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Abstract
We propose a novel simple variant of differential evolution (DE) algorithm and call it TVDE because it is a time-varying
strategy-based DE algorithm. In our TVDE, three functions with time-varying characteristics are applied to create a new
mutation operator and automatically tune the values of two key control parameters (scaling factor and crossover rate) during
the evolutionary process. To verify its availability, the proposed TVDE has been tested on the CEC 2014 benchmark sets
and four real-life problems and compared to seven state-of-the-art DE variants. The experimental results indicate that the
proposed TVDE algorithm obtains the best overall performance among the eight DE algorithms.

Keywords Differential evolution · Time-varying strategy · Evolutionary algorithm · Continuous optimization

1 Introduction

Differential evolution (DE) algorithm,first proposedbyStorn
and Price (1997), has become one of the most efficient
continuous optimization algorithms. Its simple structure,
ease of use, efficiency, speed, and robustness have led to
a large interest in optimization field from both researchers
and practitioners in the last two decades. Specifically speak-
ing, DE has shown its advantages in a variety of numerical
optimization problems and practical applications, such as
constrained optimization (Mohamed and Sabry 2012), multi-
objective optimization (Qiu et al. 2016), multimodal opti-
mization (Liang et al. 2019), dynamic optimization (Mukher-
jee et al. 2016), flexible capacity planning (Hu et al. 2018),
engineering design (Yi et al. 2018), power systems (Zhu et al.
2018), neural networks (Arce et al. 2018) and so on. Review
literatures (Das and Suganthan 2011a; Das et al. 2016; Al-
Dabbagh et al. 2018) summarized various DE variants and
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applications, the interested readers can refer to the articles
therein.

Similar to other evolutionary algorithms, classic DE con-
tains three key operators: mutation, crossover and selection,
but itsmost striking feature is adopting a differentialmutation
operator to produce the offspring population. Therefore, for
DE algorithms, the mutation operator and its related control
parameters usually play the foremost role in the performance.
To enhance DE’s performance when dealing with different
kinds of optimization problems, many researchers have pro-
posed numerous mutation strategies and parameter tuning
mechanisms. Here, we only introduce some literatures which
are closely related and representative. In terms of opera-
tor improvement, (Zhang and Sanderson 2009) adopted the
top 100 × p% best individuals (denoted by xpbest) selected
from the current population to create a novel current-to-pbest
mutation strategy. Islam et al. (2012) proposed a novel muta-
tion strategy that taking the best individual in a dynamic
group, which is composed of randomly selected 100 × q%
individuals from the current population, as the directional
vector. Gong and Cai (2013) applied the fitness ranking of
every individual in the current population to determine their
respective selection rate and then proposed a new kind of
ranking-based mutation operator. Gong et al. (2015) further
improved their proposed ranking-based mutation operator
and introduced an adaptive ranking strategy which according
to the confronting situation of the current population. Wang
et al. (2013) designed a novel Gaussian mutation operator
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(its mean value is set to the average value of the current indi-
vidual and the best individual) and combined DE/best/1 to
propose a DE variant. Sun et al. (2019) combined a novel
Gaussian mutation operator which takes the best one of
three randomly selected individuals as the mean value and
a modified common mutation operator based on the order
of three selected individuals to enhance DE. Mohamed et al.
(2018) introduced a less greedymutation strategy and amore
greedy mutation strategy to balance the exploration capa-
bility and exploitation capability of DE, and both the two
mutation strategies are based on the order of three vectors
randomly selected from the current generation. Opara and
Arabas (2018) provided some formulas for the expectation
vectors and covariance matrices of the mutants’ distribution
to evaluate several operators of differential mutation. Various
techniques that combined different mutation strategies were
proposed in the past decades, which are used to enable DE
to solve a wide range of problems and further improve its
performance. Qin et al. (2009) proposed a self-adaptive DE,
in which for each iteration, a mutation strategy is chosen
from a given strategy candidate pool according to the cor-
responding posterior probability calculated via the previous
successful experience. Han et al. (2013) divided the individ-
uals into a superior group and an inferior group based on
their fitness values and designated two mutation operators
with different search features to those two groups, respec-
tively. Fan and Yan (2016) proposed a self-adaptive DE
with zoning evolution parameters and strategies, in which
each mutation strategy is randomly allocated to one indi-
vidual according to its corresponding selective probability
and cumulative probability. Zhou and Zhang (2019) pro-
posed an underestimation-based multimutation strategy for
DE, in which a set of candidate offsprings are simultaneously
generated for each target individual by utilizing multiple
mutation strategies. Sun et al. (2019) proposed two muta-
tion operators with different characteristics to produce the
respective mutant vector and provided a historical success
rate-based mechanism to coordinate the two adopted muta-
tion operators. Many researchers focus on the parameters
tuning mechanism to enhance DE. Sarker et al. (2014) used
a new mechanism based on the success rate and a reset tech-
nique to dynamically select the best performing parameter
combinations during the course of each single run. Yu et al.
(2014) simultaneously applied population-level parameters
(based on the information about exploration and exploita-
tion statuses) and individual-level parameters (according to
the individual’s fitness value and its distance to the global
best individual) to improve the performance of DE. Tang
et al. (2015) provided an individual-dependent mechanism
to determine the parameter setting and mutation operators.
Draa et al. (2015) applied two preset sinusoidal formulas to
periodically control the scale factor and crossover rate dur-
ing the search process and called it SinDE for short. Draa
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Fig. 1 The time-varying characteristic of function Mg × Pg in the
optimization process
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Fig. 2 The time-varying characteristic of scaling factor Fg in the opti-
mization process

et al. (2018) further introduced an opposition-based learning
method and a restart mechanism to boost the SinDE’s explo-
ration ability and avoid stagnation. Sun et al. (2018) applied
the fitness value information and one dynamic fluctuation
rule to automatically compute the values of scale factor and
crossover rate for each individual in every run.

It is well-known that maintaining a proper balance
betweenglobal exploration ability and local exploitation abil-
ity during the optimization routine is the core guideline of
designing evolutionary algorithms (Črepinšek et al. 2013).
For DE, although various mutation operators and effective
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Fig. 3 The time-varying characteristic of crossover rate CRi,g with different status in the optimization process

parameter tunning rules have been proposed, how to build
a proper balance model when handling different kinds of
problems is still a challenging task. We all know that the trial
vector generation strategy (mainly refer to mutation oper-
ator) and control parameter tunning strategy (scale factor
F and crossover rate CR) play the vital role in balancing
exploration ability and exploitation ability. In order to take
full advantage of the partnership between mutation operator
and control parameter, we first introduce a novel mutation
operator which takes a dynamic combination of the cur-
rent individual and the best individual as the base vector,
and the combination depends on a decreasing function and
a periodic function. In addition, one decreasing function,
one individual-dependence function and two wave functions

are used to compute the exact values of scale factor F and
crossover rate CR during the run. Since all the adopted three
key functions reflect the time-varying characteristics, we
denote the new proposed DE variant as TVDE for short.
To verify and analyze the performance of TVDE, numerical
experiments were conducted using CEC 2014 (Liang et al.
2013) benchmarks, real-life optimization problem and seven
efficient DE variants. Experimental results indicate that the
TVDE defeats all the competitors on account of overall per-
formance.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces the basic operators of original DE
algorithm. Section 3 describes the proposedTVDEalgorithm
and provides its overall procedure. Section 4 presents the
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Table 1 Summary of the IEEE CEC 2014 benchmark functions

Type No. Functions f ∗

Unimodal f1 Rotated high conditioned elliptic function 100

f2 Rotated bent cigar function 200

f3 Rotated discus function 300

Multimodal f4 Shifted and rotated Rosenbrock function 400

f5 Shifted and rotated Ackley’s function 500

f6 Shifted and rotated Weierstrass function 600

f7 Shifted and rotated Griewank’s function 700

f8 Shifted Rastrigin function 800

f9 Shifted and rotated Rastrigin’s function 900

f10 Shifted Schwefel function 1000

f11 Shifted and rotated Schwefel’s function 1100

f12 Shifted and rotated Katsuura function 1200

f13 Shifted and rotated HappyCat function 1300

f14 Shifted and rotated HGBat function 1400

f15 Shifted and rotated Expanded Griewank’s plus Rosenbrock’s function 1500

f16 Shifted and rotated Expanded Scaffer’s F6 function 1600

Hybrid f17 Hybrid function 1 1700

f18 Hybrid function 2 1800

f19 Hybrid function 3 1900

f20 Hybrid function 4 2000

f21 Hybrid function 5 2100

f22 Hybrid function 6 2200

Composition f23 Composition function 1 2300

f24 Composition function 2 2400

f25 Composition function 3 2500

f26 Composition function 4 2600

f27 Composition function 5 2700

f28 Composition function 6 2800

f29 Composition function 7 2900

f30 Composition function 8 3000

Search space: [−100, 100]D

comparative experiments between TVDE and its seven com-
petitors. Section 5 draws the conclusions.

2 Differential evolution

In basic DE algorithm, an initial random population consists
of NP individuals, and each individual is represented by one
D-dimensional vector xi = [xi,1, xi,2, . . . , xi,D]. The first
step is that randomly generating NP vector based on uniform
distribution to form the initial population. Then adopting
mutation operator and crossover operator to generate a trial
vector. One selection operator is executed between the parent
and its corresponding trial vector to choose the vector sur-

vived in the next generation at last. Detailed steps of basic
DE are provided below:

2.1 Initialization operation

For starting the optimization process, an initial population
must be created. The most widespread approach is to adopt
uniform distribution, i.e., each j th ( j = 1, 2, . . . , D) com-
ponent of the i th (i = 1, 2, . . . ,NP) individual in the initial
population is obtained as the following:

xi, j = L j + randi, j × (
Uj − L j

)
, (1)

where vectors L = [
L1, L2, . . . , LD

]
and U=[

U1,U2, . . . ,

UD
]
, respectively, represent the lower and upper bounds of
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Table 2 Comparative results on functions f1 − f15 with D = 30

Func. Metric SADE JADE GDE MGBDE SinDE IDDE GPDE TVDE

f1 Mean 3.22e+04 3.76e+04 6.85e+03 5.57e+03 1.92e+06 1.22e+05 5.21e+04 1.02e+05

Std. 2.17e+04 3.66e+04 6.41e+03 3.45e+03 1.11e+06 9.89e+04 3.51e+04 2.69e+05

+/=/– + + = − + + +
f2 Mean 4.84e−20 3.08e−20 3.06e−22 3.92e−15 2.90e−24 9.43e−23 1.35e−23 0.00e+00

Std. 2.39e−19 9.38e−20 3.80e−22 1.95e−14 1.01e−23 2.27e−22 2.17e−22 0.00e+00

+/=/– + + + + = + +
f3 Mean 9.82e−10 1.34e−01 3.56e−03 2.08e−18 2.18e−12 4.01e−21 5.42e−25 0.00e+00

Std. 4.91e−09 6.05e−01 9.98e−03 9.54e−18 9.18e−12 9.44e−21 1.83e−24 0.00e+00

+/=/– + + + + + + +
f4 Mean 1.39e+01 1.94e+01 5.48e+00 9.95e−05 1.43e+01 4.00e−01 2.99e+00 4.34e−01

Std. 2.72e+01 3.09e+01 1.89e+01 4.48e−04 2.28e+01 3.32e−01 1.49e+01 2.40e−01

+/=/– = = − − + = −
f5 Mean 2.04e+01 2.00e+01 2.09e+01 2.02e+01 2.06e+01 2.05e+01 2.00e+01 2.05e+01

Std. 4.74e−02 3.99e−03 1.48e−01 3.92e−02 4.77e−02 6.17e−02 6.53e−06 6.41e−02

+/=/– = − + − + + −
f6 Mean 8.93e+00 1.14e+01 8.25e+00 2.22e+01 1.93e−02 6.44e−01 1.33e+00 1.69e−01

Std. 2.03e+00 1.75e+00 2.85e+00 3.64e+00 9.27e−02 8.43e−01 1.16e+00 4.19e−01

+/=/– + + + + = + +
f7 Mean 1.89e−02 2.69e−02 1.30e−02 1.12e−02 0.00e+00 0.00e+00 2.17e−03 3.94e−04

Std. 2.10e−02 2.17e−02 1.75e−02 1.44e−02 0.00e+00 0.00e+00 4.17e−03 1.97e−03

+/=/– + + + + = = +
f8 Mean 4.78e+00 3.98e−02 6.38e+01 1.29e+02 4.70e−01 9.51e+00 9.79e+00 2.35e+00

Std. 2.54e+00 1.99e−01 1.58e+01 3.17e+01 5.69e−01 3.22e+00 3.72e+00 1.90e+00

+/=/– + − + + − + +
f9 Mean 4.59e+01 4.97e+01 7.46e+01 1.56e+02 3.58e+01 3.99e+01 3.46e+01 2.32e+01

Std. 1.09e+01 8.71e+00 2.74e+01 2.95e+01 7.51e+00 7.47e+00 9.26e+00 9.11e+00

+/=/– + + + + + + +
f10 Mean 3.40e+00 6.98e+00 1.80e+03 1.25e+03 9.31e+00 3.76e+01 1.25e+02 6.42e+01

Std. 2.09e+00 2.40e+01 6.43e+02 7.96e+02 4.77e+00 9.05e+01 9.65e+01 6.96e+01

+/=/– − − + + = = +
f11 Mean 2.42e+03 2.04e+03 5.06e+03 2.85e+03 2.35e+03 2.07e+03 1.97e+03 2.17e+03

Std. 5.45e+02 2.43e+02 1.60e+03 6.29e+02 4.08e+02 4.54e+02 4.71e+02 5.13e+02

+/=/– = = + + = = =
f12 Mean 5.91e−01 1.28e−01 1.77e+00 3.36e−01 8.04e−01 4.35e−01 1.49e−01 5.30e−01

Std. 8.56e−02 2.61e−02 8.70e−01 3.67e−02 1.24e−01 2.49e−01 7.84e−02 1.55e−01

+/=/– + − + − + = −
f13 Mean 2.80e−01 3.09e−01 3.64e−01 4.40e−01 2.06e−01 2.06e−01 2.40e−01 1.93e−01

Std. 5.43e−02 5.90e−02 7.23e−02 7.72e−02 5.27e−02 5.78e−02 6.84e−02 4.40e−02

+/=/– + + + + = = +
f14 Mean 2.41e−01 2.50e−01 2.95e−01 2.58e−01 2.42e−01 2.25e−01 2.22e−01 2.11e−01

Std. 4.47e−02 1.01e−01 9.12e−02 5.78e−02 2.60e−02 7.29e−02 3.40e−02 3.50e−02

+/=/– + + + + + = =
f15 Mean 4.57e+00 1.23e+01 8.12e+00 1.33e+01 4.81e+00 3.77e+00 3.75e+00 4.23e+00

Std. 1.31e+00 6.69e+00 2.95e+00 2.37e+00 9.80e−01 9.67e−01 9.44e−01 1.66e+00

+/=/– = + + + + = =
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Table 3 Comparative results on functions f16 − f30 with D = 30

Func. Metric SADE JADE GDE MGBDE SinDE IDDE GPDE TVDE

f16 Mean 1.03e+01 1.02e+01 1.10e+01 1.07e+01 1.00e+01 9.50e+00 9.64e+00 9.26e+00

Std. 4.16e−01 3.56e−01 1.12e+00 6.49e−01 5.22e−01 5.34e−01 7.85e−01 8.83e−01

+/=/– + + + + + = =
f17 Mean 5.95e+03 6.29e+04 1.91e+04 1.71e+03 1.25e+05 7.84e+03 3.84e+03 4.72e+03

Std. 4.17e+03 6.21e+04 3.03e+04 7.57e+02 1.20e+05 7.96e+03 3.53e+03 1.10e+04

+/=/– + + + = + + =
f18 Mean 8.34e+02 7.06e+02 7.43e+01 1.03e+02 5.15e+02 1.66e+01 2.16e+01 8.60e+02

Std. 1.22e+03 9.62e+02 1.90e+02 3.60e+01 6.94e+02 6.42e+00 9.20e+00 1.32e+03

+/=/– = − − − = − −
f19 Mean 4.23e+00 1.11e+01 4.73e+00 2.33e+01 3.71e+00 2.98e+00 3.45e+00 3.44e+00

Std. 1.23e+00 1.66e+01 1.20e+00 2.55e+01 7.18e−01 7.58e−01 1.18e+00 8.91e−01

+/=/– + + + + = − =
f20 Mean 1.08e+02 1.37e+03 2.88e+01 7.80e+01 2.57e+01 7.34e+00 1.71e+01 9.67e+00

Std. 1.42e+02 2.06e+03 2.19e+01 4.38e+01 2.85e+01 2.96e+00 1.12e+01 2.91e+00

+/=/– + + + + + − +
f21 Mean 4.84e+03 5.74e+03 3.29e+03 8.50e+02 9.23e+03 3.34e+02 3.63e+03 9.39e+02

Std. 4.42e+03 7.17e+03 5.36e+03 3.90e+02 7.52e+03 1.88e+02 4.61e+03 1.29e+03

+/=/– + + + + + − +
f22 Mean 1.55e+02 2.10e+02 4.82e+02 7.17e+02 7.25e+01 3.98e+01 2.90e+02 1.38e+02

Std. 8.61e+01 7.94e+01 2.09e+02 2.74e+02 6.28e+01 3.73e+01 1.41e+02 7.70e+01

+/=/– = + + + − − +
f23 Mean 3.15e+02 3.15e+02 3.15e+02 3.15e+02 3.15e+02 3.15e+02 3.15e+02 3.15e+02

Std. 1.38e−13 3.48e−13 6.13e−13 1.21e−12 1.24e−13 4.78e−14 1.04e−13 2.32e−13

+/=/– = = = = = = =
f24 Mean 2.28e+02 2.30e+02 2.35e+02 2.42e+02 2.23e+02 2.00e+02 2.27e+02 2.23e+02

Std. 5.41e+00 3.87e+00 7.27e+00 1.18e+01 8.57e−01 1.65e−02 4.51e+00 5.88e+00

+/=/– + + + + = − +
f25 Mean 2.10e+02 2.12e+02 2.04e+02 2.20e+02 2.04e+02 2.03e+02 2.04e+02 2.04e+02

Std. 2.07e+00 1.47e+00 1.19e+00 6.22e+00 6.64e−01 2.53e−01 7.80e−01 4.62e−01

+/=/– + + = + + = =
f26 Mean 1.12e+02 1.56e+02 1.00e+02 1.56e+02 1.00e+02 1.00e+02 1.08e+02 1.00e+02

Std. 3.31e+01 5.05e+01 9.32e−02 5.04e+01 3.99e−02 4.22e−02 2.76e+01 2.88e−02

+/=/– + + + + = = +
f27 Mean 4.36e+02 4.29e+02 4.28e+02 8.61e+02 3.02e+02 3.19e+02 3.34e+02 3.22e+02

Std. 5.74e+01 6.28e+01 5.93e+01 3.11e+02 7.08e+00 2.13e+01 3.49e+01 3.88e+01

+/=/– + + + + − = +
f28 Mean 9.12e+02 9.19e+02 9.56e+02 2.60e+03 7.94e+02 7.87e+02 7.93e+02 7.89e+02

Std. 4.37e+01 6.51e+01 6.23e+01 7.61e+02 3.23e+01 4.32e+01 2.60e+01 5.04e+01

+/=/– + + + + = = =
f29 Mean 6.83e+02 7.84e+02 4.80e+02 7.18e+02 1.32e+03 8.88e+02 6.32e+02 1.08e+03

Std. 2.64e+02 2.69e+02 2.73e+02 1.26e+02 2.39e+02 9.32e+01 1.96e+02 1.35e+02

+/=/– − − − − + − −
f30 Mean 1.96e+03 2.05e+03 1.11e+03 2.14e+03 8.10e+02 1.14e+03 1.62e+03 1.02e+03

Std. 6.22e+02 5.50e+02 3.00e+02 7.18e+02 1.69e+02 4.56e+02 7.04e+02 3.18e+02

+/=/– + + = + − = +
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Table 4 Comparative results on functions f1 − f15 with D = 50

Func. Metric SADE JADE GDE MGBDE SinDE IDDE GPDE TVDE

f1 Mean 1.81e+05 7.59e+04 4.26e+05 6.96e+04 2.96e+06 4.07e+05 9.52e+05 2.54e+05

Std. 7.78e+04 3.67e+04 1.89e+05 3.61e+04 1.02e+06 1.66e+05 3.05e+05 4.09e+05

+/=/– = = = − + + +
f2 Mean 4.72e+03 4.03e+03 2.27e+01 1.37e−10 4.15e+03 5.00e−02 1.75e+00 2.47e−16

Std. 4.07e+03 5.19e+03 3.58e+01 4.09e−10 2.76e+03 1.08e−01 3.35e+00 2.42e−16

+/=/– + + + + + + +
f3 Mean 1.91e+01 3.88e−02 3.09e+01 2.70e−05 5.81e+02 6.05e+00 1.45e+00 6.54e−09

Std. 2.32e+01 1.04e−01 3.14e+01 4.57e−05 4.24e+02 1.01e+01 4.09e+00 1.28e−08

+/=/– + = + + + + +
f4 Mean 6.24e+01 6.26e+01 2.41e+01 1.50e+01 9.28e+01 9.72e+01 4.37e+01 4.14e+01

Std. 3.62e+01 2.72e+01 3.31e+01 3.83e+01 3.51e+00 3.34e+00 3.58e+01 4.29e+01

+/=/– = = = − + + =
f5 Mean 2.07e+01 2.01e+01 2.11e+01 2.04e+01 2.08e+01 2.07e+01 2.00e+01 2.06e+01

Std. 3.48e−02 8.33e−03 5.23e−02 2.87e−02 3.49e−02 3.92e−02 4.73e−06 6.64e−02

+/=/– + − + − + + −
f6 Mean 1.95e+01 2.54e+01 1.53e+01 4.19e+01 4.07e−02 1.70e+00 4.97e+00 9.69e−02

Std. 3.73e+00 2.37e+00 2.82e+00 4.31e+00 1.34e−01 1.44e+00 2.99e+00 3.72e−01

+/=/– + + + + = + +
f7 Mean 8.70e−03 2.16e−02 9.03e−03 6.24e−03 1.18e−16 1.04e−16 6.57e−04 9.62e−17

Std. 9.17e−03 4.29e−02 9.96e−03 6.16e−03 1.29e−16 1.42v16 2.55e−03 1.02v16

+/=/– + + + + = = =
f8 Mean 9.42e+00 6.63e−02 1.11e+02 2.58e+02 1.10e+01 3.44e+01 1.57e+01 9.22e+00

Std. 3.62e+00 2.57e−01 2.01e+01 4.42e+01 4.33e+00 4.86e+00 3.93e+00 3.47e+00

+/=/– = − + + = + +
f9 Mean 9.15e+01 1.04e+02 1.09e+02 2.95e+02 7.04e+01 8.09e+01 6.76e+01 4.50e+01

Std. 1.15e+01 1.46e+01 2.81e+01 3.68e+01 1.92e+01 1.97e+01 9.61e+00 9.70e+00

+/=/– + + + + + + +
f10 Mean 2.50e+00 3.05e+00 3.46e+03 3.37e+03 1.57e+02 4.20e+01 2.03e+02 3.39e+02

Std. 1.07e+00 9.81e−01 1.13e+03 1.93e+03 8.15e+01 1.06e+01 1.46e+02 1.58e+02

+/=/– − − + + − − =
f11 Mean 7.04e+03 4.07e+03 1.26e+04 5.65e+03 4.95e+03 4.45e+03 4.52e+03 4.87e+03

Std. 4.82e+02 4.54e+02 2.13e+03 6.00e+02 7.01e+02 7.44e+02 6.60e+02 8.61e+02

+/=/– + − + + = = =
f12 Mean 7.82e−01 1.57e−01 3.15e+00 4.10e−01 1.34e+00 8.49e−01 1.54e−01 8.25e−01

Std. 9.98e−02 1.51e−02 4.66e−01 3.78e−02 1.25e−01 2.96e−01 6.97e−02 2.41e−01

+/=/– = − + − + = −
f13 Mean 4.17e−01 4.56e−01 5.06e−01 5.46e−01 3.46e−01 3.38e−01 3.44e−01 2.72e−01

Std. 5.86e−02 6.73e−02 9.63e−02 1.12e−01 5.18e−02 6.62e−02 6.10e−02 5.31e−02

+/=/– + + + + + + +
f14 Mean 3.14e−01 2.85e−01 3.50e−01 3.60e−01 2.48e−01 2.57e−01 2.46e−01 2.83e−01

Std. 3.21e−02 1.76e−02 1.57e−01 1.30e−01 3.08e−02 8.07e−02 2.42e−02 1.07e−01

+/=/– + + + + = = =
f15 Mean 1.44e+01 3.03e+01 1.85e+01 2.77e+01 8.38e+00 6.35e+00 6.86e+00 7.80e+00

Std. 3.35e+00 7.10e+00 1.20e+01 4.11e+00 1.56e+00 1.35e+00 1.81e+00 2.08e+00

+/=/– + + + + = = =
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Table 5 Comparative results on functions f16 − f30 with D = 50

Func. Metric SADE JADE GDE MGBDE SinDE IDDE GPDE TVDE

f16 Mean 1.98e+01 1.86e+01 2.22e+01 1.92e+01 2.00e+01 1.86e+01 1.86e+01 1.86e+01

Std. 2.50e−01 4.04e−01 3.04e−01 4.33e−01 6.39e−01 1.03e+00 9.38e−01 1.37e+00

+/=/– + = + + + = =
f17 Mean 2.23e+04 9.29e+04 5.48e+04 1.06e+04 3.94e+05 8.66e+04 5.41e+04 2.71e+04

Std. 1.41e+04 7.40e+04 3.40e+04 4.95e+03 2.26e+05 6.35e+04 2.85e+04 3.09e+04

+/=/– = + + − + + +
f18 Mean 4.02e+02 8.88e+02 1.50e+02 6.03e+02 3.53e+02 2.74e+02 4.28e+01 2.53e+02

Std. 3.23e+02 7.82e+02 1.56e+02 1.20e+03 3.13e+02 2.10e+02 3.36e+01 2.16e+02

+/=/– = + = = = = −
f19 Mean 1.36e+01 3.40e+01 9.41e+00 1.92e+01 9.58e+00 8.50e+00 6.82e+00 1.11e+01

Std. 5.79e+00 2.14e+01 4.50e+00 2.18e+00 7.10e−01 1.07e+00 1.34e+00 3.70e+00

+/=/– + + − + − − −
f20 Mean 2.39e+02 6.87e+02 4.80e+02 1.81e+02 2.16e+02 3.79e+01 1.17e+02 7.80e+01

Std. 6.34e+01 1.37e+03 5.13e+02 4.31e+01 1.53e+02 1.55e+01 1.45e+02 3.16e+01

+/=/– + + + + + − =
f21 Mean 2.65e+04 4.22e+04 2.93e+04 3.02e+03 2.62e+05 3.46e+04 3.13e+04 1.23e+04

Std. 1.94e+04 4.93e+04 2.48e+04 1.81e+03 1.49e+05 2.07e+04 3.80e+04 9.91e+03

+/=/– + + + − + + +
f22 Mean 4.22e+02 5.80e+02 1.36e+03 1.23e+03 2.57e+02 1.96e+02 2.14e+02 3.14e+02

Std. 1.04e+02 1.07e+02 4.14e+02 3.62e+02 1.49e+02 1.43e+02 1.64e+02 2.13e+02

+/=/– + + + + = = =
f23 Mean 3.44e+02 3.44e+02 3.44e+02 3.44e+02 3.44e+02 3.44e+02 3.44e+02 3.44e+02

Std. 1.55e−13 2.36e−13 1.87e−13 5.02e−13 1.15e−13 1.17e−13 8.73e−14 8.32e−14

+/=/– = = = = = = =
f24 Mean 2.72e+02 2.78e+02 2.81e+02 3.02e+02 2.64e+02 2.56e+02 2.63e+02 2.65e+02

Std. 6.57e+00 3.95e+00 3.36e+00 1.13e+01 3.28e+00 2.12e+00 6.01e+00 3.97e+00

+/=/– + + + + = − =
f25 Mean 2.10e+02 2.28e+02 2.08e+02 2.38e+02 2.10e+02 2.07e+02 2.08e+02 2.08e+02

Std. 1.01e+01 2.16e+00 2.06e+00 4.72e+00 1.29e+00 9.22e−01 2.23e+00 2.28e+00

+/=/– = + = + + − =
f26 Mean 1.54e+02 1.20e+02 1.00e+02 1.07e+02 1.00e+02 1.00e+02 1.09e+02 1.13e+02

Std. 5.15e+01 4.12e+01 7.72e−02 2.57e+01 2.36e−02 5.72e−02 3.51e+01 3.38e+01

+/=/– + + = = = = =
f27 Mean 7.70e+02 7.75e+02 7.05e+02 1.58e+03 3.22e+02 3.46e+02 4.32e+02 3.26e+02

Std. 8.80e+01 1.53e+02 1.05e+02 1.48e+02 2.13e+01 1.31e+01 3.60e+01 3.04e+01

+/=/– + + + + = = +
f28 Mean 1.42e+03 1.61e+03 1.45e+03 5.36e+03 1.09e+03 1.06e+03 1.19e+03 1.10e+03

Std. 1.14e+02 2.46e+02 1.10e+02 1.03e+03 3.62e+01 2.12e+01 5.11e+01 5.62e+01

+/=/– + + + + = − +
f29 Mean 1.05e+03 9.94e+02 8.36e+02 8.96e+02 1.89e+03 1.43e+03 1.27e+03 1.21e+03

Std. 1.93e+02 1.17e+02 2.51e+02 2.04e+02 3.13e+02 2.59e+02 2.25e+02 2.05e+02

+/=/– − − − − + + =
f30 Mean 1.06e+04 1.14e+04 9.89e+03 1.18e+04 8.99e+03 8.26e+03 9.07e+03 8.83e+03

Std. 1.68e+03 1.71e+03 5.53e+02 9.07e+02 2.86e+02 2.93e+02 4.86e+02 3.90e+02

+/=/– + + + + = − =
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Table 6 Comparative results on functions f1 − f15 with D = 100

Func. Metric SADE JADE GDE MGBDE SinDE IDDE GPDE TVDE

f1 Mean 8.96e+05 4.70e+05 8.29e+06 4.38e+05 2.19e+07 3.39e+06 9.59e+06 2.77e+06

Std. 1.45e+05 1.93e+05 3.20e+06 1.51e+05 5.50e+06 1.41e+06 2.74e+06 3.21e+06

+/=/– − − + − + + +
f2 Mean 1.31e+04 6.38e+03 1.74e+04 2.80e−10 1.06e+04 3.31e+00 1.23e+01 2.85e−14

Std. 8.76e+03 1.08e+04 2.13e+04 4.04e−10 6.32e+03 8.21e+00 1.50e+01 1.07e−13

+/=/– + + + + + + +
f3 Mean 7.66e+01 8.65e+00 5.22e+03 2.51e−02 3.22e+03 5.09e+02 3.45e+02 4.97e−02

Std. 6.52e+01 2.83e+00 4.07e+03 6.79e−02 1.34e+03 4.66e+02 2.62e+02 6.96e−02

+/=/– + + + − + + +
f4 Mean 1.71e+02 1.62e+02 1.89e+02 1.35e+02 1.59e+02 1.87e+02 1.60e+02 1.55e+02

Std. 4.05e+01 4.80e+01 3.38e+01 5.92e+01 2.57e+01 3.15e+01 2.77e+01 2.36e+01

+/=/– + = + = + + +
f5 Mean 2.10e+01 2.03e+01 2.13e+01 2.07e+01 2.12e+01 2.11e+01 2.00e+01 2.10e+01

Std. 2.30e−02 1.75e−02 2.31e−02 2.06e−02 2.46e−02 3.01e−02 9.75e−07 4.52e−02

+/=/– = − + − + + −
f6 Mean 6.44e+01 7.23e+01 4.56e+01 1.03e+02 4.79e+00 7.71e+01 6.36e+00 2.09e+00

Std. 5.35e+00 3.68e+00 7.45e+00 5.42e+00 2.59e+00 7.48e+00 3.85e+00 1.28e+00

+/=/– + + + + + + +
f7 Mean 2.63e−03 6.39e−03 6.07e−03 3.61e−03 7.52e−11 2.65e−14 3.77e−16 2.67e−15

Std. 6.20e−03 1.06e−02 9.15e−03 6.02e−03 6.49e−11 1.39e−14 2.44e−16 1.13e−15

+/=/– + + + + + + −
f8 Mean 1.92e+01 4.17e+00 2.32e+02 5.84e+02 6.22e+01 8.49e+01 3.92e+01 3.65e+01

Std. 5.89e+00 9.84e−01 4.44e+01 4.27e+01 8.16e+00 1.57e+01 6.47e+00 6.62e+00

+/=/– − − + + + + =
f9 Mean 2.77e+02 2.72e+02 3.30e+02 6.57e+02 1.36e+02 1.23e+02 1.45e+02 8.99e+01

Std. 2.84e+01 2.04e+01 1.65e+02 7.80e+01 2.61e+01 2.77e+01 2.72e+01 1.54e+01

+/=/– + + + + + + +
f10 Mean 1.26e+02 1.49e+01 6.69e+03 1.01e+04 5.53e+03 1.46e+03 5.73e+02 2.72e+03

Std. 1.97e+01 2.49e+00 1.25e+03 3.99e+03 7.98e+02 3.64e+02 2.32e+02 9.45e+02

+/=/– − − + + + = −
f11 Mean 2.05e+04 1.06e+04 3.03e+04 1.41e+04 1.53e+04 1.17e+04 1.22e+04 1.54e+04

Std. 5.94e+02 6.56e+02 5.24e+02 1.21e+03 2.10e+03 1.25e+03 2.12e+03 2.71e+03

+/=/– + − + = = − −
f12 Mean 1.62e+00 2.91e−01 4.01e+00 6.80e−01 2.49e+00 1.79e+00 3.18e−01 1.50e+00

Std. 1.51e−01 3.69e−02 1.74e−01 5.26e−02 1.30e−01 3.92e−01 1.22e−01 1.92e−01

+/=/– = − + − + + −
f13 Mean 4.67e−01 4.85e−01 6.53e−01 5.90e−01 5.33e−01 5.16e−01 4.71e−01 4.20e−01

Std. 3.88e−02 5.58e−02 8.10e−02 8.60e−02 4.26e−02 7.23e−02 6.06e−02 5.33e−02

+/=/– + + + + + + +
f14 Mean 3.21e−01 2.88e−01 3.47e−01 3.67e−01 2.83e−01 2.80e−01 2.80e−01 2.88e−01

Std. 1.97e−02 2.10e−02 3.77e−02 1.07e−01 2.40e−02 2.47e−02 1.74e−02 2.72e−02

+/=/– + = + + = = =
f15 Mean 4.09e+01 6.61e+01 8.70e+01 6.95e+01 2.26e+01 1.36e+01 1.59e+01 2.44e+01

Std. 1.12e+01 1.82e+01 1.80e+01 7.08e+00 5.45e+00 2.08e+00 2.52e+00 1.04e+01

+/=/– + + + + = − −
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Table 7 Comparative results on functions f16 − f30 with D = 100

Func. Metric SADE JADE GDE MGBDE SinDE IDDE GPDE TVDE

f16 Mean 4.38e+01 4.14e+01 4.66e+01 4.21e+01 4.48e+01 4.25e+01 4.13e+01 4.30e+01

Std. 3.77e−01 3.46e−01 2.57e−01 4.73e−01 3.32e−01 8.11e−01 8.40e−01 6.85e−01

+/=/– + − + − + = −
f17 Mean 1.50e+05 3.27e+05 4.82e+05 8.97e+04 2.49e+06 5.76e+05 1.01e+06 4.16e+05

Std. 4.37e+04 1.63e+05 2.07e+05 4.39e+04 1.09e+06 2.19e+05 5.12e+05 1.78e+05

+/=/– − = = − + = +
f18 Mean 8.02e+02 6.84e+02 7.02e+02 1.50e+03 2.61e+02 2.07e+02 5.74e+02 1.85e+02

Std. 8.63e+02 4.40e+02 7.69e+02 1.64e+03 3.12e+02 2.59e+02 1.08e+03 1.87e+02

+/=/– + + + + = + =
f19 Mean 8.39e+01 1.01e+02 9.83e+01 8.95e+01 9.02e+01 8.94e+01 8.91e+01 8.98e+01

Std. 3.13e+01 4.27e+01 1.86e+01 3.56e+01 8.56e−01 1.63e+00 9.74e−01 1.47e+00

+/=/– = = + = = = =
f20 Mean 7.14e+02 1.09e+03 3.21e+03 4.54e+02 6.32e+03 1.00e+03 5.71e+02 3.53e+02

Std. 2.09e+02 1.71e+03 1.17e+03 1.29e+02 1.63e+03 3.47e+02 8.60e+01 7.41e+01

+/=/– + + + + + + +
f21 Mean 7.28e+04 1.34e+05 1.87e+05 2.96e+04 1.98e+06 2.95e+05 3.85e+05 1.62e+05

Std. 5.04e+04 8.18e+04 7.22e+04 1.54e+04 6.00e+05 1.55e+05 1.64e+05 1.36e+05

+/=/– − = = − + + +
f22 Mean 1.38e+03 1.41e+03 3.65e+03 2.69e+03 1.35e+03 9.86e+02 1.16e+03 1.89e+03

Std. 2.94e+02 2.58e+02 9.48e+02 4.76e+02 3.96e+02 3.79e+02 2.59e+02 4.27e+02

+/=/– − − + + − − −
f23 Mean 3.48e+02 3.48e+02 3.48e+02 3.48e+02 3.48e+02 3.48e+02 3.48e+02 3.48e+02

Std. 4.07e−13 6.44e−12 5.33e−05 3.19e−12 1.11e−04 6.80e−13 5.08e−13 3.50e−13

+/=/– = = = = = = =
f24 Mean 3.78e+02 3.99e+02 4.06e+02 4.52e+02 3.62e+02 3.63e+02 3.64e+02 3.66e+02

Std. 6.30e+00 7.55e+00 8.35e+00 2.28e+01 1.69e+00 1.42e+00 2.65e+00 1.65e+00

+/=/– + + + + − = −
f25 Mean 2.00e+02 2.57e+02 2.45e+02 2.88e+02 2.49e+02 2.34e+02 2.39e+02 2.57e+02

Std. 6.26e−14 8.37e+00 9.57e+00 1.66e+01 4.19e+00 5.56e+00 4.76e+00 1.77e+00

+/=/– − = − + − − −
f26 Mean 2.00e+02 2.00e+02 2.01e+02 2.00e+02 2.01e+02 1.40e+02 2.01e+02 2.00e+02

Std. 2.49e−02 7.47e−03 1.10e−01 1.24e−02 2.09e−01 1.77e−01 1.77e−01 3.12e−02

+/=/– − − + − + = +
f27 Mean 1.43e+03 1.37e+03 1.40e+03 3.12e+03 3.06e+02 4.19e+02 3.74e+02 3.11e+02

Std. 1.01e+02 2.15e+02 1.63e+02 2.39e+02 1.24e+01 1.13e+01 5.91e+01 1.26e+01

+/=/– + + + + − + +
f28 Mean 3.20e+03 4.72e+03 2.91e+03 1.39e+04 2.20e+03 2.03e+03 2.08e+03 1.91e+03

Std. 3.34e+02 6.34e+02 3.15e+02 1.92e+03 4.63e+01 7.03e+01 1.78e+02 2.48e+02

+/=/– + + + + + = +
f29 Mean 1.37e+03 1.45e+03 1.98e+03 1.23e+03 2.81e+03 1.78e+03 1.91e+03 1.79e+03

Std. 2.51e+02 1.85e+02 4.05e+02 2.18e+02 4.80e+02 1.36e+02 1.41e+02 1.92e+02

+/=/– − − = − + = =
f30 Mean 8.17e+03 8.59e+03 6.01e+03 7.45e+03 9.53e+03 7.42e+03 8.90e+03 7.64e+03

Std. 9.43e+02 1.58e+03 9.47e+02 2.02e+03 1.25e+03 8.80e+02 8.01e+02 7.07e+02

+/=/– = + − = + = +
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Table 8 Comparative results on real-world problems rf1 − rf4

Func. Metric SADE JADE GDE MGBDE SinDE IDDE GPDE TVDE

rf1 Mean 1.05e+00 9.95e+00 6.35e+00 1.26e+01 4.68e−01 2.71e+00 1.34e+00 1.90e+00

St.D. 3.66e+00 4.74e+00 6.87e+00 4.41e+00 2.34e+00 5.00e+00 3.72e+00 4.48e+00

+/=/– − + + + − − −
rf2 Mean 1.93e+00 1.79e+00 2.38e+00 1.95e+00 1.78e+00 1.52e+00 1.63e+00 1.99e+00

St.D. 8.64e−02 9.98e−02 9.90e−02 1.56e−01 1.69e−01 1.42e−01 2.19e−01 1.72e−01

+/=/– = − + = − − −
rf3 Mean 1.76e−04 4.38e−09 4.63e−14 1.09e+01 7.07e+00 4.97e+00 2.82e+00 5.85e+00

St.D. 4.55e−04 1.49e−08 7.08e−14 6.47e+00 4.25e+00 6.42e+00 5.11e+00 5.17e+00

+/=/– − − − + = = −
rf4 Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 4.63e+00 7.78e−05 0.00e+00 1.99e−03

St.D. 0.00e+00 0.00e+00 0.00e+00 0.00e+00 7.68e+00 3.89e−04 0.00e+00 6.20e−03

+/=/– − − − − + − −

Table 9 Statistical results on all test functions and real-world problems

Func. Metric SADE JADE GDE MGBDE SinDE IDDE GPDE TVDE

30-D +/=/– 21/7/2 21/3/6 23/4/3 22/2/6 14/12/4 8/15/7 16/9/5 –

50-D +/=/– 20/8/2 19/5/6 23/5/2 20/3/7 14/14/2 12/11/7 11/15/4 –

100-D +/=/– 16/5/9 13/7/10 24/4/2 16/5/9 20/6/4 15/11/4 14/6/10 –

Unimodal +/=/– 7/1/1 6/2/1 8/1/0 5/0/4 8/1/0 9/0/0 9/0/0 –

Multimodal +/=/– 26/9/4 18/6/15 37/1/1 28/2/9 23/14/2 18/18/3 14/13/12 –

Hybrid +/=/– 10/5/3 13/3/2 13/3/2 10/3/5 9/6/3 6/4/8 8/6/4 –

Composition +/=/– 14/5/5 16/4/4 12/8/4 15/5/4 8/11/5 2/15/7 10/11/3 –

Real-word +/=/– 0/1/3 1/0/3 2/0/2 2/1/1 1/1/2 0/1/3 0/0/4 –

Total +/=/– 57/21/16 54/15/25 72/13/9 60/11/23 49/33/12 35/38/21 41/30/23 –

search space, and randi, j denotes a uniformly distributed ran-
dom number in the interval [0, 1].

2.2 Mutation operation

Following the initialization operation, for each target vector
xi , mutation operator is used to generate its corresponding
mutant vector vi = [

vi,1, vi,2, . . . , vi,D
]
. The most fre-

quently used mutation operators in various DE variants are
listed as follows:

(1) DE/rand/1

vi = xr1 + F × (xr2 − xr3). (2)

(2) DE/best/1

vi = xbest + F × (xr1 − xr2). (3)

(3) DE/current-to-best/1

vi = xi + F × (xbest − xr1) + F × (xr2 − xr3). (4)

(4) DE/best/2

vi = xbest + F × (xr1 − xr2) + F × (xr3 − xr4). (5)

(5) DE/rand/2

vi = xr1 + F × (xr2 − xr3) + F × (xr4 − xr5). (6)

Indexes r1, r2, r3, r4 and r5 are mutually different integers
randomly generated from set {1, 2, . . . ,NP}, which are also
different from the value of i . Control parameter F , called
scaling factor, is a positive value used to scale the difference
vector. Vector xbest = (xbest,1, xbest,2, . . . , xbest,D) repre-
sents the best individual vector with the best fitness value
in the current population.

In the aforementionedmutation operators, takingDE/rand
/1 for example, xr1 and xr2 are, respectively, referred to as
base vector and directional vector, and xr2 − xr3 is often
regarded as the difference vector. As amatter of fact, the base
individual can be taken as the center point of the searching
area, meanwhile the difference vector essentially determines
the searching direction and search span.
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Fig. 4 Convergence graphs (mean curves) for eight algorithms on functions f1, f3, f6, f7, f8 and f9 with D = 50 over 50 independent runs
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Fig. 5 Convergence graphs (mean curves) for eight algorithms on functions f13, f14, f15, f17, f18 and f19 with D = 50 over 50 independent runs
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Fig. 6 Convergence graphs (mean curves) for eight algorithms on functions f20, f21, f22, f18, f29 and f30 with D = 50 over 50 independent runs
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Table 10 Parameter setting of different TVDEs

Par. TVDE-C1 TVDE-C2 TVDE-C3 TVDE-C4 TVDE-C5 TVDE-C6 TVDE-C7 TVDE-C8

Freq 0.001 0.005 0.01 0.03 0.05 0.06 0.08 0.1

2.3 Crossover operation

In original DE algorithm, there are twomain crossover types:
binomial and exponential, but we only elaborate the more
widely used binomial crossover here. To yield the trial vector
ui = [

ui,1, ui,2, . . . , ui,D
]
, the binomial crossover between

target vector xi andmutatedvectorvi is performedas follows:

ui, j =
{

vi, j , if
(
randi, j ≤ CR or j = jrand

)

xi, j , otherwise,
(7)

where CR ∈ [0, 1], called the crossover rate, is a parameter
which applied to control that how many components of trial
vector are inherited from the mutant vector, and jrand is a
random integer selected from set {1, 2, . . . , D}.

2.4 Selection operation

Selection operation based on greedy strategy, the better one
between target vector xi and trial vector ui will survive into
the next generation, is widely adopted in a mass of DE algo-
rithms, and its specific forms (for a minimization problem)
can be described as follow:

xi =
{
ui , if f (ui ) ≤ f (xi )
xi , otherwise,

(8)

where f (·) expresses the objective function to be minimized.

3 Description of TVDE

In this section, we firstly provide a detailed description about
the new proposed mutation operator, the adopted parameter
control methods for scale factor F and crossover rate CR and
then summarize the overall procedure of TVDE.

3.1 DE/tvbase-to-rand/1

Depending on the structure of mutation operator, it is easy to
understand that the base vector, one important component of
mutation operator, essentially determines the core region that
generates mutation vector and affect the diversity of popula-
tion. Tobemore specific, if each individual takes itself as base
vector, the generated mutation vectors are around different
individuals, which certainly have better population diversity,

more powerful global exploration ability and lower possibil-
ity to locate in local optimal solution, but the convergence
speed and the accuracy of solution may perform not well.
Otherwise, if all individuals take the best individual as base
vector, the mutation vector will demonstrate powerful local
exploitation ability and fast convergence speed, but due to
low population diversity, it is easy to fall into the local opti-
mal solution. Therefore, to simultaneously take advantage
of the current individual and the best individual as the base
vector, we design a dynamic combination of them so that the
current individual and the best individual can be taken by
a conjoint way. The specific representation is expressed as
follows:

vi,g = bi,g + Fg × (xr1,g − xi,g) + Fg × (xr2,g − xi,g).

(9)

The concrete form of base vector bi,g is described as follows:

bi,g = Mg × Pg × xi,g + (1 − Mg × Pg) × xbest,g, (10)

where Mg = (G− g+1)/G is a macro-control function and
Pg = 0.5×(cos(2π×Freq×g)+1) is a periodic function, in
which the pregiven parameter Freq represents the frequency
of one cosine function, and g is the index of current gen-
eration and G denotes the maximum allowable generations.
The essential feature of the new proposed mutation operator
is that it has a base vector with time-varying characteris-
tic, and the difference vector is composed of two random
individuals and the current individual. Based on the existing
naming conventions, we name the novel mutation operator
as DE/tvbase-to-rand/1 for short. Furthermore, in order to
visually display the time-varying characteristics of base vec-
tor, we depict one picture (i.e., Fig. 1) about time-varying
function Mg × Pg when G = 10, 000 and Freq = 0.01.

From Fig. 1, we can see that there are two main principles
used in constructing the base vector. First, at the micro level,
the base vector is constructed with the dynamic combina-
tion of current individual and best individual, and its value
presents a kind of volatility, which is used to provide an effec-
tive balance between the global exploration ability and local
exploitation ability. Second, at the macro level, the base vec-
tor focuses on the current individual in the early stage, but
lays emphasis on the best individual in the later stage, which
means the search work is gradually transferred from a large
global area to a key local area during the optimization pro-
cess.
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Fig. 7 Convergence graphs (mean curves) for the TVDEwith different values of parameter Freq on functions f1, f3, f6, f7, f8 and f9 with D = 50
over 50 independent runs
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Fig. 8 Convergence graphs (mean curves) for the TVDE with different values of parameter Freq on functions f13, f14, f15, f17, f18 and f19 with
D = 50 over 50 independent runs
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Fig. 9 Convergence graphs (mean curves) for the TVDE with different values of parameter Freq on functions f20, f21, f22, f28, f29 and f30 with
D = 50 over 50 independent runs
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The value of scaling factor Fg can be computed via the
following formula,

Fg =
√
0.5 × (1 − Tg) × (Mg + Pg), (11)

where Tg = 0.5 × (cos(2π × Freq × g) × g/G + 1) is
another time-varying function. The time-varying character-
istic of scaling factor Fg is intuitively represented in Fig. 2.

From Fig. 2, it can be seen that scaling factor Fg also has
a certain degree of volatility and an overall downward trend.
Owing to the fact that larger value of scaling factor usually
leads to better global exploration ability but weaker local
exploitation ability, however, smaller value of scaling factor
often gives rise to the opposite result. Based on the role of Fg
in balancing the exploration ability and exploitation ability,
we can know that the change rule in the value of Fg is in
line with the widely accepted general rule in evolutionary
algorithms.

After the mutation vectors are generated, the following
crossover operation can be executed as follow:

ui, j =
{

vi, j , if
(
randi, j ≤ CRi,g or j = jrand

)

xi, j , otherwise.
(12)

The value of crossover rate CRi,g is computed by the follow-
ing formula:

CRi,g = Mg × Tg + (1 − Mg) × Ii,g, (13)

where Ii,g = ( f (xi,g) − f (xbest))/( f (xworst) − f (xbest) +
1.0e − 99), which essentially represents the status of indi-
vidual xi,g in the current population, and xworst is the worst
individual in the current population. Formula (13) illumi-
nates a basic fact that different individuals adopt inequable
values of crossover rate. Tovisually display the change rule of
crossover rate CRi,g that corresponding to individuals with
different status, we describe the time-varying characteris-
tics of crossover rate CRi,g when Ii,g = 0.1, Ii,g = 0.4,
Ii,g = 0.6 and Ii,g = 0.9, respectively.

According to the computation rule of procedure parame-
ter Ii,g , the individual with smaller value of Ii,g actually has
more superiority in the population. From Fig. 3, there are two
important principles used in determining the crossover rate
CRi,g for each individual. One is that all the crossover rates
related to individuals with different status should have the
volatility characteristics, which is conducive to balance the
exploration ability and exploitation ability. The other one is
that the individuals with different status should have differ-
ent changing trends at the macro level. More specifically, for
the superior individual, i.e., the value of Ii,g is smaller than
0.5, its value of crossover rates CRi,g is decreasing at the
macro level, and the better individual has the more obvious

trend. For the inferior individual, the trend is just the oppo-
site. The changing rule means that the crossover rates of all
the individuals should have no significant difference in the
early stage, but the better individuals should have less change,
meanwhile the poorer individuals have major change in the
later stage. Followed by the crossover operation, the greedy
selection operation (8) is applied to determine the individual
survived into the next generation.

3.2 The overall procedure of TVDE

We have provided a detailed description of DE/tvbase-to-
rand/1 and the adopted parameter tunning mechanism. Now,
we summarize the overall procedure of TVDE into Algo-
rithm 1.

Algorithm 1 The overall procedure of TVDE
1: Set the values of parameters NP,Freq and G;
2: Initialize NP individuals with random positions via the formula (1);

3: for (g = 1; g <= G; g + +), do
4: Compute the current values of functions Mg, Pg and Tg ;
5: Compute the value of the scaling factor Fg in the gth generation

via the formula (11);
6: for (i = 1; i <= NP; i + +), do
7: Compute the crossover rate CRi,g of the i th individual in the

gth generation via the formula (13);
8: Generate the new mutant vector via the formula (9);
9: Generate the new trial vector via the formula (12);
10: Update the i th individual via the selection operator (8);
11: Replace the best individual xbest by the new individual xi if

xi is better than xbest;
12: end for
13: end for
14: Output the position of the best individual as the global optimal

solution.

4 Numerical experiments and comparisons

In this section, we first provide the experimental setup, then
summarize and analyze the comparative results between
TVDE and the adopted competitors.

4.1 Experimental setup

The CEC 2014 (Liang et al. 2013) benchmark set is uti-
lized to demonstrate the performance of the proposed TVDE,
listed in Table 1, which includes 30 functions with dif-
ferent characteristic and dimensions. In our paper, all the
benchmark functions are tested on 30D, 50D and 100D.
In addition, four real-life optimization problems, often used
in evaluating the performance of various algorithms, are
added to enrich the comparative experiment; they are param-
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eter estimation for frequency-modulated sound waves (Das
and Suganthan 2011b), spread spectrum radar poly-phase
code design (Das and Suganthan 2011b), systems of linear
equations (García-Martínez et al. 2008) and parameter opti-
mization for polynomial fitting problem (Herrera andLozano
2000).

Suggested by Liang et al. (2013), all the algorithms
involved in the experiment are terminated when the num-
ber of function evaluations reaches 10, 000 × D. In order to
provide a convincing comparison, the adopted competitors
contain five state-of-the-art DE variants [JADE (Zhang and
Sanderson 2009), MGBDE (Wang et al. 2013), SADE (Qin
et al. 2009), GDE (Han et al. 2013), SinDE (Draa et al.
2015)] and two up-to-date DE variants [GPDE (Sun et al.
2019), IDDE (Sun et al. 2018)]. For convenience, for the
benchmark functions in CEC 2014 (Liang et al. 2013), the
population size of all involved DE algorithms is set to the
dimension (D) of the benchmark function that will be opti-
mized, and the suggested values of other control parameters
are adopted in those competitors. It should be pointed out
that for the real-life optimization problems, owing to their
dimensions are small, the population size is all reset to 5D.
In our TVDE, there is only one additional parameter Freq
which is set to 0.05 for all different problems. Moreover,
since the population size NP = D or NP = 5D, the func-
tion evaluations 10, 000 × D are equivalent to 10,000 or
2000 generations, i.e., the value of parameter G should be
set to 10,000 when handling the benchmark functions, but
G = 2000 when solving the real-life optimization problems.

4.2 Comparative results

For each algorithm, 50 independent runs are asked to perform
for each benchmark function, and the average and standard
deviation based on the error of ( f (xbest) − f (x∗)) are cal-
culated to evaluate its performance, where xbest represents
the best solution achieved by the algorithms, and x∗ denotes
the global optimum that already known of each benchmark
function.Wilcoxon’s rank-sum test is conducted at a 5% sig-
nificance level to compare the significance between TVDE
and each corresponding competitor. The compared results
are marked with “+”, “=” and “−” to indicate that TVDE
is significantly better than, worse than, and similar to the
corresponding competitor, respectively. The mean and stan-
dard deviation based on 50 independent runs are given in
Tables 2, 3, 4, 5, 6, 7 and 8, and the summary of comparative
results obtained from Wilcoxon’s rank-sum test is collected
in Table 9.

A scrutiny of the comparative results summarized in
Table 9 shows that TVDE outperforms all the involved DE
contestant algorithms in the view of overall performance.
Specifically speaking, TVDE performs better than SADE,
JADE, GDE, MGBDE, SinDE, IDDE and GPDE on 57,

54, 72, 60, 49, 35 and 41 problems, shows a similar per-
formance on 21, 15, 13, 11, 33, 38 and 30 problems, and
shows an inferior performance on 16, 25, 9, 23, 12, 21 and 23
problems, respectively. Furthermore, from the dimensional
point of view, TVDE wins all its competitors on 30D, 50D
and 100D benchmark functions, and from the perspective
of problem characteristics, TVDE only loses to IDDE (Sun
et al. 2018) when handling the hybrid and composition func-
tions. A frustrating fact is that TVDE almost loses to all its
competitors with regard to real-life problems, maybe caused
by that the allowed value of G is too small.

To compare the convergence characteristics of TVDE and
its contestants, we select 18 benchmarks functions when
D = 50 and depict the convergence graphs of all involved
algorithms based on their mean values over 50 runs and
exhibit the results in Figs. 4, 5 and 6. From Figs. 4, 5 and 6,
we can see that TVDE has no eye-catching performance in
the early stage, but it has a remarkable performance in the
later stage in terms of the extent of the improvement.

It is well-known that the population size NP indeed affects
the performance of DE algorithms, but the impact as usually
small. Therefore, we only evaluate the influence of param-
eter Freq on TVDE algorithm, hence TVDE with different
parameter setting listed in Table 10 has been executed on test
functions with dimensions. However, for saving space and
providing an intuitive display,weonlydepict the convergence
graphs of TVDEswith different Freq on 18 benchmarks func-
tions when D = 50, and the results are plotted in Figs. 7, 8
and 9. Figures 7, 8 and 9 show that although parameter Freq
has an effect on the performance of TVDE, but the impact is
relatively small. As a result, we can say that parameter Freq
is robust in TVDE.

5 Conclusions

In order to enhance the overall performance of the basic DE
algorithm, we introduced a novel mutation operator com-
bined with dynamic schemes for scaling factor and crossover
rate. The new proposed mutation operator is based on a
base vector with time-varying combination of current indi-
vidual and best individual, and the values of scaling factor
and crossover rate depend on three functions with time-
varying characteristic and one fitness value-based function.
The design of mutation operator and parameter tuning mech-
anisms takes full account of the balance between exploration
ability and exploitation ability during optimization process.
To test the effectiveness of the proposed algorithms, 30
benchmark functions with different dimensions from CEC
2014, four real-life optimization problems, and seven DE
algorithms are used to form the test experiment. The obtained
results have shown thatTVDEoutperforms all the seven com-
petitors in the view of overall performance.
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