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Abstract
Nowadays, with the emergence of computer-aided systems, diagnosis problems are one of the most important application

areas of artificial intelligence. The present paper is focused on a specific kind of computer-aided diagnosis system based on

General Type-2 Fuzzy Logic. The main goal is the generation of General Type-2 Fuzzy Classifiers that can handle the data

uncertainty. The concept of embedded Type-1 Fuzzy membership functions has been proposed to be used in the design of

General Type-2 Fuzzy Classifiers. A methodology for generating the embedded Type-1 fuzzy membership functions is

introduced, and the subsequent approach for developing the Footprint of Uncertainty of the General Type-2 Fuzzy

Classifier is presented. On the other hand, the proposed approach performance is evaluated by the experimentation with

different diagnosis benchmark problems. In addition, a statistical comparison with respect to another existing approach of

General Type-2 Fuzzy classifiers is presented.
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1 Introduction

The emergence of computer-aided diagnosis systems has

demonstrated the reliability of artificial intelligence in real-

world problems. For example, in Liao et al. (2018) the

authors show the efficiency of deep convolutional neural

networks for the diagnosis of multiple types of cancer, in

Erkaymaz and Ozer (2016) the authors introduce an

approach based on feedforward neural networks for the

diagnosis of diabetes with interesting results, in Babapour

Mofrad et al. (2019) the authors propose to use a decision

tree for the interpretation of CSF biomarkers in the diag-

nosis of Alzheimer’s disease, and more cases can be found

in the literature, for example Saritas (2012), Subasi (2013),

Elyan and Gaber (2016), Davari Dolatabadi et al. (2017),

Asl and Zarandi (2017), Rakhmetulayeva et al. (2018),

Vogado et al. (2018), Wang et al. (2018), Acharya et al.

(2018), Qi et al. (2019), Afifi et al. (2019).

The present paper aims at designing a computer-aided

diagnosis system based on General Type-2 Fuzzy Logic

and called General Type-2 Fuzzy Classifier (GT2 FC). The

methodology for obtaining the parameters of the system

and a new approach to estimate the uncertainty of the

system is presented.

The main contribution of the present paper is applying

the concept of embedded Type-1 Fuzzy memberships for

the parameterization of the Footprint of Uncertainty (FOU)

of GT2 membership functions in a GT2 Fuzzy Classifier.

Remembering that the FOU is modeling the uncertainty in

the Type-2 Fuzzy Systems, it is proposed that is possible to

find the parameters for modeling the uncertainty based on

n subsets resulting from applying a uniform sampling with

replacement, and based on multiple Type-1 Fuzzy mem-

bership functions (one per each subset) it is possible to

generate a single GT2 Fuzzy Classifier. The proposed

approach is in focused on Diagnosis problems; however,

the methodology for uncertainty modeling can be extended

to other kind of problems for example time series. The

concept of embedded Type-1 fuzzy membership functions

is not new, it was presented for example in Hagras (2008),

but the methodology to be applied in classification prob-

lems and especially in diagnosis problems is interesting

and obtains interesting results.
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2 Materials and methods

In this section, a brief introduction of the necessary con-

cepts and definitions for understanding the proposed

approach is presented. On the other hand, the methodology

for the design of the proposed GT2 Fuzzy Classifier is

explained.

2.1 Uniform sampling with replacement

The uniform sampling with replacement is a technique for

sampling, where the data has the same probability to be

selected even for multiple samplings. This technique con-

siders that every sampling is independent of the others and

with the same population. One of the main applications of

this technique is the bagging meta-algorithm for example

in Hothorn and Lausen (2005), Baraldi et al. (2011), Fer-

nández-Carrobles et al. (2016).

The method consists on generating N new training sets

with size M from the D standard training set uniformly and

with replacement. Based on these new training subsets, a

clustering algorithm can be performed obtaining N sets of

equivalent clusters.

Figure 1 illustrates the Uniform sampling with

replacement.

2.2 Type-2 fuzzy logic

Type-1 fuzzy logic was originally introduced by Liang and

Mendel (2000) as an approach to represent vagueness. On

the other hand with the emergence of the Interval Type-2

Fuzzy Logic (Liang and Mendel 2000), this approach

provides a method to handle uncertainty, and this uncer-

tainty is modeled by an area between two type-1 fuzzy sets

and is called Footprint of Uncertainty (FOU) (Mendel et al.

2006).

However, the present paper introduces an approach to

generate the FOU for General Type-2 Fuzzy Inference

Systems (GT2 FIS). The main difference with respect to an

Interval Type-2 Fuzzy Inference System (IT2 FIS) is in

handling uncertainty, this is because in IT2 FIS the

uncertainty is considered to be uniform, on the other hand,

in GT2 FSs the uncertainty is defined by a secondary

membership function on the secondary axis, and Eqs. 1 and

2 describe the IT2 FIS and GT2 FIS, respectively (Mendel

et al. 2016).

Jx ¼ x; uð Þð Þju 2 l ~A
xð Þ; �l ~A xð Þ

h in o
ð1Þ

Jx ¼ x; uð Þð Þ u 2 0; 1½ �; l ~A xð Þ
�� �

0
� �

ð2Þ

where X is the primary axis of the corresponding input and

the secondary axis J is related to the uncertainty.

The Footprint of Uncertainty (FOU) (Mendel and John

2002; Ontiveros et al. 2018a) is represented as the area

between the boundaries of the Type-2 Fuzzy Sets. For

example, in Interval Type-2 Fuzzy Sets the FOU is the area

between the lower and the upper membership functions

(Fig. 2).

On the other hand, the rules of the Type-2 Fuzzy Sys-

tems are very similar to the Type-1 Fuzzy Systems. In this

case, there is an antecedent and a consequent, the inference

is realized by the introduction of the extension of the T-

Norm and S-Norm now called meet and join, respectively.

The structure of the Type-2 Fuzzy rules is expressed in

Eq. (3).

Rl : IF x1 is ~F
l
1 and. . .and xp is ~F

l
p;THEN y is ~G

l
;

where l ¼ 1; . . .;M
ð3Þ

2.2.1 a-plane representation

The a-plane representation is an approach for modeling the

GT2 FIS in order to achieve a good approximation of this

system (Mendel et al. 2009; Ontiveros et al. 2018b). This

representation consists on approximating the GT2 FIS by

horizontal slices called a-planes and finally aggregating the

Fig. 1 Uniform sampling with

replacement
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results. These slices can be computed as IT2 FIS and have

a high computational cost, but are computable for appli-

cations that not require real-time execution. Equation (4)

represents the expression of the a-planes and Eq. (5) rep-

resents the aggregation of the a-planes.

~Ja ¼ x; uð Þð Þju 2 0; 1½ �; l ~A xð Þ ¼ a
� �

ð4Þ
~~J ¼ [ ~Ja ð5Þ

A method for approximating a GT2 FIS by the a-planes
representation is presented in Fig. 3.

The aggregation of the results of the a-planes is per-

formed by (6).

~~A ¼
P

a~AaP
a

ð6Þ

The number of a-planes impact the performance of the

GT2 FIS; however, it was found that 10 a-planes can be

enough for obtaining a good performance in many appli-

cations (Melin et al. 2014).

2.2.2 Double Gaussian general type-2 membership
function

In order to define the Double Gaussian GT2 Membership

Function, it is necessary to model the FOU of the MF,

remembering that the FOU is basically the first a-plane of

the representation and is equivalent to an IT2 MF. Based

on this, the Double Gaussian IT2 Membership Function

(DGaussIT2MF) is proposed inspired in the GT2 mem-

bership functions presented in Mendel (2017). Figure 4

illustrates this function, and Eq. (7) describes the mathe-

matical expression.

l �A xð Þ ¼

�lt xð Þ ¼
exp �1=2ð Þ x� m1ð Þ2=r21
� �

x\;m1

1 m1\x\m2

exp �1=2ð Þ x� m2ð Þ2=r21
� �

x[m2

8>><
>>:

l
t
xð Þ

exp �1=2ð Þ x� m1ð Þ2=r22
� �

x\
m1 þ m2ð Þ

2

exp �1=2ð Þ x� m2ð Þ2=r22
� �

x[
m1 þ m2ð Þ

2

8><
>:

8>>>>>>>>><
>>>>>>>>>:

ð7Þ

where �lt xð Þ and l
t
xð Þ are the upper and lower membership

functions and are obtained by the evaluation of the

DGaussIT2MF x; r1; r2;m1m2½ �ð Þ function, and based on

these membership functions as boundaries, Eq. (8) express

the Double Gaussian General Type-2 Membership Func-

tion (DGaussGT2MF).

DGaussGT2MF x; r1; r2;m1m2½ �ð Þ

¼ x; uð Þ; trimf u; l
t
xð Þ;

�lt xð Þ þ l
t
xð Þ

2
; �lt xð Þ

� 	
 �
 �����
�

8u 2 �lt xð Þ; l
t
xð Þ

h io

ð8Þ

This General Type-2 Membership Function has a tri-

angular function as secondary membership function.

However, this function can be substituted in the future for

Fig. 4 Double Gaussian IT2 MF
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different kinds of membership functions. The triangular

function (trimf) is defined as follows by Eq. (9)

trimf x; a; b; c½ �ð Þ ¼

x� a

b� a
a\x\b

c� x

c� b
b\x\c

0 otherwise

8>><
>>:

ð9Þ

For a GT2 MF represented with a-planes, the number of

a-planes depend on the discretization of u, and the

approximation is better with the increase in the dis-

cretization level of u. On the other hand, the computational

cost is proportional to u.

A graphical illustration of the GT2 Double Gaussian

Membership Functions can be observed in Fig. 5.

2.3 Proposed approach to generate the FOU

Based on the concepts above presented, we propose the use

of uniform sampling with replacement to generate sub-

training sets and with this model the FOU of the General

Type-2 Fuzzy Sets based on multiple embedded Type-1

Fuzzy Sets.

The T1 Membership Functions are generated based on

the subtraining sets, the number of clusters is proportional

to the number of membership functions of the system and

is proportional to the number of inputs and the number of

granules, and the steps to generate the FDS are presented in

Fig. 6.

The first step consists on obtaining the centers of the

Type-1 Gaussian Membership Functions, and these centers

are obtained by the implementation of a clustering algo-

rithm, in this case, the Fuzzy C-Means (FCM) algorithm.

For example, consider the variable ‘‘years old’’ of the

Mammographic dataset. The output data provided for the

FCM algorithm are the centers of the clusters and the

membership degree for every cluster, and Fig. 7 illustrates

an example of this membership degrees, the data is the

years old parameter of the mammographic dataset. The

centers of the Gaussian membership functions in this paper

are proposed to be the centers of the clusters provided by

the FCM algorithm.

The second step consists on obtaining the Standard

deviations; based on the membership degrees obtained with

the FCM algorithm, and this is expressed in Eq. (10), and

this equation is the result of a least square regression.

rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � mnð Þ4

�2 ln lnij jð Þ
Pd

i¼1 xi � mnð Þ2

s
ð10Þ

where rn is the standard deviation of the nth membership

function, mn is the center of the nth membership function,

xi is the input data and lni is the membership degree of the

ith data to the nth cluster. As we can observe, the rn

depends on the mn, for the proposed approach, the mn is

considered the center of the nth cluster obtained with the

FCM algorithm.

Fig. 5 a FOU of GaussG
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Based on the multiple Type-1 Gaussian MFs generated

for every training subset, Eq. (11) describes the General

Type-2 Double Gaussian MFs obtained for every cluster.

��li x; uð Þ ¼ DGaussGT2MF x; mi
max;m

i
min; r

i
max; r

i
min

� �� �

ð11Þ

where mi
max and mi

min are the maximum and minimum m

parameters of the ith cluster and rimax and r
i
min are the

maximum and minimum standard deviations of the ith

cluster.

2.4 Type-2 fuzzy inference systems for diagnosis

The architecture of the General Type-2 Fuzzy Classifier

(GT2 FC) proposed in the present paper is illustrated in

Fig. 8. This architecture is inspired by ANFIS the archi-

tecture proposed in Jang (1993) and widely used for

complex problems.

The parameters of the input membership functions are

estimated as was explained in the previous section. How-

ever, in this section, is defined how the output parameters

of this architecture are obtained. The output of the archi-

tecture is defined in Eq. (12)

~~Z ¼
P

aZaP
a

ð12Þ

where Z represents the different outputs of every a-plane
and the output is the a-planes aggregation. However, in

order to reduce the computational cost, and considering

that the secondary membership function is a triangular

membership function, we decide to use only three a-planes
and implement the equation proposed in Ontiveros et al.

(2018b) that consists on a high-order a-planes integration

based on Newton–Cotes integrators. Then, the output with

this consideration is expressed in Eq. (13).

~~Z ¼ Z1 þ 2Z2 þ Z3

3
ð13Þ

where Z1 has an a ¼ 0þ, in Z2 a ¼ 0:5 and for Z3 a ¼ 1�.
On the other hand, the solution of the individual a-

planes is realized based in the Wu–Mendel type reduction

(Wu and Tan 2005), that is one of the fastest methods for

this process. Equation (14) expresses the output of the IT2

FIS corresponding to the lth a-plane.

Zl; �Zl½ � ¼
XN
i¼1

Ul
i f
!

i;
XN
i¼1

Ul
i f
!

i

" #

Zl ¼
ðZl þ �ZlÞ

2

ð14Þ

where Zl and �Zl are the left and right output of the lth a-

plane and Zl is the output of the lth a-plane, Ul
i and Ul

i

represents the normalized firing force of the ith rule of the

lth a-plane, and finally f~i is the Sugeno polynomial of the

ith rule. It is interesting to observe that this polynomial

does not change for the different a-planes and is the same

for the left and right outputs, and this is because in this

paper we consider that the uncertainty is handled in the

input membership functions and not in the consequent.

Equation (15) expresses the Sugeno polynomial.

f~i ¼ ai0 þ ai1x1 þ � � � þ aimxm ð15Þ

where ain represents the Sugeno coefficient of the ith rule

and the mth input.
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Fig. 8 Proposed architecture of

GT2 FC

Toward a development of general type-2 fuzzy classifiers applied in diagnosis problems… 87

123



These Sugeno coefficients in the present paper are pro-

posed to be obtained by minimizing Eq. (16).

e ¼
X

T �
XN
i¼1

U3
i þ U3

i

2

 !
f~i

 !2

ð16Þ

where T is the target U3
i and U3

i are the normalized firing

force of the ith rule of the third a-plane that have an

a ¼ 1�, the process consists in a Least Square Error

optimization.

3 Experimental results

This section introduces the results obtained by the experi-

mentation with a set of benchmark medical diagnosis

datasets, and the structure of this section is described as

follows. First, the results by Hold-Out data separation with

60% for training and 40% for testing are presented, and the

documented results are the average of thirty experiments

for each dataset. On the other hand, it is presented a sta-

tistical comparison with respect another approach of GT2

Fuzzy Systems applied in diagnosis that is based on the

principle of justifiable granularity presented by Sanchez

et al. (2017).

3.1 Benchmark problems

The datasets selected for experimentation have been widely

used for evaluating the performance of different kinds of

diagnosis systems or classifiers, and a brief description is

provided below in Table 1.

Before presenting the results obtained for the presented

datasets, the membership functions obtained by uniform

sampling with replacement for Type-1 Fuzzy Sets and the

proposed approach of General Type-2 Fuzzy Sets are

presented. Figures 9 and 10 illustrate the membership

functions of the first three inputs (Features) of two of the

first datasets presented, and for the Type-1 membership

functions used for the estimation of the FOU.

3.2 Hold-out validation

In order to evaluate the performance of the proposed

approach, we realize a Hold-Out validation. However,

before doing the comparison with other fuzzy approaches

we evaluate the performance of the proposed approach by

increasing the number of clusters of the systems. The

performance results have been reported with accuracy,

sensitivity, and specificity. These metrics are illustrated in

Fig. 11.

Tables 2, 3 and 4 summarize the results of the different

performance measures, accuracy, sensitivity and speci-

ficity, respectively.

As can be noted, the accuracy decreases with the

increasing of the number of clusters; this can be related to

the architecture proposed where the number of rules is

defined by the number of clusters and are very simple.

For the case of sensitivity, the behavior is a little

chaotic, this performance measure can be affected for the

data sampling, because can be obtained different measures

for unbalanced samples.

By similar way, the specificity results are very chaotic

and also can be related to the sample data, this is the reason

to have standard deviation very large in comparison with

the accuracy measure.

Figures 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22

illustrate the accuracy of every dataset with the different

number of clusters. This kind of graphic illustrates better

the point observed in Table 3, the objective is to observe

the accuracy of the T2 Fuzzy Classifiers with different

number of clustering and conclude over how many clusters

are recommendable for this approach.

Table 1 Diagnosis datasets
Dataset name Attributes Abbreviation

Breast Cancer Wisconsin (original) dataset 9 BCW

Haberman’s survival dataset 3 Haber

Fertility dataset 10 Fert

Indian liver dataset 9 Indian

Breast Cancer Wisconsin (diagnostic) dataset 32 BCWD

Pima Indians diabetes dataset 8 Pima

Statlog (heart) dataset 13 Heart

Breast Cancer Coimbra dataset 9 Coimbra

Mammographic mass dataset 5 MMass

Immunotherapy dataset 8 Inmu

Cryotherapy dataset 7 Cryo
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In Fig. 12, we can recommend two clusters, for exam-

ple, the performance decrease with the increasing of clus-

ters number.

In Fig. 13, we also can recommend to use two clusters,

for the Haberman’s survival dataset.

For Fertility dataset, the best performance is obtained

also for two clusters.

Fig. 9 Breast Cancer Wisconsin (original) dataset
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Also for Indian Liver dataset, the best performance is

obtained for two clusters.

In Breast Cancer Wisconsin (Diagnostic) dataset, the

best performance is obtained for four clusters.

For Pima dataset, the best performance is obtained for

three clusters.

For Statlog dataset, the best performance is obtained for

three clusters.

Fig. 10 Haberman’s survival dataset
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For Breast Cancer Coimbra, the best accuracy is

obtained with two clusters.

Also for Mammographic Mass dataset, the best perfor-

mance is obtained with two clusters.

For Immunotherapy dataset, we obtain a perfect per-

formance with two clusters.

Finally, and similar than other cases, for Cryotherapy

dataset, the best performance is obtained with two clusters.

As can be observed in the experimental results, the best

results are obtained for only two clusters, and this can be

related to the rules of the systems that are predefined as the

first approach of ANFIS.

3.3 Statistical comparison with another
approach of FOU generation

The statistical comparison was made between the proposed

method and another approach for selecting the FOU of

GT2 FC, which was presented by Sanchez et al. (2017) and

is based on granular computing. Below is presented an

statistical comparison based in Z-Test, this is because the

results provided for the authors (Sanchez et al. 2017) are

the mean of 30 experiments. Table 5 introduces the

parameters of the statistical test.

Table 6 summarizes the results of the statistical test that

was realized by a Z-test.

As can be observed, the proposed approach has suffi-

cient evidence to be considered better than (Sanchez et al.

2017) in two of the four datasets that were compared.

However, for the other two datasets we do not have suffi-

cient evidence to demonstrate a superiority of one of the

compared approaches. An explanation for the cases where

we do not have enough evidence to show an improvement

is because for these cases the architecture proposed for the

reference provides a better uncertainty handling, and the

fuzzy rules probably describe by a better way the

information.

3.4 Cross-validation performances

In this section, the obtained performances for different

values of cross-validation are presented and compared with

respect to other fuzzy approaches introduced in the litera-

ture to solve diagnosis problems. Tables 7, 8 and 9 report

the performances obtained for the proposed approach and

other approaches of the literature for three, five and ten-

folds cross-validation.

The not available results for the cited reference are

expressed with a ‘‘-,’’ and the reason of these missing

values is because the cited papers are not focused in

diagnosis problems, as they report results of fuzzy classi-

fiers but we are interested only in the diagnosis datasets for

the present paper.

4 Conclusions and future work

The generation of a single GT2 FC based on a set of

embedded T1 fuzzy membership functions is interesting

because we can consider every T1 membership function as

a fuzzy observation and the GT2 FC as the model that

aggregates the observations handling the uncertainty.

Regarding the comparison with respect to different

fuzzy logic approaches applied in diagnosis problems we

conclude that the proposed approach offers competitive

performances considering that the proposed approach can

be improved in the future with optimization methods, such

as metaheuristic algorithms or another kind of algorithms,

for example the optimization algorithms presented in

Caraveo et al. (2016), Castillo et al. (2016), Olivas et al.

(2017), Peraza et al. (2017).

In comparison with respect to the approach proposed in

Sanchez et al. (2017), we have enough evidence to

demonstrate that the proposed approach is better in two of

the four datasets compared and is worst in one of the four,

on the other hand, for the other dataset no one shows to be

better than the other.

As future work, we have to test the proposed method-

ology with other kinds of applications, for example, fault

diagnosis or time series. On the other hand, is interesting to

test different architectures of the system, for example with

some methods for selecting the rules of the system or

different kinds of membership functions. Maybe some

hybridization with other classification methods could be

Fig. 11 Performance metrics
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Table 2 Accuracy results with

different number of clusters
Clusters BCW Haberman Fertility

2 96.7279 ± 0.7504 75.1533 ± 2.9331 85.1117 ± 4.7933

3 95.722 ± 1.3409 62.5433 ± 9.1319 76.6749 ± 10.1997

4 95.6527 ± 2.9654 72.9672 ± 4.4053 50.3722 ± 17.498

5 91.7563 ± 7.3005 68.1418 ± 8.8622 48.139 ± 17.5

6 92.0684 ± 7.5924 52.4927 ± 16.9073 48.139 ± 21.1515

7 77.7431 ± 10.7173 55.9851 ± 15.9399 50.5376 ± 19.5073

8 70.5978 ± 9.3902 44.8147 ± 19.6962 49.7932 ± 24.3862

9 67.2563 ± 8.1363 52.9725 ± 17.6949 49.0488 ± 25.7582

10 65.788 ± 6.5418 47.4274 ± 16.3915 NaN ± NaN

Clusters Indian liver BCWD PIMA

2 70.9538 ± 3.1863 95.3247 ± 1.0217 75.7748 ± 2.0387

3 61.1374 ± 9.0914 94.3868 ± 1.2867 75.8486 ± 2.2536

4 48.6513 ± 10.8073 95.2963 ± 1.362 71.5159 ± 3.3146

5 56.8409 ± 11.3326 93.3352 ± 2.2311 68.6591 ± 3.3106

6 66.7964 ± 5.4811 89.3705 ± 5.0571 68.5009 ± 3.934

7 66.129 ± 7.5939 87.2673 ± 8.0873 63.7782 ± 6.4587

8 67.1997 ± 7.3237 80.7162 ± 10.8109 59.2347 ± 9.31

9 58.3843 ± 13.2377 77.6325 ± 11.1665 60.0253 ± 9.6178

10 63.1257 ± 11.9958 82.862 ± 8.1216 56.1459 ± 11.7987

Clusters Heart Coimbra MMass

2 80.4341 ± 3.4545 69.3907 ± 6.8784 83.6847 ± 1.7144

3 81.5496 ± 2.3392 62.2222 ± 8.5683 61.4864 ± 9.1833

4 74.4649 ± 4.5936 57.9211 ± 8.7759 66.9085 ± 11.1064

5 61.3506 ± 10.0499 56.0573 ± 8.1288 58.6038 ± 5.5469

6 55.7431 ± 9.0949 53.1183 ± 8.5559 57.5841 ± 10.8843

7 54.8086 ± 9.4405 49.6057 ± 7.6419 54.8975 ± 9.0803

8 53.06 ± 9.5514 44.5878 ± 8.4315 55.8192 ± 10.8872

9 53.1203 ± 7.5313 52.9749 ± 9.6711 53.7504 ± 6.6734

10 55.0196 ± 7.5916 52.6882 ± 8.8739 51.2991 ± 7.9647

Clusters Inmu Cryo

2 100 ± 0 84.977 ± 4.7791

3 97.9724 ± 4.0536 74.8387 ± 11.7669

4 92.0737 ± 7.4764 54.47 ± 9.8681

5 87.2811 ± 9.2975 55.9447 ± 13.1506

6 60 ± 19.1094 53.8249 ± 12.5432

7 65.2535 ± 17.0967 55.576 ± 10.4286

8 53.9171 ± 21.8435 52.4424 ± 11.7467

9 54.8387 ± 17.2917 54.7465 ± 10.769

10 52.5346 ± 14.5999 48.2028 ± 9.7518
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Table 3 Sensitivity results with

different number of clusters
Clusters BCW Haberman Fertility

2 96.7323 ± 1.0647 16.7326 ± 5.667 94.6436 ± 6.0065

3 97.0876 ± 1.0234 51.3794 ± 20.1085 84.5594 ± 13.0527

4 97.3438 ± 1.3688 14.4096 ± 16.0653 51.4878 ± 22.188

5 98.0124 ± 1.5732 16.2187 ± 21.6233 48.7721 ± 22.1029

6 96.261 ± 2.8774 55.0047 ± 39.1578 47.7372 ± 27.0147

7 96.8127 ± 3.9486 41.7275 ± 38.2495 50.9843 ± 25.4955

8 96.1152 ± 6.0354 59.9638 ± 41.858 50.2456 ± 31.4062

9 95.8948 ± 5.5129 41.9813 ± 36.9525 48.4309 ± 33.5734

10 96.7323 ± 1.0647 16.7326 ± 5.667 94.6436 ± 6.0065

Clusters Indian liver BCWD PIMA

2 21.7902 ± 7.1487 93.5037 ± 2.0541 54.4482 ± 4.2487

3 59.333 ± 29.3498 87.2786 ± 3.5871 52.758 ± 6.4167

4 84.434 ± 17.0908 88.6935 ± 4.5419 29.1474 ± 11.7925

5 63.3228 ± 32.4358 93.5507 ± 5.4055 22.572 ± 22.4725

6 31.5907 ± 23.8276 96.4347 ± 2.3789 43.4699 ± 26.4661

7 20.2271 ± 19.3592 88.8419 ± 21.2207 59.8102 ± 24.4454

8 16.4162 ± 19.2009 52.3856 ± 32.0199 64.4169 ± 31.1766

9 28.3632 ± 27.8454 43.9508 ± 32.1674 67.2435 ± 27.7742

10 23.2659 ± 25.4 60.6908 ± 22.2418 66.394 ± 28.3052

Clusters Heart Coimbra MMass

2 74.1086 ± 6.7338 55.7925 ± 13.094 81.2839 ± 2.8103

3 75.5776 ± 7.6232 78.6324 ± 18.4137 18.0943 ± 23.0191

4 58.7025 ± 8.0168 41.0095 ± 31.0406 35.2749 ± 30.7776

5 70.9022 ± 18.885 33.5321 ± 31.0938 18.7556 ± 12.9583

6 82.7613 ± 22.5636 39.2409 ± 32.7047 32.4758 ± 34.5062

7 79.0992 ± 20.4868 48.2062 ± 30.27 46.1433 ± 39.4982

8 56.0071 ± 31.523 49.4557 ± 24.7042 45.007 ± 39.7345

9 53.3443 ± 26.2356 50.9681 ± 21.2602 67.3965 ± 40.0304

10 64.0033 ± 28.8826 52.1163 ± 22.5397 70.717 ± 41.1871

Clusters Inmu Cryo

2 100 ± 0 82.0303 ± 8.6147

3 98.4321 ± 3.5007 70.8271 ± 22.5886

4 92.3864 ± 8.2556 53.3215 ± 24.3068

5 88.067 ± 10.287 53.3109 ± 19.7214

6 58.84 ± 22.9477 49.306 ± 26.4932

7 64.6351 ± 23.5999 42.5507 ± 24.1066

8 53.155 ± 29.6901 44.5292 ± 28.9886

9 53.8752 ± 23.7045 54.3408 ± 34.4659

10 55.3543 ± 21.698 41.4895 ± 30.8819
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Table 4 Specificity results with

different number of clusters
Clusters BCW Haberman Fertility

2 96.6853 ± 1.4436 95.4882 ± 1.9025 11.9892 ± 18.3455

3 93.3013 ± 3.9414 67.1194 ± 18.691 16.0292 ± 22.0994

4 92.358 ± 8.7951 93.0018 ± 9.157 41.4708 ± 25.8425

5 79.4959 ± 23.755 85.7996 ± 18.9664 46.3876 ± 35.1984

6 84.1514 ± 24.5719 50.5677 ± 35.7919 51.0292 ± 37.9906

7 41.5361 ± 35.2751 61.7874 ± 34.7282 48.3641 ± 32.8018

8 21.169 ± 30.1845 39.2678 ± 42.5096 47.3733 ± 36.2437

9 13.2375 ± 24.4566 56.5864 ± 37.8211 61.7896 ± 38.4979

10 10.5391 ± 23.4323 45.8434 ± 35.8848 NaN ± NaN

Clusters Indian liver BCWD PIMA

2 90.5618 ± 5.7225 96.4196 ± 1.3344 87.2717 ± 2.2369

3 61.9929 ± 23.3145 98.6192 ± 1.5559 87.9287 ± 4.1186

4 34.6476 ± 20.4951 99.1861 ± 1.165 93.7474 ± 3.5777

5 54.3175 ± 27.5221 93.2841 ± 4.8932 93.75 ± 9.5608

6 81.85 ± 15.9539 85.2818 ± 8.2849 82.1645 ± 15.095

7 84.3393 ± 16.9811 86.6481 ± 10.4293 66.0435 ± 20.2562

8 87.369 ± 16.8294 97.698 ± 4.4831 56.6773 ± 29.0959

9 70.8339 ± 28.9097 97.9147 ± 6.3665 55.9861 ± 27.338

10 79.5611 ± 25.9269 96.3217 ± 5.5532 50.8056 ± 30.1623

Clusters Heart Coimbra MMass

2 85.5231 ± 4.2524 81.0812 ± 12.186 85.7434 ± 2.9063

3 85.9299 ± 4.8033 49.0157 ± 20.1465 98.4344 ± 3.8843

4 86.9598 ± 5.8732 72.0857 ± 24.6401 93.8375 ± 7.1357

5 53.5289 ± 24.5492 74.6366 ± 24.2804 92.862 ± 4.4807

6 32.714 ± 27.3767 63.9837 ± 27.4555 79.6974 ± 17.637

7 36.0721 ± 22.1854 50.7686 ± 25.1054 61.4254 ± 26.7711

8 51.093 ± 27.4965 41.7275 ± 23.0529 64.7054 ± 27.2057

9 53.6719 ± 25.1569 53.5383 ± 23.5886 42.6002 ± 35.3361

10 48.5687 ± 26.0238 53.5287 ± 23.2557 35.585 ± 38.7614

Clusters Inmu Cryo

2 100 ± 0 88.8238 ± 9.7558

3 96.5001 ± 8.172 79.8117 ± 17.1837

4 91.3159 ± 9.7497 56.8222 ± 30.0579

5 86.4437 ± 18.6743 58.8253 ± 21.7298

6 65.4506 ± 23.8011 58.9511 ± 26.7773

7 67.2606 ± 33.1747 70.0746 ± 25.6203

8 57.98 ± 32.8548 61.9066 ± 32.5619

9 61.461 ± 30.2879 52.984 ± 34.6821

10 40.2407 ± 27.0786 57.7868 ± 33.635
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Fig. 12 Breast Cancer

Wisconsin (original) dataset

Fig. 13 Haberman’s survival

dataset

Fig. 14 Fertility dataset

Fig. 15 Indian liver dataset
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Fig. 16 Breast Cancer

Wisconsin (Diagnostic) dataset

Fig. 17 Pima Indians diabetes

dataset

Fig. 18 Statlog (heart) dataset

Fig. 19 Breast Cancer Coimbra

dataset
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Fig. 20 Mammographic mass

dataset

Fig. 21 Immunotherapy dataset

Fig. 22 Cryotherapy dataset

Table 5 Z-test parameters
Parameter

Significance 95%

a 0.05

Ha l1 [l2
Ho l1 � l2
Critical value 1.645

Table 6 Statistical comparison versus Sanchez et al. (2017)

Dataset Average SD Average SD Z

BCW 96.7279 0.7504 95.5861 1.1888 8.47184615

Haber 75.3932 2.7219 74.4116 2.1708 2.00790532

Fert 85.1117 4.7933 87.1333 2.6261 - 2.3482345

Indian 70.9538 3.1863 70.5602 3.6878 0.68777957

Table 7 Comparison using threefolds CV

Dataset GT2 FC Pota et al. (2018)

BCW 97.2844 ± 1.0169 97.28

Haber 75.6435 ± 4.3584 75.49

Fert 87.2727 ± 4.2376 –

Indian 72.0618 ± 1.8947 71.36

BCWD 95.6613 ± 1.4639 –

Pima 77.2156 ± 2.497 78.39

Heart 82.5842 ± 2.4416 85.15

Coimbra 72.8947 ± 9.3699 –

MMass 85.3454 ± 1.9473 –

Inmu 100 ± 0 –

Cryo 87.931 ± 6.1362 –
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made, for example statistical methods or methods such as

Support Vector Machines.
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