0.9, 0.8, 0.6, 0.4, 0.3} {0.4, 0.2, 0.1}
A3 {0.6, 0.3, 0.2} {0.9, 0.5, 0.4, 0.3} {0.8, 0.7, 0.6, 0.4, 0.2} {0.8, 0.4, 0.3}
A4 {0.5, 0.3, 0.2} {0.7, 0.5, 0.3, 0.2} {0.9, 0.8, 0.7, 0.6, 0.4} {0.7, 0.2, 0.1}

distance measures do not depend on any parameter like λ in
Tang et al. (2018) and Xu and Xia’ (2011) measures.

4.2 Appropriate supplier based on the distance
measures

On the basis of the relationship between distance measure
and similarity measure for HFSs (Farhadinia 2013a), we
discuss here about the novelty of the proposed distance mea-
sures from applied intelligence perspective. In this regard,
we adopt an experimentation which is discussed thoroughly
by Hu et al. (2018). In Hu et al. (2018), a class of simi-
larity measures for HFSs are further investigated from their
performance. Hu et al. (2018) employed the TOPSIS tech-
nique to conduct a hesitant fuzzy MCDM method where the
alternatives set contains {A1, A2, . . . , Am} and the set of cri-
teria includes {C1,C2, . . . ,Cn} with the weight vector of
(w1, w2, . . . , wn) satisfying w j ≥ 0 ( j = 1, 2, . . . , n) and∑n

j=1 w j = 1. It is needless to say that here, the decision
maker evaluation is in the form of hesitant fuzzy decision

matrix D = [hi j ]m×n = [{hδ(1)
i j , . . . , h

δ(li j )
i j }]m×n . The latter-

mentioned MCDM process is described by the following
steps:

Step 1. Given the weights w j ( j = 1, 2, . . . , n), the hesi-
tant fuzzy positive ideal solution (PIS) and negative
ideal solution (NIS) can be calculated by the fol-
lowing manner:

h+ = (h+
1 , h+

2 , . . . , h+
n ), (50)

h− = (h−
1 , h−

2 , . . . , h−
n ), (51)

where h+
j = maxi max1≤k≤li j {hδ(k)

i j } and h−
j =

mini min1≤k≤li j {hδ(k)
i j } for any benefit criterionC j ,

and h+
j = mini min1≤k≤li j {hδ(k)

i j } and h−
j =

maxi max1≤k≤li j {hδ(k)
i j } for any cost criterion C j .

Step 2. The weighted distance measures �ω
ir and �ω

ir (r =
1, 2, 3, 4) of alternative Ai from the PIS and NIS
are computed by

�+
ir =

n∑
j=1

w j�
ω
r (hi j , h

+
j ), (52)

�−
ir =

n∑
j=1

w j�
ω
r (hi j , h

−
j ), (53)

for any i = 1, 2, . . . ,m and r = 1, 2, 3, 4.
Step 3. Compute the relative closeness of each alternative

Ai (i = 1, 2, . . . ,m) to the ideal solution as the
following:

RCi = �+
ir

�+
ir+�−

ir
, i=1, 2, . . . ,m, r = 1, 2, 3, 4.

(54)

Step 4. Taking the above relative closeness into account,
the alternative can be ranked in decreasing order,
that is, Ai > A j whenever RCi < RC j .

Here, it should be emphasized that the ranking of alternatives
according to Hu et al.’s (2018) relative closeness, which is
based on the similarity measure, is determined by Ai < A j

whenever RCi < RC j .

Illustrative example 4.3 (Hu et al. 2018) An automotive com-
pany is going to select the most appropriate supplier which
plays a key role in its manufacturing process. According to
the initial evaluation, the company team select four suppliers
Ai (i = 1, 2, 3, 4) as candidate alternatives in order to fur-
ther evaluation. Moreover, in order to have a more accurately
evaluation of the suppliers, the company team considers the
most important criteria as C1 (product quality), C2 (relation-
ship closeness), C3 (delivery performance) and C4 (price).
Needless to say that the criteria C1, C2, and C3 are bene-
fit; meanwhile, the criterion C4 is cost. In such a situation,
employing experts with different backgrounds helps to per-
form the evaluation more reliable and accurately. Regarding
such a viewpoint on this issue, we are able to reflect the infor-
mation provided by the experts in the form of HFSs which
are presented as the decision matrix given in Table 4.

Since the main intention here is to compare the results
of the proposed distance measures for HFSs with that of
presented in Hu et al. (2018), once again, we restate Hu et
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Table 5 The relative closeness
and ranking of the alternatives

Measure A1 A2 A3 A4 Ranking order

Sghs1 (Hu et al. 2018) 0.4881 0.5500 0.4756 0.5118 A2 > A4 > A1 > A3

Sghs2 (Hu et al. 2018) 0.4854 0.5388 0.4801 0.5159 A2 > A4 > A1 > A3

Sghs5 (Hu et al. 2018) 0.4774 0.5153 0.4897 0.5161 A4 > A2 > A3 > A1

Sghs10 (Hu et al. 2018) 0.4698 0.5047 0.4984 0.5111 A4 > A2 > A3 > A1

Sghhs1 (Hu et al. 2018) 0.4881 0.5500 0.4756 0.5118 A2 > A4 > A1 > A3

Sghhs2 (Hu et al. 2018) 0.4854 0.5388 0.4801 0.5159 A2 > A4 > A1 > A3

Sghhs5 (Hu et al. 2018) 0.4774 0.5143 0.4897 0.5161 A4 > A2 > A3 > A1

Sghhs10 (Hu et al. 2018) 0.4699 0.5047 0.4984 0.5111 A4 > A2 > A3 > A1

S1 (Hu et al. 2018) 0.4881 0.5500 0.4756 0.5118 A2 > A4 > A1 > A3

S2 (Hu et al. 2018) 0.4754 0.5466 0.4598 0.5026 A2 > A4 > A1 > A3

S3 (Hu et al. 2018) 0.4684 0.5327 0.4524 0.4910 A2 > A4 > A1 > A3

�ω
1 (with r = 1) 0.3796 0.2111 0.6871 0.5869 A2 > A1 > A4 > A3

�ω
2 (with r = 2) 0.5536 0.4902 0.6019 0.4793 A4 > A2 > A1 > A3

�ω
3 (with r = 3) 0.8083 0.6381 0.6917 0.5958 A4 > A2 > A3 > A1

�ω
4 (with r = 4) 0.4375 0.2473 0.6056 0.5051 A2 > A1 > A4 > A3

Table 6 Hesitant fuzzy decision
matrix

Alternative\criteria C1 C2 C3 C4

A1 {0.6, 0.4, 0.3} {0.8, 0.6} {0.5, 0.4} {0.7, 0.6}
A2 {0.7, 0.5} {0.5, 0.3} {0.9, 0.7} {0.6, 0.5}
A3 {0.7, 0.6} {0.9, 0.8, 0.7} {0.6, 0.5} {0.7, 0.6}
A4 {0.5, 0.4} {0.9, 0.8} {0.5, 0.4} {0.9, 0.8, 0.6}
A5 {0.8, 0.6} {0.5, 0.4} {0.6, 0.4, 0.3} {0.8, 0.7}

al.’s (2018) evaluation of the weight, the hesitant fuzzy PIS
and the hesitant fuzzy NIS as follows:

w = (w1, w2, w3, w4) = (0.2394, 0.2483, 0.1756, 0.3367),

h+ = (h+
1 , h+

2 , h+
3 , h+

4 ) = (0.7, 0.9, 0.9, 0.1),

h− = (h−
1 , h−

2 , h−
3 , h−

4 ) = (0.2, 0.1, 0.2, 0.8).

Now, by performing the steps of the above-mentioned TOP-
SIS method, the results are those given in the four last rows
of Table 5 together with the results of similarity-based tech-
niques being adopted from Table 8 in Hu et al. (2018).

As can be seen from the first row to eleventh row of
Table 5, the most optimal alternative changes from A2 to
A4 as the value of parameter λ increases. This phenomena
can be observed at the four last rows of Table 5 where the
proposed distance measures return such a result, but without
needing to consider an extra parameter like λ.

4.3 Classificationmodes of China’s college entrance
examination

The college entrance examination system is indeed a very
vital education system which is able to select the most qual-
ified talents of higher education institutions. In recent years,

such a system has undergone dozens of reforms and adjust-
ments.By theway, in this part of the paper,wewill investigate
a MCDM problem in order to evaluate the classification
modes of the China’s college entrance examination in which
the information is carried by hesitant fuzzy sets. Taking the
idea of dependent aggregation into consideration, we employ
the dependent hesitant fuzzy ordered weighted averaging
(DHFOWA) operator whose weight coefficients depend only
on the aggregated hesitant fuzzy arguments. Such a consider-
ation allows us to relieve the influence of unfair hesitant fuzzy
arguments on the aggregated results by the use of assigning
low weights to those “false” and moreover “biased” ones
and subsequently we apply them for developing a multiple
attribute group decision-making-based technique to evalu-
ate the classification modes of the China’s college entrance
examination.
Following Hua’s (2017) consideration, we suppose five clas-
sification modes of the China’s college entrance examination
entitled as Ai (i = 1, 2, 3, 4, 5)which are evaluated by some
experts using four criteria of college entrance examination
including: the technical advancement C1, the fairness C2,
the effectiveness C3 and the society degree of recognizing
C4. Needless to say that the decision makers are requested
here for assessing the five alternatives under the four criteria
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Table 7 Hua’s (2017) algorithm outcomes with respect to different distance measures

Distance A1 A2 A3 A4 A5 Ranking order

Xu and Xia’s (2011) distance: dwgX X (2) 0.1966 0.1379 0.2261 0.2296 0.2097 A4 > A3 > A5 > A1 > A2

Zhou and Li’s (2012) distance: dgZL (3) 0.1966 0.1379 0.2261 0.2296 0.2097 A4 > A3 > A5 > A1 > A2

Peng et al.’s (2013) distance: dgh f swP (4) 0.1966 0.1379 0.2261 0.2296 0.2097 A4 > A3 > A5 > A1 > A2

Li et al.’s (2015a) distance: dgwL (5) 0.1966 0.1379 0.2261 0.2296 0.2097 A4 > A3 > A5 > A1 > A2

Zeng et al.’s (2016) distance: dwgLZ (6) 0.1966 0.1379 0.2261 0.2296 0.2097 A4 > A3 > A5 > A1 > A2

Tang et al.’s (2018) distance: dwgT (9) 0.331 0.276 0.402 0.457 0.378 A4 > A3 > A5 > A1 > A2

Hu et al.’s (2016) distance:dwgH (10) 0.1968 0.1373 0.2268 0.2301 0.2091 A4 > A3 > A5 > A1 > A2

Hua’s (2017) distance: dwgT (9) 0.331 0.276 0.402 0.457 0.378 A4 > A3 > A5 > A1 > A2

Proposed distance measure

�ω
1 (with r = 1) 0.2472 0.0337 0.0337 0.3708 0.3146 A4 > A5 > A1 > A3 > A2

�ω
2 (with r = 2) 0.2804 0.0280 0.0280 0.4019 0.2617 A4 > A5 > A1 > A3 > A2

�ω
3 (with r = 3) 0.2650 0.0298 0.0298 0.3975 0.2779 A4 > A5 > A1 > A3 > A2

�ω
4 (with r = 4) 0.2516 0.0325 0.0325 0.3796 0.3037 A4 > A5 > A1 > A3 > A2

in the anonymous case, and this leads to present the decision
matrix H = [hi j ]5×4 in the form of HFEs given in Table 6.

Hua (2017) developed a practical technique in the form
of the following algorithm to deal with a MCDM problem
concentrating on the evaluation of classification modes of
the China’s college entrance examination. There, the infor-
mation describing the criterion weights is indeed completely
unknown, and the criteria values are in the form of hesitant
fuzzy information.

Hua’s (2017) algorithm of MCDM problem:

Step 1. For any alternative Ai , we employ the DHFOWA
operator

hi = DHFOWA(hi1, hi2, . . . , hin) =
n⊕

j=1

w j hi j

=
⎧
⎨

⎩1−
n∏

j=1

(1−hδ(k)
i j )

Sd (s(hi j ),si )∑n
j=1 Sd (s(hi j ),si ) | k = 1, . . ., lhi j

⎫
⎬

⎭

(55)

to get the overall preference values. Here, the nota-
tion Sd denotes the degree of similarity measure
based on the distance measure d given by

Sd(s(hi j ), si ) = 1 − d(s(hi j ), si )∑n
j=1 d(s(hi j ), si )

, (56)

and s(hi j ) stands for the score function of the HFE

hi j = {hδ(k)
i j | k = 1, . . . , lhi j } given by

s(hi j ) = 1

lhi j

lhi j∑

k=1

hδ(k)
i j , for i = 1, 2, . . .,m, j = 1, 2, . . ., n,

(57)

and moreover,

si = 1

n

n∑

j=1

s(hi j ), for i = 1, 2, . . . ,m. (58)

Step 2. Now, by considering

s(hi ) = 1

lhi

lhi∑

k=1

h
δ(k)
i (59)

known as the score function of overall hesitant
fuzzy preference values hi (i = 1, 2, . . . ,m), we
are able to determine the priorities of alternatives
Ai (i = 1, 2, . . . ,m).

Now, we are in a position to apply the above-mentioned
algorithm to evaluate the classification modes of the China’s
college entrance examination. In the process of performing
the algorithm, we implement the different distance measures
proposed in this contribution to calculate the degree of sim-
ilarity measure described in Step 1 by Eq. (56).

Here it needs to emphasize that Hua’s (2017) distance
measure being employed in Step 1 is indeed Tang et al.’s
(2018) generalized hesitant weighted distancemeasure given
in this contribution by (9).

From Table 7, it is evident that the best and worst classi-
fication modes of the China’s college entrance examination
which are deduced from various distance-basedMCDMpro-
cesses are the same, and only the medium classification
modes may differ slightly.
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5 Conclusions

In this contribution, we were interested to review a variety
of existing distance measures for HFSs. Besides the criti-
cal review of the existing distance measures, we introduced
a new class of HFS distance measures by emphasizing on
these points that there is no need to make equal the lengths
of HFEs as well as altering the arranging order of their
values. It is interesting to note that not only the proposed
Hausdorff-based distance measures for HFSs satisfy mainly
the triangle inequality property, but also they inherit the other
well-known properties. At the end of this contribution, we
provided somenumerical examples to illustrate the efficiency
of the new developed distance measures for HFSs together
with a comparative analysiswith other existing distancemea-
sures. For the future work, we will explore the behaviour of
the other HFS information measures for handling multiple
criteria decision-making.
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