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Abstract
Sleeping problems have become one of the major diseases all over the world. To tackle this issue, the basic tool used by

specialists is the polysomnogram, which is a collection of different signals recorded during sleep. After its recording, the

specialists have to score the different signals according to one of the standard guidelines. This process is carried out

manually, which can be a high-time-consuming task and very prone to annotation errors. Therefore, over the years, many

approaches have been explored in an attempt to support the specialists in this task. In this paper, an approach based on

convolutional neural networks is presented, where an in-depth comparison is made in order to determine the convenience

of using more than one signal simultaneously as input. This approach is similar to the one made in other problems although,

additionally to those models, they were also used as parts of an ensemble model to check whether any useful information

can be extracted from processing a single signal at a time which the dual-signal model cannot identify. Tests have been

performed by using a well-known dataset called sleep-EDF-expanded, which is the most commonly used dataset as

benchmark for this problem. The tests were carried out with a leave-one-out cross-validation over the patients, which

ensures that there is no possible contamination between training and testing. The resulting proposal is a network smaller

than previously published ones, but it overcomes the results of any previous models on the same dataset. The best result

shows an accuracy of 92.67% and a Cohen’s kappa value over 0.84 compared to human experts.

Keywords Convolutional neural networks � Deep learning � Electroencephalography � Polysomnography �
Signal processing

1 Introduction

Among the essential body functions like breathing, eating

or drinking, sleeping is probably the most problematic one

nowadays. According to the US Government through its

Centers for Control of Disease and Prevention (CDC),

about 9 million citizens have frequent problems to develop

good quality sleep and end up resorting to sleeping pills

(Ford et al. 2014). In parallel, recent studies by Stranges

et al. (2012) and Chong et al. (2013) have estimated that at

least 15% of adult population might have some kind of

sleeping problem or poor quality sleep as a result of a

number of issues. Moreover, the World Health Organiza-

tion (WHO) (2015) claimed that a good quality sleep was

one of the most important factors for good health, while

sleeping problems were directly related to other diseases,

including depression, stress or early cardiac diseases.

As a consequence, new units focused on the study and

treatment of sleeping problems have been created in hos-

pitals all over the world. The physicians in these units have

as their main tool for their work the records obtained

during their patients’ sleep. These records, called

polysomnography (PSG), may include a great variety of

signals such as electrocardiograms, electroencephalograms,
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respiratory signals or movement records. Among these

signals, the most important one is the electroencephalo-

gram (EEG) because it is the most reliable to determine the

sleep stage a patient is in.

The interpretation of an EEG is a highly time-consum-

ing activity (Akben and Alkan 2016), which usually

requires a specialist, and it is deeply dependent on the

expert’s expertise. From EEGs, physicians mainly split the

records in two main stages: rapid eye movement (REM)

and non-rapid eye movement (NREM). Then, the latter

stage is also further subdivided in different substages. This

process can follow two different guidelines proposed by

Rechtschaffen & Kales (R&K) (Rechtschaffen and Kales

1968) and the American Academy of Sleep Medicine

(AASM) (Iber et al. 2007), respectively. Therefore, the

described annotating process tends to lead to a misclassi-

fication as a result of fatigue (Boashash and Ouelha 2016)

or the high amount of data. In fact, the dependency on the

expert has been measured as an agreement around 80% for

interobserver (Norman et al. 2000) and more or less the

same amount for intraobserver (Wendt et al. 2015).

In this work, an automatic sleep stage scoring system

based on 1-D convolutional neural networks (CNNs) is

proposed to perform sleep scoring while reducing the

dependency on experts to identify the features. Each layer

of a CNN is focused on refining the features of the previous

one by training the applied filters. Therefore, this kind of

neural network is able to train whichever features are more

suitable to solve a problem without requiring an expert to

identify them. By using this simple principle, the CNN has

been successfully applied in dealing with many problems

such as image classification (Krizhevsky et al. 2017),

synthetic image creation (Goodfellow et al. 2016) and

natural language processing (Deng and Yu 2014).

However, nowadays it is still unclear whether this kind

of artificial neural network is able to find the relationships

between the simultaneously recorded signals in order to

improve the solution to the problem.

This paper is structured as follows: an introduction; in

Sect. 2, there is a summary and discussion of the main

references; Sect. 3 contains an explanation of the data used

in this work and the method proposed to solve the problem

raised; Sects. 4 and 5 contain the description of the test and

the discussion of the results comparing them with previ-

ously published works; Sect. 6 contains the conclusions of

the work, whereas Sect. 7 exposes some future lines of

work that might be conducted from the results described in

Sects. 4 and 5.

2 Background

Electroencephalogram (EEG) is one of the very few

methods to study the brain and its behaviour. One of the

biggest issues of this method is the fact that the manual

labelling has to be made by specialists, resulting in a

monotonous task which is particularly prone to fatigue

errors. Therefore, there is a long list of works focused on

tackling the issue of automatic labelling of EEGs for dif-

ferent problems and diseases, for example, to identify

epileptic seizures using different methods (Tzallas et al.

2007; Übeyli 2010; Fernández-Blanco et al. 2013; Hassan

and Subasi 2016), some of which have focused on using

more than one signal at a time to perform the diagnosis

(Rivero et al. 2015; Acharya et al. 2018)

Another common problem in hospitals, which has not

attracted as much attention as others, like epilepsy, is the

labelling of polysomnography (PSG). These tests are

composed of several complex signals such as EEG, elec-

trocardiogram or respiratory records, which are simulta-

neously recorded during a night in a sleeping unit at a

hospital.

One of the first attempts to automate the scoring of the

EEGs contained in a PSG was the study conducted by

Berthomier et al. (2007). The authors used fuzzy logic in

combination with an iterative method to label the original

sleep-EDF dataset (Kemp et al. 2000) to classify the

records of eight patients, half of whom were using drugs to

sleep. The same dataset was also used in Hsu et al. (2013),

where the authors used a combination of the energy from

different frequency bands and a neural network to perform

the classification.

Other authors have focused their attention on the tem-

poral line to extract the features which made the classifi-

cation possible. For example, Liang and Kuo (2011)

proposed a decision tree to classify the features, and Dor-

oshenkov et al. (2007) used a hidden Markov model to

perform the classification. Alternatively, other authors have

explored other approaches for automatic feature extraction,

such as Liang et al. (2012), where a combination of a

multiscale entropy with a simple linear discriminant anal-

ysis (LDA) (McLachlan 2004) was used to score the

sleeping records. Other works have preferred to focus their

attention on other features with a high variety of classifi-

cation methods, such as statistical features with bagging

(Hassan et al. 2015a), power spectral density with artificial

neural networks (Ronzhina et al. 2012), graph theory fea-

tures with support vector machines (Zhu et al. 2014) or

moment features with boosting (Hassan et al. 2015b).

On the other hand, some proposals—instead of keeping

the timeline as it is—have transformed the search space in

order to improve the classification. For example, Vural and
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Yildiz (2008) applied a Karhunen–Loeve transform to

extract hybrid features for the classification, and Hassan

and Subasi (2017) used a wavelet transform to extract the

features and execute a boosting classifier.

Finally, the works which use deep learning (LeCun et al.

2015) as an approach ought to be pointed out because they

are the most closely related to the method discussed in this

paper. Deep learning techniques such as random belief

networks (Hinton 2009) and convolutional neural networks

(LeCun et al. 1998) are only two well-known examples of

techniques framed under the term deep learning. The

principle of those networks is simple: each new layer of a

neural network extracts higher-level features from the

information on the input. Applying this principle to EEGs,

the first attempt to score sleeping stages can be found in

Tsinalis et al. (2016), whose authors proposed the

autoencoders to solve the labelling problem in a 20-patient

dataset known under the name of sleep-EDF-expanded

described in Kemp et al. (2000). Moreover, using the sleep-

EDF-expanded in combination with another dataset known

as MASS O’Reilly et al. (2014), Supratak et al. (2017)

proposed a model called Deep Sleep which is based on a

two-pipeline network. Finally, Sors et al. (2018) proposed

an approach based on the feature extraction capabilities of

the convolutional neural networks (CNN) (Krizhevsky

et al. 2017), which was applied to a dataset called SNNS-1

(Quan et al. 1997). The latter work was the only one to use

this dataset, making the comparison of results particularly

difficult.

3 Materials and methods

3.1 Data description

The dataset described in Kemp et al. (2000), known as

sleep-EDF-expanded, which was obtained from Physionet

(Goldberger et al. 2000), is probably the most frequently

used when attempting to address the sleeping scoring issue.

It was also used in this work to perform the experiments.

The dataset contained 61 polysomnograms (PSGs)

recorded from two experiments. In the first, 20 healthy

patients were recorded in two consecutive days during

approximately 20 h each. In the second experiment,

records were obtained from people under medication due to

sleeping problems for a period between 6 and 8 h.

Although the second group is highly interesting, the only

data available were from the first night, when the patients

were without medication. Therefore, that limits the

usability of that section and the spotlight of this work was

on the first group, in order to maintain the same conditions

as in other previously published works, allowing for a

fuller and fairer comparison. Consequently, only the

healthy patients were included, and for each patient, two

recorded PSGs were used, except for three patients for

whom the data corresponding to only one night were

available, as explained in the original paper.

Recorded PSGs contained, among other data, two EEG

signals from Fpz-Cz and Pz-Oz electrode locations (Fig. 1)

which were recorded at a sampling frequency of 100 Hz.

Another important signal in the record is the hypnogram,

which contained the labels assigned by a specialist

according to the R&K guidelines (Rechtschaffen and Kales

1968). Therefore, one of the following labels was assigned

to each piece of 30 s: Awake, REM, Stage 1, Stage 2, Stage

3, Stage 4, movement time and unknown.

These data were adapted according to the new AASM

standard (Iber et al. 2007). Consequently, ‘unknown’ and

‘movement time’ sections were discarded. Stages 3 and 4

were joined together as a single class corresponding to light

sleep, and Awake, REM, Stage 1 and Stage 2 were kept. A

summary of those transformations is given in Table 1.

According to the aforementioned adaptations, the dataset

contained 110,925 sections of 30 s distributed as shown in

Table 1.

The main reason behind choosing this dataset and the

described adaptation is to increase the number of works to

compare it with, because several works have previously

used the same approach.

3.2 Convolutional neural networks

Based on the early works of Fukushima (1980) and LeCun

et al. (1998), convolutional neural networks (CNNs) and, in

general, deep learning have meant an important step for-

ward in many knowledge areas by becoming the state of

Fig. 1 Diagram of the possible location for the connector of an EEG
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the art for many problems. These works established a

hierarchy of layers, where each neuron receives as input a

spatially close related piece of information. Each neuron on

a layer receives different input data from a sliding window

over the signal or image. The weights are the same for all

neurons, unlike classical neural networks, where they are

different. Consequently, the result (X lð Þ) is the convolution

of the input features X l�1ð Þ with a set of learnable filters

W lð Þ, adding biases b lð Þ and, finally, applying some kind of

activation function gl, as described in Eq. 1

X lð Þ ¼ gl X l�1ð Þ �W lð Þ þ b lð Þ
� �

ð1Þ

If this scheme is repeated several times, the result is a

network where each layer extracts more general informa-

tion from the information on the previous layer, but con-

ditioned by the spatial relationship (LeCun et al. 2015).

Therefore, CNNs are usually composed of a number of

convolutional layers which extract the features of the sig-

nals or images. These extracted features are then followed

by some kind of classification technique such as a fully

connected perceptron or a softmax regression layer, which

gives the output class probabilities according to the fea-

tures extracted by the convolutional part.

This scheme has been successfully used with a wide

range of applications, although most of these works are

mainly related to image processing, such as face recogni-

tion (Taigman et al. 2014) and image classification (Rus-

sakovsky et al. 2015), while signal processing contributions

have been more uncommon (Dahl et al. 2012).

3.3 Proposed architecture

This paper proposes an architecture for scoring the sleep

stages of PSG by using a 1-D convolutional neural network

(CNN) much simpler than other proposed in recent works

on similar problems (Supratak et al. 2017; Sors et al. 2018).

These aforementioned works used only one of the

available signals in the dataset, whereas, for example, in

the one described by Kemp et al. (2000), there are always

two simultaneously recorded EEGs available. The archi-

tecture proposed in this work was tested separately with

each signal, and with both signals together as inputs,

resulting in three different systems. As mentioned in the

description of the dataset, signals were labelled by a

physician each 30 s; therefore, the size of the input would

be exactly the sampling rate by the number of seconds, i.e.

3000 inputs or 6000 depending on the number of signals

used as inputs.

After that, a series of seven convolutional layers with

kernel sizes running down from 7 to 3 were set, in an

attempt to extract more general features at the beginning,

while more specific and complex features were extracted in

the final stages. The initial and final sizes were chosen

according to several brain machine works (Sakhavi et al.

2018), which set these sizes as the most suitable for the

extraction of EEG features in time domain.

Therefore, 20 features for each application of the kernel

were the output of each convolutional layer. That output

was later modified by a ReLu transmission function. The

output of each convolutional layer passed through a pool-

ing layer which performed a maximum operation on each

two elements of the convolutional output. These pooling

layers shifted the attention of the network to the peaks of

the signal and later to the most promising features

throughout time. On the other hand, the depth of the net-

work was the result of a bunch of preliminary tests. As

shown in Fig. 2, the results of these convolutions are a set

of 400 high-level features which were fed in a fully con-

nected layer. In that figure, to simplify the representation,

combinations of convolution and max pooling layers were

represented as a single functional block with three

parameters, where the first one (K) represented the length

of the filter to be applied, the second one (F) was the

number of features that were going to be extracted and the

last one (M) was the size of the kernel for the max pooling

operation. The output layer would be composed of five

neurons, one for each class, which used a softmax function

to determine the belonging to each possible class in the

shape of a one-hot-encoding array. Additionally, in order to

improve the generalization, a dropout layer (Srivastava

et al. 2014) with a probability of 0.5 was applied. During

the training process, that dropout layer will change each

feature from the last convolutional layer to 0 with a

probability of the 50% previously to the application of the

fully connected layer which perform the classification.

Consequently, as (Srivastava et al. 2014) proof, due to this

noise, the classification layer cannot rely on a particular

feature for the classification which drives to the prevention

of overfitting during training.

Table 1 Number of 30-s-long

sections for each annotation

class according to the R&K and

AASM guidelines

R&K State AWA REM S1 S2 S3 and S4 Unknown and movement

AASM state Awaked REM N1 N2 N3 –

No. of sections 68,675 2662 16,791 5501 7296 –
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3.4 Training process

The training process of the architecture, described in

Sect. 3.3, was performed by following a variant of the K-

fold cross-validation (Mosteller and Tukey 1968) known as

leave-one-out. According to the general description, the K-

fold cross-validation divides the dataset in K subsets and

performs K experiments. In each of these experiments, a

different subset was used for testing, while the remaining

K-1 subsets were used for training. This process was

repeated K times, and finally, the average of the K results in

tests was calculated. If this process is taken to the limit and

the number K is equal to the number of elements in the

dataset, what we get is the aforementioned variant called

leave-one-out.

In this particular case, in order to check the general-

ization of the results, the scheme was applied to the number

of patients described in Sect. 3.1. The training was there-

fore repeated 20 times, leaving out a single patient with all

his signals in order not to corrupt the training process and

keep it as close to a real application as possible. Thus, 20

different experiments were carried out for each one of the

three possible inputs, i.e. only Fpz-Cz signal, only Pz-Oz

signal or both signals simultaneously. In each of these

training processes, the training set contained 19 patients

and the signal or signals from the other patient was/were

used as test set.

Once the test dataset was separated from the training

dataset, 10% of the remaining data were also reserved for

validation during training. The training process was then

carried out by following a mini-batch scheme with size 20.

Those mini-batches were fed to the networks before

updating the weights according to a gradient descent

algorithm. The validation dataset was evaluated each time

the remaining data were fed. This process was stopped after

reaching a threshold of 100 epochs or after not being able

to improve the validation loss after 10 epochs.

As a loss function for each one of those 20 trainings,

categorical cross-entropy was used. This function measures

the similarity between the distribution of the model output

and the ground-truth distribution when the outputs are in

the shape of a probability like the softmax layer does. In

Eq. 2, the formula can be seen, where p represents the

distribution of the ground truth, q represents the distribu-

tion of the model results and i represents each particular

response evaluated.

H p; qð Þ ¼ �
X
i

pðiÞ log q ið Þð Þ ð2Þ

Fig. 2 Diagram of the proposed architecture. The numbers in

parentheses of the ConvolutionMP blocks correspond to the length

of the filter, the number of filters and the length of the max pooling

size, while the one in the dropout layer corresponds to the probability

and the one in the fully connected layer to the number of outputs of

the network
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This loss function has been lately optimized by using the

adaptive moment estimation algorithm (Kingma and Ba

2015) with an initial value of 0.001, while using batches of

size 20 segments at the same time.

3.5 Ensemble: majority voting

In addition to the proposed architecture, an ensemble

model was also developed. Ensemble model is a topic that

over the years has attracted much interest in the machine

learning community. These models are meta-classifiers

which combine several individual classifiers in order to

obtain a more robust method. The ensemble of models can

be carried out by many different methods (Kuncheva

2002), such as majority voting, weighted majority voting

and naive Bayes combination.

In this work, in addition to the proposed architecture

explained in Sect. 3.3 with one or two signals as inputs, an

ensemble model was also tested by combining each of the

best networks obtained in each fold in the three different

approaches: using only the Fpz-Cz signal, using only the

Pz-Oz signal and with both of them. To perform the

combination, the majority voting system (Kuncheva and

Alpaydin 2007) was used due to its simplicity and little

computational overhead.

When applying this method, each model performs the

classification separately, and then, the meta-classifier

chooses the most commonly used class among the mem-

bers of the ensemble. In the case of a tie, an unknown label

is given. Therefore, if Mk; k 2 1; 2; . . .;Nf g represents each

member of an ensemble of N classifiers, where each clas-

sifier provides a label l; l 2 1; 2; . . .cf g as yk output, then

the majority vote (MV) could be defined as in Eq. 3.

MV ¼ arg max
l

XN
i¼1

d l; yið Þ ð3Þ

where d a; bð Þ ¼ 1 if a ¼ b and d a; bð Þ ¼ 0 if a 6¼ b. As

already explained, in case of a tie between two different

classes, an unknown label is returned and that window is

not classified.

3.6 Performance measures

In order to get an idea of the goodness of a particular model

on the test dataset, there are three main measures usually

provided by the different works as performance indicators:

accuracy, Cohen’s kappa and F1 score.

Generally speaking, the confusion matrix is composed

of the number of true positive (TP), false positive (FP),

false negative (FN) and true negative (TN) cases. The

accuracy measures the number of correctly classified

examples and is calculated by means of Eq. 4.

Accuracy ¼ TP þ TN

TP þ FP þ FN þ TN
ð4Þ

F1 score represents how representative are the TP cases

identified by the model and how many representative cases

were identified. This score can be calculated by means of a

harmonic mean between the precision and the recall of the

model (Eq. 5).

F1score ¼
2TP

2TP þ FN þ FP
ð5Þ

Finally, Cohen’s kappa (j) is a score used to measure

how alike are two classifiers once the agreement by chance

is removed. The score can be used, for example, to com-

pare how similar are a developed model and a human

expert. To calculate it, the agreement probability ðPeÞ and

the observed agreement proportion ðPoÞ were needed

before applying Eq. 6

j ¼ Po � Pe

1 � Pe

ð6Þ

4 Results

The main idea behind the test presented in this section is to

evaluate whether there is a difference in the performance

when the EEGs from a PSG are automatically scored by the

same network, but changing the input between three pos-

sibilities: Fz-Cz signal, Pz-Oz signal and both of them.

Moreover, an ensemble model of the best network for each

run was also tested with two main aims: first, determining

whether there is any valuable information that the single-

signal-input model can identify, whereas the dual-input-

signal model cannot, and second, determining whether

working independently with each channel and afterwards

mixing the results could be similar or better than simulta-

neously working with both channels.

The problem to be solved is to assign one of the five

possible labels defined in the AASM guideline, i.e. Awake,

REM, N1, N2 and N3, to each section contained in the

dataset without any additional filtering.

As previously mentioned in Sect. 3.4, tests were con-

ducted by applying the leave-one-out method to the sleep-

EDF dataset described in Sect. 3.1. Consequently, the

dataset was divided in 20 subsets corresponding to the 20

patients in the dataset. Therefore, each patient was used

only once for testing purposes and 19 times for training,

thus making up the 20 repetitions in the entire process.

Therefore, four experiments were conducted: first, using

only the Fpz-Cz channel as an input; second, using the Pz-

Oz channel as an input; third, using both signals as inputs;
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and finally, using an ensemble of the three best networks

for each fold.

The entire process was implemented in Python using

Keras as framework in combination with TensorFlow as

underlying support and it took around 20 h to execute it on

an Intel i7 computer with 16 Gb of RAM and an Nvidia

Titan X graphic card.

Figures 3 and 4 show the results for each patient in

accuracy and Cohen’s kappa, respectively. Both fig-

ures show the four different approaches performed in this

work: using channel Fz-Cz, using channel Pz-Oz, using

both channels at the same time and using an ensemble of

the best models. A closer look at the results in Fig. 3

pointed out to three cases. First, patient number 12 was

significantly better classified by the model using only Pz-

Oz channels. On the other hand, patient number 18 pre-

sented a clearly worse behaviour of the models with a

single channel as an input, whereas the ensemble and the

two-signal input performed clearly better. Finally, patient

number 5 show classification problems with any model.

The three cases confirm this behaviour if the attention is

focused on the kappa value represented in Fig. 4, which

could indicate that these three patients were wrongly

scored by the specialist or they were particularly difficult

cases, with little in common with the remaining patients.

Moreover, the analysis of the errors made by the

ensemble model points out to a disagreement between the

three models as the main source of classification error. In

Fig. 5, that analysis can be seen where each bar represents

the total of incorrectly classified sections with the source of

that error. That error could come from a disagreement

between the three models or a mistake made by two of

them. In the figure, patients 5, 12 and 18 show the higher

errors which are mainly due to a difficulty to achieve an

agreement between the models which once more seems to

point out to particularly difficult cases.

With these results, a Kolmogorov–Smirnov test (Smir-

nov 1948) was carried out to determine the normality of the

results distribution for each experiment, resulting in the

rejection of the null hypothesis. Consequently, under the

non-normality hypothesis—having tested the resulting

model against each patient—a Wilcoxon test (Wilcoxon

1945) for paired samples was performed under a significant

level of 0.05. When the double-signal-input model was

compared with the single-signal-input models, the statisti-

cal test showed a significant difference. More specifically,

the test returned 0.0251 when the double signal was com-

pared with the model using only the Fpz-Cz channel and

0.0028 when the Pz-Oz channel is used as an input. On the

other hand, the comparison between the double-signal-in-

put model and the ensemble model did not show any

difference.

5 Discussion

Based on the data shown in Table 2, and the statistical

analysis performed with the Wilcoxon test, it can be con-

cluded that using two signals improves the results over

using a single signal as an input, whereas the ensemble

model shows no advantage with respect to the double-

signal-input model. The main reason why the ensemble

Fig. 3 Accuracy results for each

patient
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was unable to improve the results of the double-signal

input lays on the incapacity of the single-signal-input

architectures to identify information that was not previ-

ously captured by the double-signal-input model.

As previously mentioned in Sect. 3.1, the sleep-EDF-

expanded dataset is the most commonly used dataset in the

literature and this was our main reason to choose it.

Table 3 contains a comparison of the results of previously

published works over the same dataset. It should be noted

that a proper comparison may be very difficult due to the

diversity of splitting strategies used in these works.

According to the splitting strategy, the research studies

can be divided into two main groups. First, some authors

performed what is called an ‘Example’ split. In this case,

data from the same patient can be present in training and

testing sets. On the other hand, the ‘Record’ splitting

strategy ensured that the data from a patient were used only

in training or testing sets, which is also closer to a real

Fig. 4 Cohen’s kappa results

for each patient

Fig. 5 Errors made by the

ensemble
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Table 2 Accuracy, Cohen’s kappa and F1 score for each experiment and test fold

Test patient ID Fpz-Cz Pz-Oz

Acc j F1 Acc j F1

01 0.9522 0.8981 0.7665 0.9401 0.8728 0.7275

02 0.9269 0.8625 0.7515 0.9257 0.8561 0.7101

03 0.9238 0.8484 0.7575 0.8965 0.7902 0.6850

04 0.9515 0.8940 0.7832 0.9389 0.8640 0.6995

05 0.8943 0.8083 0.7366 0.8650 0.7538 0.6170

06 0.9444 0.8725 0.7250 0.9424 0.8677 0.7151

07 0.9575 0.9028 0.7886 0.9037 0.7763 0.6338

08 0.9450 0.8857 0.8042 0.9176 0.8235 0.6808

09 0.9063 0.8136 0.6588 0.9190 0.8360 0.6797

10 0.9011 0.8284 0.7224 0.9053 0.8362 0.7185

11 0.9265 0.8578 0.7418 0.9116 0.8227 0.6119

12 0.8805 0.6874 0.6460 0.9205 0.8148 0.6734

13 0.9033 0.7864 0.7137 0.8891 0.7577 0.6562

14 0.9460 0.8885 0.8016 0.9111 0.8196 0.6708

15 0.9595 0.9128 0.7730 0.9602 0.9140 0.7561

16 0.9436 0.8867 0.7563 0.9028 0.8082 0.6517

17 0.9030 0.8106 0.7124 0.9142 0.8250 0.6630

18 0.8383 0.7197 0.6133 0.6630 0.7230 0.6072

19 0.9033 0.7825 0.6770 0.9098 0.7941 0.6581

20 0.8873 0.8085 0.6836 0.8964 0.8200 0.6949

Mean ± std. 0.9197 ± 0.0315 0.8377 ± 0.0614 0.7306 ± 0.0531 0.9016 ± 0.0600 0.8188 ± 0.0452 0.6755 ± 0.0399

Test patient ID Fpz-Cz and Pz-Oz Ensemble

Acc j F1 Acc j F1

01 0.9538 0.9027 0.7728 0.9544 0.9036 0.6348

02 0.9501 0.9039 0.8106 0.9419 0.8885 0.6362

03 0.9270 0.8552 0.7664 0.9249 0.8500 0.6261

04 0.9379 0.8608 0.7353 0.9490 0.8870 0.6230

05 0.8934 0.8073 0.7196 0.8882 0.7976 0.5863

06 0.9495 0.8841 0.7584 0.9488 0.8825 0.6072

07 0.9453 0.8748 0.7729 0.9473 0.8793 0.6345

08 0.9462 0.8887 0.7764 0.9430 0.8815 0.6379

09 0.9112 0.8209 0.6621 0.9214 0.8415 0.5575

10 0.9184 0.8587 0.7365 0.9150 0.8534 0.6173

11 0.9338 0.8679 0.7289 0.9338 0.8679 0.5932

12 0.8677 0.6651 0.6091 0.8818 0.6959 0.5365

13 0.9137 0.8085 0.7301 0.9167 0.8139 0.6012

14 0.9470 0.8914 0.8199 0.9396 0.8760 0.6478

15 0.9636 0.9221 0.7963 0.9647 0.9243 0.6536

16 0.9408 0.8823 0.7568 0.9397 0.8802 0.6183

17 0.9168 0.8344 0.7166 0.9190 0.8390 0.6023

18 0.8832 0.7816 0.6727 0.8824 0.7818 0.5384

19 0.9216 0.8273 0.7235 0.9150 0.8102 0.5802

20 0.9124 0.8507 0.7695 0.9048 0.8380 0.5988

Mean ± std. 0.9267 ± 0.0250 0.8494 ± 0.0569 0.7417 ± 0.0509 0.9265 ± 0.0240 0.8496 ± 0.0515 0.6066 ± 0.0337
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application of the system. From the authors’ point of view,

the preferred option is to make the split according to the

patient because otherwise the independency of the test

could be contaminated by having information from the

same source in the training set. Table 3 provides details on

the splitting strategy followed in each work. The split

column specifies ‘Record’ when the split was made by

patient record or ‘Example’, if the split was made based

only on the signal sections, without considering the patient

dependency.

Moreover, among the works which performed the split

by example, there are many strategies which were also

specified in the table. CV column shows the type of split

performed which may be k-fold when some cross-valida-

tion was used or a collection of three values representing

percentages for training, validation and testing size when

no cross-validation was used.

Finally, the obtained accuracy, j and F1 are also shown

as reference values in Table 3. An analysis of the results

clearly shows an improvement compared to previous works

on the same dataset. Even though in the cases where the

authors performed an Example splitting, which is supposed

to be easier, the proposed architecture achieved better

results in accuracy and j. In fact, if the focus is on the deep

learning works, the proposed model outperforms the results

in accuracy, j and F1. Comparing the j values with those

obtained by Tsinalis et al. (2016) and Supratak et al.

(2017), our results are better aligned with the results pro-

vided by the human experts than the two aforementioned

works. Moreover, the agreement of this model with the

human experts is nearly the same as the interobserver

agreement ratio measured in Norman et al. (2000).

With the remaining works, the comparison is more

difficult due to the previously discussed dataset splitting

strategy. However, this work shows better results in

accuracy and kappa value than any other previously pub-

lished work dealing with the same dataset.

Eventually, there are not many works to compare to, if

the focus is exclusively on deep learning approaches. In

order to increase the possibilities, some recently published

works are included in Table 4 even though some of them

were developed on different datasets and with different

input channels. All these works used a record split on the

datasets, and the objective was to rate according to the

AASM guidelines. Although the comparison is very diffi-

cult, there are two points which should be taken into

account. First, the proposed solution is the one with less

trainable parameters among the published approaches, and

second, the accuracy and kappa values are better than those

obtained in the remaining works. As already mentioned, if

only the works dealing with the same dataset and the same

splitting strategy were considered, the results obtained by

this architecture would be clearly better and the number of

parameters to train would be significantly smaller.

6 Conclusions

From the results contained in Sect. 5, three main conclu-

sions can be drawn. First and foremost, tests have shown

the advantages of using at least two signals as inputs

instead of only one, as it has been the case in the literature

so far. In fact, using the same architecture with three dif-

ferent inputs, Fpz-Cz, Pz-Oz or both signals at the same

Table 3 Comparison of accuracy, Cohen’s kappa ðjÞ and F1 of the works that performed their test on the sleep-EDF

References Technique Split

type

CV Accuracy j F1macro

Tsinalis et al. (2016) CNN Record 20-fold CV 0.75 0.65 0.70

Supratak et al. (2017) CNN-LSTM Record 20-fold CV 0.82 0.76 0.77

Zhu et al. (2014) Difference visibility graph, SVM Example 10-fold CV 0.89 0.79 0.73

Hassan and Bhuiyan

(2016a)

EMD domain, ensemble Example 0.6/0.05/0.35 0.87 0.82 0.80

Hassan and Bhuiyan

(2016b)

EMD, bootstrap aggregation Example 0.5/0.5 0.89 0.85 0.83

Hassan and Bhuiyan

(2016c)

Wavelet transform, spectral features, random

forest

Example 0.5/0.5, 20-fold

average

0.88 0.84 0.80

Hassan and Bhuiyan (2017) EMD, random undersampling boosting Example 0.5/0.5, 20-fold

average

0.83 0.76 0.74

This work CNN (Fpz-Cz) Record 20-fold CV 0.9197 0.8378 0.7307

CNN (Pz-Oz) Record 20-fold CV 0.9110 0.8188 0.6755

CNN (Fpz-Cz and Pz-Oz) Record 20-fold CV 0.9266 0.8594 0.7417

Ensemble Record 20-fold CV 0.9265 0.8496 0.6066
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time, proved that the results obtained by the network with

two inputs were statistically better than the ones obtained

with a single signal.

Moreover, tests have also shown that there was no dif-

ference between the double-signal-input model and the

ensemble model, which combined the three best architec-

tures in a single meta-classifier. This fact points out to the

impossibility of the single-signal-input models to identify

information which the double-signal-input model is not

able to. Therefore, when a PSG has to be labelled, it seems

convenient to include as many information in the input as

possible in order to help the network extract the valuable

relationships among the different available data.

Second, tests have also shown that it was possible to

develop smaller networks which improved the results.

When 1-D signals are processed, tests contained in Table 4

show an improvement when less features are extracted

from each layer. The reduction in the number of features

caused by the pooling layers has a positive outcome, which

may be due to an improvement in the meanness of the

features. Therefore, even though further experimentation

and analysis would be needed on these topics, the increase

in the pressure on the features extracted by the convolu-

tional layers seems profitable.

Finally, it should be pointed out that the proposed

architecture improves the previous state of the art and

performs better in the presented five-class problem. In fact,

regardless of the input, the architecture improves the results

of the previously published works in terms of accuracy and

j values.

7 Future work

The results of this work open several research lines. First,

further experiments are needed, including different chan-

nels and using other datasets. It would be also interesting to

include different signals from a PSG in the input to identify

whether the network is able to find patterns not only in the

EEGs, but also when using electrooculograms, electrocar-

diograms or electromyograms in the same architecture.

Therefore, having access to other datasets, such as the

aforementioned MASS and SHHS-1, would be necessary.

Secondly, it should be noted that, while in other

knowledge areas deep learning has had a deep impact, the

1-D signal processing still has very few models. This fact

limits the applicability of some of the most modern

approaches such as fine-tuning (Yosinski et al. 2014),

generative adversarial networks (Goodfellow et al. 2014)

or distillery (Goodfellow et al. 2016). Therefore, a research

line in the foreseeable future should be increasing the

number of the available models to apply the aforemen-

tioned new approaches.

Focusing exclusively on deep learning, it may be

interesting to conduct experiments which evaluate the

influence on the performance of the pressure in the

extracted features. By developing models with approaches

for further reduction of parameters such as the depthwise

convolution layers (Chollet 2017), very valuable informa-

tion could be obtained which could lead to modifications

when a network is being designed. Nowadays, since many

researchers increase the number of features extracted by

the convolutional kernel above that would be advisable to

prevent overfitting, identifying methods or mechanisms to

limit that number could be the key for more compact

developments.

Finally, the data from patients under treatment with

drugs have been excluded from the tests in this paper. It

would be interesting to explore whether there are differ-

ences between the EEGs of healthy patients and those

using medication. Combining both points of view, the next

step could be the development of a Siamese neural network

(Ranjan et al. 2017) which would be able to solve both

problems at the same time, labelling the section and

Table 4 Comparison of the results with the other Deep Learning published approaches

Reference Dataset Channels Patients CV Input size Accuracy j F1macro Trainable parameters

Tsinalis et al. (2016) Sleep-EDF Fpz-Cz 20 20-fold 3000 0.75 0.65 0.70 1,114,000

Supratak et al. (2017) Sleep-EDF Fpz-Cz 20 20-fold 3000 0.82 0.76 0.77 546,525,189

Sleep-EDF Pz-Cz 20 20-fold 3000 0.798 0.72 0.731

MASS F4-EOG 31 31-fold 3840 0.862 0.817 0.80

Sors et al. (2018) SHHS-1 C4-A1 5728 0.5/0.2/0.3 15,000 0.87 0.81 0.78 199,068,478

This work Sleep-EDF Fpz-Cz 20 20-fold 3000 0.9197 0.8378 0.7307 13,485

Sleep-EDF Pz-Oz 20 20-fold 3000 0.9110 0.8188 0.6755 13,485

Sleep-EDF Fpz-Cz

Pz-Oz

20 20-fold 6000 0.9266 0.8594 0.7417 13,625

Sleep-EDF Ensemble 20 20-fold 6000 0.9265 0.8496 0.6066 40,595
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identifying whether the data come from a patient using

drugs or not. This approach has been used in images

showing an improvement when the related problems are

solved at the same time.
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