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Abstract
Despite the impressive success of quantum structures to model long-standing human judgement and decision puzzles, the
quantum cognition research programme still faces challenges about its explanatory power. Indeed, quantummodels introduce
new parameters, which may fit empirical data without necessarily explaining them. Also, one wonders whether more general
non-classical structures are better equipped to model cognitive phenomena. In this paper, we provide a realistic–operational
foundation of decision processes using a known decision-making puzzle, the Ellsberg paradox, as a case study. Then, we
elaborate a novel representation of the Ellsberg decision situation applying standard quantum correspondence rules which
map realistic–operational entities into quantum mathematical terms. This result opens the way towards an independent,
foundational, rather than phenomenological, motivation for a general use of quantum Hilbert space structures in human
cognition.
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1 Introduction

Traditional cognitive theories systematically apply classi-
cal set-theoretic structures to model human judgements and
decisions under uncertainty. This is particularly evident in
theories of rational decision-making, like expected utility
theory, where Bayesian, or Kolmogorovian (1933), models
of probability directly follow from axioms on agents’ prefer-
ences (von Neumann and Morgenstern 1944; Savage 1954).

However, several cognitive puzzles have been discovered
in empirical tests, which provide evidence of systematic
deviations from Kolmogorovian probability structures (see,
e.g. Busemeyer and Bruza 2012). For example, Kahne-
man and Tversky identified a conjunction fallacy in human
probability judgements, namely the law of monotonicity of
Kolmogorovian probability does not generally hold in this
kind of judgements (Kahneman et al. 1982). Also, in human
decision-making, Tversky and Shafir proved that the law of
total Kolmogorovian probability does not hold in the disjunc-
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tion effect (Kahneman and Tversky 2000), while Allais and
Ellsberg indicated that people do not always choose by max-
imizing an expected utility with respect to a Kolmogorovian
probability measure (Ellsberg 1961).

As a consequence of the puzzles above, traditional theories
using Kolmogorovian structures, though normatively com-
pelling, are descriptively flawed, which led several authors
to elaborate alternative proposals able to more efficiently and
realistically represent human behaviour. Thiswas the starting
point of the bounded rationality research programme, ini-
tially proposed by Simon (1955) and systematically applied
by Kahneman et al. (1982), Kahneman and Tversky (2000)
to describe concrete judgements and decisions. Bounded
rationality models give good predictions in a variety of cir-
cumstances. However, despite their simplicity and intuitive
character, these models lack a unitary methodology, as well
as deeper explanations, and thus provide a very fragmented
picture of cognitive phenomena (Blutner and beim Graben
2016).

The quantum cognition research programme has recently
attracted the interest of the scientific community due to the
superiority of quantum models over traditional and bounded
rationality models to deal with the puzzles above. Quantum
models were successfully applied to a variety of complex
cognitive processes, includinghuman language (DallaChiara
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et al. 2006; Aerts 2009; Aerts et al. 2013b; Dalla Chiara
et al. 2015), judgement (Busemeyer and Bruza 2012; Aerts
et al. 2013a; Haven and Khrennikov 2013) and decision
(Haven and Khrennikov 2013; Aerts et al. 2014; Aerts and
Sozzo 2016) (see also Sozzo 2017). Despite these impres-
sive results, however, quantum cognition still raises doubts
regarding its explanatory power. Indeed, on the one side,
quantum cognitive models introduce new parameters, which
may fit experimental data, but do not necessarily explain
them. On the other side, one is naturally led to wonder
whether cognitive science really needs the entire mathemat-
ical formalism of quantum theory in Hilbert space or, on
the contrary, non-Kolmogorovian non-Hilbertian models of
probability are needed (see, e.g. Holik et al. 2016, 2017).

In the present paper, we present binding motivations
towards an independent, foundational, rather thanpurely phe-
nomenological, justification of the quantum formalism in
human judgement and decision-making under uncertainty.
We start from the realistic and operational axiomatizations of
quantum physics initiated by Jauch (1968) and Piron (1976)
in Geneva and extended byAerts (see, e.g. Aerts 1999, 2002)
in Brussels. Efforts have been made in the second part of the
last century to derive themathematical formalismof quantum
theory in Hilbert space from more intuitive and empirically
justified axioms, resting on basic notions directly connected
with the operations that are performed in a laboratory. Par-
ticularly, in the Brussels approach, any physical entity is
expressed in terms of the basic notions of state, context, prop-
erty and mutual relationships between them (SCoP system).
The approach is realistic, in the sense that the state, being the
result of an effective preparation procedure, describes aspects
of the reality of the entity. The approach is also operational,
in the sense that all basic notions are expressed in terms of
well-defined empirical terms, like preparation and registra-
tion devices, statistics of outcomes, etc. If suitable “purely
operational” axioms are imposed on a SCoP system, then the
Hilbert space representation uniquely arises for the physical
entity.

We believe that the above realistic–operational justifica-
tion of the quantum Hilbert space formalism in physics also
provides a strong motivation, if not a justification in itself,
for the use of quantum Hilbert space structures in cogni-
tion. To this end, we particularize in Sect. 4 to a specific
decision-making situation, the Ellsberg paradox situation,
used as a case study here, the realistic–operational founda-
tion of cognitive entities we have recently elaborated (Aerts
et al. 2016), inwhich a cognitive entity is abstractly described
in terms of well-defined empirical notions, i.e. state, context,
property and outcome probability. Then, the stunning analo-
gies in the realistic and operational descriptions of entities in
physical and cognitive realms suggest that the same Hilbert
space leading axiomatics should be used for a cognitive, e.g.
decision-making, entity (Sect. 2).

The Ellsberg paradox is reviewed in Sect. 3, where we
explain the difficulties of both expected utility and bounded
rationality theories, to accommodate Ellsberg preferences
and the results of more general Ellsberg-like decision sit-
uations.

We then elaborate in Sect. 5 a mathematical representa-
tion in Hilbert space of the Ellsberg paradox situation and the
ambiguity aversion pattern found in empirical literature. We
had already presented quantum models of various Ellsberg’s
thought experiments, including two-colour and three-colour
urns (Aerts et al. 2014; Aerts and Sozzo 2016; Aerts et al.
2018a, b; Sozzo 2019). The novelty of the mathematical rep-
resentation developed here consists in the fact that it follows
directly from the canonical quantum representation of the
realistic–operational terms of state, context, property and
outcome probability in Hilbert space, whichmakes the use of
quantum mathematics in this kind of situations more firmly
founded and generalizable to other decision situations.

We finally offer some conclusive remarks and consid-
erations in Sect. 6, where we specify that the realistic–
operational foundation of cognitive science can be in princi-
ple extended to several other judgement and decision-making
situations, which constitutes a strong indication that “possi-
ble failures of Hilbert space modelling” should be searched
in other cognitive domains than individual judgements and
decisions.

2 Descriptive versus explanatory power of
quantum structures

Traditional theories of individual judgement and decision-
making use, often implicitly, set-theoretic structures, that
closely resemble the formal operations of classical Boolean
logic and Kolmogorovian probability theory (Kolmogorov
1933). This is specially evident in rational decision theory,
according to which rational agents behave in such a way to
maximize expected utility with respect to a Kolmogorovian
probability measure and an underlying economicmodel (von
Neumann and Morgenstern 1944; Savage 1954).

These theories are normatively compelling; however, the
judgement anddecisionpuzzles inSect. 1make themdescrip-
tively problematical and suggest alternative more realistic
approaches to human behaviour under uncertainty. A major
research programme of this kind was initiated by Herbert
Simon who put forward the bounded rationality project
(Simon 1955). Boundedly rational agents experience practi-
cal limitations in formulating and solving complex problems
and in processing information. They tackle such limitations
by taking mental short cuts, making subjective evaluations
and putting psychological aspects above rational reasoning.

Within the bounded rationality project, one can cope
with cognitive puzzles with judgement heuristics and rea-
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soning biases, namely the conjunction fallacy with the
representativeness heuristics (Kahneman et al. 1982), the
Allais paradox with prospect theory (Kahneman and Tver-
sky 2000), the Ellsberg paradox with cumulative prospect
theory (Kahneman and Tversky 2000), the disjunction effect
by uncertainty aversion (Kahneman and Tversky 2000), etc.
These approaches undoubtedly provide an intuitive account
of how individuals actually behave in situations of uncer-
tainty. However, the reader recognizes at once that a rather
eclectic methodology or, better, a variety of methodologies
are employed to accommodate the puzzles above, and while
some authors support the hypothesis of anadaptive toolbox to
dealwith these problems (Gigerenzer andSelten 2001),many
psychologists will find the bounded rationality research pro-
gramme as unsatisfactory, and many philosophers of science
will try to derive these puzzling phenomena from a univer-
sal theory able to overcome the fragmentation of existing
approaches.

The quantum cognition research programme reaches both
effectiveness and unitarity. Since the nineties, quantum
Hilbert space models have shown impressive superiority
over traditional and bounded rationality approaches in deal-
ing with the puzzles of human cognition and attributing
them to genuine quantum effects, like contextuality, emer-
gence, entanglement, interference and superposition. On the
other side, quantummodels introduce new parameters which
can be possibly fitted by empirical data, without, however,
necessarily explaining them. Hence, the quantum cognition
research programme, though phenomenologically success-
ful, does not seem to offer a deeper understanding and/or
explanation of these puzzles. In addition, it is reasonable to
wonder whether one really needs the entire Hilbert space
formalism to represent cognitive phenomena and should not
better use more general non-Kolmogorovian representations
outside physics (see, e.g. Holik et al. 2016, 2017). In this
respect, it should be noted that prospect theory already pro-
poses non-Kolmogorovian probability models of probability
of human decision (Kahneman and Tversky 2000).

It is clear from the considerations above that one needs
a deeper justification for the use of the Hilbert space for-
malism of quantum theory in cognition and decision and,
more important, of its necessity. In this respect, a crucial
result comes from increasing evidence that “judgements and
decisions create rather than record” (Busemeyer and Bruza
2012)—see. e.g. the following quotations.

“There is a growing body of evidence that supports an
alternative conception according to which preferences
are often constructed – not merely revealed – in the
elicitation process. These constructions are contingent
on the framingof the problem, themethodof elicitation,
and the context of the choice.” Tversky and Simonson
(1993)

“…the process of choice – and in particular the act
of choice – can make substantial difference to what is
chosen. …, there is a particular necessity to take note
of (i) chooser dependence, and (ii) menu dependence,
of preference, even judged from a particular person’s
perspective.” Sen (1997)

“…valuations are initially malleable but become
‘imprinted’ after the agent is called upon to make an
initial decision.” Ariely et al. (2003)

It is more and more acknowledged that, in any judgement
or decision, a contextual interaction occurs between the sit-
uation that is the object of the evaluation and the individual
who takes the decision (agent, decision-maker), which may
affect the situation itself. At the end of this interaction, a
result is actualized among a set of results that were only
potential before the interaction (Aerts et al. 2018b). Hence,
a judgement/decision process closely resembles a quantum
measurement process, where a contextual interaction occurs
between the quantum particle that is measured and the mea-
surement apparatus, which changes the state of the quantum
particle determiningwhat Heisenberg called “transition from
potential to actual”.

We believe that these analogies between micro-physics
and cognition are a good starting point towards a foundational
justification for the use of Hilbert space quantum formalism
in cognition and decision.

In the sixties and seventies of the previous century, sev-
eral authors wondered whether and how one can provide an
independent justification for the Hilbert space formalism in
quantum physics, deriving this formalism from physically
justified axioms, resting on well-defined empirical notions,
directly connected with the operations that are usually per-
formed in a laboratory. One of the well-known approaches to
the foundations of quantum physics is the Geneva–Brussels
realistic–operational approach, initiated by Jauch (1968)
and Piron (1976) in Geneva, and successively extended by
Aerts in Brussels (see, e.g. Aerts 1999, 2002). This research
consisted in abstractly describing any physical entity by
relevant sets of states, contexts, properties and statistical
connections between these notions (SCoP system). These
theoretical notions are directly interpretable onphysical oper-
ations on macroscopic apparatuses, such as preparation and
registration devices, performed in spatio-temporal domains,
such as physical laboratories. Measurements, state transfor-
mations, outcome probabilities and dynamics can then be
expressed in terms of these more fundamental notions. If
suitable axioms are imposed on the mathematical structures
underlying a SCoP system, then theHilbert space structure of
quantum theory emerges as a unique mathematical represen-
tation, up to isomorphisms (Beltrametti andCassinelli 1981).
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This justification provides the “fundamental architecture of
quantum theory in Hilbert space”.

We have recently proved that any cognitive entity Ω , e.g.
a concept, a conceptual combination, a proposition, or a
more complex decision-making situation, can be abstractly
described by a SCoP system (Σ,L ,C , μ, ν) (Aerts et al.
2016), exactly like in physics. We review the essential ele-
ments of a SCoP system in cognition in the following.

(1) The complex of experimental procedures conceived by
the experimenter, the experimental setting and the cog-
nitive effect that one wants to analyse define a cognitive
entity Ω and are usually associated with a preparation
procedure of a state of Ω .

(2) Σ is the set of all states of Ω . A state p of Ω is the
consequence of a preparation procedure of Ω and has a
cognitive, rather than physical, nature. The state of the
cognitive entity is a state of affairs. It indeed expresses
a “reality of the cognitive entity”, in the sense that, once
prepared in a given state, such condition is independent
of any measurement procedure and can be confronted
with the different participants in an experiment, leading
to outcome data and their statistics.

(3) C is the set of all contexts ofΩ .A context e is an element
that can provoke a change of state of the cognitive entity.
A special context is the one introduced by a measure-
ment. Indeed, when the cognitive experiment starts, an
interaction occurs between themeasured entityΩ under
study and a participant in the experiment, in which the
state p of Ω generally changes, being transformed to
another state q. This cognitive interaction is formalized
by means of a context e.

(4) L is the set of all properties of Ω . A property a of
Ω is something Ω “has” independently of any context
influencing the entity. An entity Ω in a given state p
has a set of properties that are actual in that state, the
others being potential. A context e may change the sta-
tus actual/potential of a property, but cannot change the
property itself.

(5) The change function μ : Σ × C × Σ −→ [0, 1] is
such that, for every p, q ∈ Σ , e ∈ C , μ(q, e, p) is
the probability, as the large number limit of relative
frequencies, that the context e changes the initial state
p of Ω to the final state q.

Once recognizes at once in (1)–(5) the building blocks
of the realistic–operational description of a physical entity,
in the sense that in both physical and cognitive realms, a
SCoP system incorporates all what is needed to study what
an entity is, behaves and changes under a context. These
impressive analogies indicate that the axioms generally used
to justify the Hilbert space formalism of quantum physics are
also appropriate to represent cognitive entities and processes.

This provides an independent foundational clue and non-
phenomenological motivation, if not a justification, that the
mathematics of Hilbert space should be used to represent
judgement and decision phenomena.

In Sect. 4, we will provide a realistic–operational descrip-
tion of a specific decision-making situation, the Ellsberg
paradox, setting the grounds for a quantum mathematical
representation of it in Sect. 5. In the next section, we will
instead summarize the serious difficulties of both traditional
and bounded rationality approaches to handle such kind of
decision-making situations.

3 Rational decision theory and its puzzles

Traditional theories of rational decision-making rest on the
tenet that, in situations of uncertainty, individual agents
choose in such a way to maximize their expected utility, or
degree of satisfaction.

In 1944, von Neumann and Morgenstern presented in a
seminal work the first axiomatic formulation of expected
utility theory. People continuously take decisions among
different options. These decisions are assumed to reveal
underlying preferences. Then, von Neumann and Morgen-
stern proposed a set of “reasonable” axioms on human
preferences such that, if the decisions are coherent, in the
sense that they reveal axiom satisfying preferences, then the
decisions are equivalent to the maximization of an expected
utility functional with respect to a Kolmogorovian probabil-
ity measure (von Neumann and Morgenstern 1944).

von Neumann andMorgenstern’s formulation of expected
utility theory has a major limitation, in that it only deals with
the uncertainty that can be formalized by known probabili-
ties (also referred to as objective uncertainty, or risk). On the
other hand, situations frequently occur in which uncertainty
cannot be formalized by known probabilities (also referred to
as subjective uncertainty, or ambiguity) (Knight 1921). The
Bayesian approach to probability minimizes the distinction
between objective and subjective uncertainty introducing the
notion of subjective probability. Even when probabilities are
not known, people may still construct their own beliefs, or
priors (which may differ from one individual to another),
and they maximize expected utility with respect to these pri-
ors. Indeed, Leonard Savage presented in 1954 an axiomatic
formulation of expected utility theory which extends the one
of von Neumann and Morgenstern to subjective uncertainty
(Savage 1954).

We summarize in the following the essential definitions
and results of Savage’s expected utility theory, together with
its major pitfalls. We refer to Gilboa and Marinacci (2013),
Machina and Siniscalchi (2014) for detailed reviews of these
results.
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Savage introduced a set of basic notions, including states
of nature, consequences, preferences and looked for justi-
fied axioms on preferences able to provide a representation
theorem in which ordering of preferences is characterized
by maximization of expected utility. This procedure for-
mally resembles the procedures used in the axiomatizations
of quantum physics in Sect. 4.

Let S be the set of all (physical) states of nature, which
we assume to be discrete and finite here, for the sake of sim-
plicity. Let P(S ) be the power set of S and A ⊆ P(S )

be a (Boolean) σ -algebra. An element E ∈ A denotes an
event. A Kolmogorovian probability measure over A is a
function p : A ⊆ P(S ) −→ [0, 1] satisfying the axioms
of Kolmogorov (1933).

Then, let X be the set of all consequences, whose ele-
ments we assume to denote monetary payoffs, hence real
numbers, here, for the sake of simplicity. In Savage’s formu-
lation, a function f : S −→ X denotes an act. Let F be
the set of all acts. Let us endow F with a weak preference
relation �, that is, a complete and transitive relation over
the Cartesian product F × F . In �, the relations � and ∼
denote strong preference and indifference, respectively, that
is, we write f � g whenever an individual strictly prefers act
f to act g and f ∼ g whenever the individual is indifferent
between f and g.

Next, let u : X −→ � be a utility function over X .
This function typically expresses the decision-maker’s taste;
hence, it is assumed to be strictly increasing and continuous,
with additional technical constraints related to the specifica-
tion of the decision-maker’s attitude towards risk.

The mathematical definitions above can be simplified by
introducing a set {E1, . . . , En} of mutually exclusive and
exhaustive elementary events, where Ei = {si ∈ S }, i ∈
{1, . . . , n}, which thus form a partition of S . For every i ∈
{1, . . . , n}, let xi be the utility associated by the act f to the
event Ei . Then, f can be equivalently expressed by the 2n-
tuple f = (E1, x1; . . . ; En, xn), meaning that the individual
will get the outcome x1 if the event E1 occurs (i.e. the state of
nature s1 realizes), …, the outcome xn if the event En occurs
(i.e. the state of nature sn realizes).

Finally, we denote by W ( f ) = ∑n
i=1 p(Ei )u(xi ) the

expected utility associated with the act f with respect to the
Kolmogorovian probability measure p.

In his representation theorem, Savage proved that, if the
algebraic structure (F ,�) satisfies a number of “reasonable”
axioms1 then, for every f , g ∈ F , a unique Kolmogorovian
probability measure p and a unique (up to positive affine

1 Oneof the axioms is the famous sure-thing principle,which is violated
in the Ellsberg paradox. The other axioms are: ordinal event indepen-
dence, comparative probability, non-degeneracy, small event continuity
and dominance, and have a technical nature (Savage 1954). However,
these axioms are not relevant to the present purposes, and hence, we
will not dwell on them, for the sake of brevity.

Table 1 The payoff matrix for
the Ellsberg three-colour
example

Act 1/3 2/3
Red Yellow Black

f1 $100 $0 $0

f2 $0 $0 $100

f3 $100 $100 $0

f4 $0 $100 $100

transformations) utility function u exist such that f is pre-
ferred to g, i.e. f � g, if and only if the expected utility of f
is greater than the expected utility of g, i.e. W ( f ) ≥ W (g).
For every i ∈ {1, . . . , n}, the utility value u(xi ) depends
on the decision-maker’s risk preferences, while p(Ei ) is
interpreted as the subjective probability, expressing the indi-
vidual’s belief that the event Ei occurs (Savage 1954).

Savage’s result is both compelling at a normative level and
testable at a descriptive level. Indeed:

(i) if the axioms are intuitively reasonable and decision-
makers agree with them, then they must all behave as if
they were maximizing an expected utility with respect
to a single subjective probability distribution satisfying
Kolmogorov’s axioms;

(ii) the axioms suggest to design decision-making exper-
iments to test the validity of expected utility theory,
hence of the axioms themselves, in real life situations.

Because of (i), Savage’s expected utility formulation is
generally accepted to prescribe “how rational agents should
choose”. However, on the one side, the theory offers very
little about where beliefs come from and how they should
be calculated, and on the other side, regarding (ii), decision-
making experiments have systematically found deviations
from that rational behaviour in concrete situations.

In particular, Daniel Ellsberg proved in 1961 in a num-
ber of thought experiments that decision-makers generally
prefer acts with known (or objective) probabilities over acts
with unknown (or subjective) probabilities (Ellsberg 1961).
We analyse here the famous Ellsberg three-colour example
as a paradigmatic example to show that (i) traditional deci-
sion theories do notwork, (ii) bounded rationality approaches
are not sufficiently explanatory, (iii) quantum structures are
needed.

Consider one urn with 30 red balls and 60 balls that are
either yellow or black, the latter in unknown proportion. One
ball will be drawn at random from the urn. Then, free of
charge, a person is asked to bet on pairs of the acts f1, f2, f3
and f4 in Table 1. Ellsberg suggested that, when asked to rank
these acts, most individuals will prefer f1 over f2 and f4 over
f3. Indeed, f1 and f4 are unambiguous acts, in the sense that
they are associated with events over known probabilities—
the events “a red ball is drawn” and “a yellow or black ball
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Fig. 1 A sample of the
questionnaire related to the
decision-making experiment on
the Ellsberg three-colour
example: choice between acts f1
and f2 in Table 1

is drawn” are associated with objective probabilities 1/3 and
2/3, respectively. On the contrary, f2 and f3 are ambiguous
acts, in the sense that they are associated with events over
unknown probabilities—the events “a yellow ball is drawn”
and “a black ball is drawn” are both associated with a proba-
bility ranging from 0 to 2/3. This attitude of decision-makers
to prefer “probabilized over non-probabilized uncertainty”
has been known as ambiguity aversion since Ellsberg studies
(Ellsberg 1961).

Several experiments on Ellsberg urns decisions, but also
on financial, insurance and medical decisions, have con-
firmed the Ellsberg preferences f1 � f2 and f4 � f3, thus
indicating that ambiguity aversion is a good candidate to
explain concrete decisions in this case, and only Slovic and
Tversky found ambiguity seeking patterns (see, e.g.Machina
and Siniscalchi 2014 for a review of experimental studies).

In Aerts et al. (2018a), we tested various human deci-
sion puzzles, including the Ellsberg three-colour example.
We asked 200 people, chosen among colleagues and friends,
to fill a questionnaire in which they had to choose between
various options. People had on average a basic knowledge of
probability theory, but no specific training in decision theory.

Participants were providedwith a questionnaire similar to the
one in Fig. 1, in which they had to choose between acts f1
and f2 and then between acts f3 and f4 in Table 1. Overall,
125 participants preferred acts f1 and f4, 38 preferred acts
f1 and f3, 6 preferred acts f2 and f3, and 31 preferred acts
f2 and f4. This means that 163 participants over 200 pre-
ferred act f1 over act f2, which entails a preference weight
of 0.815. Also, 156 participants over 200 preferred act f4
over act f3, which entails a preference weight of 0.780. The
inversion rate is 0.655, a pattern that agrees with the Ellsberg
preferences found in the literature and significantly indicates
the presence of ambiguity aversion.

Preferences of decision-makers who are sensitive to ambi-
guity, that is, are ambiguity averse or ambiguity seeking,
cannot be explained within Savage’s expected utility theory,
because they violate the sure-thing principle, according to
which, preferences should be independent of the common
outcome. In the specific case of the three-colour example,
preferences should not depend onwhether the common event
“a yellow ball is drawn” pays off $0 or $100. More techni-
cally, Savage’s expected utility theory predicts consistency
of preferences, namely f1 is preferred to f2 if and only if
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f3 is preferred to f4. A simple calculation shows that this is
impossible within a traditional expected utility framework.
Indeed, if we denote by p̃R , p̃Y and p̃B the probability that
a red ball, a yellow ball, a black ball, respectively, are drawn
(with p̃R = 1/3 = 1 − ( p̃Y + p̃B)), then the expected util-
ities W ( fi ), i = 1, 2, 3, 4, are such that W ( f1) > W ( f2) if
and only if ( p̃R − p̃B)(u(100) − u(0)) > 0 if and only if
W ( f3) > W ( f4).Wecan equivalently say that no assignment
of Kolmogorovian probabilities p̃R , p̃Y and p̃B reproduces
a preference with W ( f1) > W ( f2) and W ( f4) > W ( f3),
whence the Ellsberg paradox.

Several extensions of Savage’s expected utility theory
have been put forward in order to accommodate the Ells-
berg paradox (see, e.g. the reviews in Gilboa and Mari-
nacci 2013 and Machina and Siniscalchi 2014). One of
the major proposals is Tversky and Kahneman’s cumula-
tive prospect theory, mentioned in Sect. 2 and elaborated
within a bounded rationality research programme (Kahne-
man and Tversky 2000). In particular, to reproduce Ellsberg
preferences, Tversky and Kahneman replaced (i) the utility
function u by a scaling function u′ reflecting the subjec-
tive value of the outcome utility and (ii) the subjective
probability measure p by a non-additive measure p′ sat-
isfying the mathematical properties of a capacity. As we
have mentioned in Sect. 2, such bounded rationality mod-
els, though descriptively interesting and easily interpretable
intuitively, provide a too fragmented view of decision theory;
hence, they are not able to provide a unitary and adequate
explanatory framework to understand the deep aspects of
decision processes. In addition, cumulative prospect the-
ory, as well as other major non-expected utility models,
fails to reproduce the empirical results of a recently elab-
orated variant of the Ellsberg paradox, the Machina paradox
(Aerts et al. 2018a; Machina 2009; L’Haridon and Placido
2010).

An innovative aspect of descriptive, like bounded ratio-
nality, approaches, is the representation of subjective prob-
abilities by more general, possibly non-Kolmogorovian,
mathematical structures. This is crucial towards a more sat-
isfactory framework for human decision-making that goes
beyond Savage’s expected utility, as we will see in Sect.
5.

In the next section, we intend to elaborate a realistic–
operational description of a decision-making situation, using
the Ellsberg three-colour example as a case study. We will
demonstrate that, once the Ellsberg paradox situation is
formulated in terms of states, contexts, properties and tran-
sition probabilities, then the application of the mathematical
formalism of quantum theory directly follows from the
canonical representation of these realistic–operational terms
in Hilbert space.

4 A realistic–operational description of a
decision-making situation

In this section, we specify the realistic–operational descrip-
tion of cognitive entities in Sect. 2 to the decision-making
situation presented in the Ellsberg three-colour example
(Aerts et al. 2016). In it, we explicitly distinguish physi-
cal from cognitive, in this case, decision-making, entities.
Analogously, we distinguish physical from cognitive states
of nature, though one can intuitively see that some cognitive
states are mapped into the corresponding physical states.

In the Ellsberg three-colour example, the cognitive, i.e.
decision-making, entity ΩDM is the urn with 30 red balls
and 60 yellow or black balls in unknown proportion. This is
what the individual reads in a questionnaire, interacts with
and takes a decision on.

The cognitive entity ΩDM is associated with a defined set
ΣDM of states.2 A state p ∈ ΣDM has a cognitive nature
and incorporates aspects of ambiguity. A context e does not
pertain to ΩDM but can interact with it. Let CDM be the
set of all contexts of ΩDM . The interaction of ΩDM with
a context e ∈ CDM may determine a change of the state
of ΩDM from p to a different state q. The probability of
such a state transition will be denoted by μ(q, e, p), where
μ : ΣDM × CDM × ΣDM −→ [0, 1]. We might com-
plete the realistic–operational description of ΩDM defining
a set LDM of properties and an actuality relation connect-
ing properties and states. However, they are not needed in
the Ellsberg three-colour scenario; hence, we omit specify-
ing these notions here, for the sake of brevity, though they
may be relevant in more general decision situations.

Let us now introduce a colour context eC ∈ CDM , which
is the context associatedwith a drawing of a ball from the urn.
As a result of the drawing, we have three possible outcomes,
R, Y and B, corresponding to the colours of the balls, red,
yellow and black, respectively. The outcomes R, Y and B are
the eigenvalues of eC and are, respectively, associated with
the final states, or eigenstates, pR , pY and pB of the cognitive
entityΩDM . These eigenstates are such thatμ(pi , eC , pi ) =
1, i ∈ {R, Y , B}.

The colour context eC introduces three mutually exclu-
sive and exhaustive elementary events Ei = (eC , {i}),
i ∈ {R, Y , B}, which are such that the subjective prob-
ability that the event Ei occurs when the cognitive entity

2 Some authors identify the notion of “state” with the notion of “belief
state” of the individual participating in the cognitive experiment, e.g.
taking the decision (see, e.g. Busemeyer and Bruza 2012; Blutner and
beim Graben 2016; Haven and Khrennikov 2013). We instead neatly
distinguish states from measurements here. A state is defined by a
preparation procedure of the cognitive entity under investigation. The
participant in the experiment acts as a (measurement) context that inter-
acts with the cognitive entity and changes its state.
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ΩDM is in the state p is given by the transition probability
μ(pi , eC , p) ∈ [0, 1], i ∈ {R, Y , B}.

Then, in analogy with Savage’s expected utility theory,
we can introduce monetary payoffs x ∈ X ⊆ �, utility
functions u : X −→ � and acts taking the form f =
(ER, xR; EY , xY , EB, xB), mapping the event Ei into the
payoff xi , i ∈ {R, Y , B}. In particular, the acts f1, f2, f3
and f4 in Table 1, Sect. 3 are defined in the way above.

Let us now come to the operational–realistic description
of a decision-making process in the Ellsberg three-colour
situation. Suppose that, in the absence of any context, the
entity ΩDM is in the initial state p0. This state corresponds
to a preparation of the cognitive entity ΩDM and can be
set by the information on the corresponding physical entity.
For example, it is reasonable to assume that p0 is such that,
for every i ∈ {R, Y , B}, μ(pi , eC , p0) = 1/3, because of
the indifference principle. Whenever an individual is asked
to rank f1 and f2, the individual’s attitude towards ambi-
guity, e.g. ambiguity aversion, can be described as a new
context e1 ∈ CDM acting on ΩDM in the initial state p0
and changing p0 into a new state p1, characterized by a new
probability distribution μ(pi , eC , p1), i ∈ {R, Y , B}. Sim-
ilarly, whenever the individual is asked to rank f3 and f4,
the individual’s attitude towards ambiguity, e.g. ambiguity
aversion, can be described as a new context e2 ∈ CDM act-
ing on ΩDM in the initial state p0 and changing p0 into a
new state p2, characterized by a new probability distribution
μ(pi , eC , p2), i ∈ {R, Y , B}. The cognitive states p1 and
p2, and their ensuing probability distributions, are responsi-
ble of the inversion of preferenceswhich occur in the Ellsberg
paradox situation.

Finally, a decision process between acts f1 and f2 can
be operationally described as a measurement context e12 ∈
CDM acting on the entityΩDM in the ambiguity-averse state
p1, with possible outcomes “yes” and “no”. Similarly, a deci-
sion process between acts f3 and f4 can be described as a
measurement context e34 ∈ CDM acting on the entity ΩDM

in the ambiguity-averse state p2, with possible outcomes
“yes” and “no”. These contexts give rise of the statistics of
outcomes in a decision-making test on the Ellsberg three-
colour urn.

Now, the considerations in Sect. 2 naturally indicate to
represent states, contexts, properties and outcome probabili-
ties of ΩDM by using the canonical quantum representation
of states, contexts, properties and outcome probabilities in
Hilbert space. In particular, subjective probabilities will
be represented using the Born rule of quantum probabil-
ity. This is what we intend to show in the next section
where the realistic–operational terms defined here will
be canonically represented using quantum mathematical
terms.

5 A novel quantum representation of the
Ellsberg paradox

In this section, we elaborate a new quantum representa-
tion of the three-colour example straightly following the
canonical Hilbert space representation of the realistic and
operational notions in Sect. 3. This representation general-
izes and strengthens those in Aerts et al. (2014), Aerts and
Sozzo (2016), Aerts et al. (2018b), Aerts et al. (2018a).

5.1 Quantum representation of basic notions

The cognitive entity ΩDM is associated with a Hilbert
space H . Since the three-colour example involves three
mutually exclusive and exhaustive elementary events, H
can be chosen to be isomorphic to the complex Hilbert
space C

3 of ordered triples of complex numbers. Let
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} be the canonical orthonormal
basis of C3.

A state pv of the entity ΩDM is represented by the unit
vector |v〉 ∈ H , |||v〉|| = √〈v|v〉 = 1.

The elementary event Ei is represented by the one-
dimensional orthogonal projection operator Pi = |i〉〈i |, i ∈
{R, Y , B}, where we choose |R〉 = (1, 0, 0), |Y 〉 = (0, 1, 0)
and |B〉 = (0, 0, 1). The colour context eC is then repre-
sented by the spectral family {PR, PY , PB}.

In the canonical basis of C3, the unit vector |v〉 can be
written as:

|v〉 = ρReiθR |R〉 + ρY eiθY |Y 〉 + ρBeiθB |B〉
= (ρReiθR , ρY eiθY , ρBeiθB ) (1)

where ρR , ρY and ρB are non-negative numbers such that
ρ2

R + ρ2
Y + ρ2

B = 1, and θR , θY and θB are real numbers.
We use the Born rule to represent subjective probabilities.

Then, the subjective probability that the elementary event Ei ,
i ∈ {R, Y , B}, occurs when the entityΩDM is in the state pv

is given by:

μv(Ei ) = 〈v|Pi |v〉 = |〈i |v〉|2 = ρ2
i (2)

In addition, the subjective probability that the event E , rep-
resented by the orthogonal projection operator PE , occurs
when the cognitive entity ΩDM is in the state pv is μv(E) =
〈v|PE |v〉 = ||PE |v〉||2. Finally, for every state pv rep-
resented by the unit vector |v〉, the subjective probability
measure

μv : L (C3) −→ [0, 1] (3)

is a quantum probability measure over the lattice L (C3) of
all orthogonal projection operators on the Hilbert space C3.
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Compatibility with the standard three-colour situation
entails ρ2

R = 1
3 ; hence, it follows from Eq. (1) that

|v〉 =
(

1√
3

eiθR , ρY eiθY , ρBeiθB

)

=
(

1√
3

eiθR , ρY eiθY ,

√
2

3
− ρ2

yeiθB

)

(4)

where the last equality is obtained from
√〈v|v〉 = 1.

Special states are the state with no black balls represented
by

|vRY 〉 =
(

1√
3

eiθR ,

√
2

3
eiθY , 0

)

(5)

and the state with no yellow balls represented by

|vR B〉 =
(

1√
3

eiθR , 0,

√
2

3
eiθB

)

(6)

The acts f1, f2, f3 and f4 are represented by the self-adjoint
operators

F̂1 = u(100)PR + u(0)PY + u(0)PB (7)

F̂2 = u(0)PR + u(0)PY + u(100)PB (8)

F̂3 = u(100)PR + u(100)PY + u(0)PB (9)

F̂4 = u(0)PR + u(100)PY + u(100)PB (10)

respectively. The utility function u(·) is not given by the the-
ory, but it is revealed in a decision test by concrete choices,
in analogy with standard procedures in the literature.

The expected utility Wv( fi ), i ∈ {1, 2, 3, 4}, in a generic
state pv of the entity ΩDM , is

Wv( f1) = 〈v|F̂1|v〉 = 1

3
u(100) + 2

3
u(0) (11)

Wv( f2) = 〈v|F̂2|v〉 =
(
1

3
+ ρ2

Y

)

u(0) +
(
2

3
− ρ2

Y

)

u(100)

(12)

Wv( f3) = 〈v|F̂3|v〉 =
(
1

3
+ ρ2

Y

)

u(100) +
(
2

3
− ρ2

Y

)

u(0)

(13)

Wv( f4) = 〈v|F̂4|v〉 = 1

3
u(0) + 2

3
u(100) (14)

As we can see, the expected utilities Wv( f1) and Wv( f4) do
not depend on the cognitive state pv of the entity ΩDM , in
agreement with the fact that f1 and f4 are unambiguous acts.
On the contrary, the expected utilities Wv( f2) and Wv( f3)
do depend on the cognitive state pv , in agreement with the
fact that f2 and f3 are ambiguous acts. This also agrees with

our assumption that cognitive states provide information on
ambiguity.

5.2 Reproducing Ellsberg preferences with
ambiguity-averse states

Let us now suppose that, in the absence of any context, the
cognitive entity ΩDM is in the initial state p0. The principle
of indifference (see Sect. 4) then suggests that p0 is the state
represented by the unit vector

|v0〉 = 1√
3
(1, 1, 1) (15)

leading to uniform probabilities of drawing a red, yellow and
black ball. The ambiguity attitude contexts e1 and e2 will
determine a change of state of the entity ΩDM , depending
on individual preferences towards ambiguity. For example,
two ambiguity seeking states pw1 and pw2 will be such that
the following inequalities hold

Ww1( f2) >
1

3
u(100) + 2

3
u(0) (16)

Ww2( f3) >
1

3
u(0) + 2

3
u(100) (17)

Wewill instead explicitly determine two ambiguity-averse
states pw1 and pw2 which reproduce Ellsberg preferences,
that is,

Ww1( f1) > Ww1( f2) (18)

Ww2( f4) > Ww2( f3) (19)

Two general cognitive states pw1 and pw2 are represented by
the unit vectors

|w1〉 =
(

1√
3

eiθR , ρY eiθY ,

√
2

3
− ρ2

yeiθB

)

(20)

|w2〉 =
(

1√
3

eiφR , τY eiφY ,

√
2

3
− τ 2y eiφB

)

(21)

respectively. For the sake of simplicity, let us look for
states with simple phases, namely θR = φR = 0 and
θY , θB, φY , φB = 0, π . In particular, one can show that, for
every α > 1√

3
, the unit vectors

|w1〉 =
(

1√
3
, α,−

√
2

3
− α2

)

(22)

|w2〉 =
(

1√
3
,−

√
2

3
− α2, α

)

(23)
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reproduce Ellsberg preferences. However, the ambiguity-
averse states pw1 and pw2 are not generally orthogonal, unless
α = ± 0.7887. Let us choose the positive sign, so that the
orthonormal vectors

|w1〉 = (0.5774, 0.7887,−0.2113) (24)

|w2〉 = (0.5774,−0.2113, 0.7887) (25)

reproduce Ellsberg preferences in the three-colour example
within a quantum mathematical representation.

5.3 Modelling empirical data in Hilbert space

The final step of the quantum representation of the three-
colour example consists in modelling the experimental data
in Sect. 3. To this aim, we describe the decision between
acts f1 and f2 by a measurement context e12 and repre-
sent the latter by the spectral family {M,1 − M}, where
the orthogonal projection operator M projects onto the one-
dimensional subspace generated by the unit vector |m〉 =
( 1√

3
, ρY eiθY , ρBeiθB ), where ρ2

Y + ρ2
B = 2

3 . The one-
dimensional projection operator M is then given by:

M = |m〉〈m| =
⎛

⎜
⎝

1
3

1√
3
ρY e−iθY 1√

3
ρBe−iθB

1√
3
ρY eiθY ρ2

Y ρY ρBei(θY −θB )

1√
3
ρBeiθB ρY ρBe−i(θY −θB ) ρ2

B

⎞

⎟
⎠

(26)

Analogously,wedescribe the decisionbetween acts f3 and f4
by a measurement context e34 and represent the latter by the
spectral family {N ,1− N }, where the orthogonal projection
operator N projects onto the one-dimensional subspace gen-
erated by the unit vector |n〉 = ( 1√

3
, τY eiφY , τBeiφB ), where

τ 2Y + τ 2B = 2
3 . The one-dimensional projection operator N is

then given by:

N = |n〉〈n| =
⎛

⎜
⎝

1
3

1√
3
τY e−iφY 1√

3
τBe−iφB

1√
3
τY eiφY τ 2Y τY τBei(φY −φB )

1√
3
τBeiφB τY τBe−i(φY −φB ) τ 2B

⎞

⎟
⎠

(27)

We refer to the unit vectors |v0〉 = 1√
3
(1, 1, 1) and |w1〉 and

|w2〉 in Eqs. (24) and (25). It follows that the conditions

〈m|m〉 = 1 (28)

〈n|n〉 = 1 (29)

〈w1|M |w1〉 = 0.815 (30)

〈w2|N |w2〉 = 0.780 (31)

〈v0|M |v0〉 = 0.500 (32)

〈v0|N |v0〉 = 0.500 (33)

must be satisfied by the real parameters ρY , ρB , θY , θB ,
τY , τB , φY and φB . Equations (28) and (29) are determined
by normalization conditions, while Eqs. (30) and (31) are
determined by empirical data. Finally, Eqs. (32) and (33) are
determined by the fact that decision-makers who are not sen-
sitive to ambiguity should overall be indifferent between f1
and f2, as well as between f3 and f4. Hence, on average, half
respondents are expected to prefer f1 ( f3) and the other half
f2 ( f4). To simplify the analysis, let us set θY = φB = 0.
Hence, we are left with a system of 6 equations in 6 unknown
variables whose solution is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρY = 0.6853
ρB = 0.4438
θB = 105.07◦
τY = 0.4785
τB = 0.6616
φY = 102.87◦

(34)

Equivalently, we get

|m〉 = (0.5773, 0.6853, 0.4438ei105.07◦
) (35)

|n〉 = (0.5773, 0.4785ei102.87◦
, 0.6616) (36)

Thus, the orthogonal projection operators in Eqs. (26) and
(27) reproducing the experimental data in Sect. 3 are

M =
⎛

⎝
0.333 0.396 0.256e−i105.07◦

0.396 0.470 0.304e−i105.07◦

0.256ei105.07◦
0.304ei105.07◦

0.197

⎞

⎠

(37)

N =
⎛

⎝
0.333 0.276e−i102.87◦

0.382
0.276ei102.87◦

0.229 0.317ei102.87◦

0.382 0.317e−i102.87◦
0.438

⎞

⎠

(38)

The construction of a quantummodel for the data on the Ells-
berg three-colour experiment in Sect. 3 is thus completed.
As we can see, the quantum model naturally arises from
the canonical Hilbert space representation of the realistic–
operational terms in Sect. 4.

6 Conclusions

Despite its phenomenological success to deal with classi-
cally problematical cognitive puzzles, the quantum cognition
research programme still poses challenging questions regard-
ing its explanatory power and necessity.

In this paper, we specialized to the Ellsberg paradox deci-
sion situation a realistic–operational foundation which we
have recently extended from physics to cognition. Then,
we applied to the Ellsberg three-colour example the canoni-
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cal quantum representation of realistic–operational terms in
Hilbert space.

This result on the Ellsberg paradox situation is paradig-
matic, in the sense that one can follow the same strategy
to generally claim that the mathematical representation of
human judgements and decision-making in Hilbert space has
now an independent motivation of a foundational, rather than
phenomenological, nature.

To conclude, we agree that quantum theory in Hilbert
space is not the ultimate theory in cognition—recent results
on sequential measurements and order effects seem to con-
firm this conclusion (see, e.g. Aerts et al. 2016). However,
we also believe that there are strong theoretical motivations,
in addition to its empirical success and unitary explanation,
to continue using Hilbert space structures in cognition.
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