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Abstract
Ranking of trapezoidal-valued intuitionistic fuzzy numbers (TVIFNs) plays an important role in multi-criteria decision
making (MCDM) based on the TVIFNs. Themain objective of this paper is to introduce newmembership and non-membership
accuracy functions on the classes of interval-valued intuitionistic fuzzy numbers (IVIFNs) and TVIFNs bywhich the orderings
on IVIFNs and TVIFNs are done. This paper reveals the better part of the proposed accuracy functions than the existing or
previous functions. Further, some operations on IVIFNs and TVIFNs are defined. Finally, a new method is proposed to solve
the MCDM problem based on the multi-criteria trapezoidal-valued intuitionistic fuzzy index matrix and illustrated through
numerical examples.

Keywords Interval-valued intuitionistic fuzzy number · Trapezoidal-valued intuitionistic fuzzy numbers · Multi-criteria
decision making · Index matrix · Accuracy function

1 Introduction

Multi-criteria decision-making (MCDM) problem utilizes
the accuracy functions to rank the alternatives (Wang and
Wang 2008; Wang et al. 2008). Any decision-making prob-
lem involves three steps, specifically (1) gathering data from
resource persons and designing the decision matrix, (2)
aggregating the performance of each alternative with respect
to each criteria and (3) ranking of alternatives in accordance
with its aggregated performance.

Xu and Chen (2007) introduced the concept of score
function and accuracy function for interval-valued intuition-
istic fuzzy number (IVIFN). He has also proposed weighted
arithmetic average operator and weighted geometric aver-
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age operator to aggregate the performances of alternative
with respect to criteria. Next, Ye (2009) has pointed out
some drawbacks of Xu’s work and has presented a novel
accuracy function of IVIFN. Further, many authors like
Nayagam (Nayagam et al. 2008, 2017, 2016a, b, c, 2018,
2011;NayagamandSivaraman 2011; Sahin 2015; Sivaraman
et al. 2014; Bai 2013; Liu and Xia luo 2016; Garg 2016) have
developeddifferent concepts of score and accuracy functions.

The concepts of index matrix (IM), intuitionistic fuzzy
index matrix (IFIM) and extended intuitionistic fuzzy index
matrix (EIFIM) were introduced by Atanassov in 1987, and
many binary operations and aggregation operations on IFIM
and EIFIM have been studied in Atanassov (1987, 2010,
2013b) and Pap (1997, 2002). The inter-criteria decision
making based on EIFIM is studied in Atanassov (2013a,
2014) and Atanassov et al. (2014).

The approach of this paper is coordinated as follows: Nec-
essary basic definitions are briefly introduced in Sect. 2. In
Sect. 3, a short review of rankingmethods presented by some
authors are given and newmembership and non-membership
accuracy functions on IVIFNs are introduced. Some proper-
ties of operations on IVIFNs are studied. In Sect. 4, new
membership and non-membership accuracy functions on
TVIFN are proposed by which the ordering on TVIFN is
defined. In Sect. 5, trapezoidal-valued intuitionistic fuzzy
index matrix (TVIFIM) is introduced and an algorithmic
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procedure is given to apply the proposed ranking method in
MCDM based on multi-criteria TVIFIM. Finally, illustrative
example is also studied to show its applicability. In Sect. 6,
conclusions and future scope are given.

2 Preliminaries

A short review of preliminaries is given below.

Definition 2.0.1 (Atanassov 1986) An IFS A of a non-empty
set X is defined as A1 = {

(x, μA1(x), νA1(x))/x ∈ X
}

where μA1 : X → [0, 1] and νA1 : X → [0, 1]
define the degree of membership μA1(x) and degree of
non-membership νA1(x) of x in X to lie in A with 0 ≤
μA1(x) + νA1(x) ≤ 1,∀x ∈ X .

Definition 2.0.2 (Atanassov and Gargov 1989) An IVIFS on
a non-empty set X is defined as A1 = {(x, μA1(x), νA1(x) ∈
X}, where μA1(x) =

[
μ

A1(x)
, μA1(x)

]
and νA1(x) =

[
νA1(x), νA1(x)

]
are closed subintervals of [0, 1] which sat-

isfy the condition 0 ≤ μA1(x) + νA1(x) ≤ 1. The collection
of all IVIFS on X is denoted by IVIFS(X). An IVIFS on sin-
gleton set is called IVIF number. The collection of all IVIF
numbers is denoted by IVIFNs.

Definition 2.0.3 (Nayagamet al. 2008)Let A = (
[
μAa , μAb ,

μAc , μAd

]
,
[
νAe , νA f , νAg , νAh

]
) (where νAe ≥ μAc and

νA f ≥ μAd or νAg ≤ μAa and νAh ≤ μAb ) be a TVIFN.
Then the degree of acceptance and degree of rejection func-
tions are defined as

μA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x − μAa

μAb − μAa

μAa ≤ x ≤ μAb

1 μAb ≤ x ≤ μAc
x − μAd

μAc − μAd

μAc ≤ x ≤ μAd

0 otherwise

;

νA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x − νAe

νA f − νAe

νAe ≤ x ≤ νA f

1 νA f ≤ x ≤ νAg
x − νAh

νAg − νAh

νAg ≤ x ≤ νAh

0 otherwise.

The graphical representation of TVIFN is shown below

Definition 2.0.4 (Nayagam et al. 2008) The α cut μα
A, να

A of
TVIFN A is defined as μα

A = {[μAa + α(μAb − μAa ), μAd

+ α(μAc − μAd )
]} and να

A = {[νAe +α(νA f −νAe ), νAh

+α(νAg −νAh )
]}.

Remark 2.0.5 Throughout this paper, A = ( [
μAa , μAb , μAc ,

μAd

]
,
[
νAe , νA f , νAg , νAh

] )
denotes the TVIFN with νAe ≥

μAc and νA f ≥ μAd . The similar results for the TVIFN A
with νAg ≤ μAa and νAh ≤ μAb can be proved analogously,
and hence, they are left to the readers.

Definition 2.0.6 (Nayagam et al. 2011) Two TVIFNs, A =([
μAa1

, μAb1
, μAc1

, μAd1

]
,
[
νAe1

, νA f1
, νAg1

, νAh1

] )
and

B =
( [

μAa2
, μAb2

, μAc2
, μAd2

]
,
[
νAe2

, νA f2
, νAg2

, νAh2

] )

are said to be comparable, A ≤1 B, if μAa1
≤ μAa2

,
μAb1

≤ μAb2
, μAc1

≤ μAc2
, μAd1

≤ μAd2
; νAe1

≥ νAe2
,

νA f1
≥ νA f2

, νAg1
≥ νAg2

, νAh1
≥ νAh2

.

Remark 2.0.7 If any one of the inequalities is strict <, then
A <1 B.

Definition 2.0.8 (Nayagamet al. 2008)Let A = ( [
μAa , μAb ,

μAc , μAd

]
,
[
νAe , νA f , νAg , νAh

] )
be a TVIFN. If νAe ≥ μAc

and νA f ≥ μAd , then the intuitionistic fuzzy score of A
is defined by (T , NTc), where T and NTc are the mem-
bership and the non-membership score of M which are

given by T = (1 + R − L)

2
and NTc = (1 − NL + N R)

2

with R = μAd

1 + μAd − μAc

, L = 1 − μAa

1 + μAb − μAa

, NL =
νAe

1 + νAe − νA f

and N R = 1 − νAh

1 + νAg − νAh

.

Definition 2.0.9 (Xu and Chen 2007) The score function S
of IVIFN A = (

[
μAa , μAb

]
,
[
νAc , νAd

]
) is given as S(A) =

(μAa + μAb − νAc − νAd )/2, where S(A) ∈ [−1, 1].

Definition 2.0.10 (Xu andChen2007)The accuracy function
H of IVIFN A = (

[
μAa , μAb

]
,
[
νAc , νAd

]
) is expressed as

H(A) = (μAa +μAb +νAc +νAd )/2, where H(A) ∈ [0, 1].

Definition 2.0.11 (Ye 2009) A novel accuracy function M
of IVIFN A = (

[
μAa , μAb

]
,
[
νAc , νAd

]
) is expressed as

M(A) = μAa + μAb − 1 + (νAc + νAd )/2, where M(A) ∈
[−1, 1].

Definition 2.0.12 (Sahin 2015) An improved accuracy func-
tion K of IVIFN A = (

[
μAa , μAb

]
,
[
νAc , νAd

]
) is expressed

as K (A) = (μAa + μAb (1− μAa − νAc ) + μAb + μAa (1−
μAb − νAd )/2, where K (A) ∈ [0, 1].

Definition 2.0.13 (Nayagam et al. 2011) An accuracy func-
tion L of IVIFN A = (

[
μAa , μAb

]
,
[
νAc , νAd

]
) is expressed

as L(A) = ((μAa +μAb −νAd (1−μAb )−νAc(1−μAa ))/2,
where L(A) ∈ [−1, 1].
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Definition 2.0.14 (Nayagam and Sivaraman 2011) A general
accuracy function LG of IVIFN A = (

[
μAa , μAb

]
,
[
νAc ,

νAd

]
) is expressed as LG(A) = ((μAa + μAb )(1 − δ) +

δ(2 − νAc − νAd ))/2, where LG(A) ∈ [0, 1].

Definition 2.0.15 (Liu and Xia luo 2016) A new accuracy
function A(α) of IVIFN α = (

[
μAa , μAb

]
,
[
νAc , νAd

]
) is

expressed as A(α) = (μAa + δ1(1 − μAa − νAc ) + μAb +
δ2(1 − μAb − νAd ))/2, where A(α) ∈ [−1, 1].

Definition 2.0.16 (Bai 2013) An improved score function I
of IVIFN A = (

[
μAa , μAb

]
,
[
νAc , νAd

]
) is expressed as

I (A) = (μAa + μAa (1 − μAa − νAc ) + μAb + μAb (1 −
μAb − νAd ))/2, where I (A) ∈ [0, 1].

Definition 2.0.17 (Garg 2016) A generalized improved score
function GI S of IVIFN A = (

[
μAa , μAb

]
,
[
νAc , νAd

]
) is

expressed as GI S(A) =
(

μAa + μAb

2
+ k1μAa (1− μAa −

νAc ) + k2μAb (1 − μAb − νAd )

)
, where GI S(A) ∈ [0, 1].

Definition 2.0.18 (Nayagamet al. 2017)Let A=(
[
μAa , μAb ,

μAc , μAd

]
,
[
νAe , νA f , νAg , νAh

]
) be a trapezoidal intuition-

istic fuzzy number. The score function L of A is defined as

L(A) = [
2(μAa + μAb + μAc + μAd )

−2(νAe + νA f + νAg + νAh )

+(μAa + μAb )(νAe + νA f )

+(μAc + μAd )(νAg + νAh )
]
/8.

3 Ranking by new accuracy function

In this section, it is showed that the existing accuracy
functions proposed by several authors do not give reliable
information about alternatives. Therefore, it is necessary to
pay attention to this issue and to study other measuring
functions. New membership and non-membership accuracy
functions for membership degree, non-membership degree
by taking the unknown degree (upper hesitancy degree
(1− a − c), lower hesitancy degree (1− b − d)) of IVIFNs
are introduced and analyzed by giving illustrative examples
to show that the proposed new functions are more reliable in
multi-criteria decision process.

Sahin (2015) and Bai (2013) have introduced the new
improved accuracy function to rank IVIFNs, and both the
authors claim that their method is far better than the existing
methods, but unfortunately their methods also fail to rank in
some places which is shown in Example 3.0.1.

Example 3.0.1 Illogicality of Sahin’s (2015) andBai’s (2013)
ranking methods: let A = ([0, 0] , [c1, d1]) and B =
([0, 0] , [c2, d2]) where c1 ≥ c2 and d1 ≥ d2 be two IVIFNs

for two alternatives. Clearly A ≤1 B. By applying Defi-
nitions 2.0.12 and 2.0.16, we obtain K (A) = 0 = K (B),
I (A) = 0 = I (B), which is contradictory.

Garg (2016) has rectified the illogicality of the previous score
function and the generalized improved score function to rank
IVIFN. But his method also fails to rank in some cases which
is shown in Example 3.0.2.

Example 3.0.2 Illogicality of Garg ranking method: let A =
([0, 0] , [0, 0]) be any IVIFN. By applying Definition 2.0.17,
we obtain GIS(A) = 0 which is illogical.

3.1 New accuracy functions on IVIFN

In this subsection, new accuracy functions for member-
ship degree, non-membership degree by taking the unknown
degree (upper hesitancy degree (1− a − c), lower hesitancy
degree (1 − b − d)) are defined and operations on IVIFNs
are studied.

Definition 3.1.1 Let A = ([a, b] , [c, d]) be an IVIFN,
and the membership accuracy function N A1 of an IVIFN
based on the upper hesitancy degree and non-membership
accuracy function N A2 of an IVIFN based on the lower hes-
itancy degree are defined by membership accuracy function

= N A1(A) = a + b + δ(1 − a − c)

2
and non-membership

accuracy function = N A2(A) = c + d + δ
′
(1 − b − d)

2
,

where δ, δ
′ ∈ [0, 1] with δ + δ

′ ≤ 1 are optimistic and pes-
simistic parameters which depends on the individuals level
of confidence.

Remark 3.1.2 Let A = ([a, b] , [c, d]) be an IVIFN. When
δ = 1 and δ

′ = 0 (for an optimist), N A1(A) = (1 + b −
c)/2, N A2(A) = (c + d)/2. When δ = 0 and δ

′ = 1 (for a
pessimist), N A1(A) = (a+b)/2, N A2(A) = (1−b+c)/2.
When δ = 1/2 and δ

′ = 1/2, N A1(A) = (1 + a + 2b −
c)/4, N A2(A) = (1 − b + 2c + d)/4.

Remark 3.1.3 Let A = a be any fuzzy number defined on
singleton set. By considering A = ([a, a], [1− a, 1− a]) in
the form of IVIFN, we have N A1(A) = a and N A2(A) =
1 − a. Since there is no hesitation on fuzzy numbers, mem-
bership and non-membership accuracy functions on fuzzy
numbers are independent of δ and δ

′
. It is also noted that

N A1(A) + N A2(A) = 1 for fuzzy numbers.
The intuitionistic fuzzy value (IFV) A = (a, c) with a +
c ≤ 1 defined on singleton set is considered as IVIFN of the
form A = ([a, a], [c, c]) and the proof of the following is
immediate from the definition.
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Theorem 3.1.4 Let A = (a, c) be any intuitionistic fuzzy

value (IFV). Then N A1(A) = a + δ(1 − a − c)

2
and

N A2(A) = c + δ
′
(1 − a − c)

2
.

The interval-valued fuzzy number (IVFN) A = [a, b]
defined on singleton set is in the interval form A =
([a, b], [1−b, 1−a])which is not an IVIFN since b+1−a >

1 except at a = b.Hence N A1(A) and N A2(A) for an IVFN
are not applicable except at a = b.

Remark 3.1.5 The proofs of the following results which favor
our intuition are immediate applications of the definition, and
hence, proofs are omitted.
if A = ([1, 1] , [0, 0]), N A1(A) = 1, N A2(A) = 0
if A = ([0, 0] , [1, 1]), N A1(A) = 0, N A2(A) = 1

if A = ([0, 0] , [0, 0]), N A1(A) = δ

2
, N A2(A) = δ

′

2
.

Theorem 3.1.6 Let A = ([a1, b1] , [c1, d1]) and B =
([a2, b2] , [c2, d2]) be two IVIFNs. Let λ1, λ2 ∈ [0, 1] such
that λ1 + λ2 = 1.
Then λ1A + λ2B = ([λ1a1 + λ2a2, λ1b1 + λ2b2], [λ1c1 +
λ2c2, λ1d1 + λ2d2]).
Remark 3.1.7 Let A = ([a1, b1] , [c1, d1]) and B=([a2, b2] ,
[c2, d2]) be two IVIFNs. By definition, we know that b1 +
d1 ≤ 1 and b2+d2 ≤ 1.Hence λ1b1+λ2b2+λ1d1+λ2d2 =
λ1(b1+d1)+λ2(b2+d2) ≤ λ1+λ2 ≤ 1, and hence, the oper-
ation is well defined and the resultant is again an IVIFN. So
the following theorem is meaningful and the proof is imme-
diate by the definition.

Theorem 3.1.8 Let A = ([a1, b1] , [c1, d1]) and B =
([a2, b2] , [c2, d2]) be two IVIFNs. Then

1. N A1(λ1A + λ2B) = λ1N A1(A) + λ2N A1(B)

2. N A2(λ1A + λ2B) = λ1N A2(A) + λ2N A2(B)

Theorem 3.1.9 For any two IVIFNs, A, B if A ≤1 B, i.e.,
a1 ≤ a2, b1 ≤ b2, c1 ≥ c2, d1 ≥ d2, then

1. N A1(A) ≤ N A1(B),

2. N A2(A) ≥ N A2(B).

Proof Let A=([a1, b1] , [c1, d1]) and B=([a2, b2] , [c2, d2])
be two comparable IVIFNs such that A ≤1 B. By defini-

tion, N A1(A) = a1 + b1 + δ(1 − a1 − c1)

2
and N A1(B) =

a2 + b2 + δ(1 − a2 − c2)

2
. Now 2(N A1(A) − N A1(B)) =

a1 + b1 + δ(1 − a1 − c1) − (a2 + b2 + δ(1 − a2 −
c2)) = ([(a1 − a2)(1 − δ) + (b1 − b2)] + δ[(c2 − c1)]).
Since A ≤1 B, a1 ≤ a2, b1 ≤ b2 and c1 ≥ c2 and
δ ∈ [0, 1], 2(N A1(A) − N A1(B)) ≤ 0. Hence N A1(A) ≤
N A1(B). Similarly N A2(A) ≥ N A2(B). �	

Definition 3.1.10 Let A and B be two IVIFNs. Then the rank-
ing principle is defined as follows: If N A1(A) < N A1(B),
then A < B. If N A1(A) = N A1(B) and if N A2(A) >

N A2(B), then A < B.

Remark 3.1.11 The class C of all comparable IVIFNs are
completely ranked by the definition of ranking principle < .

Proof Let A=([a1, b1] , [c1, d1]) and B=([a2, b2] , [c2, d2])
∈ C such that A 
= B. Let us assume that A <1 B. If any
one of the inequalities a1 ≤ a2, b1 ≤ b2, c1 ≥ c2 is a strict
inequality, by the above theorem, (N A1(A)−N A1(B)) < 0,
and hence, N A1(A) < N A1(B). So A < B. If d2 < d1 and
a1 = a2, b1 = b2, c1 = c2, then N A1(A) = N A1(B) and
N A2(A) > N A2(B). So A < B. Hence the above defini-
tion of ranking principle < is a total order on the class of
comparable IVIFNs. �	

3.2 Significance of the proposedmethod

In this subsection, the proposed definition of ranking is
applied through numerical example to show the validity and
significance of the proposed method.

Example 3.2.1 In Example 3.0.1, A = ([0, 0] , [c1, d1]) and
B = ([0, 0] , [c2, d2]), where c1 ≥ c2 and d1 ≥ d2 be two
IVIFNs for two alternatives. It is clear that A ≤1 B. By
Definition 3.1.1, we obtain N A1(A) ≤ N A1(B), for all δ

and N A2(A) ≥ N A2(B), for all δ
′
.

Example 3.2.2 In Example 3.0.2, A = ([0, 0] , [0, 0]). By
Definition 3.1.1, we obtain N A1(A) = δ

2
, N A2(A) = δ

′

2
which supports our expectation.

Table 1 shows the drawbacks of existing methods and the
efficiency of proposed accuracy function. In Table 1, first
column shows that the ranking methods presented by many
authors, the second column illustrates the illogicality of var-
ious ranking methods in comparing arbitrary IVIFNs, and
finally, the third column shows the significance of our pro-
posed accuracy function.Whenmost of the existing methods
give anti-intuitive results, the proposed method gives better
result. Inmanymethods, the ranking depends on IVIFNs only
and not on the expert’s degree of optimism and degree of pes-
simism. But the proposed method considers expert’s degree
of optimism on measuring membership score and degree of
pessimismonmeasuring non-membership score to have opti-
mistic membership and non-membership scores for ranking.

4 New accuracy functions on TVIFN

In this section, the new membership and non-membership
accuracy functions on TVIFNs by extending membership
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Table 1 Significance of the proposed method

Existing methods Anti-intuitive results of existing methods Proposed method, N A1 and N A2

Xu and Chen (2007) A = ([0.1, 0.3], [0.4, 0.5]), B = ([0.2, 0.2], [0.2, 0.7]) N A1(A) = 0.2 + δ(0.25)

S(A) = (μAa + μAb − νAc − νAd )/2 S(A) = −0.25 = S(B) ≤ N A1(B) = 0.2 + δ(0.3)

Hence we go for accuracy function ⇒ A ≤ B

H(A) = (μAa + μAb + νAc + νAd )/2 H(A) = 0.65 = H(B) ⇒ A = B

Ye (2009) A = ([0.1, 0.3], [0.4, 0.5]), B = ([0.2, 0.2], [0.2, 0.7]) N A1(A) = 0.2 + δ(0.25)

M(A) = μAa + μAb − 1+ M(A) = −0.15 = M(B) ≤ N A1(B) = 0.2 + δ(0.3)

(νAc + νAd )/2 ⇒ A ≤ B

Nayagam and Sivaraman (2011) A = ([0.1, 0.3], [0.4, 0.5]), B = ([0.2, 0.2], [0.2, 0.7]) N A1(A) = 0.2 + δ(0.25)

LG(A) = ((μAa + μAb )(1 − δ) LG(A) = (0.2)(1 − δ) + δ(0.55) = LG(B) ≤ N A1(B) = 0.2 + δ(0.3)

+δ(2 − νAc − νAd ))/2 ⇒ A ≤ B

Sahin (2015) A = ([0, 0], [c1, d1]), B = ([0, 0], [c2, d2]) N A1(A) = δ(1 − c1)

K (A) = (μAa + μAb (1 − μAa − νAc )+ K (A) = 0 = K (B) < N A1(B) = δ(1 − c2)

μAb + μAa (1 − μAb − νAd )/2 when c1 > c2 and d1 > d2 ⇒ A < B When c1 > c2 ⇒ A < B

Bai (2013) A = ([0, 0], [c1, d1]), B = ([0, 0], [c2, d2]) N A1(A) = δ(1 − c1)

I (A) = (μAa + μAa (1 − μAa − νAc )+ I (A) = 0 = I (B) < N A1(B) = δ(1 − c2)

μAb + μAb (1 − μAb − νAd ))/2 when c1 > c2 and d1 > d2 ⇒ A < B When c1 > c2 ⇒ A < B

Garg (2016) A = ([0, 0], [0, 0]),GI S(A) = 0 N A1(A) = δ

2

GI S(A) =
(

μAa + μAb

2
+ k1μAa

(1 − μAa − νAc ) + k2μAb (1 − μAb − νAd )

)

Sivaraman et al. (2014) A = ([0, 0.4], [0.2, 0.3]), N A1(A) = 0.2 + δ(0.4)

L(A) = (μAa + μAb − νAc − νAd+ B =
([

0.1,

√
0.37 + 0.1

2

]
,

[
0.3,

√
0.37 − 0.1

2

])
< N A1(B) = 0.23 + δ(0.3)

μAa νAc + μAbνAd )/2 L(A) = 0.01 = L(B) ⇒ A < B

LG(A) = (−μAa − μAb + νAc+ LG(A) = 0.11 = LG(B)

νAd + μAa νAc + μAbνAd )/2 P(A) = −0.09 = P(B)

P(A) = (μAa − μAb − νAc+ I P(A) = 0.31 ≥ I P(B) = 0.13

νAd + μAa νAc + μAbνAd )/2

I P(A) = (−μAa + μAb − νAc+
νAd − μAa νAc + μAbνAd )/2

and non-membership accuracy functions on IVIFNs by
considering upper hesitancy degree and lower hesitancy
degree of TVIFN are defined and operations on TVIFNs
are studied by which (ave, ave) column aggregation oper-
ator for trapezoidal-valued intuitionistic fuzzy index matrix
is defined in the next section.

Definition 4.0.1 Let A = ([a, b, c, d] , [e, f , g, h]) be a
TVIFN. The new membership accuracy function N A1 and
non-membership accuracy function N A2 of a TVIFN based
on the upper and lower hesitancy degrees are defined as
New membership accuracy function

N A1(A) = a + b + c + d + δ(2 − (a + b + e + f ))

4
New non-membership accuracy function

N A2(A) = e + f + g + h + δ
′
(2 − (c + d + g + h))

4
,

where δ, δ
′ ∈ [0, 1]with δ+δ

′ ≤ 1 are parameters depending
on the individual optimistic and pessimistic intention.

Definition 4.0.2 Let A and B be two TVIFNs. Then the rank-
ing principle is defined as follows: If N A1(A) < N A1(B),
then A < B. If N A1(A) = N A1(B) and if N A2(A) >

N A2(B), then A < B.
The above definition is applied in the following examples to
study how it works.

Example 4.0.3 Let A = ([0.15, 0.2, 0.25, 0.3] , [0.4, 0.45,
0.5, 0.7]) and B = ([0.2, 0.25, 0.3, 0.35] , [0.36, 0.4, 0.45,
0.6]) be two TVIFNs for two alternatives. Clearly A ≤1

B. By applying Definition 4.0.1, we obtain N A1(A) =
0.225+δ(0.2), N A1(B) = 0.275+δ(0.198) ⇒ N A1(A) ≤
N A1(B), for all δ.
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Example 4.0.4 Let A = ([0, 0, 0, 0] , [0, 0, g1, h1]) and B =
([0, 0, 0, 0] , [0, 0, g2, h2]), where g1 ≥ g2 and h1 ≥ h2
be two TVIFNs for two alternatives. Clearly A ≤1 B. By
applying Definition 4.0.2, we obtain N A1(A) = N A1(B),
for all δ. But A 
= B which is illogical.

But, we get N A2(A) = (g1 + h1 + δ
′
(2 − (g1 +

h1)))/4, N A2(B) = (g2 + h2 + δ
′
(2 − (g2 + h2)))/4. So,

we have N A2(A)− N A2(B) = g1 − g2 +h1 −h2 − δ
′
(g1 −

g2)− δ
′
(h1 −h2) = (1− δ

′
)(g1 − g2 +h1 −h2) ≥ 0. Hence

N A2(A) ≥ N A2(B), which favors our intuition.

Remark 4.0.5 When δ = 1 and δ
′ = 0, N A1(A) = (2 + c +

d − (e+ f ))/4, N A2(A) = (e+ f + g+ h)/4. When δ = 0
and δ

′ = 1, N A1(A) = (a + b+ c+ d)/4, N A2(A) = (2−
(c+d)+e+ f )/4.When δ = 1/2 and δ

′ = 1/2, N A1(A) =
(2 + a + b + 2(c + d) − (e + f ))/8, N A2(A) = (2 − (c +
d) + 2(e + f ) + g + h)/8.

Remark 4.0.6 Let A = a be any fuzzy value defined on sin-
gleton set. By considering A = [a, a, a, a], [1−a, 1−a, 1−
a, 1 − a] in the form of TVIFN, we have N A1(A) = a and
N A2(A) = 1−a. Since there is no hesitation on fuzzy num-
bers, membership and non-membership accuracy functions
on fuzzy numbers are independent of δ and δ

′
. It is also noted

that N A1(A)+N A2(A) = 1 for fuzzy numbers on singleton.
The IFN A = (a, c) defined on a singleton set is consid-

ered as TVIFN of the form A = ([a, a, a, a], [c, c, c, c]),
and the proof of the following theorem is immediate from
the definition.

Theorem 4.0.7 Let A = (a, c) be any IFN. Then N A1(A) =
a + δ(1 − a − c)

2
and N A2(A) = c + δ

′
(1 − a − c)

2
.

The interval fuzzy number A = [a, b] with b ≤ 1

2
or a ≥

1

2
defined on a singleton set is a TVIFN in the form A =

[a, a, a, a], [1−b, 1−b, 1−a, 1−a], and hence, the proof
of the following theorem is immediate from the definition.

Theorem 4.0.8 Let A= [a, b] be any IVFN. Then N A1(A)=
a + b + δ(b − a)

2
and N A2(A) = 1−

[
a + b + δ

′
(b − a)

2

]
.

The proof of the following result is an immediate application
of the definition which are omitted.

Theorem 4.0.9 When A = 1 = ([1, 1, 1, 1] , [0, 0, 0, 0]),
then the new accuracy function N A1(A) = 1, N A2(A) = 0,
When A = 0 = ([0, 0, 0, 0] , [1, 1, 1, 1]), then the new accu-
racy function
N A1(A) = 0, N A2(A) = 1,

When A = [0, 0] = ([0, 0, 0, 0] , [0, 0, 0, 0]), then the
new accuracy function

N A1(A) = δ

2
, N A2(A) = δ

′

2
, which supports our intuition.

Definition 4.0.10 Let A = ([a1, b1, c1, d1] , [e1, f1, g1, h1])
and B = ([a2, b2, c2, d2] , [e2, f2, g2, h2]) be two TVIFNs.
Then

1. A+B=([a1 + a2, b1 + b2, c1 + c2, d1 + d2] , [e1+e2,
f1 + f2, g1 + g2, h1 + h2]).

2. A∗B = ([a1a2, b1b2, c1c2, d1d2] , [e1e2, f1 f2, g1g2,
h1h2]).

3. λA = ([λa1, λb1, λc1, λd1] , [λe1, λ f1, λg1, λh1]),
λ > 0.

Remark 4.0.11 Let A = ([a1, b1, c1, d1] , [e1, f1, g1, h1])
and B = ([a2, b2, c2, d2] , [e2, f2, g2, h2]) be two TVIFNs.
By remark 2.0.5, we know that c1 ≤ e1 and d1 ≤ f1. Hence
c1 + c2 ≤ e1 + e2 and d1 + d2 ≤ f1 + f2. Hence A+ B is a
TVIFN, and hence, the operation+ is well defined. Similarly
we can prove for (2) and (3).

The proof of the following results is an immediate application
of the definition which are omitted.

Theorem 4.0.12 Let A = ([a1, b1, c1, d1] , [e1, f1, g1, h1])
and B = ([a2, b2, c2, d2] , [e2, f2, g2, h2]) be two TVIFVs.
Then

1. N A1(A + B) = a1 + a2 + b1 + b2 + c1 + c2 + d1 + d2 + δ(2 − (a1 + a2 + b1 + b2 + e1 + e2 + f1 + f2))

4
.

= N A1(A) + N A1(B) − δ

2

2. N A2(A + B) = e1 + e2 + f1 + f2 + g1 + g2 + h1 + h2 + δ
′
(2 − (c1 + c2 + d1 + d2 + g1 + g2 + h1 + h2))

4
.

= N A2(A) + N A2(B) − δ′

2

3. N A1(A ∗ B) = a1a2 + b1b2 + c1c2 + d1d2 + δ(2 − (a1a2 + b1b2 + e1e2 + f1 f2))

4
.

123



MCDM based on newmembership and non-membership accuracy functions on trapezoidal-valued… 4289

4. N A2(A∗B) = e1e2 + f1 f2 + g1g2 + h1h2 + δ
′
(2 − (c1c2 + d1d2 + g1g2 + h1h2))

4
.

5. N A1(λA) = λa1 + λb1 + λc1 + λd1 + δ(2 − (λa1 + λb1 + λe1 + λ f1))

4

= λ[N A1(A)] + δ

2
(1 − λ), ∀λ > 0.

6. N A2(λA) = λe1 + λ f1 + λg1 + λh1 + δ
′
(2 − (λc1 + λd1 + λg1 + λh1))

4

= λ[N A2(A)] + δ′

2
(1 − λ), ∀λ > 0.

Theorem 4.0.13 For any two TVIFNs, A, B if A ≤1 B. Then
(i).N A1(A) ≤ N A1(B), (i i).N A2(A) ≥ N A2(B).

Proof Let A = ([a1, b1, c1, d1] , [e1, f1, g1, h1]) and B =
([a2, b2, c2, d2] , [e2, f2, g2, h2])be twocomparableTVIFNs
such that A ≤1 B.
By definition,

N A1(A) = (a1+b1+c1+d1 + δ(2 − (a1 + b1 + e1 + f1))

4

and

N A1(B) = (a2 + b2+c2+d2+δ(2 − (a2 + b2 + e2 + f2))

4
.

Now 4(N A1(A) − N A1(B)) = a1 + b1 + c1 + d1 + δ(2 −
(a1+b1+e1+ f1)))− (a2+b2+c2+d2+δ(2− (a2+b2+
e2 + f2))) = ([(a1 − a2) + (b1 − b2)] (1− δ)+ (c1 − c2)+
(d1 − d2)+ δ [(e2 − e1) + ( f2 − f1)]). Since A ≤1 B, a1 ≤
a2, b1 ≤ b2, c1 ≤ c2, d1 ≤ d2 and e1 ≥ e2, f1 ≥ f2, g1 ≥
g2, h1 ≥ h2 and δ ∈ [0, 1] , 4(N A1(A) − N A1(B)) ≤ 0.
Hence N A1(A) ≤ N A1(B). Similarly N A2(A) ≥ N A2(B).

�	

4.1 Significance of the proposedmethod

In this subsection, the proposed definition of ranking is
applied through numerical example to show the validity and
significance of the proposed method.

In the literature, the study of TVIFNs is limited and in
infant stage. The ranking of IVIFNs as a particular case of
TVIFNs is rich in the literature. The ranking of TVIFNs
is studied in Nayagam et al. (2016a, 2017, 2008). The
importance of our proposed method over existing methods
is explained with example. In many methods, the ranking
depends only on TVIFNs and not on the expert’s degree of
optimism and degree of pessimism. But the proposedmethod
includes expert’s degree of optimism on measuring mem-
bership score and the degree of pessimism on measuring
non-membership score to have optimistic membership and
non-membership scores for ranking.

4.1.1 Comparison between our proposed accuracy function
with a ranking of intuitionistic fuzzy numbers in
Nayagam et al. (2008)

Our proposed method is compared with ranking of intuition-
istic fuzzy numbers in Nayagam et al. (2008).

Let A = (a1, c1) and B = (a2, c2) be two IFNs. By apply-
ing definition in (2.0.8), the intuitionistic fuzzy scores of A
and B are T (A) = (a1, 1 − c1) and T (B) = (a2, 1 − c2).
If A ≤ B, that is, a1 ≤ a2 and c1 ≥ c2, then intuitionistic
fuzzy score method cannot rank. But by applying our pro-
posed method, N A1(A) ≤ N A1(B) for every δ, and hence,
we obtain A ≤ B.

4.1.2 Comparison between our proposed accuracy function
with a complete of incomplete trapezoidal
information in Nayagam et al. (2016a)

Our proposed method is compared with a complete
ranking of incomplete trapezoidal information in Nayagam
et al. (2016a).

Let A = [(0.3, 0.3, 0.4, 0.4), (0.6, 0.6, 0.6, 0.6)] and
B=[(0.256608438, 0.256608438, 0.42783361, 0.42783361),
(0.506608438, 0.506608438, 0.67783361, 0.67783361)] be
two TVIFNs. L(A) = −0.04 = L(B), LG(A) = 0.46 =
LG(B), P1(A) = −0.8 = P1(B) ⇒ A = B, P2(A) =
0.02, P2(B) = −0.08. It is noted that the evaluations of
the TVIFN are equal when L(A), LG(A), P1(A) and P2(A)

is used. It is found that P2(A) 
= P2(B) only in P2, and
hence, A ≤ B which is much laborious. But we can apply
the proposed method N A2(A) = 0.6 and N A2(B) =
0.592221024 − δ′(0.05283361), for every δ′ ∈ [0, 1] ⇒
A < B.

4.1.3 Comparison between our proposed accuracy function
with ranking of incomplete trapezoidal information
Nayagam et al. (2017)

Our proposed method is compared with ranking of incom-
plete trapezoidal information in Nayagam et al. (2017).
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Let A = [(0.3, 0.3, 0.4, 0.4), (0.6, 0.6, 0.6, 0.6)] and
B=[(0.256608438, 0.256608438, 0.42783361, 0.42783361),
(0.506608438, 0.506608438, 0.67783361, 0.67783361)] be
two TVIFNs. L(A) = −0.04 = L(B), LG(A) = 0.46 =
LG(B) ⇒ A = B, P(A) = 0.16, P(B) = 0.21. It is
noted that the evaluations of the TVIFN are equal when
L(A), LG(A) are used. It is found that P(A) 
= P(B)

only in P(A), and hence, A ≤ B which is much labori-
ous. But we can apply the proposed method N A2(A) = 0.6
and N A2(B) = 0.592221024 − δ′(0.05283361), for every
δ′ ∈ [0, 1] ⇒ A < B.

5 Application of the proposed accuracy
function inmulti-criteria decision-making
problem using indexmatrix

The concept of index matrix (IM) was introduced by
Atanassov (1987). Let I be a fixed set of indices and R be
the set of all real numbers. Let K = {k1, k2, . . . , km}, L =
{l1, l2, . . . , ln} ⊂ I . The general form of IM with real num-
bers R − I M is given as

[K , L, {aki ,l j }] =

l1 · · · l j · · · ln
k1 ak1,l1 · · · ak1,l j · · · ak1,ln
...

...
...

...

ki aki ,l1 · · · aki ,l j · · · aki ,ln
...

...
...

...

km akm ,l1 · · · akm ,l j · · · akm ,ln

where for (1 ≤ i ≤ m and 1 ≤ j ≤ n) : aki ,l j ∈ R. In the
above index matrix, if aki ,l j ∈ [0, 1], then it is called (0, 1)−
IM.
Further, (0, 1)− IM was extended to intuitionistic fuzzy
index matrix (IFIM) by Atanassov (2010). Let K =
{k1, k2, . . . , km}, L = {l1, l2, . . . , ln} ⊂ I . The
general form of IFIM is given by [K , L, {〈μki ,l j , νki ,l j 〉}] =

l1 · · · l j · · · ln
k1 〈μk1,l1 , νk1,l1〉 · · · 〈μk1,l j , νk1,l j 〉 · · · 〈μk1,ln , νk1,ln 〉
...

...
...

...

ki 〈μki ,l1 , νki ,l1〉 · · · 〈μki ,l j , νki ,l j 〉 · · · 〈μki ,ln , νki ,ln 〉
...

...
...

...

km 〈μkm ,l1 , νkm ,l1〉 · · · 〈μkm ,l j , νkm ,l j 〉 · · · 〈μkm ,ln , νkm ,ln 〉

where, for every 1 ≤ i ≤ m and 1 ≤ j ≤ n, 0 ≤
μki ,l j , νki ,l j , μki ,l j + νki ,l j ≤ 1.〈μki ,l j , νki ,l j 〉 is an intuition-
istic fuzzy pair.

Now, we extend IFIM to trapezoidal intuitionistic fuzzy
index matrix (TVIFIM) as follows.

Definition 5.0.1 Let I be the fixed set of indices. Let K =
{k1, k2, . . . , km}, L = {l1, l2, . . . , ln} ⊂ I . The general
form of TVIFM is given by [K , L, {〈(a, b, c, d)ki ,l j , (e, f ,
g, h)ki ,l j 〉}] =

l1 · · · l j · · · ln
k1 〈(a,b,c,d),(e,f,g,h)〉k1,l1 · · · 〈(a,b,c,d),(e,f,g,h)〉k1,l j

· · · 〈(a,b,c,d),(e,f,g,h)〉k1,ln

.

.

.

.

.

.

.

.

.

.

.

.

ki 〈(a,b,c,d),(e,f,g,h)〉ki ,l1 · · · 〈(a,b,c,d),(e,f,g,h)〉ki ,l j · · · 〈(a,b,c,d),(e,f,g,h)〉ki ,ln
.
.
.

.

.

.

.

.

.

.

.

.

km 〈(a,b,c,d),(e,f,g,h)〉km ,l1 · · · 〈(a,b,c,d),(e,f,g,h)〉km ,l j
· · · 〈(a,b,c,d),(e,f,g,h)〉km ,ln

where, for every 1 ≤ i ≤ m, 1 ≤ j ≤ n, 〈(a, b, c, d), (e, f ,
g, h)〉ki ,l j is a trapezoidal intuitionistic fuzzy number.

Using IFIM, Deyan Marrov, Vassia Atanssova and
Atanssova introduced an inter-criteria multi-criteria decision
making based on IFIM in Atanassov et al. (2014). Now by
using TVIFIM defined above, we introduce multi-criteria
decision making based on TVIFIM as follows.

Definition 5.0.2 Let I be a fixed set of indices and R be the
set of all real numbers. Let G = {G1,G2, · · · ,Gm}, H =
{H1, H2, · · · , Hn} ⊂ I . The general form of multi-criteria
decision making based on TVIFIM ATVIFIM is given as

H1 · · · Hj · · · Hn

G1 〈(a,b,c,d),(e,f,g,h)〉G1,H1 · · · 〈(a,b,c,d),(e,f,g,h)〉G1,Hj · · · 〈(a,b,c,d),(e,f,g,h)〉G1,Hn

...
...

...
...

Gi 〈(a,b,c,d),(e,f,g,h)〉Gi ,H1 · · · 〈(a,b,c,d),(e,f,g,h)〉Gi ,Hj · · · 〈(a,b,c,d),(e,f,g,h)〉Gi ,Hn

...
...

...
...

Gm 〈(a,b,c,d),(e,f,g,h)〉Gm ,H1 · · · 〈(a,b,c,d),(e,f,g,h)〉Gm ,Hj · · · 〈(a,b,c,d),(e,f,g,h)〉Gm ,Hn
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where for every p, q(1 ≤ p ≤ m, 1 ≤ q ≤ n),Gp is the
object being evaluated and Hq is the criterion taking part in
the evaluation and 〈(a, b, c, d), (e, f , g, h)〉Gp,Hq is a TVI-
FIM that is comparable by the ranking principle < defined
in Definition 4.0.2

There are 18 aggregation operators introduced in
Atanassov (2013b) in which we consider (ave, ave) col-
umn aggregation for given IFIM [K , L, {〈μki ,l j , νki ,l j 〉}].Let
l0 /∈ L be a fixed index. The (ave, ave) column aggregation
for given IFIM [K , L, {〈μki ,l j , νki ,l j 〉}] is defined by

σmax([K , L, {〈μki ,l j , νki ,l j 〉}], l0)

=

l0

k1

〈
1

n

n∑

j=1
μk1,l j ,

1

n

n∑

j=1
νk1,l j

〉

...
...

ki

〈
1

n

n∑

j=1
μki ,l j ,

1

n

n∑

j=1
νki ,l j

〉

...
...

km

〈
1

n

n∑

j=1
μkm ,l j ,

1

n

n∑

j=1
νkm ,l j

〉

Now we introduce (ave, ave) column aggregation for a
given multi-criteria TVIFIM (ATVIFIM) using 4.0.10.

Definition 5.0.3 Let H0 /∈ G be a fixed index. The (ave, ave)
column aggregation for a givenTVIFIM (ATVIFIM) is defined
by

σmax(ATVIFIM, H0)

=

H0

G1

〈
1

n

n∑

j=1
(a, b, c, d)k1,l j ,

1

n

n∑

j=1
(e, f , g, h)k1,l j

〉

...
...

Gi

〈
1

n

n∑

j=1
(a, b, c, d)ki ,l j ,

1

n

n∑

j=1
(e, f , g, h)ki ,l j

〉

...
...

Gm

〈
1

n

n∑

j=1
(a, b, c, d)km ,l j ,

1

n

n∑

j=1
(e, f , g, h)km ,l j

〉

5.1 Algorithm for multi-criteria TVIFIM

The algorithmic procedure for the proposed method for the
multi-criteria TVIFIM (ATVIFIM) can be summarized as fol-
lows:

1. Obtain (ave, ave) column aggregation for a given multi-
criteria TVIFIM (ATVIFIM) which gives the aggregated
trapezoidal score for Gi for every 1 ≤ i ≤ m.

2. Compute the score value of σmax(ATVIFIM, H0) corre-
sponding to Gi by using Definition 2.0.18 for i =
1, 2, . . . ,m. Let ai be the number of ATVIFIM whose
order is not changed by their score values, and we take

δ = max
1≤i≤m

{ai
n

}
and δ

′ = min
1≤i≤m

{ai
n

}
.

3. Compute themembership accuracy values N A1(Gi , H0)

(i = 1, 2, . . . ,m) and N A2(Gp, H0) for which N A1

(Gp, H0) = N A1(Gi , H0), (1 ≤ p, i ≤ n) using Defi-
nition 4.0.1.

4. Rank the alternatives Gi (i = 1, 2, . . . ,m) using Defini-
tion 4.0.2.

5.2 Illustrative example

Now a numerical illustration of the algorithm for multi-
criteria TVIFIM is given.

Example 5.2.1 There is a panel with four possible objects to
invest the money: (1). G1 is a cement firm; (2). G2 is a com-
puter firm; (3). G3 is an alternating current firm; and (4).
G4 is a chemical firm. The investment company must take
a decision according to the following three criteria: (1). H1

is the sensitivity analysis; (2). H2 is the cost benefit analy-
sis; and (3). H3 is the credit analysis. Four possible objects
Gp(1 ≤ p ≤ 4) are evaluated under the above three criteria
Hq(1 ≤ q ≤ 3) using the TVIFNs by the panel which is
the multi-criteria TVIFIM (ATVIFIM) given in Table 2 from
which the best object is chosen.

1. By applying step 1 of the above algorithm,weobtain (ave,
ave) column aggregation for the givenmulti-criteria TVI-
FIM (ATVIFIM) with a fixed index H0 /∈ G as follows:

σmax(ATVIFIM, H0)

=

H0

G1

〈
(0.1500, 0.2000, 0.2500, 0.3000), (0.3367, 0.4000, 0.4500, 0.5167)

〉

G2

〈
(0.1033, 0.1833, 0.2333, 0.2833), (0.3333, 0.3833, 0.4333, 0.4833)

〉

G3

〈
(0.1667, 0.2333, 0.2833, 0.3333), (0.3833, 0.4333, 0.5000, 0.5667)

〉

G4

〈
(0.1333, 0.2000, 0.2667, 0.3167), (0.3833, 0.4500, 0.5167, 0.5833)

〉

2. Compute the score value of ATVIFIM by using Defini-
tion 2.0.18 for i = 1, 2, . . . ,m. Let ai be the number
of ATVIFIM whose order is not changed by their score

values and we take δ = max1≤i≤m

{ai
n

}
= 1 and

δ
′ = min1≤i≤m

{ai
n

}
= 0.

3. We obtain N A1(Gi , H0), (i = 1, 2, 3, 4) as follows:
N A1(G1, H0) = 0.4533, N A1(G2, H0) = 0.4500,
N A1(G3, H0) = 0.4500, N A1(G4, H0) = 0.4378.
Now by using N A1, we have G4 < G3 < G1 < and
G4 < G2 < G1.But the newmembership accuracy func-
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Table 2 ATVIFIM

H1 H2 H3

G1 〈(0.1,0.15,0.2,0.25),(0.3,0.35,0.4,0.45)〉G1,H1 〈(0.15,0.2,0.25,0.3),(0.31,0.4,0.45,0.5)〉G1,H2 〈(0.2,0.25,0.3,0.35),(0.4,0.45,0.5,0.6)〉G1,H3

G2 〈(0.01,0.1,0.15,0.2),(0.25,0.3,0.35,0.4)〉G2 ,H1 〈(0.1,0.15,0.2,0.25),(0.3,0.35,0.4,0.45)〉G2 ,H2 〈(0.2,0.3,0.35,0.4), (0.45,0.5,0.55,0.6)〉G2,H3

G3 〈(0.15,0.2,0.25,0.3),(0.35,0.4,0.45,0.5)〉G3,H1 〈(0.1,0.2,0.25,0.3),(0.35,0.4,0.5,0.6)〉G3,H2 〈(0.25,0.3,0.35,0.4),(0.45,0.5,0.55,0.6)〉G3,H3

G4 〈(0.1,0.15,0.2,0.25),(0.3,0.4,0.5,0.6)〉G4,H1 〈(0.1,0.2,0.25,0.3),(0.4,0.45,0.5,0.55)〉G4,H2 〈(0.2,0.25,0.35,0.4),(0.45,0.5,0.55,0.6)〉G4,H3

tion N A1 fails to rank G2,G3 , i .e., N A1(G2, H0) =
N A1(G3, H0), and hence, it is necessary to go for
new non-membership accuracy function. We obtain
N A2(G2, H0) = 0.4083, N A2(G3, H0) = 0.4708.
Hence G2 > G3

4. Therefore, we get G4 < G3 < G2 < G1. Hence G1 is
the most desirable object from the given ATVIFIM.

6 Conclusions and future scope

In this paper, we have proposed new accuracy functions for
IVIFNs and TVIFNs, which can be used to rank IVIFNs
and TVIFNs more accurately than the existing accuracy
functions. Further,we have introducedTVIFIMs and an algo-
rithmic procedure is given to apply the proposed method in
multi-criteria decision making based on multi-criteria TVI-
FIM. Finally, illustrative example is also given to show its
applicability. In near future, the proposed accuracy functions
on TVIFNs can be extended to any nonlinear intuitionistic
fuzzy numbers, and hence, MCDM problems involving non-
linear intuitionistic fuzzy index matrix can be solved.
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