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Abstract
Palmprint is one of the most reliable biometrics and has been widely used for human identification due to its high

recognition accuracy and convenience for practical application. But the existing palmprint-based human identification

system often suffers from image misalignment, pixel corruption and much computational time on the large database. An

effective palmprint recognition method is proposed by combining hierarchical multi-scale complete local binary pattern

(HMS-CLBP) and weighted sparse representation-based classification (WSRC). The hierarchical multi-scale local

invariant texture features are extracted firstly from each palmprint by multi-scale local binary pattern (MS-LBP) and multi-

scale complete local binary pattern (MS-CLBP) and are concatenated into one hierarchical multi-scale fusion feature

vector. Then, WSRC is constructed by the Gaussian kernel distance, and use the Gaussian kernel distances between the

fusion feature vectors of the training and testing samples. Finally, the sparse decomposition of testing samples is imple-

mented by solving the optimization problem based on l1 norm, and the palmprints are recognized by the minimum

residuals. The proposed method inherits the advantages of CLBP and WSRC and has good rotation, illumination and

occlusion invariance. The results on the PolyU and CASIA palmprint databases illustrate the good performance and

rationale interpretation of the proposed method.

Keywords Palmprint recognition � Local binary pattern (LBP) � Complete LBP (CLBP) � Hierarchical multi-scale CLBP

(HMS-CLBP) � Sparse representation-based classification (SRC) � Weighted SRC (WSRC)

1 Introduction

With the increasing demand of biometric solutions for

security systems, palmprint-based biometric, a relatively

reliable but promising biometric technology, has been

widely used in various access control and security-based

applications due to its convenience in use, reliability, low

cost, user friendliness and stable structure features and high

speed and accuracy in the area of biometric recognition

(Mansoor et al. 2011; Zhang et al. 2012; Raghavendra and

Busch 2015). Compared with fingerprints, iris and face,

palmprint contains a lot of discriminative characteristics,

such as palm creases, principal lines, wrinkles, ridges,

valleys, minutiae and even pores, and can be captured

using low-cost sensors with low resolution (Kylberg and

Sintorn 2013). Furthermore, ridge contains a lot of infor-

mation, e.g., ridge path deviation, line shape, pores, edge

contour, incipient ridges, warts and scars, a low-resolution

palmprint image has rich principal line and wrinkle infor-

mation, and specially, principal lines and wrinkles are

difficult to be recovered from a crime scene. An online

palmprint recognition system with high performance can

be established by combining principal line and wrinkle

characteristics (Abukmeil et al. 2015; Luo et al. 2016). The

palmprint-based biometric has been investigated for more

than 20 years, and many methods have been presented for

biometric authentication systems. Kong et al. (2009) pro-

vided an overview of current palmprint research, including

capture devices, preprocessing, palmprint-related segmen-

tation and feature extraction and verification algorithms.

Zhang et al. (2012) surveyed many palmprint recognition

methods, and carried out a comparative study to evaluate
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the performance of these methods, demonstrated the limi-

tations of the current palmprint recognition algorithms, and

pointed out the future directions for biometric recognition

algorithm. Dexing et al. (2018) presented a comprehensive

overview of recent research progress of palmprint recog-

nition, including data acquisition, database, preprocessing,

feature extraction, matching and fusion. They discussed the

challenges and future perspectives in palmprint recognition

for further works. Multispectral palmprint recognition is

one of the most well-known biometric recognition systems.

Yassir et al. (2019) provided an overview of recent state-

of-the-art multispectral palmprint recognition approaches

by describing their feature extraction and fusion, matching

and decision algorithms, evaluating their performances for

both verification and identification.

Local binary pattern (LBP) algorithm and its variants

have been widely applied to various feature extraction

owing to its high texture discrimination capability and low

computational cost (Song et al. 2013). LBP has shown its

superiority in palmprint feature extraction. Mu et al. (2010)

proposed a palmprint texture representation based on dis-

criminative local binary patterns statistic (DLBPS). In the

approach, a palmprint is firstly divided into non-overlap-

ping and equal-sized regions and they are labeled into LBP

independently, and then discriminative common vectors

algorithm is applied for dimensionality reduction of the

feature space. Dai et al. (2010) presented a palmprint

recognition method by combining local binary pattern

(LBP) and cellular automata. Sehgal (2015) proposed a

palmprint recognition using LBP and support vector

machines (SVM). Tamrakar and Khanna (2015) presented

a palmprint recognition approach based on the local dis-

tribution of uniform LBP (ULBP). ULBP refers to the

pattern of uniform appearance with limited discontinuities.

ULBP histograms can be used as features to handle

occlusion up to 36%. Inspired by the concepts of LBP

feature descriptors and a random sampling subspace, El-

Tarhouni et al. (2017) proposed a feature extraction tech-

nique that combines the pyramid histogram of oriented

gradients and LBP, where the features are concatenated for

palmprint classification. The performance of single LBP

operator is limited, while multi-scale or multi-resolution

could represent more image features under different set-

tings. Guo et al. (2017) proposed a collaborative repre-

sentation model with hierarchical multi-scale LBP (HMS-

LBP) for palmprint recognition. HMS-LBP can retrieve

useful information from non-uniform patterns and reduce

the influence of gray scale, rotation and illumination.

Biometric authentication via sparse representation-based

classification (SRC) has received more and more attention

in recent years (Xu et al. 2013; Jia et al. 2015). Weighted

SRC (WSRC) relies on a distance metric to penalize the

dissimilar data points and award the similar points (Yin and

Wu 2013). Given a test sample, WSRC pays more attention

to those training samples that are more similar to the test

sample in representing the test sample. In general, the

representation result of WSRC is sparser than that of SRC

and can obtain the better recognition results. In SRC and

WSRC, the precise choice of feature space is no longer

critical, and it is robust to corruption and occlusion. Spe-

cially, WSRC can preserve the similarity between the test

sample and its neighbor training data in seeking the sparse

linear representation (Fan et al. 2015). The recognition

performance can be improved by combining SRC and LBP.

Ouyang and Sang (2013) used histograms of oriented

gradient (HOG) descriptors and LBP conjunction with SRC

separately to get two judgment feature vectors and man-

aged to fuse them to achieve a better performance. Chan

and Kittler (2010) proposed a preliminary tentative of

combining LBP-based features with SRC for face recog-

nition. In view of the problem that common palmprint

recognition methods and systems are susceptible to noise

and rotation interference, Wang et al. (2014) presented a

palmprint recognition method by using ULBP and SRC.

The method utilizes ULBP to extract palmprint invariance

features and takes ULBP features of the training samples to

construct a redundant dictionary and achieves sparse

decomposition of testing samples by solving the opti-

mization problem based on l1 norm.

In the process of actual palmprint acquisition, the

quality, position, direction and stretching degree may

change from time to time, and the sizes and shapes of the

palmprints collected from the same palmprint at different

times are different. It is difficult to extract the robust

invariant features from the palmprint for further matching

(Kong et al. 2009; Zhang et al. 2012; Dexing et al. 2018).

Therefore, palmprint identification is still a very competi-

tive topic in biometric research because the palmprints

often change in terms of illumination, size, shape, rotation,

occlusion and noisy sensors, etc. (Raghavendra and Busch

2015; Kong et al. 2009). In the paper, motivated by HMS-

LBP (Guo et al. 2017), multi-scale complete LBP (MS-

CLBP) (Huang et al. 2016; Chen et al. 2015), weighted

SRC (WSRC) (Lu et al. 2013, 2017) and the recent

improvement in biometric recognition, combining HMS-

CLBP and WSRC, a novel palmprint recognition method is

proposed and validated on two public palmprint databases.

The major contributions of the proposed method are

listed as the following:

• HMS-CLBP is used to build a more powerful feature

representation of palmprint, and a lot of extensive

experiments are carried out to demonstrate its superior

performance in terms of classification accuracy and

computational complexity.
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• WSRC is combined with HMS-CLBP for palmprint

identification to improve the robustness against noise

and variation of illumination, rotation and occlusion.

• The experimental results on two public palmprint

databases verify the effectiveness of our proposed

method as compared to the state-of-the-art algorithms.

• The rest of this paper is arranged as follows: In Sect. 2,

we briefly review some related works, including LBP,

complete LBP (CLBP), HMS-CLBP, SRC and WSRC.

A new palmprint recognition method is proposed by

combining HMS-CLBP and WSRC in Sect. 3. Com-

parison experimental results are presented and analyzed

in Sect. 4. Finally, the conclusions and the future work

are given in Sect. 5.

.

2 Introduction

2.1 LBP, CLBP and HMS-CLBP

LBP is an effective descriptor of spatial structure infor-

mation of local image texture by considering the relation-

ship between a center pixel and its gray value. LBP is

calculated by,

LBPP;Rðx; yÞ ¼
XP�1

i¼0

2if ðgi � gcÞ;

f ðxÞ ¼ 1; x� T

0; otherwise

� ð1Þ

where gc is the gray value of (x, y), giði ¼ 0; 1; . . .;P� 1Þ
is the gray value of its neighborhood pixel on a circle of

radius, P is the number of neighborhood pixels around the

center pixel, R is the neighborhood radius from the refer-

ence pixel, f ðxÞ is the threshold function for the basic LBP

and T is the threshold value. T is set as 0 in the traditional

LBP.

The histogram of an image consists of information about

the distribution of the local micro-patterns, including spots,

flat areas, edge ends and curves. Suppose the texture image

is of size N 9 M. After conducting LBP of the image, the

histogram of LBP is calculated to represent the whole

texture image by,

HðkÞ ¼
XN

x¼1

XM

y¼1

hfLBPP;Rðx; yÞ ¼ kg ð2Þ

where k ¼ 0; 1; . . .;K � 1; hfAg ¼ 1; A is true

0; otherwise

�

and K is the number of different labels produced by the

LBP operator.

The LBP image is more efficient than the original image

in pattern classification due to the fact that the central gray

level gc is replaced by the combination of its neighbor gray

values. From Eq. (1), it is found that the original LBP only

uses the sign information of gi � gc, while ignoring the

magnitude information. However, the sign and magnitude

are complementary, and they can be used to exactly

reconstruct the difference gi � gc. Complete LBP (CLBP)

considers the signs and magnitudes of the image local

differences (Chen et al. 2015). Different from LBP, in

CLBP, ‘‘0’’ is coded as ‘‘- 1.’’ CLBP is defined as follows:

CLBPP;Rðx; yÞ ¼
XP�1

i¼0

2iFð gi � gcj j; cÞ;

Fðu; cÞ ¼ 1; u� c

0; otherwise

� ð3Þ

where c is a threshold that is set to the mean value of

gi � gc from the whole image.

Figure 1 illustrates an example of the LBP- and CLBP-

coded images corresponding to an input palmprint. From

Fig. 1, it is observed that both LBP and CLBP can capture

the spatial pattern and the contrast of local image texture

such as principal lines, wrinkles and ridges; moreover, LBP

is able to provide more detailed texture information than

CLBP (Lim et al. 2017).

LBP and CLBP features computed from a single scale

may not be able to detect the dominant texture features

from the palmprint image since they characterize the image

texture only at a particular resolution. In LBP and CLBP,

we can change the neighborhood radius R to obtain the

spatial resolution. A possible solution is to characterize the

image texture in multiple resolutions, i.e., multi-scale LBP

(MS-LBP) and multi-scale CLBP (MS-CLBP) (El-Tar-

houni et al. 2017; Guo et al. 2017), which can cope with the

limitation of LBP and CLBP. MS-LBP and MS-CLBP can

be implemented by combining the information provided by

multiple operators by varying (P, R) of LBP and CLBP.

For simplicity, the number of neighbors is fixed to P and

different values of R are tuned to achieve the optimal

combination. An example of four LBPs with different

scales is often set as P = 8, R1 = 1, R2 = 2, R3 = 3 and

R4 = 4, as shown in Fig. 2, and then four LBP histogram

feature vectors extracted from each LBP are concatenated

to form a multi-scale multiple resolution image

Original image LBP CLBP(a) (b) (c)

Fig. 1 Example of LBP- and CLBP-coded images of a palmprint
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representation. One disadvantage of MS-LBP and MS-

CLBP is that the computational complexity increases due

to multiple resolutions.

Another simple implementation scheme of MS-LBP and

MS-CLBP is often adopted by resizing the original image

to different scales (e.g., 1/2 and 1/4 of the original image).

First, the original image is down-sampled using the bicubic

interpolation to obtain multiple images at different scales.

The value of scale is between 0 and 1, where 1 denotes the

original image. Then, the LBP and CLBP operators of fixed

radius and the number of neighbors are applied to the

multiple-scale images. Each histogram of all LBPs and

CLBPs with different scales is calculated by Eq. (2),

respectively. Figure 3 illustrates MS-LBPs, MS-CLBPs

and their corresponding histograms with three scales.

From Fig. 3a–c, it is observed that MS-LBP and MS-

CLBP operators can capture the spatial pattern and the

contrast of local image texture, such as wrinkles, ridges,

edges and corners. Compared with Fig. 2, we find that the

images in Fig. 3 have smaller sizes than the original image

leading to much fewer pixels for the CLBP operator. To

facilitate computational efficiency, we choose the scale to

be between 0 and 1 in the following experiments. HMS-

CLBP is formed by combining MS-LBP and MS-CLBP,

and a composite feature vector is concatenated by all the

histogram features of HMS-CLBP, which is a hierarchical

multiple-scale image representation for a palmprint, as

shown in Fig. 3e, f. Then, the dimensionality of the HMS-

CLBP histogram features is much less than that of multiple

operators by varying (P, R) of LBP and CLBP.

2.2 SRC and WSRC

SRC utilizes an over-complete dictionary to linearly code a

probe sample, where the over-complete dictionary is

composed of all the training samples, the obtained coding

coefficients are sparse by imposing the l1-norm constraint,

and the probe sample is assigned into the class with the

minimum residual. Suppose there are n training samples

xi 2 Rmði ¼ 1; 2; . . .; n;m\nÞ and a testing sample y 2 Rm

from C different classes.

First, construct the dictionary matrix A 2 Rm�n by n

training samples xiði ¼ 1; 2; . . .; nÞ, and then normalize

each column of A to unit l2-norm, where each column of A

is training sample called basis vector or atom. To learn a

dictionary D to sparsely represent the test sample, solve the

following optimization problem,

argmin
a

Aa� yk k22þk ak k1 ð4Þ

where a is called as sparse representation coefficients of y,

it is a column vector and k[ 0 is a scalar regularization

parameter which balances the trade-off between the spar-

sity of the solution and the reconstruction error.

Equation (4) can be solved by exploiting the proposed

algorithms in Ref. Jia et al. (2015). According to the

nonzero coefficients in x, it can quickly know the class of

the test sample.

Then, compute residue riðyÞ ¼ y� Adik k2; i ¼ 1; 2;

. . .;C, where di : Rn ! Rn is the characteristic function

that selects the coefficients associated with the ith class.

Finally, identify the class label C(y) of y with the min-

imum residual, CðyÞ ¼ argmin
i

riðyÞ.

Original image  LBP (P=8, R=1, R=2, R=3and R=4)

Original image histogram              Histograms (P=8, R=1, R=2, R=3and R=24)

(a) (b)

(c) (d)

Fig. 2 An example of four CLBPs and corresponding histograms with different scales
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(a) Original image (b) MS-LBP (R=2, scale=1, 1/2 and 1/4) 

(c) MS-CLBP (R=2, scale=1, 1/2 and 1/4)

(d) LBP (P=8, R=2)

(e) MS-LBP (R=2, scale=1, 1/2 and 1/4)

(f) MS-CLBP (R=2, scale=1, 1/2 and 1/4)

Fig. 3 An example of LBP, MS-LBPs and MS-CLBPs and corresponding histograms
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In SRC, all training samples in the same class are con-

sidered equally important, which is unpractical. Moreover,

SRC may perform worse than conventional classifier when

there are enough training samples. WSRC relies on a dis-

tance metric to penalize the dissimilar data points and

award the similar points (Chen et al. 2015; Lu et al. 2013).

It tries to push the reconstructed sample from the true class

near to the testing sample and push the reconstructed

sample from all other false classes away from the testing

sample. Therefore, WSRC integrates both sparsity and

locality structures of the data to further improve the clas-

sification performance of SRC. Different from SRC,

WSRC solves a weighted l2-norm minimization problem

(Lu et al. 2017),

argmin
a

Aa� yk k22þk Wak k1 ð5Þ

where W is a diagonal weighted matrix, and its diagonal

elements are w1;w2; . . .;wn.

Equation (5) makes sure that the coding coefficients of

WSRC tend to be not only sparse but also local in linear

representation (Dai et al. 2010), which can represent the test

sample more robustly. After solving Eq. (5) and then

obtaining the coefficients x, the image classification proce-

dure is similar to that of SRC. Comparing Eq. (1) with

Eq. (5), it is clear thatWSRC is an extension of SRC. SRC is

a special case ofWSRCwhen each weight inWSRC is set to

1. The sparse representation of SRC andWSRC is calculated

by exploiting l1-normminimization problem (Lu et al. 2013).

Gaussian kernel distance can capture the nonlinear

information within the dataset to measure the similarity

between the samples, which is calculated by,

dðx; yÞ ¼ expð� x� yk k2=2b2Þ ð6Þ

where b is the Gaussian kernel width which is simply set as

the mean of all Gaussian kernel distances.

Then, for a training sample xi and a testing sample y, its

weight is wi ¼ dðxi; yÞ. After computing the weight of each

training sample, the weighted matrix W is denoted as:

diagðWÞ ¼ ½w1;w2; . . .;wn�T ð7Þ

In the following experiments, b is set as the average

Euclidean distance of the training samples (Fan et al.

2015),

b ¼ 1

M2

X

i;j

ðxi � xjÞ2 ð8Þ

where M is the number of the training samples.

Gaussian kernel distance is usually applied to the typical

kernel-based image classification methods such as kernel

principal component analysis (KPCA) and kernel dis-

criminant analysis (KDA), which put different weights on

individual images. It can be used to construct the weighted

values for WSRC (Fan et al. 2015). From Eq. (6), it is seen

the Gaussian kernel distance between any two samples is

between 0 and 1, so we can directly utilize this distance as

the weight of the training samples in WSRC (Yin and Wu

2013; Lu et al. 2013, 2017).

3 Palmprint identification by combining
HMS-CLBP and WSRC

Given a training sample and a test sample, if they belong to the

same class, they are commonly similar, and then the training

sample should be more important in representing the test

sample than other training samples. Therefore, we should

assign large weight to this training sample. When we employ

the weighted training samples to represent the test sample, the

representation coefficients may be sparser than that obtained

by the un-weighted training samples in the typical SRC. This

representation will be beneficial for image classification. In

classical WSRC, the distance between test samples and

training sample is used to form the weight matrix, which can

utilize data locality to seek the sparse linear representation, but

the local feature is not extracted effectively. We aim to mea-

sure the significance of each training sample in representing

the test samples. The significance can be evaluated by com-

puting the distance between the training sample and the test

sample. Gaussian kernel distance is used for defining the

weight of the training sample.

From the above analysis, we propose a palmprint iden-

tification method by combining HMS-CLBP and WSRC,

namely HMS-CLBP ? WSRC. It contains three main

steps: The first step is to extract the HMS-CLBP feature

vectors of all palmprints. The second step is to calculate

Gaussian kernel distances between the HMS-CLBP feature

vectors of the training samples and a given test sample.

Then, the weights of the training samples are determined

by the distance information. The third step is to perform

WSRC by using the weighted training samples. The

framework of the proposed method is shown in Fig. 4.

Suppose there are m training palmprint images and a

testing palmprint image. The steps of the proposed method

are listed in detail as follows:

1. Crop each palmprint image and obtain a region-of-

interest (ROI) image.

2. Resize each ROI image, generate three ROI images

corresponding to three different scales, i.e., scale = 1,

1/2 and 1/4, implement MS-LBPs and MS-CLBPs,

calculate their histograms from each ROI image,

respectively, and concatenate six histograms to form

a HMS-CLBP feature vector for the original image. To

address the inherent overfitting problem of linear

discriminant analysis, reduce the dimensionality of
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the concatenated feature vector by principle component

analysis (PCA) with retaining 50 maximum eigenval-

ues, and obtain final feature vector for a palmprint,

called as HMS-CLBP feature vector.

3. Compute the Gaussian kernel distances between the

HMS-CLBP feature vectors of test image and training

images, arrange all weighted HMS-CLBP feature vec-

tors of all the training images into a matrix X, normalize

the columns of X to have unit l2-norm, and establish a

redundant dictionary (training sample library).

4. Form the weight matrix W in weighted l1-norm

minimization problem.

5. Construct and solve the weighted l1-norm minimiza-

tion problem as Eq. (5), and obtain the sparse repre-

sentation coefficients.

6. Calculate the residual of each class.

7. Assign the test sample to the class with the minimum

residual.

4 Experiments and analysis

In this section, we validate the identification performance

of the proposed method using two widely used public

palmprint datasets and compare it with four state-of-the-art

palmprint recognition algorithms: local line directional

patterns (LLDP) (Luo et al. 2016), LBP and SVM (LBP-

SVM) (Sehgal 2015), ULBP histograms (ULBPH) (Tam-

rakar and Khanna 2015) and Pascal coefficients-based LBP

and PHOG descriptors (LBP-PHOG) (El-Tarhouni et al.

2017). In the proposed method, the HMS-CLBP features

are extracted and SRC is utilized for palmprint identifica-

tion. In LLDP, ULBPH and LBP-PHOG, the different

features are extracted from each cropped ROI image and

then the simple nearest neighborhood classifier is

employed to recognize palmprint, while in LBP-SVM, the

LBP features are extracted and support vector machines

(SVM) are used as classifier. All parameters in these

methods can be decided via cross-validation experiments

using the training data. For simplification, some parameters

can be empirically according to the existing references as

P = 8, R = 2, scale = 1, 1/2 and 1/4, and the parameter k in
Eq. (5) is set k ¼ 0:01(Fan et al. 2015; Lu et al.

2013, 2017). All experiments are conducted on an Intel i7

Quadcore 3.4 GHz desktop computer with 8-GB RAM,

Window 7 and MATLAB 7.0.

4.1 Preprocessing

Similar to other biometric identification systems, a palmprint

identification system includes capturing palmprint, seg-

menting region of interest (ROI), extracting and selecting

features and classifying and identifying individuals (Kong

et al. 2009; Zhang et al. 2012), where segmenting accurately

ROI from the palmprint plays a crucial role in the overall

palmprint recognition, because the rich textural information

of palmprint is in the center part of a palm, and it can define a

coordinate system to align the different palmprints collected

from the same palm; otherwise, the recognition result would

be unreliable. PolyU 2D palmprints were collected in a

constraint environment, and their ROIs have been extracted

in the database. CASIA palmprints were captured from dif-

ferent distances and positions between hand and camera.Due

to the different sizes of hand of each subject, the ROIs of

different sizes were segmented from CASIA database. The

main steps to extract ROIs include palmprint collection,

binarization, palmprint alignment, finger boundary extrac-

tion, coordinate alignment, ROI region and extracted ROI.

These steps are explained in detail as follows (Mansoor et al.

2011; Zhang et al. 2012; Raghavendra and Busch 2015;

Kylberg and Sintorn 2013; Abukmeil et al. 2015; Luo et al.

2016) (Fig. 5):

1. Convert the original palmprints into grayscale image

using a threshold obtained by local minima of palm-

print histogram and segment the palmprint region from

the background image. Then, the irrelevant parts of this

binary image are removed by morphological open

operations.

2. Segment palmprint by bounding box operation on the

mask of the region having the maximum area in the

binary images, and then perpendicularly rotate the

obtained segmented image to the maximum elliptical

axis, which is a line between tip of the middle finger

and mid of the wrist (Raghavendra and Busch 2015).

3. Extract the boundary of four fingers by tracing the

boundary pixel of palmprint segment from top left to

right bottom, while limiting the height of the fingers to

one-third height of the palmprint image.

4. Select the tips of four fingers on the basis of local

maximum of y coordinate on the boundary pixels of

fingers and label the gaps between two fingers as A and

Palmprint ROI image Resize, obtain
3 ROI images

Extract   
3 MS-LBPs, 
3 MS-CLBPs 

Extract histograms
concatenate into a 

feature vector  

Compute 
Gaussian 
distance  

Construct 
WSRC  

Compute 
residues of 
each class  

Select 
minimum 
residue

Identify 
test sample

PCA
Normalize

Fig. 4 Framework of the

proposed palmprint recognition

system
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B through the local minimum of the boundary pixels

between tips of two fingers.

5. Connect A and B by a line L1 and draw another line L2

passing through the middle point of L1

perpendicularly.

6. Draw a square region of size AB parallel to line AB at a

distance of one-tenth of line AB and finally segment

ROI image.

.

4.2 Experiments on PolyU dataset

The first experiment is carried out to test the algorithm on

PolyU dataset, which was constructed for research and

non-commercial purposes by the Hong Kong Polytechnic

University (PolyU) (http://www4.comp.polyu.edu.hk/

*biometrics/). The database has totally 7752 grayscale

images (384 9 288 pixels at 75 dpi) in BMP image format,

corresponding to 386 different the left and right palms of

193 individuals, and about 20 palmprints from each indi-

vidual were collected in a constraint environment in two

sessions, where about 10 palmprints were collected in each

session. The palmprints in the PolyU database have rela-

tively high image qualities. Figure 6 shows 40 normal

images and eight noisy images of palmprint ROI of PolyUI

database. In the database, the size of each ROI image is

128 9 128 pixels. From Fig. 6a, c, it is observed that there

are some noises and some variations in illumination and

Fig. 5 ROI extraction. a Original palmprint; b binarization; c finger boundary extraction; d coordinate alignment; e ROI location; f extracted
ROI

Fig. 6 Some examples from the PolyUI database
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position between the images captured at two sessions.

From Fig. 4, although the resolution is low, the wrinkles

and the principal lines are still clear in whole.

First, we select 200 palmprints of the top 10 subjects in

the PolyUI dataset to conduct a lot of experiments by

WSRC and SRC to indicate the advantage of WSRC.

Figure 7 shows some visualization results in two cases.

Figure 7a shows the first palmprint as a test image

belonging to the first subject from the PolyUI dataset.

Figure 7b shows the sparse representation coefficients for

this test image by SRC and WSRC directly using the

original palmprints, where the weights in WSRC are the

Gaussian kernel distances between any training palmprints

and the test palmprint. Figure 7c shows the sparse repre-

sentation coefficients for this test image by SRC and

WSRC using the HMS-CLBP feature vectors, where the

weights in WSRC are the Gaussian kernel distances

between the HMS-CLBP feature vectors of any training

palmprints and the test palmprint. The final coefficient of

each training sample equals the weight of this training

sample multiplying its representation coefficient obtained

by exploiting the typical SRC on the weighted training

samples.

From Fig. 7b, c, it is seen that the first training sample

belonging to the first class gets the largest coefficient in

both SRC and WSRC, and the four largest coefficients of

the training sample are 0.34223, 04125,0.3617 and 0.4615,

respectively, and the final representation coefficients

derived from WSRC are the sparsest. Therefore, the

effectiveness of HMS-CLBP ? WSRC is the best on the

HMS-CLBP feature vector set, and WSRC is better than

SRC as a whole in two cases, i.e., on the original dataset

and the extracted feature vector set. For most of the test

samples, the same result can be achieved in many experi-

ments on the PolyUI database.

In the following experiments, fivefold cross-validation

scheme is performed in which the PolyUI dataset is ran-

domly partitioned into five equal subsets and four palm-

print images from each individual in a subset. Among

them, four subsets are used for training and the remaining

subset is used for testing. The classification accuracy of one

cross-validation is the average over the five cross-valida-

tion evaluations. The cross-validation experiment is repe-

ated 50 times, and the average result is shown in Table 1.

The comparison results of LLDP (Luo et al. 2016), LBP-

SVM (Sehgal 2015), ULBPH (Tamrakar and Khanna 2015)

Fig. 7 Sparse representation coefficients of SRC and WSRC on 200 training palmprint images of the first ten individuals from PolyUI database
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and LBP-PHOG (El-Tarhouni et al. 2017) are also shown

in Table 1.

4.3 Experiments on CASIA dataset

The second experiment is performed on CASIA palm-

print dataset. The dataset was made by Institute of

Automation, Chinese Academy of Sciences (http://www.

cbsr.ia.ac.cn/english/Palmprint%20Databases.asp), which

contains 5335 grayscale palmprint images (640 9 480

pixels at 72 dpi) collected from 312 individuals in a

single session using CMOS camera, ten left palmprints

and ten right palmprints per subject. The two palms of

the same subject are considered as two distinct classes.

The setup imposes less physical constraints on the users’

palm as compared to PolyU capturing device and hence

leads to palm movements introducing distortions and

blurring in the captured palmprint images. Figure 8

illustrates 20 palmprints of a subject of CASIA palmprint

dataset.

Considering the palmprints of CASIA database suffer

more from palm movements and distortions, we firstly

resize each palmprint to 380 9 284 pixels before extract-

ing the ROI and then extract ROI image as in Sect. 4.1.

Fivefold cross-validation scheme is also applied and

repeated 50 times for palmprint identification. All the other

parameters are kept unchanged as in Sect. 4.2. The average

results of LLDP, LBP-SVM, ULBPH, LBP-PHOG, and the

proposed method are listed in Table 2.

4.4 Experiments on abnormal and occluded
palmprint sets

To show the robustness of the proposed method, two sets of

experiments are carried out two abnormal and occluded

palmprint testing sets, where the normal palmprint recog-

nition template used in Sects. 4.2 and 4.3 is employed.

4.4.1 Experiment 1

We select all palmprints of the top 20 subjects from PolyU

database. From of them, we artificially construct a set of 50

abnormal palmprints as test set, which are Gaussian noise,

salt- and pepper-noise and speckle noise, and irregular,

corruption and misalignment samples. The noise samples

are generated by the imnoise (I, type, M, V) function of

MATLAB 7.0, where type is noise modal such as Gaus-

sian, salt and pepper, and speckle noises, M is noise mean

and V is variance to the image I. We set as zero-mean noise

with 0.01 variance. Figure 9 shows ten abnormal palm-

prints. We carry out and repeat the recognition experiment

50 times. The average of the recognition rates of five

methods is shown in Table 3.

4.4.2 Experiment 2

We also use all palmprints of the top 20 subjects from

PolyU database to test the robustness of the proposed

method. In real life, the size and position of occlusion in

Table 2 Accuracy (%) of LLDP, LBP-SVM, ULBPH, LBP-PHOG and the proposed method on CASIA database

Method LLDP LBP-SVM ULBPH LBP-PHOG Our method

Recognition results 95.26 ± 0.43 93.28 ± 0.46 94.15 ± 0.38 96.06 ± 0.32 97.13 ± 0.27

Table 1 Accuracy (%) of LLDP, LBP-SVM, ULBPH, LBP-PHOG and the proposed method on PolyUI dataset

Method LLDP LBP-SVM ULBPH LBP-PHOG Our method

Recognition results 99.33 ± 0.11 97.42 ± 0.13 97.58 ± 0.14 99.17 ± 0.08 99.68 ± 0.08

Fig. 8 Ten left palmprints (above) and ten right palmprints (blow) of a subject of CASIA palmprint dataset
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palmprints vary for different reasons. To test the robustness

of the proposed method, we randomly select 50 palmprints

and artificially shade each palmprint with occlusion from 1

to 20% at any portion on it. Figure 10 shows some

occluded palmprints. The recognition template used in

Sects. 4.2 and 4.3 is also utilized to perform the palmprint

identification experiments. The identification experiments

are carried out and repeated 50 times. The averages of 50

experiments by five methods are listed in Table 4.

4.5 Computational complexity

In this subsection, we compare the computational com-

plexity of the related algorithms and the proposed method.

Fivefold cross-validation scheme is performed on the

PolyUI dataset to obtain the processing time for each

method. The processing time is the average over all the

palmprint images. Our code is written in MATLAB 7.0

software, and the experiments are performed on an Intel i7

Quadcore 3.4 GHz desktop computer with 8-GB RAM.

The related methods are LLDP (Luo et al. 2016), HM-LBP

(Guo et al. 2017), WSRC-MSLBP (Yin and Wu 2013) and

uniform LBP and sparse representation (ULBP-SR) (Wang

et al. 2014). In WSRC-MSLBP and ULBP-SR algorithms,

SR and WSRC are implemented based on l1 norm, and

WSRC is performed often faster than SR. Their efficiency

is usually lower than that based on l2 norm. The proposed

method is based on l2 norm. Table 5 lists the computational

time of each algorithm. From Table 5, our method is the

fastest. The main reason may be that the Gaussian kernel

distance in WSRC in our method can accelerate conver-

gence in WSRC. Our method is much faster than HM-LBP,

because we down-sample the original image instead of

altering the radius of a circle to change the spatial reso-

lution. For an image with size of Ix 9 Iy pixels, a total of

Ix 9 Iy 9 m thresholding operations are required for all

the pixels in each scale. Moreover, the MS-LBPs and MS-

CLBPs histograms are calculated based on Ix 9 Iy binary

strings. Therefore, HM-LBP is time-consuming. In our

method, we fix the radius and number of neighbors to the

images of different scales to develop a second multi-scale

analysis, which can reduce the computational complexity.

Among these algorithms, since LLDP needs to extract the

features from each image, which is also time-consuming, it

is worth mentioning that the proposed HMS-CLBP

Fig. 9 Abnormal bad palmprint examples

Table 3 Accuracy (%) of LLDP, LBP-SVM, ULBPH, LBP-PHOG and the proposed method on the abnormal set

Method LLDP LBP-SVM ULBPH LBP-PHOG Our method

Recognition results 78.43 ± 0.65 81.17 ± 0.57 89.53 ± 0.41 77.28 ± 0.66 90.26 ± 0.34

Fig. 10 Occluded palmprint examples

Table 4 Accuracy (%) of LLDP, LBP-SVM, ULBPH, LBP-PHOG and the proposed method on the occluded set

Method LLDP LBP-SVM ULBPH LBP-PHOG Our method

Recognition results 83.18 ± 0.38 81.06 ± 0.41 90.36 ± 0.37 82.21 ± 0.53 93.11 ± 0.26

Table 5 Computation time

(s) of the related different

algorithms

Method LLDP HM-LBP WSRC-MSLBP ULBP-SR Our method

Computation time 18 ± 1.8 24 ± 2.17 21 ± 2.3 19 ± 2.6 14 ± 1.6
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descriptor can be implemented in parallel to achieve high

computational efficiency.

4.6 Analysis

From Fig. 7, it is found that Gaussian kernel distance-based

WSRC (GWSRC) algorithm is more effective than Eucli-

dean distance-based WSRC (EWSRC) algorithm. Com-

pared with Euclidean distance, Gaussian kernel distance

can effectively capture the nonlinear information within the

dataset. EWSRC may fail to perform well if the Euclidean

distance between training and testing samples is very large

and the training sample is normalized to have unit l2-norm

which is often conducted in many SRC-based image clas-

sification methods. Because GWSRC between any training

sample and the test sample is between 0 and 1, it not only

can be directly used to calculate the sample weights in

SRC-based methods, but also can be used as the nonlinear

mapping that transforms the original input space into a

high-dimensional feature space.

Tables 1, 2, 3, 4 and 5 show that the proposed method

outperforms the other comparison methods, i.e., the

recognition rate is the highest and the computational time

is the least. Particularly, from Tables 3 and 4, it can

achieve the high recognition effect when there are some

bad and occluded samples. The improvement comes from

making full use of the respective advantages of HMS-

CLBP and WSRC. In fact, collecting palmprints is inevi-

tably affected by position, rotation, illumination, noise and

occlusion. The hierarchical multi-scale local invariant

texture features are extracted by HMS-CLBP, which not

only have rotation invariance and noise resistance, but also

better represent the biological characteristics of palmprint

image and effectively reduce the feature dimension. The

palmprints are effectively recognized by WSRC. It uses the

Gaussian kernel distance between the training and test

samples as the prior information to construct the SRC

model. It is robust against varying extents of occlusion.

5 Conclusion and the future work

Palmprint-based identification has always attracted

increasing amount of attention because line features are

abundant in palmprint so that palmprint recognition can be

used in complex environments. To improve the recognition

performance of the existing palmprint recognition system,

a palmprint recognition method is proposed by combining

HMS-CLBP and WSRC. Firstly, the hierarchical multi-

scale local invariant texture features are extracted from

each palmprint image by HMS-CLBP. The extracted fea-

tures are weighted and expanded into column vectors to

establish a redundant dictionary (training sample set).

Then, the test sample is sparsely represented in the dic-

tionary to obtain the sparse representation coefficients. The

recognition of palmprint images is realized by comparing

the residuals of different classes. The experimental results

on the PolyU and CASIA databases validate the good

performance of the proposed method. Although many

palmprint recognition methods have achieved satisfactory

recognition accuracy in the normal palmprint database,

robust palmprint recognition is still challenging. Several

interesting directions, such as unconstrained acquisition,

efficient palmprint representation, corrupted or occluded

palmprint recognition, might be promising for future

research. In future work, we intend to investigate a more

robust method for palmprint recognition system.
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