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Abstract
In this paper, we present a one-layer recurrent neural network (NN) for solving convex optimization problems by using the
Mangasarian and Solodov (MS) implicit Lagrangian function. In this paper by using Krush–Kuhn–Tucker conditions andMS
function the NN model was derived from an unconstrained minimization problem. The proposed NN model is one layer and
compared to the available NNs for solving convex optimization problems, which has a better performance in convergence
time. The proposed NN model is stable in the sense of Lyapunov and globally convergent to optimal solution of the original
problem. Finally, simulation results on several numerical examples are presented and the validity of the proposed NN model
is demonstrated.

Keywords One-layer neural networks · Convex programming · Nonlinear complementarity problem

1 Introduction

Mathematical programming problems have been widely
applied in practically every area of production, physical
sciences, many engineering problems and government plan-
ning. The nonlinear programming (NLP) problem plays
an important part among them. Convex programming is a
widespread class of NLP problems where the objective func-
tion and constraints are convex functions.

NNs are computing systems composed of a number of
highly interconnected simple information processing units,
and thus can usually solve optimization problems faster than
most popular optimization algorithms. Also, the numeri-
cal ordinary differential equation techniques can be applied
directly to the continuous-time NN for solving constrained
optimization problems effectively. NN models are usu-
ally more competent than numerical optimization methods
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because of their inherent parallel nature. First Tank and Hop-
field (1986) proposed a NN model for linear programming
(LP) problems. Then, Kennedy and Chua (1988) proposed a
NN model with a finite penalty parameter for solving NLP
problems.Rodriguez et al. (1990) proposed a switched capac-
itor NN for solving a class of constrained nonlinear convex
optimization problems. Zhang and Constantinides (1992)
proposed a two-layerNNmodel to solve some strictly convex
programming problems. Bouzerdoum and Pattison (1993)
presented a recurrent NN for solving convex quadratic opti-
mization problems with bounded constraints. Zhang (1996),
Zhang et al. (2002) proposed an adaptive NNmodel for NLP
problems. Wang (1994), Xia (1996), Xia and Wang (2000,
2004, 2005) presented several NN models for solving LP
and NLP problems, monotone variational inequality prob-
lems andmonotone projection equations. Effati andBaymani
(2005), Effati et al. (2011, 2015), Effati and Nazemi (2006),
Effati and Ranjbar (2011), Ranjbar et al. (2017) proposed
some NN models for solving LP, NLP and binary program-
ming problems. Nazemi (2012, 2013, 2014) proposed some
dynamic system models for solving convex NLP problems.
Also, recently Huang and Cui (2016) proposed a NN model
for solving convex quadratic programming (QP) problems.

Thenonlinear complementarity problems (NCPs) attracted
a lot of attention because of its wide applications in oper-
ations research, economics and engineering (Chen et al.
2010; Ferris et al. 2001). Liao et al. (2001) presented a NN
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approach for solving NCPs, which NN model has derived
from an unconstrained minimization reformulation of the
complementarity problem. A popular NCP function is the
Fischer–Burmeister function (see Fischer 1992, 1997); also
Chen and Pan (2008) proposed a family of NCP functions
that subsumes the Fischer–Burmeister function as a special
case. Chen et al. (2010) developed aNN for solving theNCPs
based on the generalized Fischer–Burmeister.

In this paper by using Krush–Kuhn–Tucker (KKT) condi-
tion and by the MS implicit Lagrangian function (see Man-
gasarian and Soldov 1993) as NCP function, we presented
a one-layer NN model for solving the convex optimization
problems. The rest of the paper is organized as follows; in
Sect. 2, some preliminary results are provided. In Sect. 3 are
proposed an equivalent formulation for convex optimization
problems and a NN model for it. Convergence and stability
results are discussed in Sect. 4. Simulation results on several
numerical examples of the newmodel are reported in Sect. 5.
Finally, some concluding remarks are drawn in Sect. 6.

2 Preliminaries

In this section, we recall some necessary mathematical back-
ground concepts and materials which will play an important
role for the desired NN and to study its stability. First, we
recall some basic classes of functions and matrices and then
introduce some properties of special NCP functions.

Definition 2.1 A matrix A ∈ R
n×n is a

(i) P0-matrix if each of its principal minors is nonnegative.
(ii) P-matrix if each of its principal minors is positive.

Obviously, a positive-definite matrix is a P-matrix and a
semi-positive-definite matrix is a P0-matrix. For more prop-
erties about P-matrix and P0-matrix, please refer to Chen
and Pan (2008).

Definition 2.2 The function F : Rn → R
n is said to be a

(i) monotone if (x − y)(F(x) − F(y)) ≥ 0 for all x, y ∈
R
n ;

(ii) P0-function ifmax1≤i≤n, xi �=yi (xi−yi )(Fi (x)−Fi (y)) ≥
0 for all x, y ∈ R

n with x �= y;
(iii) P-function if max1≤i≤n(xi − yi )(Fi (x) − Fi (y)) > 0

for all x, y ∈ R
n with x �= y.

Note 2.1 It is known that F(x) is a P0-function if and only
if dF

dx is a P0-matrix for all x ∈ R
n , and if dF

dx is a P-matrix
for all x ∈ R

n , then F must be a P-function.
The NCP is to find a point x ∈ R

n such that

x ≥ 0, F(x) ≥ 0, 〈x, F(x)〉 = 0, (1)

where 〈·, ·〉 is the Euclidean inner product and F =
(F1, F2, . . . , Fn)T maps from R

n to R
n . There are many

methods for solving the NCP, one of the most popular and
powerful approaches that has been studied intensively is to
reformulate the NCP as a system of nonlinear equations or as
an unconstrained minimization problem. A function that can
constitute an equivalent unconstrained minimization prob-
lem for the NCP is called a merit function. Many studies on
NCP functions and applications have been achieved during
the past three decades (see Chen 2007; Cottle et al. 1992; Fer-
ris and Kanzow 2002; He et al. 2015; Hu et al. 2009; Kanzow
et al. 1997; Mangasarian and Soldov 1993; Miri and Effati
2015). The class of NCP functions defined below is used to
construct a merit function.

Definition 2.3 A function φ : R2 → R is called an NCP
function if it satisfies,

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (2)

For example, the following functions are NCP functions:

(a) ϕ(a, b) = min{a, b}
(b) ϕ(a, b) = ( 12 )((ab)

2 + min2{0, a} + min2{0, b})
(c) ϕ(a, b) = √

a2 + b2 − a − b
(d) ϕ(a, b) = ab+ 1

2α

(
((a−αb)+)2−a2+((b−αa)+)2−

b2
)
, α > 1,

where (x)+ = max{0, x} and α > 1. Some other NCP func-
tions are listed in Chen (2007); Ferris and Kanzow (2002);
Hu et al. (2009); Kanzow et al. (1997). Among introduced
NCP functions in above, we use function (d), that is, the
well-known MS NCP function, as follows:

M(x, α) = xF(x) + 1

2α

(‖(x − αF(x))+‖2 − ‖x‖2

+‖(F(x) − αx)+‖2 − ‖F(x)‖2).

This NCP function has some positive features as follows:

– M(x, α) is nonnegative on Rn × (1,∞). This is not true
for NCP functions (a) and (c).

– M(x, α) is equal to zero if and only if x is a solution of
the NCP, without regard to whether F is monotone or
not.

– M(x, α) is continuously differentiable at all points. This
is not true for NCP function (a).

– If F is differentiable on Rn ,M(x, α) satisfy inM(x, α) =
0 ⇔ ∇M(x, α) = 0 for α > 1. This is not true for NCP
function (b).

– It is a merit function. This is not true for NCP functions
(a) and (c).
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For to see other features and checking the validity of the
above features, refer to Mangasarian and Soldov (1993). For
F = (F1, F2, . . . , Fn)T, NCP(F) can be equivalently refor-
mulated as finding a solution of the following equation:

⎡

⎢
⎣

M1(x, α)
...

Mn(x, α)

⎤

⎥
⎦ = 0, (3)

where Mi (x, α) = xi Fi (x) + 1
2α (((xi − αFi (x))+)2 − x2i +

((Fi (x) − αxi )+)2 − F2
i (x)) for i = 1, 2, . . . , n. For conve-

nience, we define Mα(x) as follows.

Definition 2.4 We define Mα(x) : Rn → R+ by

Mα(x) =
n∑

i=1

Mi (x, α). (4)

In follows, we will present some favorable properties of
Mα(x), which their proofs are in Mangasarian and Soldov
(1993).

Theorem 2.1 For α ∈ (1,∞), Mα(x) ≥ 0 for all x ∈ R
n

and Mα(x) = 0 if and only if x solves the NCP.

Theorem2.1 establishes a one-to-one correspondencebetween
solutions of the NCP and global unconstrainedminima of the
merit function Mα(x). As a consequence were obtained the
following immediate results.

Corollary 2.1 If F is differentiable at a solution x of NCP,
then ∇Mα(x) = 0 for α ∈ (1,∞).

Theorem 2.2 shows that under certain assumptions, each sta-
tionary point of the unconstrained objective function Mα(x)
is already a global minimum and therefore a solution of prob-
lem (1).

Theorem 2.2 Let F : R
n → R

n be continuously differen-
tiable having a positive-definite Jacobian dF

dx for all x ∈ R
n.

Assume that the complementarity problem is solvable, then
x∗ is a stationary point of Mα(x) if and only if x∗ solve NCP.

We also recall some materials about first-order differential
equation and Lyapunov function. These materials can be
found in ordinary differential equation and nonlinear con-
trol textbooks (see Miller and Michel 1982; Slotin and Li
1991).

Definition 2.5 Let K ⊆ R
n be an open neighborhood of x∗.

A continuously differentiable function E : Rn → R is said
to be a Lyapunov function at the state x∗ over the set K for
ẋ = f (x(t)) if

(i) E(x∗) = 0 and for all x �= x∗ ∈ K , E(x) > 0.

(ii) d(E(x(t)))
dt = (∇x E(x(t)))T ẋ = (∇x E(x(t)))T f (x(t)) ≤

0.

Lemma 2.1 (i) An isolated equilibrium point x∗ is Lya-
punov stable if there exists a Lyapunov function over
some neighborhood K of x∗.

(ii) An isolated equilibrium point x∗ is asymptotically
stable if there is a Lyapunov function over some neigh-
borhood K of x∗ such that dE

dt < 0 for all x �= x∗ ∈ K.

3 Problem formulation and neural network
design

Consider the following convex optimization problem:

Min f (x)

s.t. g(x) ≤ 0
x ≥ 0,

(5)

where x ∈ R
n , f : Rn → R, g(x) = [g1(x), . . . , gm(x)]T

is an m-dimensional vector-valued continuous function of n
variables and f , g1, . . . , gm are convex and twice differen-
tiable.

It is well known (see Bazaraa and Shetty 1979) that by the
KKT conditions, x ∈ R

n is an optimal solution to (5) if and
only if there exists u ∈ R

m such that

∇ f (x) +
m∑

i=1

ui∇gi (x) ≥ 0

[∇ f (x) +
m∑

i=1

ui∇gi (x)]Tx = 0

ui gi (x) = 0, i = 1, 2, . . . ,m

ui ≥ 0 i = 1, 2, . . . ,m

gi (x) ≤ 0 i = 1, 2, . . . ,m

x ≥ 0.

(6)

It is clear that the KKT optimality conditions of this problem
lead to a complementarity problem as follows

z ≥ 0, F(z) ≥ 0, 〈z, F(z)〉 = 0,

where z = (x, u) and F : Rn+m → R
n+m is defined by
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F(z) =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

∇x1 f (x) + ∑m
i=1 ui∇x1gi (x)
...

∇xn f (x) + ∑m
i=1 ui∇xn gi (x)

−g1(x)
...

−gm(x)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, (7)

by considering:

Fk(z) = ∇xk f (x) +
m∑

i=1

ui∇xk gi (x), k = 1, 2, . . . , n,

Fn+ j (z) = −g j (x), j = 1, 2, . . . ,m.

Solving problem (5) is equivalent to find a solution for the
following equation:

⎡

⎢
⎣

M1(z, α)
...

Mn+m(z, α)

⎤

⎥
⎦ = 0, (8)

where Mi (z, α) = zi Fi (z) + 1
2α (((zi − αFi (z))+)2 − z2i +

((Fi (z) − αzi )+)2 − F2
i (z)) for i = 1, 2, . . . , n + m.

By Definition 2.4 and Theorem 2.1, we have Mα(z) ≥ 0
for all z ∈ R

n+m and z solves (8) if and only if Mα(z) = 0.
Hence, solving (8) is equivalent to finding the global mini-
mizer of Mα(z) if (8) has solution.

We utilize Mα(z) as the traditional energy function. As
mentioned above, problem (5) is equivalent to the uncon-
strained smooth minimization problem as follows

min
z∈Rn+m

Mα(z), (9)

whereMα(z) = ∑n+m
i=1 Mi (z, α). Hence, it is natural to adopt

the following steepest descent-based NN for problem (5)

dz(t)

dt
= −η∇Mα(z), (10)

where η > 0 is a scaling factor.
Compared with the existent NNs for solving the such non-

linear optimization problem, the proposed NN is one layer
and its architecture is shown in Fig. 1. Also, it has a simple
form and a better performance in convergence time that is
shown in Sect. 5. Moreover, the proposed NN is stable in the
sense of Lyapunov and has globally convergent to an exact
optimal solution of the original problem.

4 Stability analysis

In this section, we will study the stability of the equilibrium
point and the convergence of the optimal solution ofNN (10).

∇Mα(z) −η
ż z

Fig. 1 Architecture of the proposed NN in (10)

We first state the relationships between an equilibrium point
of (10) and a solution to the NCP.

Lemma 4.1 Let S be a nonempty open convex set in Rn, and
let f : S → R be twice differentiable on S. Then f is convex
if and only if the Hessian matrix is semi-positive definite at
each point in S.

Lemma 4.2 If the objective function and all constraint func-
tions are convex, then function F that has been defined in (7)
is a P0-function on Rn+m.

Proof For this purpose, it is sufficient that ∂F
∂z is semi-

positive-definite matrix on Rn+m . We have

∂F

∂z
=

[∇2 f (x) + u∇2g(x) ∇g(x)
−∇g(x) 0m×m

]

(n+m)×(n+m)

,

now, let z = (x, u) �= 0 is arbitrary vector in R
n+m , since

f (x) and gi (x) are convex and ui ≥ 0 for i = 1, 2, . . . ,m
by Lemma 2.1, we have

z
∂F

∂z
zT = x(∇2 f (x) + u∇2g(x))xT ≥ 0;

hence, F is an P0-function. ��
In the next theorem, we state the existence of the solution

trajectory of (10).

Theorem 4.1 For any initial state z0 = z(t0), there is exactly
one unique solution z(t) with t ∈ [t0, τ (z0)) for NN (10).

Proof Since ∇Mα(z) is continuous, there is a local solution
z(t) for (10) with t ∈ [t0, τ ) for some τ ≥ t0 and since
∇Mα(z) is locally Lipschitz continuous, the proof is com-
pleted. ��
Theorem 4.2 Let z∗ be an isolated equilibrium point of NN
(10), z∗ is globally asymptotically stable for (10).

Proof Since z∗ is a solution to the NCP, Mα(z∗) = 0. In
addition, since z∗ is an isolated equilibrium point of (10),
there is a neighborhood K ⊆ R

n+m of z∗ such that

∇Mα(z∗) = 0, ∇Mα(z) �= 0 ∀z ∈ K\{z∗}.
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Next, we define a Lyapunov function as

E(z(t)) = Mα(z),

we show that E(z(t)) is a Lyapunov function over the set K
for NN (10). By Theorem 2.1, we have E(z) ≥ 0 overRn+m ,
since z∗ is a solution to NCP(F), obviously E(z∗) = 0. If
there is an z ∈ K\{z∗} that satisfying E(z) = 0, then from
Corollary 2.1 ∇Mα(z) = 0; hence, z is an equilibrium point
of (10), and it is contradicting with the being isolated of z∗ in
K . On the other hand, since the F is P0 function, Theorem3.2
in Facchinei (1998) shows that there is no solution other than
z∗ for NCP(F); therefore, for all z �= z∗ we have E(z) > 0.

Now it is sufficient that for all z ∈ K\{z∗}, we have
dE(z)
dt < 0. For this purpose, by taking the derivative of E(z)

with respect to time t , since z∗ is isolated equilibrium point
for all z(t) ∈ K\{z∗}, we have:
dE(z)

dt
= dE(z)

dz

dz

dt
= (∇Mα(z))T(−η∇Mα(z))

= −η‖∇Mα(z)‖2 < 0,

and thus, by Lemma 2.1(ii), it implies that z∗ is globally
asymptotically stable. ��

5 Simulation results

In order to demonstrate the effectiveness and performance
of the proposed NN model, we discuss several illustrative
examples. Note, to solve the proposed NN in (10), we use
the solver ode15s of MATLAB. The tolerances were chosen
AbsTol = 1e–6 and RelTol = 1e–4.

Example 5.1 Consider the following NLP problem:

Min f (x) = 1
4 x

4
1 + 1

2 x
2
1 + 1

4 x
4
2 + 1

2 x
2
2 − 9

10 x1x2
s.t.

x1 + x2 ≤ 2
−x1 + x2 ≤ 2
x1 − 3x2 ≤ −2
xi ≥ 0, i = 1, 2.

In this problem, f (x) is strictly convex and the feasible region
is a convex set, and the optimal solution of the NLP problem
is x∗ = [0.3461, 0.7820]T. We apply the proposed NN in
(10) to solve the above problem. Simulation results show the
trajectory of (10) with 16 initial points is always convergent
to

z∗ = [0.3461, 0.7820, 0.0000, 0.0000, 0.3163]T.

Figure 2 displays the transient behavior of z(t)with 16 initial
points. Moreover, Fig. 3 shows the phase diagram of state

0 0.5 1 1.5 2 2.5 3

x 10−3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (second)

x1(t)

x2(t)

u1(t), u2(t)

u3(t)

Fig. 2 State variables of Example 5.1 where obtained by the proposed
NN of (10) with 16 initial points

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x(1)

x(
2)

Fig. 3 Phase diagram of NN (10) with 16 different initial points in
Example 5.1

variables (x1(t), x2(t)) with 16 different initial points, which
shows globally convergent to an exact optimal solution of
Example 5.1.

Example 5.2 Consider the following NLP problem (see
Bazaraa and Shetty 1979):

Min f (x) = 4
3 (x

2
1 − x1x2 + x22 )

3
4 − x3

s.t.
x3 ≤ 2
xi ≥ 0, i = 1, 2, 3.
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0 1 2 3 4 5

x 10
−3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (second)

x1(t),x2(t)

x3(t)

u1(t)

Fig. 4 State variables of the Example 5.2 where obtained by the pro-
posed NN of (10) with 20 initial points

In this problem, the objective function is convex and the fea-
sible region is a convex set; also optimal solution is achieved
at the unique point x∗ = (0, 0, 2) (see Bazaraa and Shetty
1979). We apply the proposed NN in (10) to solve the above
problem. Simulation results show the trajectory of (10) with
20 initial points is always convergent to

z∗ = [0.0000, 0.0000, 2.0000, 1.0000]T.

Figure 4 displays the transient behavior of z(t)with 20 initial
points. Moreover, Fig. 5 shows the phase diagram of state
variables (x1(t), x2(t), x3(t)) with 20 different initial points,
which shows globally convergent to an exact optimal solution
of Example 5.2.

Example 5.3 Consider the following NLP problem:

Min f (x) = (x1 − x2)2 + (x2 − x3)2 + (x3 − x4)4

s.t.
x21 + x22 + x23 + x24 ≤ 10
(x1 − 4)2 + (x2 + 4)2 + (x3 − 1)2 + (x4 + 1)4 ≤ 18
xi ≥ 0, i = 1, 2, 3, 4.

It is easy to see that the objective function is convex and
constraint functions are strictly convex. The optimal solution
is achieved at the unique point x∗ = (3.0660, 0, 0.6426, 0).
Weapply the proposedNN in (10) to solve the aboveproblem.
Simulation results show the trajectory of (10) with 10 initial
points are always convergent to:

z∗ = [3.0660, 0.0000, 0.6426, 0.0000, 0.0000, 3.2829]T.

Figure 6 displays the transient behavior of z(t)with 20 initial
points. Moreover, Fig. 7 shows the phase diagram of state

−2
−1

0
1

2−2

−1

0

1

2
−2

−1

0

1

2

x(1)

x(2)

x(
3)

Fig. 5 Phase diagram of NN (10) with 20 different initial points in
Example 5.2

0 1 2 3 4 5 6 7 8

x 10
−4

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Time (second)

x1(t)

x2(t),x4(t),u1(t)
x3(t)

u2(t)

Fig. 6 State variables of the Example 5.3 where obtained by the pro-
posed NN of (10) with 20 initial points

variables (x1(t), x2(t), x3(t)) with 20 different initial points,
which shows globally convergent to an exact optimal solution
of Example 5.3.

Example 5.4 Consider the following NLP problem:

Min f (x) = 0.4x1 + x21 + x22 − x1x2 + 0.5x23 + 0.5x24 + 1
30 x

3
1

s.t.
−x1 + x2 − x3 ≤ 2
3x1 + x2 − x3 − x4 ≤ 18
1
3 x1 + x2 − x4 = 2
xi ≥ 0, i = 1, 2, 3, 4.

The optimal solution is achieved at the unique point x∗ =
(0.982, 1.672, 0, 0) (see Nazemi 2012). We apply the pro-
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2
4−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x(1)
x(2)

x(
3)

Fig. 7 Phase diagram of NN (10) with 20 different initial points in
Example 5.3

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (second)

x1(t)

x2(t)

x3(t),x4(t),u1(t),u2(t),u3(t)

u4(t)

Fig. 8 State variables of the Example 5.4 where obtained by the pro-
posed NN of (10) with 20 initial points

posed NN in (10) to solve the above problem. Simulation
results show the trajectory of (10) with 20 initial points is
always convergent to

z∗ = [0.9820, 1.6727, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 2.3635]T.

Figure 8 displays the transient behavior of z(t) with 20 ini-
tial points. An l2 normal error between z(t) and z with 20
different initial points is also shown in Fig. 9.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10−3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time(Second)

||z
(t)

−z
*  ||

2

Fig. 9 Convergence behaviors of ‖z(t) − z‖2 in Example 5.4 with 20
initial points

Example 5.5 Consider the following NLP problem:

Min f (x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x27+7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45
s.t.

3(x1 − 2)2 + 4(x2 − 3)2 + 2x23 − 7x4 ≤ 120
5x21 + 8x2 + (x3 − 6)2 − 2x4 ≤ 40
1
2 (x1 − 8)2 + 2(x2 − 4)2 + 3x25 − x6 ≤ 30
x21 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0
4x1 + 5x2 − 3x7 + 9x8 ≤ 105
10x1 − 8x2 − 17x7 + 2x8 ≤ 0
−3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0
−8x1 + 2x2 + 5x9 − 2x10 ≤ 12
xi ≥ 0, i = 1, 2, . . . , 10

The optimal solution of this problem is given in Xia and
Wang (2004), (x∗ = [2.17199, 2.36368, 8.77392, 5.09598,
0.99065, 1.43057, 1.32164, 9.82872, 8.28009, 8.37592]T).

We apply the proposed NN in (10) to solve the above prob-
lem. Simulation results show the trajectory of (10) with 20
initial points is always convergent to:

z∗ = [x∗
1 = 2.1720, x∗

2 = 2.3637, x∗
3 = 8.7739,

x∗
4 = 5.0960, x∗

5 = 0.9907, x∗
6 = 1.4306

x∗
7 = 1.3216, x∗

8 = 9.8287, x∗
9 = 8.2801,

x∗
10 = 8.3759, u∗

1 = 0.0205, u∗
2 = 0.3120

u∗
3 = 0.0000, u∗

4 = 0.2870, u∗
5 = 1.7165,

u∗
6 = 0.4745, u∗

7 = 0.0000, u∗
8 = 1.3759]T

which corresponds to the optimal solution. Figure 10 shows
the transient behavior of x(t)with 20 initial points. An l2 nor-

123



4240 M. Ranjbar et al.

0 0.5 1 1.5

x 10−3

−2

0

2

4

6

8

10

12

Time (second)

x8(t)

x3(t)
x9(t), x10(t)

x4(t)

x2(t) x1(t)
x6(t), x7(t)

x5(t)

Fig. 10 State variables of the Example 5.5 where obtained by the pro-
posed NN of (10) with 20 initial points
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Fig. 11 Convergence behaviors of ‖z(t) − z‖2 in Example 5.5 with 20
initial points

mal error between z(t) and z with 20 different initial points
is also shown in Fig. 11.

In comparison with existing NN models, we use of the
three NN models. First Kennedy and Chua (1988) proposed
the following NN model for solving (5):

dx

dt
= −{∇ f (x) + s(∇g(x)g(x)+ − (−x)+)}, (11)

where s is a penalty parameter. This NN has a low model
complexity, but it only converges an approximate solution
of (5) for any given finite penalty parameter. Afterward, Xia
and Wang (2004) based on the projection formulation pro-
posed a recurrentNNmodel for solving (5)with the following
dynamical equation:

dx

dt
= −x + (x − α(∇ f (x) + ∇g(x)u))+ (12)

du

dt
= −u + (u + αg(x))+, (13)

where x ∈ R
n, u ∈ R

m and α > 0. This NN has a one-layer
structure. Recently, Nazemi (2012) based on the Lagrange
function proposed a NN model for solving the convex NLP
problem, as the following form:

Min f (x)

s.t. g(x) ≤ 0
h(x) = 0,

(14)

with the following dynamical system:

dx

dt
= −

(
∇ f (x) + 1

2
∇g(x)Tu2 + ∇h(x)Tv

)
(15)

du

dt
= diag(u1, . . . , um)g(x) (16)

dv

dt
= h(x). (17)

Under the condition that the objective function is convex and
constraint functions are strictly convex or that the objective
function is strictly convex and the constraint functions are
convex, Table 1 shows that for Examples 5.1–5.5, the pro-
posed NN has a better performance in convergence time than
the NNs introduced in (11), (12) and (13). Remark that the
numerical implementation in all the models coded on MAT-
LAB and the ordinary differential equation solver adopted
ode15s. Note, initial states for all the implementations in
Table 1 are equal. The stopping criterion in all the models is
‖x(tf)− x∗‖ ≤ 10−4 where tf represents the final time when
the stopping criterion is met.

Note that, in models (12) and (13), objective or con-
straint functions should be strictly convex. Therefore, since
in Example 5.2 objective and constraint functions are convex,
NNs (12) and (13) do not converge to the optimal solution.

It should be noted that the proposed model in (10) can
solve LP and convex QP problems. In order to demonstrate,
we give two examples in following, for LP and convex QP
problems.

Example 5.6 Consider the followingLPproblem (seeBazaraa
et al. 1990):

Min f (x) = x1 + x2 − 4x3
s.t.

x1 + x2 + 2x3 ≤ 9
x1 + x2 − x3 ≤ 2
−x1 + x2 + x3 ≤ 4
xi ≥ 0, i = 1, 2, 3.
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Table 1 Final time (second) to
stopping criterion for the
proposed model in (10)
compared to NN models in (11),
(12) and (13) for
Examples 5.1–5.5

Example/model Proposed model (10) Kennedy (11) Xia (12) Nazemi (13)

Time (s) in 5.1 0.002 10 70 20

Time (s) in 5.2 0.002 5 – –

Time (s) in 5.3 0.0005 0.5 150 50

Time (s) in 5.4 0.003 10 40 40

Time (s) in 5.5 0.001 10 10 40

0 1 2 3 4 5

x 10
−3

−2

−1

0

1

2

3

4

5

6

Time (second)

x1(t)

x2(t), u2(t)

x3(t)

u1(t)

u3(t)

Fig. 12 State variables of the Example 5.6 where obtained by the pro-
posed NN of (10) with 10 initial points

It is easy to see that objective function is convex and the
feasible region is a convex set, and the optimal solution of
LP problem is x∗ = [ 13 , 0, 13

3 ]T (see Bazaraa et al. 1990).We
apply the proposed NN in (10) to solve the above problem.
Simulation results show the trajectory of (10) with 10 initial
points is always convergent to

z∗ = [0.3333, 0.0000, 4.3333, 1.0000, 0.0000, 1.9999]T.

Figure 12 displays the transient behavior of z(t) with 10
initial points.

Example 5.7 Consider the following QP problem (see Huang
and Cui 2016):

Min f (x) = 0.4x21 + 0.3x22 − 0.1x1x2 − 0.2x1
s.t. − 0.4x2 + 0.7x3

x1 − x2 + x3 = 5
0.9x1 + 0.2x2 − 0.2x3 ≤ 4
0.2x1 + 0.7x2 − 0.1x3 ≤ 10

This problem is a convex QP, and also optimal solution is
achieved at the uniquepoint x∗ = (1.0851,−0.3191, 3.5957)

0 0.2 0.4 0.6 0.8 1

x 10
−3

−3

−2

−1

0

1

2

3

4

5

Time (second)

x3(t)

u2(t)
x1(t)

u1(t)

u3(t),u4(t)
x2(t)

Fig. 13 State variables of the Example 5.7 where obtained by the pro-
posed NN of (10) with 20 initial points

(seeHuang andCui 2016).We apply the proposedNN in (10)
to solve the above problem. Simulation results show the tra-
jectory of (10) with 20 initial points is always convergent
to

z∗ = [1.0851,−0.3191, 3.5957, 0.6489,

1.3489, 0.0000, 0.0000]T.

Figure 13 displays the transient behavior of z(t) with 20 ini-
tial points. Moreover, final time to stopping criterion for the
proposed model in (10) is 0.002 s and final time to stopping
criterion for the proposed NN in Huang and Cui (2016) for
k = 10 is 2 s, and it shows that the new model has a better
performance in convergence time.

6 Conclusions

In this paper,weproposed aone-layer recurrentNNmodel for
solving convex optimization problems. First by using KKT
condition and with application MS merit function as a NCP
function, we proposed a one-layer NN model, and in com-
parison with other existing NNs for solving such problems,
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the proposed NN has a simple form and a better performance
in convergence time. Moreover, the proposed NN is stable in
the sense of Lyapunov and has globally convergent to optimal
solution of the original problem.
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