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Abstract

Up to now, various types of distance measures have been developed and investigated in-depth for hesitant fuzzy sets (HFSs).
The analytical study of the existing distance measures for HFSs shows that they have still some limitations. In an attempt
to overcome the limitations, this study develops a class of Hausdorff-based distances to measure the distance among HFSs
which are not restricted to the same length of their hesitant fuzzy elements (HFEs) and of course the arranging order of values
in the HFEs. Furthermore, these HFS distance measures do satisfy all well-known and essential axioms, specially, the triangle
inequality property. Eventually, we present some examples to illustrate the efficiency of the new developed HFS distance
measures together with a comparative analysis with other existing ones.

Keywords Hesitant fuzzy set - Distance measure - Multiple criteria decision-making

1 Introduction

Cognitive information has been recently paid attention as
a focal topic related to the decision-making literature. For
instance, Farhadinia and Xu (2017) introduced ordered
weighted hesitant fuzzy sets in order to characterize cog-
nitive information. Meng et al. (2016) proposed linguistic
interval hesitant fuzzy sets for deriving cognitive informa-
tion by emphasizing on the application of decision-making
process. Zhao et al. (2016) implemented the concept of dual
hesitant fuzzy preferences for extracting cognitive informa-
tion. Moreover, Liu and Tang (2016) indicated that interval
neutrosophic uncertain linguistic variables are able to be used
in handling the uncertainty in the cognitive processes. The
other contributions focus on the subject of linguistic variables
in decision-making context are those presented by Dong et al.
(2015), Wu et al. (2018) and Li et al. (2018).
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However, there exist recently a growing number of stud-
ies that are focused on the distance and interchangeably on
the similarity measures for hesitant fuzzy sets (HFSs) (Farha-
dinia2013b, 2014a,b, 2016; Farhadinia and Herrera-Viedma
2018; Farhadinia and Xu 2017, 2019; Li et al. 2015a, b; Tang
et al. 2018), and of course for some extensions of HFSs
(Farhadinia and Herrera-Viedma 2018; Peng et al. 2013;
Rodriguez et al. 2016; Xu 2012). On the basis of the fact
that a distance measure can be transformed to a similarity
measure and vice versa (Farhadinia 2013a), we here only
deal with the distance measures for HFSs.

Needless to say that the distance measures are fundamen-
tally important in various fields such as decision-making,
market prediction, pattern recognition and distance-based
consensus in multiple criteria decision-making (MCDM)
(Cabrerizo et al. 2017; Moral et al. 2018).

The first attempt was made for extending the theory of
information measures for HFSs by investigating a connec-
tion between distance measures and similarity measures
(Xu and Xia 2011). Then, different kinds of distance mea-
sures for HFSs including hesitant ordered weighted distance
measures, the generalized hesitant fuzzy weighted distance
measure, the generalized hesitant fuzzy ordered weighted
distance measure and the generalized form of hesitant fuzzy
synergetic weighted distance measure (Peng et al. 2013) were
introduced and used in developing the methods dealing with
MCDM (Zhou and Li 2012). In the sequel works, the topic of
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HFS distance measures was enhanced by taking the concept
of hesitancy degree of HFS into account (Li et al. 2015a, b;
Zeng et al. 2016; Zhang and Xu 2015). This concept is used
actually to describe the hesitancy feature of the decision mak-
ers in a decision-making procedure. Subsequently, a class
of HFS distance measures was constructed without judging
about the decision makers’ risk preference, and furthermore,
the involved HFSs do not need to be re-considered by adding
any element into the corresponding smaller HFEs (Hu et al.
2016). However, this attempt is continued and developed
by relaxing the two assumptions of equalizing the length of
involved HFEs and of arranging increasingly or decreasingly
the elements of the HFEs (Tang et al. 2018).

Although the existing distance measures for HFSs may
well offer some advantages, but they are still subject to a
number of limitations: they should be re-ordered before-
hand by the help of arranging in an increasing or decreasing
order together with making equal length of involved HFEs.
Often, the process of making HFEs with equal length is per-
formed by adding several artificial elements in that HFE
with shorter length. In addition to the mentioned shortcom-
ings, some of distance measures for HFSs do not satisfy the
conventional axiom, known as, triangle inequality property.
The above-mentioned analysis provides extra motivation to
develop further the study of HFS distance measures.

The present paper is organized as follows: Firstly, a brief
overview of HFS is given in Sect. 2, and we then present a
through discussion on the existing HFS distance measures
by emphasizing on their shortcomings. Section 3 is devoted
to introducing a variety of novel distance measures for HFSs
on the basis of the Hausdorff metric concept. In Sect. 4, we
apply the proposed HFS distance measures to a MCDM prob-
lem in order to demonstrate the applicability of the proposed
measures. Finally, the conclusion is drawn in Sect. 5.

2 Discussion on the existing distance
measures for HFSs

In this section, we first provide a brief overview of the concept
of hesitant fuzzy set (HFS) (Torra 2010) that usually plays a
basic role in the case where there exist some difficulties in
determining the membership for an element to a set.

Definition 2.1 (Torra 2010) In the case where X stands for
the reference set, we define a hesitant fuzzy set (HFS) on X
in terms of a function that when it is applied to X, it returns
a subset of [0, 1].

In the light of Torra’s (2010) HFS definition, Xia and Xu
(2011) represented the following mathematical form of HFS
for a better understanding:

A ={{x,ha(x)) : x € X},
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where %4 (x) indicates all possible membership degrees of
x € X belonging to the set A. Moreover, the set h4(x) is
called hesitant fuzzy element (HFE) of A.

Before investigation of the existing distance measures
for HFSs, let us present a general form of HFE arithmetic
operations (Xu 2012) in which the number of elements
included in HFEs is not considered to be the same in
advance.

Let h = (%O | i = 1,..., L), by = (B9 i =
1. by} and by = (B3 | i = 1,....14,) be three
HFEs arranged in an increasing order of their elements where
8 :(L,2,....0p,) — (1,2,...,1,) indicates the permu-
tation operator. Then, it is defined that

h1®hy = U

WO eny 12D ey

hi ®hy = U

3O eny hd ehy

3() 8(J) (8@, (8GN .
{hl Thy = hy Ty }
30N .
URC ]

= {1—(1—h5(i)))‘},k>0;
W0 eh

W= [(h‘w)))‘], x> 0.
W@ eh

Although up to now most studies on the HFS distance
measures have focused on the unification of the length of
HFSs in computational cases including (i) in the pessimistic
case where the shortest value is repeated until the length
of HFEs is the same; (ii) in the optimistic case in which the
largest value is repeated, and (iii) in the case where the convex
combination of maximum and minimum values is taken into
account, but such a unification process is not necessary here
for the reasons to be discussed later.

It is clear that the distance and the similarity measures are
very useful tools in distinguishing the difference between
two objects. By the current portion, we basically intended
to analyse a number of existing distance measures for HFSs
from different aspects. In the first attempt in this regard, Xu
and Xia (2011) proposed a class of distance measures for
HFSs including the Euclidean, the Hamming and the gener-
alized hesitant normalized distances. As a representation, the
generalized hesitant normalized distance for HFSs is given
as:

1 1 & ’
ngX(A, B) = {N Z (lk Z |hi(r)(xk)_h%(t)(xk)|)‘)} ,
k=1 =1
(D

in which Iy = max{lj,, (x), lp, (xp)} fork =1,2,..., N.
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In addition to the above distance measure, Xu and
Xia (2011) introduced the following generalized hesitant
weighted distance measure:

1

N Iy x
1
dugxx(A, B) = [Z o (zk DR ) — h‘;(”(xkn*ﬂ :
k=1 =1
(2)

where wy indicates the weightof x; € X fork =1,2,..., N
with the property Z,ivzl wp = 1.

Needless to say that the above-mentioned distance mea-
sure dgx x given by (1) is indeed the mean value of distances
between all elements of the HFSs A and B. Taking this
fact into account, some other HFS distance measures were
proposed by Zhou and Li (2012) which are much like that
introduced by Xu and Xia (2011), and they are only different
in the coefficients.

Zhou and Li (2012) defined the type-2 generalized hesitant
distance measure between the HFSs A and B in the form of

1
N I x
8 8
dezi (A, B) = | D | 105" o) — ol | |
k=1 \t=1

3

for A > 0.

In the sequel, Peng et al. (2013) extended this line of
research by introducing a HFS generalized hesitant fuzzy
synergetic weighted distance measure as

dghfswP(Av B)
1

/ ) 8 x
[Z{Ll o (£ 20 1050 o) = WP o) w,,(k)} ’

Y OkW k)

4)

where p : (1,2,...,N) — (1,2, ..., N) indicates a per-
mutation operator such that (i Zi’{: I |hi(t) (x) — h%([)(xk)D
stands for the p(k)-th largest of the individual distances
(00 107 (o) = hy " (o)) fork = 1,2, N More-
over, the positive relative weighting vector of individual
distances (- "1 | |h\" (xi) — hy" (xe)]). which is denoted
by wk, satisfies the property of normality in the sense that
Yo =1,

A critical shortcoming in calculating the above-mentioned
distance measures for HFEs is that the number of included
elements may be different. This may lead to a problem, spe-
cially in the case where we are going to calculate d(h 4, hp)
and d(hA, hc), and lAB = max{lhA, lhB} 75 lAC =
max{ly,, In.}.

To eliminate this shortcoming, Li et al. (2015a) extended
initially the set of HFEs {ha,,ha,,...,h4,} including,

respectively, {ln,, . lny, s -- -, ln,, } numbers of elements as
the points in the same space with the dimension of [ =
max{ly, , lhsz -« 1ny, }. Then, they proposed the general-

ized hesitant weighted distance measure in the form of

N
dgywr (A1, A2) = {Z (

1

I x
Wk 8(1) §(t) A
EZIhAI () = ho )l )} :

k=1 t=1
(%)
where [, = max{lhAI , lhsz cel, lhA,} stands for the number
of elements in the set of HFEs {ha, (xk), ha,(Xk), ..., ha,
(x)}-

Recently, Li et al. (2015a) and Zeng et al. (2016) showed
that the above-mentioned distance measures only consider
the difference between elements in HFEs and not the differ-
ence between the numbers of values in HFEs. In this regard,
they demonstrated that the above-mentioned distance mea-
sures do not obey the triangle inequality axiom (see Property
3in Theorem 3.2 below), and therefore tried to overcome this
drawback by appending the concept of hesitancy of HFEs to
the definition of distance measures.

Li et al. (2015a) and Zeng et al. (2016) defined the gener-
alized hesitant weighted distance as follows:

N Ix
1 1
dugrz(A B)= > o (1 > 100" o) —hly” (o
k=1

ki

1
x

+IEMha) =B | (6)

where wj indicates the weight of x; € X for k =
1,2, ..., N with the property lecvzl wr = 1, and moreover,
E(ha(x)) = 1 — 7y such that [y = max{ly, (xc). ln,
(xx)}

There exists still a problem that the calculation of the
above-mentioned distance measures of HFSs is mainly based
on the extension of HFEs uniformly. Thus, the reasonability
of the original HFEs will be mainly influenced by expanding
them in terms of a number of artificial values.

Tang et al. (2018) relaxed the property given by Farhadinia
(2013a) and Zhou and Li (2012) stating that

if A<B<C then d(A,B)
<d(A,C) and d(B,C) <d(A,C), @)

where A < B means that ha(xg) < hp(xg), that is,
hi(t)(xk) < h%(s)(xk) for each x; € X, and then, they
replaced that property with the conditional reflexivity prop-
erty in terms of
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d(A, B) =0 if and only if

ha(xg) = hp(xr) and Iy, (xp) = by () = 1 (3
for the singular-value HFEs % 4(xx) and hp(xg) for k =
1,2,...,N.

Later, Tang et al. (2018) defined the generalized hesitant
weighted distance measure between HFSs A and B in the
form of

N | In 4 (i)
dugr (A, B) = ok | ——————
e ,; I (i) (k) ;
1
In g (xk) x
) 5(s
S D TS B €8 1 I I )
s=1
where wy indicates the weightof x; € X fork =1,2,..., N

with the property Z,I{V: 1 wx = 1. Moreover, I, (x;) and
I (xx) stand for the number of values in the HFEs 7 4 (xy)
and A p(xy), respectively.

From Tang et al.’s (2018) conditional reflexivity property
given by (8), one can easily deduce that this property holds
true whenever the HFSs A and B are reduced to two equiva-
lent fuzzy sets, and it does not return any result to the general
form of HFSs.

In addition to the above-mentioned distance measures, Hu
etal. (2016) presented the following generalized hesitant dis-
tance measure:

Iny (X%)

N
1 1 (1)
d, A, B) = = T () Z ha
weH ( ) 3 |:Z“’k ( =12,... ’hB( ) | 0

k=1 bha ) (= s=t,

Ing (xic)

> min B
1=1,2,...,l 4 (xk)

by () o

‘l
—n5 (xk)ﬂ) } , (10)

where wy indicates the weightof x; € X fork =1,2,..., N
with the property Z,’c\’:] wi = 1, moreover, I, (xx) and
Inz (xx) stand for the number of values in the HFEs /4 (xg)
and % g (xy), respectively.

Furthermore, Hu et al. (2016) considered a weak form of
properties given in Theorem 3.2 below, that is, they mainly
considered the property given by (7) instead of the triangle
inequality axiom in Theorem 3.2.

Now we are in a position to describe a formula that Farha-
dinia (2013a) provided on how the above-mentioned distance
measures for HFSs can be transformed to HFS similarity
measures.

—hy” o)l

Theorem 2.2 (Farhadinia 2013a) Assume that T" : [0, 1] —
[0, 1] is a strictly monotone decreasing real function, and let
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d be a distance between HFSs. Then, for any HFSs A and B
on X
I'd(A, B)) —T'(1)

A =TT o -t

defines a HFS similarity measure based on the corresponding
distance d.

By the way, if we keep the aforesaid analysis in mind, then
it will be obvious that the distance measure for HFSs needs
to be debated further. In the next section, we are going to
propose a number of distance measures for HFSs that avoid
the aforementioned drawbacks.

3 Novel distance measures for HFSs

Let us first review the common interpretation of distance
measure between a single point b and a set of points A. When-
ever we are going to calculate the distance measure 6 of b
from A, the Euclidean distance ||.|| is usually employed to
show how b is near to the points of A and it is denoted by
0(b, A) = mingey lla —b].
If we suppose A = {aj,az,...,a)a} and B = {by, b,
v, big|}, then many different ways exist that define the
directed distance measure between A and B as follows (see
Dubuisson and Jain (1994)):
O1(B, A) =

m1nt9(b A) = mlgmm lla —b]; (11

Oy (B,A) = max@(b A) = maé(mln lla — b|; (12)

= — E min ||a — b||;
|B| acA
beB

(13)
Ki min fla — b, (14)

O3u(B, A) = —Ze(b, A)
|BI beB

Ourr(B. A) =7k}l 16(b, A) =

where ”/cb < p indicates the k" largest value in the set B with
the property ;g = %Y.
For instance, 50K1’7h g indicates the median of the distance
measures 0 (b, A) = mingc4 |la — b|| for any b € B.

Now, it is interesting to note that there are many different
ways of combining the direct distance measures ®, g (B, A)
and ©, g (A, B) for (r =1, 2, 3, 4) to obtain a class of undi-

rected distance measures as follows:

©1(Oru(A, B), ®, (B, A))

= min{O,x (A, B), ©,p(B, A)}; 15)
©2(0,1 (A, B), ©,n(B, A))
ZmaX{G)rH(A,B),@rH(B,A)}; (16)
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®3(0,1(A, B), ©,n(B, A))
1
= §(®rH(Aa B) + 0O, (B, A)); (a7)
©4(0rH(A, B), Orp(B, A))

= —— (|A|®,u(A, B) + |B|®,y (B, A). (18
|A|+|B|(|| H( )+ BlOu( ) (18)

For instance, if we take ®,y given by (12) and &, given by
(16) into account, then we result in

D2(O25(A, B), O24(B, A))
= max{Osy (A, B), O25 (B, A)}

= max {maxmin |la — b||, maxmin |la — b ¢, (19)
acA beB beB acA

which is known as the Hausdorff distance measure.

The latter formula of Hausdorff distance measure is
interpreted by the help of the two terms ®>y (A, B) and
®>5(B, A) where each of them is, respectively, called
as the direct Hausdorff distance measure from the set
A (respectively, B) to the set B (respectively, A). For
instance, with the term ®;g (A, B) at hand, we can iden-
tify the farthest point a € A from any point b € B,
and measure the distance value of the point a € A from
its nearest neighbour in the set B. Indeed, ®,y (A, B)
ranks each point @ € A on the basis of its distance
measure to the nearest point of B, and consequently intro-
duces the largest ranked point as the distance measure.
For more explanation, let ®>y (A, B) = o which means
that any point of A is within the distance o from some
point of B. Then, some point of A has the distance
value o from the nearest point of B. By this explana-
tion, we can say that the Hausdorff distance measure
Dr(O215 (A, B), ©24 (B, A)) which is shown hereafter by
the notation ®, (A, B) in brief, is the maximum value of the
two terms O,y (A, B) and ®, (B, A) and further measures
the distance of the point in A being the farthest from any
point of B.

Now, we are in a position to introduce a new class of
distance measures for HFSs by taking the above class of
Hausdorff distance measures into consideration. Let hy =
0 1i =1, hy,yand hg = (B [0 =1, 1)
be two HFEs arranged in an increasing order, where § :
1,2,...,0p) — (1,2,...,1ly) for i = A, B indicates
the permutation operator.

Needless to say that the assumption of increasing order
of elements in a HFE is not essential in the proposed setting
of Hausdorff distance measures through this contribution,
and therefore, it cannot be seen as a shortcoming of the
theory.

We define

C1(Orh(ha,hp), Orp(hp, ha))

=min{O, g (ha, hp), Org(hp, ha)k; (20)
D2(Org(ha,hp), Org(hp, ha))
=max{®,y(ha, hp), Orpg(hp, ha)l; (21
O3(O,(ha, hp), Or(hp, ha))
1
= §(®rH(hA, hg) +®,u(hp, ha)); (22)

O4(Orr(ha, hp), ©rm(hp, ha))

1
= ——Un,Ora(ha, hp) +1h;Ora(hp, ha)).
Ihy +lng
(23)
where
. st .
O (hp, ha) = min 05", h\")
W\ eng
= min  min [R5 =K (24)
W ehp 0P ehy
st .
O (hp. ha) = max 0(hy" ")
WP ehg
= max min [R5 =KV 25)
W ehp 0P ehy
1 s s
Osu(hp.ha) == D 6" h")
B o
B E/’LB
1 . (i s
_ - gg}m ”hA(l) _ hB(])”; (26)
hB hi.’,(”eh hA €h
oy th 5(j) 1 8()
O4py(hp, ha) = Kh%(,)ehBQ(hB Jhiy )
. 8 5(j
— )/Kth min ”hA(l) _ hB<J)||’ (27)

8(j) :
h hp 8
B SMB D epy

such that VKZQ(_,)eh
hp with the ;ropeny ﬁ = %y.

As performed in Farhadinia (2013a, b); Farhadinia and Xu
(2017); Farhadinia and Herrera-Viedma (2018); Xu and Xia
(2011), we can easily extend the above results of HFEs to
that for HFSs by the following rules:

indicates the " largest value in the HFE
B

N
D(A, B) =D (O, (ha(xx). hp(xp)),
k=1

O, (hp(xk), ha(xy)))
N

= Zmin{@,H(hA(xk), hp(xr)),
k=1

Org(hp(xk), ha(xi))}; (28)
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N
= Z <I>2(®rH(hA(Xk), hB(.Xk)),

k=1
O (hp(xk), ha(xi)))

®>(A, B)

N
= Z max{®, g (ha(xx), hp(xx)),
k=1

O (hp(xk), ha(xi)}: (29)

N
D3(A, B) = Y ®3(0,1(ha(xx), hp(xi)),

k=1
O, (hp(xk), ha(xk)))

N
= Z E(Grﬂ(hA(Xk), hp(xk))
k=1
+ O,y hp(xi), ha(xi)); (30)
N
= Z D4(O, g (ha(xk), hp(xk)),

=1
O,y (hp(xk), ha(xk)))

®4(A, B)

= Z lh +l (lhA®rH(hA(Xk), hp(xy))
A

+lh3 O (hp(xk), ha(xi)), €1y

where

1 (hp (1), ha(x)) = min 0 (ho (), B2 ()
h chpg

= min  min 257 0= Gol; (32)
Wy ehp h5P ehy

O2 (hp (xr). ha(m)) = max 0(h YD), 2 ()
h chp

= max  min 257 G) — W5 o) l; (33)

no P ehp hSP e
1 ; ;
O3 (hp (). ha()) = — 3 Ohy” (). h ()
B 50
h GhB

W9 el (34)

1

P
Weng

Oup (hp(xi), ha(xg)) = y’(;l?(_i) I

min |75 (o) —
B i Depy

min [R5 () —
WP ehy

0(h5 (u), 5P ()

.
K430 ey hy? ol (35)

In the latter formula, ” « }’l }5’( Dep indicates the «""* largest value
B €hB

in the HFE /g with the property ﬁ = %y.

We should emphasize here that in defining the above-
proposed Hausdorff distance measures, it is required that all
the combinations of possible values existing in the two HFEs

h 4 and h p be handled, and moreover, the restriction of length
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equality of HFEs is relaxed in calculating the proposed dis-
tance measures.

Remark 3.1 It needs to be mentioned that only the Hausdorff
distance measure @, given by (19) is a metric, and the other
combinations do not satisfy the triangle inequality property
3 below:

Theorem 3.2 Suppose that A = {(x, ha(x)) : x € X} =
(o @) =1, Iy ) s x € XY, B = {(x, hp(x)) :
xe Xy = {0 1 j= 1,y - x € X)
and C = {(x,hc(®)) : x € X} = {(x, (WP x) | k =

< Ine)) 1 x € X} are three HESs, and @ is that defined
by (29). Then, @, is a distance measure for HFSs and satisfies

1. 0 < ®2(A, B) < 1 (Boundedness property)

. ©2(A, B) = ©(B, A) (Symmetric property)

3. ®(A,C) < Py(A, B) + O2(B, C) (Triangle inequality
property)

4. ®2(A, B) = 0ifandonlyif A = B. (Conditional reflex-
ivity property)

N

Proof From the definition of HFS distance measure ®; given
by (29), it can be easily seen that the proofs of the properties
1 and 2 are clear and we do not give them here.

Property 3. First of all, suppose that

LG 8 (ki . G S(k
1S =r ) = min RSO —hgO Y, for ko € (1,2, Iac ),
n®ehe
(36)
8 (ki 8 (i 8 (ki 8(j .
g™ =ng? I = min e —n N for o € (1.2, ).
h chp

(37

On the other hand, we get that

. 8(i 8(j 8@ 8(ji
Sm]n ”hA(l) _ hB(J)” < ”hA(l) _ hB(]O)”
WP ehpg
LG 8 (k S (ki 8(Jji

Now, by the use of relations (36) and (37) together with the
above inequality, we conclude that

: 3(i) 8(J)
Smln A" —hg |l
W\ ehy
< min ”hi(’) S(k)”_’_ min ||h8(k0) (Z)(/)”
h?k)eh h (/)eh
< min ||hi<')—h‘sc<k)||+ max  min ||h6C(k)—h%(J)||
he® ehe hePehc hy) enp
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< max

. 5 48k
s O
/’LAI E/’LA /’LC Ehc
. sty L 8(
szn)m ||hC( )—hB(j)H
chc hy" ehp
<max{Oxg(ha,hc), @2 (hc, ha)}
+max{®zy (hc, hp), O2u(hp, hc)}

= ®y(A,C) + ©2(C, B), (38)

+ max
Po®)
C

for all h%" € hy.
If we now consider definition (33) and inequality (38), we
then find that

. S
max  min 55" — A"
WD ehy hi) ehp

< ©2(A, C) + 92(C, B).

Ozp(ha,hp) =

By the same procedure described above, it is deduced that

O2p(hp, ha) = max min [|h — 7|
WP ehp hOPeha
< ®y(A, C) + P2(C, B),
and thus

®2(A, B) = max{©zy (ha, hp), O2p(hp, ha)}
< ®2(A, C) + 92(C, B).

Property 4. Follows from definition (29), it is easily con-
cluded that

D,(A, B)

D2 (O (ha(xx), hp(xk)), O2y (hp(xXx), ha(xr)))

Il
M=

~
I
-

max{Ozp (ha(xx), hp(xr)), O2p (hp(xr), ha(xx))} =0

Il
M=

~
I

1

(39

if and only of
O2p (ha(xk), hp(xk)) =0, (40)
O2p (hp(xk), ha(xk)) = 0. (41)

Now, from equality (40), we find that

2 (ha(en). hp () = max 0(h” (). )" (o))
hB GhB

. 8 8()
= max  min [lhy" (o) — by (ol =0,
oy enp b\ ehy

which means that

. »
1159 ey — B ()l = 0,

for any h%(j) € hp and hi(i) € h . This says that hi(i) (xx) =
h%(j)(xk) for any x; € X, thatis, A = B.
The proof of equality (41) is similar. O

In the case where wy indicates the weight of x; € X
for k = 1,2,..., N with the property Z,ivzl wr = 1, the
following weighted Hausdorff distance measures for HFSs
can be proposed as:

N

YA B) =Y ox®1(Orn(ha(x), hp(x),
k=1

O,y (hp(xi), ha(xk)))
N

= Zwk min{®, g (ha(xk), hp(xk)),
k=1

O (hp(xk), ha(xi))}; (42)

N
7 (A, B) = Z W P2(Or g (ha(xk), hp(xk)),
k=1

Oru (hp(xk), ha(xr)))
N
=Y o max{O, 5 (ha(xx), hp(xp),
k=1
O 1 (hp (i), ha(x))}; 43)
N
DY(A, B) = Y 0 ®3(0r 5 (ha(xx), hp(xx)),
k=1

Orp (hp(xk), ha(xi)))

N
1
= Z 0)k§(®rH(hA(-xk)» hB(xk))
k=1

+ O, (hp(xk), ha(xi)); (44)

N
PY(A, B) =Y x®Pa(O, 1 (ha(xx), hp(xp)),
k=1
Orp(hp(xi), ha(xr)))
N

1
=) o (—(lhA®,H<hA<xk>, hp(xi))
P Iny +lng

+np Orb (hp(xp), hA(xk))> : (45)

If the reference set X and moreover the continuous weights
of elements are taken into account, then the continuous
weighted Hausdorff distance measures for HFSs are given
as follows:
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Y (A, B) = /bw(x)q>1(®rH(hA(x)» hp(x)),
®arH(hB(x)a ha(x)))dx
-/ " () min(© 111 ), B (),
®arH(hB(x)a ha(x))}dx; (46)
3(A, B) = /bw(x)q)Z(@)rH(hA(x)vhB(x))a
®arH(hB(x)a ha(x)))dx
= /bw(x)maX{(arH(hA(X), hp(x)),
G‘;er(hB(x)a ha(x))}dx; (47)
5(A, B) = /bw(x)cb3(®rH(hA(x)»hB(X))v
('DarH(hB(x)’ ha(x)))dx
= /aba)(x)%(@rH(hA(x)’ hp(x))
+ Orn(hp(x), ha(x))dx; (43)
DY (A, B) = /bw(x)q)4(®rH(hA(x)» hg(x)),
®arH(hB(x)a ha(x)))dx
- /abw(xxm(lm

Orp(ha(x), hp(x))
+ 1l Orr (hp(x), ha(x)))dx, (49)

where any weight of element x € X = [a, b] is denoted by
(x) such that 0 < w(x) < 1 and [” w(x)dx = 1.

4 Applications of the proposed distance
measures

In this section, three portions are provided to demonstrate
the applicability and validity of the proposed distance mea-
sures for HFSs. The first portion relating to the evaluation of
energy policy is taken from Tang et al. (2018) and Xu and Xia
(2011). The second portion is adapted from Hu et al. (2018)
where they employed the TOPSIS technique to conduct a
hesitant fuzzy MCDM approach. The third portion deals with
developing an approach for multiple criteria group decision-
making in order to evaluate the classification modes of the
China’s college entrance examination.

4.1 Appropriate energy policy based on the distance
measures

Here, we intend to demonstrate the application of suggested
distance measures for HFSs by the use of two numeri-
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cal examples that were discussed previously by Tang et al.
(2018).

Example 4.1 [Adopted from Tang et al. (2018) and Xu and
Xia (2011)] These days, energy roles as an indispensable
parameter in developing the socio-economic scenarios. This
implies that selecting the most appropriate energy policy is so
important. Itis assumed that we are going to invest five energy
projects (alternatives) A; (i = 1,2, 3,4, 5) with respect to
four criteria as Cj: technological; C,: environmental; C3:
sociopolitical; and Cy4: economic. The criteria weight vector
is supposed to be in the form of v = (0.15, 0.3, 0.2, 0.35).
In the case where the decision makers return anonymously
their evaluation of each alternative under the four criteria, we
then face to the sets of evaluated values in the form of HFS as
given in Table 1. Let the ideal solution be as the special HFS
A* = {1}. This set is seen as the reference set for comparing
all alternatives. In this regard, the best alternative is that with
the least value of distance measure from the ideal solution
A* = {1}.

We employ the weighted distance measures proposed in
this contribution as given by Egs. (42)—(45) and then calculate
the hesitant weighted distance measure of each alternative
and the ideal solution A* = {1} together with the ranking
order of alternatives which are all represented in Table 2.
Besides that, the results of Tang et al.’s (2018) and Xu and
Xia’s (2011) distance measures are given in Table 2.

Example 4.2 By keeping all the data structures used in
Example 4.1, we only update the ideal solution as
AP ={(Cy,1{0.7,0.6}), (C2, {0.9,0.6}), (C3, {0.9,0.8, 0.7},
(C4,{0.9,0.8,0.6})}.

Once again, by the use of the proposed distance measures,
we can obtain the results being shown in Table 3. Also, the
results of applying the two classes of distance measures pro-
posed by Tang et al. (2018) and Xu and Xia (2011) to this
example are shown in Table 3.

By taking a look at the results presented in Tables 2 and
3, it can be observed that although the ranking orders are not
exactly coincided, they often propose that the most appropri-
ate energy policy is As. The results of Tang et al.’s (2018)
and Xu and Xia’s (2011) distance measures depend highly
on the variation of parameter A, that is, they return As as the
most appropriate energy policy for A € [1, 3], and A3 for
A e (3, 00].

Itis worthwhile to state that the extra parameter A does not
play any role in describing the proposed distance measures
for HFSs.

Moreover, what should be noted here is that Tang et al.’s
(2018) and Xu and Xia’s (2011) distance measures only pro-
vide the decision makers with more choices of A, and do not
explain how we can be aware of A values. But, the proposed
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Table 1 Hesitant fuzzy decision matrix

Alternative\criteria Ci Cy C3 Cy

Aj {0.5,0.4,0.3} {0.9,0.8,0.7, 0.1} {0.5,0.4,0.2} {0.9, 0.6, 0.5, 0.3}

Ar {0.5,0.3} {0.9,0.7, 0.6, 0.5, 0.2} {0.8,0.6,0.5,0.1} {0.7,0.3, 0.4}

A3 {0.7, 0.6} {0.9, 0.6} {0.7,0.5, 0.3} {0.6, 0.4}

Ay {0.8,0.7,0.4, 0.3} {0.7,0.4,0.2} {0.8,0.1} {0.9,0.8, 0.6}

As {0.9,0.7,0.6,0.3,0.1} {0.8,0.7, 0.6, 0.4} {0.9,0.8,0.7} {0.9,0.7, 0.6, 0.3}

Table 2 The distance values of the five energy projects

Distance Al Ar Az Ay As Ranking order

dygxx (Xu and Xia 2011)
Ar=1 0.4799 0.5027 0.4025 0.4292 0.3558 As > A3 > Ay > Ay > Ay
A=2 0.5378 0.5451 0.4366 0.5052 0.4129 As > A3 > Ay > Ay > A
A=6 0.6599 0.6476 0.5156 0.6704 0.5699 A3 > As > Ay > A > Ay
Ar=10 0.7213 0.7046 0.5607 0.7373 0.6537 A3 > As > Ay > A1 > Ay

dygr (Tang et al. 2018)
r=1 0.4779 0.5027 0.4025 0.4292 0.3558 As > A3 > Ay > A > Ay
A=2 0.5378 0.5451 0.4366 0.5052 0.4129 As > A3 > Ay > A > Ay
A=6 0.6599 0.6476 0.5156 0.6704 0.5699 A3 > As > Ay > A > Ay
A=10 0.7213 0.7047 0.5603 0.7374 0.6537 A3 > As > Ay > A > Ay

Proposed measure
@Y (withr = 1) 0.2400 0.2500 0.2750 0.1950 0.1300 As > Ay > A1 > Ay > Az
@F (withr = 2) 0.7800 0.7350 0.5300 0.6650 0.6200 A3 > As > Ay > Axy > Ay
®F (with r = 3) 0.3590 0.3505 0.4363 0.3121 0.2391 As > Ay > Ay > A > A3
&7 (withr = 4) 0.4002 0.4800 0.3633 0.3204 0.2885 As > Ay > A3 > A > Ay

Table 3 The distance values of the five energy projects

Distance A Ap A3 Ay As Ranking order

dygxx (Xu and Xia 2011)
r=1 0.2342 0.2335 0.1650 0.1996 0.0980 As > A3 > Ay > Ar > Ay
A=2 0.2850 0.2773 0.2306 0.2949 0.1580 As > A3 > Ay > Ay > A
A=6 0.3771 0.3842 0.3105 0.4744 0.2872 A3 > As > Ay > A > Ay
A=10 0.4154 0.4475 0.3395 0.5446 0.3530 A3 > As > Ay > A > Ay

dygr (Tang et al. 2018)
Ar=1 0.2971 0.2886 0.2058 0.2583 0.1940 As > A3 > Ay > Ay > A
A=2 0.3577 0.3495 0.2697 0.3449 0.2543 As > A3 > Ay > Ay > A
A=6 0.5079 0.4934 0.3775 0.5263 0.3901 A3 > As > Ay > A > Ay
A=10 0.5897 0.5687 0.4318 0.6014 0.4512 A3 > As > Ay > A > Ay

Proposed measure
& (withr =1) 0.0550 0.0500 0.0001 0.0300 0.0001 As > A3 > Ay > Ay > Ay
®F (withr = 2) 0.1100 0.1200 0.1450 0.0950 0.0600 As > Ay > A] > Ay > A3
®F (withr = 3) 0.5625 0.4725 0.3525 0.2850 0.2250 As > Ay > Az > Ay > Ay
&7 (withr = 4) 0.0695 0.0538 0.0380 0.0390 0.0150 As > A3 > Ay > Ay > Ay
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Table 4 Hesitant fuzzy decision matrix

Alternative\criteria Ci Cy Cs Cy
A {0.7,0.4,0.2} {0.7,0.5,0.2,0.1} {0.8,0.7,0.5,0.3, 0.2} {0.6,0.4,0.1}
As (0.7, 0.6, 0.4} {0.6,0.4,0.2,0.1} {0.9,0.8,0.6,0.4,0.3) 0.4,0.2,0.1}
As {0.6,0.3,0.2) {0.9,0.5,0.4,0.3} {0.8,0.7,0.6,0.4,0.2) {0.8,0.4,0.3)
As {0.5,0.3,0.2} {0.7,0.5,0.3,0.2} {0.9,0.8,0.7, 0.6, 0.4} {0.7,0.2,0.1}
distance measures do not depenq ?n any parameter like A in q)lt =3 w0 (hyj, h;r), (52)
Tang et al. (2018) and Xu and Xia’ (2011) measures. j=1 :
n
;= Y w O (hij. hy), (53)

4.2 Appropriate supplier based on the distance
measures

On the basis of the relationship between distance measure
and similarity measure for HFSs (Farhadinia 2013a), we
discuss here about the novelty of the proposed distance mea-
sures from applied intelligence perspective. In this regard,
we adopt an experimentation which is discussed thoroughly
by Hu et al. (2018). In Hu et al. (2018), a class of simi-
larity measures for HFSs are further investigated from their
performance. Hu et al. (2018) employed the TOPSIS tech-
nique to conduct a hesitant fuzzy MCDM method where the
alternatives s