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Abstract
In cloud computing environment, Software as a Service (SaaS) providers offer diverse software services to customers and
commonly host their applications and data on the infrastructures supplied by Infrastructure as a Service (IaaS) providers.
From the perspective of economics, the basic challenges for both SaaS and IaaS providers are to design resource pricing
and allocation policies to maximize their own final revenue. However, IaaS providers seek an optimal price policy of virtual
machines to generate more revenue, while SaaS providers want to minimize the cost of using infrastructure resources, and
comply with service-level agreement contracts with users at the same time. In this situation, there exists conflict in maximizing
revenue of both IaaS and SaaS providers simultaneously. In this paper, we model this revenue maximization problem as the
Stackelberg game and analyze the existence and uniqueness of the game equilibrium. Moreover, considering the impact of
resource price on users’ willing to access service, we propose a dynamic pricing mechanism to maximize the revenue of
both SaaS and IaaS providers. The simulation results demonstrate that, compared to fixed pricing and auction-based pricing
mechanisms, the proposed mechanism is superior in the revenue maximization and resource utilization.

Keywords Revenue maximization · Dynamic resource pricing · Resource allocation · Stackelberg game · Cloud computing

1 Introduction

Cloud computing has emerged as a new paradigm to provide
ubiquitous, convenient and flexible services to individual
users and enterprises (Sim 2015). Many companies includ-
ing Amazon, Google and Microsoft are offering public
cloud computing services, such as Amazon’s Elastic Com-
pute Cloud (EC2) and Microsoft Windows Azure (Zaman
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and Grosu 2013b). In public cloud computing environment,
various infrastructure resources, applications and platforms
are supplied as utility services to users in a pay-as-you-go
method.

Infrastructure resources are utilized more efficiently and
cost-effectively for both providers and users in cloud comput-
ing.Actually, users can gain the benefits of the infrastructures
without the need to complement and administer it directly.
Cloud providers can maximize their revenue by charging
cloud users. Currently, in cloud computing environment,
there are three pricing schemes offered by commercial cloud
providers, namely spot market, long-term reservation and
short-term on-demand plans (Toosi et al. 2015).

The spot market plan allows price-sensitive cloud cus-
tomers to accomplish short-time tasks. Customers bid for the
use of resourceswith themaximumpricewhich they arewill-
ing to pay, and gain access to the acquired resources as long as
their bid exceeds current spot price. Spot market plan is less
reliable because users’ tasksmay be arbitrarily terminated by
providers. In the reservation plan, end users pay an upfront
reservation fee for a specific period of time (e.g., one year
or two), and receive a cheaper price for the hourly resource
usage. But this plan may result in resource over-provisioning
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or under-provisioning problems. On the other hand, price in
on-demand plan is charged by hourly usage without upfront
fee and a long-term commitment, and providers impose ser-
vice provisioning to guarantee the quality of service (QoS).
Consumers pay a high price to purchase this plan to meet
fluctuated and unpredictable requests occasionally. As far as
we know, only Amazon’s EC2 offers spot market plan with
dynamic pricing. The others adopted by most of commercial
cloud providers are static pricing strategies, which usually
cannot meet market demand and utilize resource capacity
efficiently to maximize provider’s profit. Hence, it is nec-
essary to explore an efficient dynamic resource pricing and
allocation strategy in cloud computing.

Some dynamic resource pricing and allocation strategies
were proposed by researchers to tackle revenue maximiza-
tion problems for providers. For instance, auction-based
mechanism (Lampe et al. 2012) and combinational auction
mechanism (Zaman and Grosu 2013b) were investigated. In
these mechanisms, cloud consumers bid for their resource
bundles, and their payments are determined based on the
market supply and demand, or are calculated based on their
valuations. And game-based theoretical approaches were
also applied to address this problem (Ardagna et al. 2013;
Di Valerio et al. 2013). In these approaches, cloud providers
and customers were modeled as players and their strategies
for resource pricing and allocation constituted an equilibrium
solution in the revenue maximization problem. In practice,
users always choose to access inexpensive and high-quality
service. When QoS is guaranteed, low resource price will
attract more customers. But if cloud users are overcharged
by a provider, they probably choose other providers, then that
provider’s revenue will decline dramatically. Therefore, the
pricing policies of providers have a great impact on users’
willingness to access services and in turn affect their rev-
enues. However, this is ignored by most existing approaches
and indeed plays an important role in cloud providers’ rev-
enues.

In this paper, we aim to tackle the revenue maximization
problem, for both IaaS and SaaS providers, in resource pro-
visioning to users. In cloud computingmodel, IaaS providers
want to earn the payment not only cover their operation cost
but alsogain asmanyextra profits as possible. Therefore, IaaS
providers seek the optimal prices per unit time for different
types of VM instances in order to maximize their revenues.
Each SaaS provider aims to minimize its cost by determin-
ing the optimal number of VM instances needed to purchase.
At the same time, each SaaS provider needs to comply with
SLA contract which affects the revenue on the basis of the
achieved performance level. The profit of each SaaS provider
equals to the payment from users minus the cost of utiliz-
ing infrastructure resources supplied by IaaS providers. We
model this revenue maximization problem as a Stackelberg
game and propose a dynamic resource pricing and allocation

algorithm to seek the Stackelberg equilibrium of the game.
Moreover, in the process of seeking the optimal price of VM
instances, we consider the influence of VM instance price on
the choice of users who request services.

The rest of this paper is organized as follows. Section 2
discusses related works. In Sect. 3, the system model and the
Stackelberg game formulation in the cloud computing are
presented. Section 4proves the existence of Stackelberg equi-
librium and presents an algorithm for solving the proposed
game. Simulation results are discussed in Sect. 5. Finally,
conclusions are drawn in Sect. 6.

2 Related works

Resource pricing and allocation in cloud computing have
attracted considerable attentions and have been investigated
in some research works from different points of view in both
industrial and academic research areas. At present, pricing
strategies adopted by most commercial cloud providers, for
example, Google andMicrosoft, ask customers to pay a fixed
price to access cloud service. However, this static pricing
strategy cannot be able to update dynamically to improve the
revenue. Thus, many researchers proposed various alterna-
tive schemes.

Some auction-based approaches have been proposed in
the literature. In practice, pricing policy of Amazon EC2
spot instance (SI) is auction-based. Wee (2011) showed that
spot instance price is 52.3% cheaper than its corresponding
standard price. In Javadi et al. 2013, the authors analyzed
all types of SIs in terms of spot price and determined the
time dynamics for spot price in hour-in-day and day-of-week.
Song et al. (2012) proposed a profit-aware dynamic bidding
algorithm for SIs to maximize the time average profit. In
Agmon Ben-Yehuda et al. 2013, the authors showed that the
SI prices are probably determined within a tight price range
via a dynamic hidden reserve price. In Zhang et al. (2011), the
authors aimed to address problem of best matching customer
demand in terms of both supply and price, and of dynamically
allocating computing resources in Amazon SIs to maximize
revenue. Some research works focused on the design of auc-
tion mechanisms for resource allocation in cloud computing.
The authors in Lampe et al. (2012) proposed an equilib-
rium price auction allocation mechanism based on linear
programming and heuristic approach, which achieved prof-
its that correspond to about 96.7% of the optimal solution
on average. In Prasad et al. (2012), the resource allocation
problem was formulated as a procurement auction, and the
multiple resource procurement from several cloud vendors
participating in bidding was addressed by assigning dynamic
pricing for these resources. Similar studies can be found in
Bonacquisto et al. (2014, 2015), Di Modica et al. (2013) and
Prasad and Rao (2014). The authors of Zaman and Grosu
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2013a developed a combinatorial auction-based mechanism
to allocate VM instances, which is approximately efficient
and generates higher revenue than fixed price mechanism,
but requires static provisioning. They further designed an
auction-basedmechanism for dynamic VMprovisioning and
allocation, in which the user demand was taken into account
and no VM instance was allocated for less than the reserved
price (Zaman and Grosu 2013b). A double auction resource
allocation model considering the benefits of both users and
providers was investigated in Samimi et al. (2016), Sun et al.
(2014) and Zheng et al. (2015).

None of the works mentioned above considered the SLA
contract between cloud providers and consumers. SLA guar-
antees specific quality attributes to cloud consumers, which
also plays an important role in revenue. The authors in
Macías and Guitart (2014) proposed two sets of policies
to manage SLAs, in order to achieve business objects of
cloud providers: client classification and revenue maximiza-
tion. Focused on designing resource allocation algorithms
for SaaS providers, Wu et al. (2014) proposed customer
drivenSLA-based resource provisioning algorithms.Bymin-
imizing SLA violations, customer satisfaction levels were
improved, and cost savings were optimized as well. A two-
stage resource provisioning schemewas presented inAbundo
et al. (2014), which addressed the problem of allocating the
optimal number of VMs for SaaS providers to satisfy their
SLAs and maximizing their revenues at the same time. The
problems of costminimization or revenuemaximizationwith
SLA constraints were also investigated in Feng et al. (2012)
and Goudarzi and Pedram (2011).

Besides, game-based theoretical approaches have been
adopted to handle various problems in cloud computing.
In Wang et al. (2016), a Stackelberg game was formu-
lated to decide price and amount of execution units that
mobile devices are willing to offer in mobile cloud comput-
ing environment. Di Valerio et al. (2013) modeled revenue
maximization problem as a Stackelberg game to seek equi-
librium price and allocation strategy for both SaaS and IaaS
providers. Exploiting coalitional game to improve revenue
or minimize wastage was explored in Hassan et al. (2014),
Mashayekhy et al. (2015) and Pillai and Rao (2016). In
Ardagna et al. 2013, SaaS providers want to maximize their
revenues from SLAs while minimizing the cost of use of
resources supplied by the IaaS provider. On the other hand,
the IaaS provider want to maximize revenues obtained. The
authors took the perspective of SaaS providers and mod-
eled this service provisioning problem as a generalized Nash
game. In similar scenario, to capture the conflict between
SaaSs and PaaS, the service provisioning problem of cloud
PaaS systems was modeled as a generalized Nash equilib-
rium problem to seek social optimum of cloud computing
(Anselmi et al. 2014).

Fig. 1 A resource pricing and allocation procedure in cloud computing

Inspired by the aboveworks, in this paper, wemodel profit
maximization problem as a Stackelberg game. In the game,
the IaaS providers are game leaders and SaaS providers are
followers. IaaS providers want to maximize their profits by
seeking the optimal prices of VM instances. It is known that
service demands are affected by resource price, so simply
setting the highest price allowed is not a good choice. SaaS
providers comply with SLA contracts with end users and
want to minimize the cost of using VM instances. How-
ever, different from works mentioned above, we consider
the impact of resource price on the willingness of end users
requesting services. Moreover, SLA is taken into considera-
tion as a factor in determinemarket share andprice of services
for SaaS providers.

3 Systemmodel and problem formulation

3.1 Systemmodel

In this subsection, we present an overview of resource pric-
ing and allocation model in cloud computing. As depicted
in Fig. 1, the model consists of one IaaS provider, sev-
eral SaaS providers and a number of cloud users. The IaaS
provider has an infrastructure center providing resources to
SaaS providers in the form of different VM instance types.
Each VM instance type has different resource capacities in
terms of CPU capacity, RAM size, disk storage, I/O band-
width and so on. SaaS providers locate at different places
and deploy their applications on the infrastructure center,
and are charged by IaaS provider for VM instances usage.
On the other hand, SaaS providers can gain revenue by offer-
ing software services such as online games and social web
activities with SLA contracts to users.

It is assumed that there are N SaaS providers in the cloud
market, and the number of VM instance types is K . pk with
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Table 1 Mathematical notations Notation Description

N Number of SaaS providers

K Number of resource types of the IaaS providers

n Index of SaaS cloud providers

l Index of service types offered by SaaS providers

k Index of resource types supplied by the IaaS providers

CI Total cost of the IaaS provider

Cn Total cost of SaaS provider n

RI Revenue of the IaaS provider

Rn Revenue of SaaS provider n

UI Profit of the IaaS provider

Un Profit of SaaS provider n

pk Per unit price of resource type k charged by the IaaS provider

pln Per unit price of software service type l charged by SaaS provider n

γ l
n Base price of software service type l offered by SaaS provider n

dlkn Number of VM instance type k requested to perform service l offered by SaaS provider n

ck Operation cost of the first active VM instance type k provided by the IaaS provider

ϕ Learning factor of IaaS provider

αl
n Market share of service type l offered by SaaS provider n

uln Number of service type l offered by SaaS provider n

qln QoS level of service type l that SaaS provider n can guarantee

Ql
n Maximum QoS level of service type l SaaS provider n can achieve

Ωl Market capacity of service type l in the market

vk Number of VM instance k supplied by the IaaS provider

vkn Number of VM instance k purchased by SaaS provider n

k ∈ [1, . . . , K ] is the unit price of VM instance k charged
by the IaaS provider. The number of software service types
offered by SaaS providers is denoted by L . Each user can
request to run one or several services at the same time, and
these requests can be submitted to the same or different SaaS
providers. The number of service type l that SaaS provider
n received is denoted as uln with l ∈ [1, . . . , L] and n ∈
[1, . . . , N ]. And dlkn denotes the amount of VM instances k
needed to perform the service type l offered by SaaS provider
n. In order to achieve acceptable QoS, each user has a SLA
contract with SaaS provider n, which indicates QoS level qln
of service type l. The main notations adopted in this paper
are presented in Table 1.

Learning curve model (Truong-Huu and Tham 2014) is
adopted to capture the operation cost of the IaaS provider.
This model assumes that when the number of production
units is doubled, the marginal cost of production decreases
by a fixed factor, and learning factor is defined as one minus
this factor. We denote ϕ ∈ (0, 1) as the learning factor of
the IaaS provider, and it is assumed that learning factor is
the same for all VM instance types. Let vk denote the total
number of VM instance type k, which is calculated as vk =∑N

n=1 vkn ,wherevkn is the number ofVMinstance k purchased

bySaaS provider n to run application service.Hence, the total
operation cost of the IaaS provider can be defined as

CI =
K∑

k=1

ck(vk)1+log2ϕ

1 + log2ϕ
, (1)

where ck is the operation cost of the first instance of VM
type k. And the revenue of the IaaS provider charged from
all SaaS providers is calculated as

RI (p
k) =

K∑

k=1

vk pk . (2)

In this paper, the price of service type l is not fixed, and
the pricing strategy adopted by each SaaS provider is based
on the base price, the amount of VM instance purchased and
the QoS level. The service price is defined as follows

pln = γ l
n log2

(
1 + vkn(Q

l
n + qln)/Q

l
n

)
, (3)

where γ l
n > 0 is the base price of service type l, vkn =

∑L
l=1 u

l
nd

lk
n is the number of VM instance k that SaaS
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provider n purchased and Ql
n is the maximum QoS level of

service type l that SaaS provider n can achieve. Obviously,
qln ≤ Ql

n , ∀n and ∀l. So the revenue of SaaS provider n can
be calculated as

Rn(γ l
n, v

k
n) =

K∑

k=1

αl
nΩlγ

l
n log2

(
1 + vln(Q

l
n + qln)/Q

l
n

)
,

(4)

where Ωl denotes the market capacity of service type l, i.e.,
the total number of users requested service type l, and αl

n
represents the market share of service type l of SaaS provider
n. Market share αl

n ∈ (0, 1) is determined by the ratio of QoS
level qln to base price γ l

n , which is computed as

αl
n=

qln/γ
l
n

∑N
n=1 q

l
n/γ

l
n

. (5)

3.2 Game formulation

In cloud computingmarket, the IaaS provider supplies infras-
tructure resources and wants to maximize its profit of selling
resources, while SaaS providers offer software services to
end users and intend to reduce the cost of purchasing
resources. That means the IaaS provider seeks higher prices
of VM instances and needs to sell more VM instances, while
SaaS providers want to purchase less VM instances in lower
prices and need to comply with QoS requirements, speci-
fied in SLA contracts with end users. Therefore, there exists
interest competition between the IaaS provider and SaaS
providers.

In order to capture the behaviors of the IaaS provider and
SaaS providers in this conflicting situation, it is natural to
model the IaaS provider and SaaS providers as the opposite
players in a Stackelberg game. Stackelberg game is a strategic
game that consists of leaders and followers who compete
with each other on certain resources. The leaders take their
strategies first and the followers then adjust their strategies
according to the leaders’ actions.

When taking the Stackelberg game as basic model, the
IaaS provider can be taken as the game leader who can deter-
mine the prices ofVM instances to improve profit. Then SaaS
providers, which are taken as the game followers, decide the
quantity of VM instances needed to purchase according to
the prices of VM instances determined by the IaaS provider.
To improve the profit, the IaaS provider will set the price of
VM instances again based on the number of VM instances
purchased. This process will iterate repeatedly.

From the above description, the price and amount of
VM instances are the exchange and reciprocal variables in
the Stackelberg game. By optimizing these coupled vari-
ables individually and repeatedly, IaaS providers and SaaS

providers take the nested interaction continuously and obtain
the profit balance.

The profit of each SaaS provider equals to the revenue
charged from users minus the costs which has to pay for
using infrastructure resources. And the cost can be formu-
lated as Cn = ∑K

k=1 vkn p
k . So the utility function of each

SaaS provider n can be formulated as

Un(γ
l
n, v

k
n) = Rn(γ

l
n, v

k
n) − Cn . (6)

If the number of users requesting services remains the
same, the less quantity of VM instances is purchased, less
expenses each SaaS provider need to pay, and then, profit
can be effectively improved. But from Eqs. 3 and 5, it is
known that if QoS level is promoted by purchasing more VM
instances, the prices of software services and themarket share
rise; then, revenue of SaaS provider increases subsequently.
So given prices of VM instances, each SaaS provider seeks
the optimal number of VM instances needed to purchase.
Substituting Eq. 4 into Eq. 6, we obtain the profit maximiza-
tion problem for each SaaS provider

max
vkn

Un(γ
l
n, v

k
n) =

K∑

k=1

αl
nΩlγ

l
n log2

(
1+vkn(Q

l
n+qln)/Q

l
n

)

−
K∑

k=1

vkn p
k . (7)

The IaaS provider’s target is to find an optimal price pk for
every VM instance k to generate more revenue. The utility
function of the IaaS provider is defined as

UI (p
k) = RI (p

k) − CI , (8)

where the first term in Eq. 8 is the revenue charged from all
SaaS providers and the second term is total operation cost.
So the profit maximization problem for the IaaS provider is

max
pk

UI (p
k) =

K∑

k=1

vk pk −
K∑

k=1

ck(vk)1+log2ϕ

1 + log2ϕ
. (9)

Intuitively, it seems that the higher price pk is, the more
profit the IaaS provider gains. However, in that case, SaaS
providers will cost much more for infrastructure resource
usage accordingly. In order to make profits, SaaS providers
have to increase base price γ l

n , which may affect willing-
ness of users to access service because of too much fee
charged. Therefore, the number of users requesting services
declines; then, the quantities of VM instances purchased by
SaaS provider decrease accordingly, resulting in diminish-
ment of IaaS providers’ total profits in turn. So there exists a
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Fig. 2 Resource demand versus VM instance price

trade-off between the prices of VM instances and the num-
ber of users. In this paper, it is assumed that the relationship
between quantities of VM instances purchased by all SaaS
providers and prices of VM instances can be represented as
follows:

vk = (vk)maxe(a−bpk )

1 + e(a−bpk )
, (10)

where (vk)max is the maximal quantity of VM instances that
all SaaS providers could purchase, and a and b are the price
sensitivity factors that indicate the impact of VM instance
price on quantities of VM instance purchased. And Fig. 2
shows curves of vk when a = 7, b = 30 and a = 2, b = 8.

4 Analysis of the proposed game

4.1 The optimal solutions of the problem

Because SaaS provider n aims at maximizing its utility
Un(γ

l
n, v

k
n) by seeking an optimal quantity of VM instance vkn

needed to purchase, it is natural to observe how Un(γ
l
n, v

k
n)

varies with vkn . From the definition in Eq. 6, we know that

∂Un(γ
l
n, v

k
n)

∂vkn
= ∂Rn(γ

l
n, v

k
n)

∂vkn
− pk . (11)

If pk <
∂Rn(γ

l
n ,v

k
n)

∂vkn
satisfies for VM instance k ∈

[1, . . . , K ], we can get ∂Un(γ
l
n ,v

k
n)

∂vkn
> 0, which means that

SaaS provider n can obtain a largerUn(γ
l
n, v

k
n) by increasing

vkn , Otherwise, SaaS provider n needs to reduce the number
of VM instance k purchased.

Taking the derivative of Un(γ
l
n, v

k
n) in Eq. 6 with respect

to vkn and letting it equal to zero,

∂Un(γ
l
n, v

k
n)

∂vkn
= ∂Rn(γ

l
n, v

k
n)

∂vkn
− pk = 0. (12)

Substituting Eq. 4 into Eq. 12, we have

∂Un(γ
l
n, v

k
n)

∂vkn
= 1

1n2

αl
nΩlγ

l
n(Q

l
n + qln)

Ql
n + vkn(Q

l
n + qln)

− pk = 0. (13)

Because pk > 0, the optimal number of VM instances vkn is

vk∗n = αl
nΩlγ

l
n(Q

l
n + qln) − ln 2pkQl

n

ln 2pk(Ql
n + qln)

. (14)

In order to obtain the optimal prices of VM instances to
maximize profit of the IaaS provider, taking the derivative of
UI (pk) with respect to pk and letting it to zero, we can get

∂UI (pk)

∂ pk
= vk + pk

∂vk

∂ pk
− ∂CI

∂ pk
= 0. (15)

Substituting Eq. 14 and vk = ∑N
n=1 vkn into Eq. 15, after

some manipulations, the above equation of pk is solved and
the optimal price is denoted as

pk∗ = 1

ln 2

N∑

n=1

αl
nΩlγ

l
n

vk∗n
. (16)

4.2 Analysis of equilibrium existence

In this subsection, we will verify the existence and unique-
ness of game equilibrium. It is assumed that vk∗n and pk∗ are
the Stackelberg equilibrium of the proposed game; then, a
definition is given as follows:

Definition 1 The Stackelberg equilibrium of the proposed
game is vk

′
n and pk

′
, which satisfy the following conditions

1. For every k ∈ {1, . . . , K }, UI (pk
′
) ≥ UI (pk);

2. For every n ∈ {1, . . . , N }, Un(γ
l
n, v

k′
n ) ≥ Un(γ

l
n, v

k
n);

Next, some properties are presented to prove that (vk∗n ,
pk∗) is the Stackelberg equilibrium of the proposed game.

Property 1 Utility functionUn(γ
l
n, v

k
n) of SaaS provider n is

concave, if vkn ≥ 0, and pk is fixed, ∀n ∈ {1, . . . , N }.
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Proof Taking the second-order derivatives of the utility func-
tion Un(γ

l
n, v

k
n) with respect to vkn , we can get

∂2Un(γ
l
n, v

k
n)

∂(vln)
2 = − ln 2αl

nΩlγ
l
n(Q

l
n + qln)

2

(ln 2Ql
n)

2 + [ln 2vkn(Ql
n + qln)]2

< 0.

(17)

Obviously, Un(γ
l
n, v

k
n) is strictly concave. �	

According to Property 1, we know that vk∗n is the global
optimal solution of profit maximization of SaaS provider n,
∀n ∈ {1, . . . , N }. Hence, the second condition inDefinition 1
is satisfied and vk∗n is the Stackelberg equilibrium point.

It is mentioned in Sect. 3.2 that there is a trade-off between
the prices of VM instances and the number of users, which
can be validated by the following property:

Property 2 The utility function UI (pk) of the IaaS provider
is concave in VM instance price pk if the quantity of VM
instance k purchased by each SaaS provider n is vk∗n in Eq. 14.

Proof Because pk > 0, and vk∗n is a continuous function of
pk , substituting Eq. 14 into Eq. 8 and taking the derivatives
of UI (pk), we can obtain

∂UI (pk)

∂ pk
=

N∑

n=1

L∑

l=1

vk∗n −
∑N

n=1 αl
nΩlγ

l
n

ln 2pk

−
ck

∑N
n=1 αl

nΩlγ
l
n

(∑N
n=1

∑L
l=1 vk∗n

)log2ϕ

ln 2(pk)2
.

(18)

And the second derivative of UI is

∂2UI (pk)

∂(pk)2
= −

2ckΩl
∑N

n=1 αl
nγ

l
n

(∑N
n=1

∑K
k=1 vk∗n

)log2ϕ

(pk)3
.

(19)

Because each termon the right-hand side of Eq. 19 is positive,

it is obvious that ∂2UI (pk )
∂(pk )2

< 0. Therefore,UI (pk) is concave

with respect to pk . �	

From Properties 1 and 2, we know that both Un(γ
l
n, v

k
n)

and UI (pk) are concave, and thus, for every vkn and pk ,
UI (pk∗) ≥ UI (pk), ∀k ∈ [1, . . . , K ] and Un(γ

l
n, v

k∗
n ) ≥

Un(γ
l
n, v

k
n), ∀l ∈ [1, . . . , L], ∀n ∈ [1, . . . , N ]. So it is con-

cluded that vk∗n in Eq. 14 and pk∗ in Eq. 16 are the Stackelberg
equilibrium of the proposed game, and the existence and
uniqueness are also verified.

Algorithm 1 Price Updating Algorithm

Input:QoS level qln , learning factor ϕ, operation cost c
k , market share

αl
n .
Output:The equilibriumVM instance price pk∗ and equilibrium num-
ber of VM instance vk∗n .
1: Initialize i=1, pk equals to pkmin which keeps the balance of income

and expenditure. Each SaaS provider calculate the number of VM
instance vkn(i) to be purchased.

2: repeat
3: if i=1 then
4: pk(i + 1) = pk(i) + λ;
5: else if Φ(pk(i)) > Φ(pk(i − 1)) then
6: pk(i + 1) = pk(i) + λ;
7: else
8: λ = −μλ;
9: pk(i + 1) = pk(i) + λ;
10: end if
11: Given pk(i), SaaS provider n set ∂Un

∂vkn
= 0 to compute vkn(i);

12: i=i+1;

13: vk(i)=
N∑

n=1
vkn(i − 1);

14: IaaS provider calculates UI (pk(i));
15: until UI (pk(i)) stops changing in the next iteration

4.3 Price updating strategy for IaaS provider

The utility of the IaaS provider varies when the prices of VM
instances fluctuate. To achieve the optimal utility, a strat-
egy adopted by the IaaS provider is presented. First, at the
beginning of Stackelberg game, in order to attract customers
to purchase more VM instances, it is natural for the IaaS
provider to set price pk equal to (pk)min, which can keep the
balance between income and expenditure at that moment.
Then IaaS provider will increase VM instance price by a
fixed step size. In detail, at the i + 1 step, the price can be
updated as pk(i + 1) = pk(i) + λ, and λ is the step size.
Because the utility functionUI is concave with respect to pk ,
if UI (pk(i + 1)) > UI (pk(i)), the IaaS provider will con-
tinue to increase pk untilUI (pk(i+ j)) < UI (pk(i+ j−1))
at the i + j step. Then λ is set to λ = −μλ, μ ∈ (0, 1) is the
coefficient of the step size, and pk(i+ j+1) = pk(i+ j)+λ.
UI (pk(i + j +1)) andUI (pk(i + j)) are compared again: If
UI (pk(i + j + 1)) is bigger, then in the next step λ will not
be changed; otherwise, λ is set to λ = −μλ, and pk is set to
pk + λ once again. The IaaS provider will execute the above
iteration repeatedly untilUI does not change, and finally, pk∗
is found.

Meanwhile, once the IaaS provider updates its price pk ,
each SaaS provider calculates the optimal quantity of VM
instances needed to purchase at the current price. By letting
∂Un(γ

l
n ,v

k
n)

∂vkn
= 0, and fromEq. 14, it is known that once pk con-

verges to the optimal price pk∗, vkn converges to vk∗n , which
means that both pk and vkn converge to Stackelberg equilib-
rium of the game. The algorithm is given in Algorithm 1.
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5 Numerical simulations

In this section, numerical simulations is conducted to eval-
uate performance of the proposed resource pricing and
allocation strategy in cloud computing. At the beginning,
the parameter settings are given, and the sensitivity analysis
of critical parameters on the performance is performed. Then
the convergence of the proposed game is shown. Finally, the
proposed strategy is compared with fixed pricing scheme and
an auction-based mechanism (Zaman and Grosu 2013b) in
revenue and resource utilization.

5.1 Setting of simulation parameters

In the simulation, for simplicity, it is assumed there are three
SaaS cloud providers, i.e., N = 3, and all the three SaaS
providers supply only one service type, and the IaaS provider
supplies one type of VM instance as well, i.e., L = 1 and
K = 1. The maximum market capacity supplied by SaaS
providers equals to 3 × 105. Moreover, QoS level qln is set
to 5, 7 and 8, base price γ l

n is set to 0.045, 0.05 and 0.046,
and Ql

n is set to 10, n = 1, 2, 3 and l = 1. Besides, learning
factor ϕ = 0.65 and first VM instance cost ck = $1.8.

5.2 Sensitivity analysis

In this subsection, in order to investigate which factors have
the most influence on the profits of IaaS provider and SaaS
providers, a quantitative analysis of every system parameter
is carried out.

Firstly, for the IaaS provider, we know that the operation
cost of first VM instance ck and learning factor ϕ have impact
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Fig. 3 Quantitative analysis of operation cost ck in influencing the IaaS
provider’s profit
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Fig. 4 Quantitative analysis of learning factor ϕ in influencing the IaaS
provider’s profit

on the profit fromEq. 9. Letϕ equal to 0.65, and ck is set to $1,
$10, $20 and $30. As shown in Fig. 3, the equilibrium profit
of the IaaS provider is $4.93 × 104, $4.67 × 104, $4.39 ×
104 and $4.11 × 104, respectively. From the definition of
UI (pk), it is known that the equilibrium profit of the IaaS
provider linearly decreases, while ck is increasing. Actually,
ck varies in a small range change and usually is less than $4
per instance per hour in practice. For example, price of most
Amazon EC2 VM instance is less than $4 per hour, and price
of Microsoft Azure VM instance is much cheaper (Amazon
2016; Microsoft 2016). If ck is set to $4, UI (pk) equals to
$4.84 × 104. Obviously, UI (pk) is slightly affected by ck .

In Fig. 4, set ck = $1.8, and let learning factor ϕ equal to
0.4, 0.65, 0.75 and 0.8. When game equilibrium is achieved,
the IaaS provider gains $4.96 × 104, $4.9 × 104, $4.54 ×
104 and $3.82 × 104, respectively. We can find that when ϕ

increases from0.4 to 0.65,UI (pk∗) decreases by $0.06×104.
But when ϕ increases from 0.75 to 0.8, UI (pk∗) decreases
suddenly by $0.72 × 104. The reason is that total cost CI

increases exponentially with the increase in learning factor
ϕ. It is observed that if ϕ is bigger than 0.7, CI increases
dramatically, which influences the profit of the IaaS provider
a lot.

For SaaS providers, parameters that may influence profits
are QoS level qln , base price of software service γ l

n and price
sensitivity factors a and b.

Let γ l
n , a and b remain the same, and QoS level qln

increases linearly from 3 to 9. As shown in Fig. 5, at equilib-
rium point of the game, the maximum profit of SaaS provider
n increases nearly linearly from $0.94× 104 to $2.84× 104.
From Eq. 4, we know that the influence of QoS level qln on
the revenue of SaaS provider includes two aspects: One is
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Fig. 5 Quantitative analysis of QoS level qln in influencing SaaS
providers’ profits

market share of SaaS provider, which is concave function of
qln , and the other is service price pln , which increases log-
arithmically with qln . However, in cloud computing model,
qln is less than 10 and has a small variation range. Hence,
QoS level qln influences profit of SaaS providers slightly. We
know that base price of software service γ l

n is proportional
to the price of VM instance, when γ l

n/p
k
I increases linearly

from 0.2 to 0.8. At the game equilibrium, themaximumprofit
of SaaS provider n increases nonlinearly, which is shown in
Fig. 6.

As shown in Fig. 7, when b = 20 and a is set to 3, 5.5,
8 and 10.5, the maximum profit of SaaS provider equals to
$1.06 × 104, $2.48 × 104, $4.14 × 104 and $5.93 × 104,
respectively. The results show that with the increase of a,
the profit of SaaS provider increases dramatically. When a
increases from 3 up to 10.5, the profit rises 450%. However,
if a = 5.5, letting b equal to 20, 45, 70 and 95, the maximum
profit of SaaSprovider n is $2.48×104, $1.1×104, $0.7×104

and $0.52 × 104, respectively. Obviously, when parameter
b rises, the maximum profit of SaaS provider n decreases
significantly, and the profit falls by 79% when b increases
from20up to 95, as shown inFig. 8.According to the analysis
above, we know that a and b play important roles in profits
of SaaS providers.

5.3 Convergence of the proposed algorithm

With the given parameters, after executing Algorithm 1
described in Sect. 4.3, the optimal price of VM instance
and the optimal quantity of VM instances purchased by
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Fig. 6 Quantitative analysis of base price coefficient αl
n in influencing

SaaS providers’ profits
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Fig. 7 Quantitative analysis of price sensitivity factor a in influencing
SaaS providers’ profits

SaaS providers were obtained. Based on that, we computed
the maximum profit of both the IaaS provider and SaaS
providers. The convergence of the pricing policy of the IaaS
provider and the number of VM instances purchased by all
SaaS providers are presented in Fig. 9. The convergence of
the profits of all providers is shown in Fig. 10.

As shown in Fig. 9, the price of VM instance equals to
$0.06 in the beginning, but the total quantity of VM instances
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Fig. 8 Quantitative analysis of price sensitivity factor b in influencing
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Fig. 9 Convergence of unit price of VM instance and total number of
VM instances purchased by all SaaS providers

purchased by all SaaS providers is 2.93 × 105. The reason
is that at first the price is set quite low by the IaaS provider,
in order to keep existing users and attract newcomers. At
this moment, the number of users is large. SaaS providers
purchase a large number of VM instances to meet the market
demand and guarantee the QoS level.

After that, the price linearly increases, and the number
of VM instances purchased gradually decreases. During this
process, the cost of SaaS providers grows up when price
of VM instance rises. Therefore, SaaS providers increase
the price of software service in order to improve profit,
which results in a decrease in quantity of the purchased VM
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Fig. 10 Convergence speed of profit of the IaaS provider and all the
three SaaS providers

instances. However, the profit of the IaaS provider increases
all the time. Within 30 iterations, the game converges to the
equilibrium state, where pk = $1.44, vk = 2.3 × 105. In
fact, as shown in Fig. 9, an approximately optimal price can
be attained after about 10 iterations.

As shown in Fig. 10, in general, the profit of the IaaS
provider increases. But profits of the three SaaS providers
decline, until the game converges to the equilibrium state.
According to Algorithm 1, the IaaS provider increases the
price of VM instance to improve the revenue until it attains
the maximal profit. With the increase in the price, cost of
infrastructure resource usage of SaaS providers rises, and
the number of users decreases due to higher price charged.
Therefore, profits of SaaS providers decrease consequently.

At the beginning, the profits of the IaaS provider, SaaS
providers 1, 2 and 3 are $1.7×104, $1.05×104, $2.03×104

and $2.35 × 104, respectively. When the game converges to
the equilibrium state, the profits of the IaaS provider, SaaS
providers 1, 2 and 3 are $3.25 × 104, $2.58 × 103, $7.86 ×
103 and $9.28 × 103, respectively. Among the three SaaS
providers, SaaS provider 3 attains the most profit. The rea-
son is that SaaS provider 3 offers servicewith the highestQoS
level but relatively low base price, and owns the largest mar-
ket share. Although SaaS provider 1 offers the lowest base
price, the QoS level provided is poor and cannot meet cloud
users’ requirement, which results in the lowest profit gained.

5.4 Comparison with other schemes

In order to evaluate the performance in profit maximiza-
tion and resource utilization, the proposed mechanism is
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Fig. 11 Comparison of IaaS provider’s profit and number of VM
instance between our proposed methods and fixed pricing, auction-
based mechanism

compared with other two resource pricing and allocation
strategies:

• Fixed pricing mechanism In this mechanism, IaaS
provider sets a fixed price for each type of VM instance,
and all SaaS providers also choose a constant price for
each software service. Even though the cloud comput-
ing market varies greatly, the price usually would not be
changed accordingly.

• Auction-based pricing mechanism Unlike the proposed
strategy and fixed pricing mechanism, in this approach,
prices of VM instances are determined by SaaS provider.
Each SaaS provider submits a bid to the IaaS provider,
which includes the requested VM bundles and the price
it is willing to pay to use the requested bundle of VM
instances. But IaaS provider still needs to set a reserve
price to determine the winning bidders.

In fixed pricingmechanism, the price is set to $0.18, and in
auction-based pricingmodel, the reserve price set by the IaaS
provider is $0.1. In the auction period, the bid prices of the
three SaaS providers are $0.14, $0.15 and $0.16, respectively.

As shown in Fig. 11, the total quantities of VM instances
sold and profit gained by the IaaS provider with the three
mechanism are compared. It is shown that the total quantities
of VM instances sold are about 2.3× 105 with the proposed
approach. And the number of VM instances sold by the IaaS
provider is relatively smallwith the fixed pricing and auction-
based pricing mechanism, which are about 1.13 × 105 and
1.86×105, respectively. But the corresponding profits of the
IaaS provider with the three mechanisms are $4.95 × 104,
$3.39 × 104 and $4.42 × 104, respectively.
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Fig. 12 Comparison of SaaS providers’ profit between our proposed
methods and fixed pricing, auction-based mechanism

Obviously, compared with the other two approaches, the
proposed mechanism makes a higher profit for the IaaS
provider and fully utilizes infrastructure resources as well.
This is attributed to the fact that the proposed mechanism
adjusts the price ofVMinstance dynamically according to the
market demands. Although profit per VM instance is highest
with the fixed mechanism, the least profit is obtained. Thus,
high price of VM instance makes the service less attractive
to users, which has a significantly negative effect on cus-
tomer’s intention to access services, resulting in that fewVM
instances are sold. For auction-based pricing strategy, under
the premise of profitability, the IaaS provider set the price of
VM instance equal to $0.1 to let as many as possible bidders
to outbid the specific price, with the purpose of gaining more
profit, but this relatively low price also deceases the profit.

The comparison of profits attained by all SaaS providers
with the three strategies is depicted in Fig. 12. In our strategy,
the profits of SaaS provider 1, 2 and 3 are $3.03×104, $4.9×
104 and $5.91×104, respectively, which is the highest profit
that each SaaS provider gains among the three strategies.
And in auction-basedmechanism, accordingly, the profits are
$1.81 × 104, $3.33 × 104 and $4.26 × 104. In fixed pricing
mechanism, every SaaS provider gains the least profit. From
analysismentioned above, we find that both the IaaS provider
and SaaS providers gain the most profits with the proposed
mechanism, and ahigher utilizationof infrastructure resource
is achieved as well compared with the other two strategies.
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6 Conclusion and future work

In this paper, we model the pricing and resource alloca-
tion problem between the IaaS cloud provider and SaaS
cloud providers as a Stackelberg game, with the purpose
of addressing revenue maximization problem of both SaaS
providers and the IaaS provider. Specifically, considering the
QoS requirements from SaaS providers, we take SLA as the
influence factor for the market share and the pricing strate-
gies of SaaS providers. Moreover, the functional relationship
between the service demands and the prices of VM instances
is given. Simulation results show that the proposed approach
can obtain better profits for both IaaS provider and SaaS
providers, compared to fixed pricing and auction-based pric-
ing methods, which means the social welfare is efficiently
improved in cloud computing environments. In the future,
we will consider competition and cooperation among mul-
tiple IaaS providers, which will give customers a chance to
choose more suitable providers.
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