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Abstract
This paper presents a new tree hierarchical representation of type-2 fuzzy systems. The proposed system is called the type-

2 hierarchical flexible beta fuzzy system (T2HFBFS) and is trained based on two-phase optimization mechanism. The first

optimization step is a multi-objective structural learning phase. This phase is based on the multi-objective extended

immune programming algorithm and aims to obtain an improved T2HFBFS structure with good interpretability-accuracy

trade-off. The second optimization step is a parameter tuning phase. Using a hybrid evolutionary algorithm, this phase

allows the adjustment of antecedent and consequent membership function parameters of the obtained T2HFBFS. By

interleaving the two learning steps, an optimal and accurate hierarchical type-2 fuzzy system is derived with the least

number of possible rules. The performance of the system is evaluated by conducting case studies for time series prediction

problems and high-dimensional classification problems. Results prove that the T2HFBFS could attain superior performance

than other existing approaches in terms of achieving high accuracy with a significant rule reduction.

Keywords Hierarchical design � Type-2 fuzzy systems � Beta basis function � Structure learning � Multi-objective

optimization � Parameter tuning

1 Introduction

The modeling of fuzzy systems has gone through remark-

able success over the last fifty years. They have proved

their capacity in different application areas, such as pattern

recognition (Boutleux and Dubuisson 1996), classification

(Jarraya et al. 2015; Jahromi and Moosavi 2011), control

problems (Tanaka and Sano 1994; Singhala et al. 2014),

data mining problems (Hüllermeier 2005) and time series

forecasting (Jarraya et al. 2013, 2014).

In recent few years, type-2 fuzzy design (Zadeh 1975)

has become a growing and an active research topic in the

focus of several researchers. The main cause of the

immigration from type-1 fuzzy systems to type-2 fuzzy

systems is due essentially to the nature of the knowledge

employed to produce fuzzy rules which are usually too

uncertain and contain incomplete or inaccurate informa-

tion. In fact, type-1 fuzzy sets are precise and unable to

handle high levels of uncertainties. In this sense, several

research studies have proved that type-2 fuzzy approaches

have more potential than their type-1 counterpart in coping

with uncertainties.

However, as the complexity and the dimensionality of

the application problems increase, the number of fuzzy

rules of a standard fuzzy system (type-1 or type-2) also

increases which badly affects the interpretability of the

resulting rules. That is why, standard fuzzy systems usually

suffer from the ‘‘curse of dimensionality’’ or the
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‘‘combinatorial rule explosion’’ problem when they are

applied to complex problems. As a solution, the hierar-

chical fuzzy modeling was proposed by Raju and Zhou

(1993) as an effective alternative to solve this problem by

arranging the inputs in a hierarchical architecture. In this

case, instead of using a standard or a flat high-dimensional

fuzzy system, a number of lower-dimensional sub-fuzzy

models are linked in a hierarchical way. Consequently, the

number of rules is reduced and the approximation abilities

of the system are improved.

Since Raju’s paper on hierarchical fuzzy systems

(HFSs) (Raju and Zhou 1993), several works have

appeared in that area applying machine learning and opti-

mization techniques to help in the process of building type-

1 HFSs. Indeed, the search for an optimal hierarchical

structure is as important as the search for the optimal set of

parameters. Therefore, hierarchical fuzzy modeling has

been considered as a search problem and as an optimization

task in both structure and parameter spaces. In this regard,

several research works have been proposed in the literature

to construct or to learn these systems. For example, the

authors suggested in Shimojima et al. (1995) the use of the

genetic algorithm (GA) for the optimization of the HFS’

structure and the gradient descent algorithm to adjust the

parameters. In Lin and Lee (1999), the authors proposed

for the control low-speed problem, a method based on GA

in order to optimize the parameters and the structure of five

inputs hierarchical fuzzy controller. Moreover, an approach

was introduced in Balazs et al. (2010) based on two

structures evolving algorithms which are the genetic and

the bacterial programming algorithms in order to build a

multi-level rule-based system. Salgado proposed in Sal-

gado (2008), a hierarchical collaborative structure (HCS)

where three phases of structure building, parameter iden-

tification and data division were employed. In Cheong and

Lai (2007), the authors applied the differential evolution

(DE) algorithm for the automatic design of a hierarchical

fuzzy logic controller. In addition, Chen et al. (2004)

proposed a method that interleaves the ant programming

(AP) and the particle swarm optimization (PSO) algorithms

for, respectively, the structure learning and the rules’

parameters tuning of a TSK HFS. Chen et al. ameliorated

this version and proposed in Chen et al. (2007) a structure

learning step using the probabilistic incremental program

evolution (PIPE) algorithm and applied the evolutionary

programming algorithm (EP) for adjusting the rules’

parameters of the hierarchical system. In Fernández et al.

(2009), the authors suggested a learning process of a

hierarchical fuzzy rule base classification system

(HFRBCS), where the knowledge base was created by

means of a linguistic rule generation (LRG) method and the

best rules were selected from the hierarchical rule base

using the GA.

Nevertheless, all of these HFSs proposals employed

type-1 fuzzy models in the hierarchical design and focused

on improving only the system’s accuracy using mono-ob-

jective hybrid optimization techniques. However, as far as

we know, very few publications can be found exploiting

multi-objective evolutionary algorithms (MOEAs) for

evolving HFSs and/or addressing type-2 fuzzy systems in

the hierarchical design (Hagras 2004; Benı́tez and Casillas

2013; Ojha et al. 2017). In fact, Hagras (2004) suggested a

type-2 hierarchical fuzzy logic controller (type-2 HFLC)

for autonomous mobile robots. In Benı́tez and Casillas

(2013), a multi-objective genetic algorithm was proposed

for the learning of an incremental HFS with the aim of

minimizing two objectives, which are the error and the

number of rules. In Ojha et al. (2017), the authors used a

multi-objective genetic programming (MOGP) algorithm

to train the structure of a proposed type-2 hierarchical

fuzzy inference tree (T2HFIT), while the differential evo-

lution (DE) algorithm was used to fit the parameters of the

model. In this approach, both the accuracy and complexity

of the system were used as objectives to reach.

In this work, a type-2 hierarchical flexible beta fuzzy

system (T2HFBFS) is proposed. For the design process, the

T2HFBFS is presented through a tree encoding method,

and its membership functions (MFs) are modeled based on

interval type-2 beta fuzzy sets. The use of type-2 beta fuzzy

sets enables the system to handle uncertain information

more efficiently than its type-1 counterpart. Regarding the

optimization process, two main phases of structure learning

and parameter optimization are introduced. The structure

learning phase is performed based on the multi-objective

extended immune programming (MOEIP) algorithm. This

step aims to learn a population of T2HFBFS structures

taking into account the optimization of both the accuracy

and the interpretability objectives. For the tuning phase, the

PSO-based update memory for improved harmony search

algorithm (PSOUM-IHS) (Ammar et al. 2013) is applied to

update the parameters of the antecedent and consequent

parts of fuzzy rules. By interleaving the two optimization

phases, a high-performance T2HFBFS is finally generated.

The rest of the paper is planned as follows: In Sect. 2,

the type-2 hierarchical flexible beta fuzzy system is pro-

posed. Section 3 introduces the initialization phase based

on a clustering technique. Next, the multi-objective struc-

ture learning and the parameter optimization phases are

explained in, respectively, Sects. 4 and 5. A global

description about the hybrid evolving algorithm is then

given in Sect. 6. Simulation studies are next depicted in

Sect. 7. And finally, in Sect. 8, some conclusion remarks

are given.
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2 The type-2 hierarchical flexible beta fuzzy
system

2.1 Type-1 beta membership function (T1 BMF)

The type-1 beta fuzzy set was proposed by Alimi (1997). In

the one-dimensional case, the type-1 beta membership

function (T1 BMF) is expressed by:

b x; c; r; p; qð Þ ¼

1þ pþ qð Þ x� cð Þ
rp

� �p
�

1� pþ qð Þ c� xð Þ
rq

� �q
ifx 2 c� rp

pþ q
; cþ rp

pþ q

� �

0 elsewhere

8>>>>><
>>>>>:

ð1Þ

where c is the beta function center, r is the width, and p

and q present the form parameters, p; q[ 0.

The beta function has a universal approximation charac-

teristic and can approximate other functions like triangular or

Gaussian functions (Alimi 2003). Indeed, in comparison

with the Gaussian function which relies on the center and the

width parameters, the beta function relies on two additional

form parameters (p and q) which allow a greater flexibility in

the modeling of fuzzy sets. Alimi (2003) demonstrated that

the beta function has the capacity to approximate the Gaus-

sian function and that the reverse is not true. Moreover, this

function presents other advantages like its high flexibility

and its ability to generate richer shapes (asymmetry, linear-

ity, etc.) (Alimi 1997, 2000). Figure 1 presents some

examples of type-1 beta MFs with different shapes.

2.2 Interval type-2 beta membership function
(IT2 BMF)

A type-2 fuzzy set ~A (T2 FS) in the universe of discourse U

is represented by a type-2 membership function l ~A,

expressed as follows (Mendel and John 2002):

~A ¼ r
x2U

r
u2Jx

l ~A x; uð Þ= x; uð Þ ð2Þ

where r r defines the union over all admissible x and u, Jx
denotes an interval in [0, 1] and l ~A x; uð Þ presents a type-1

fuzzy set known as the secondary set with 0� l ~A x; uð Þ� 1.

When all l ~A x; uð Þ ¼ 1, then ~A is considered as a special

case of a type-2 fuzzy set called an interval type-2 fuzzy set

(IT2 FS) and is expressed as follows:

~A ¼ r
x2U

r
u2Jx

1= x; uð Þ ð3Þ

where Jx � 0; 1½ �: Note that an IT2 FS is characterized by a

bounded area FOU known as the footprint of uncertainty.

This area is delimited by two type-1 fuzzy sets called upper

MF (UMF), �l ~A xð Þ; and lower MF (LMF),l ~A
xð Þ;,

respectively.

In this study, instead of employing Gaussian or trian-

gular interval type-2 MFs which are frequently used in the

literature, we choose to adopt the beta function for its large

flexibility as compared with the other functions. Therefore,

the interval type-2 beta membership function (IT2 BMF) is

proposed and employed in this work. The IT2 BMF is a

beta primary MF with a fixed center c, and uncertain

parameters r, p and q. The IT2 BMF is expressed by:

b x; c; r; p; qð Þ ¼ 1þ pþ qð Þ x� cð Þ
rp

� �p
1� pþ qð Þ c� xð Þ

rq

� �q
r 2 rL; rU½ �; p 2 pL; pU½ � and q 2 qL; qU½ �

8<
:

ð4Þ

where rL; rU ; pL; pU ; qLandqU present positive real values.

Figure 2 shows two examples of IT2 BMFs with uncertain

r, p and q. Upper and lower beta MFs are, respectively,

expressed by the following equations:

�l ~A xð Þ ¼ b x; c; rU ; pU ; qUð Þ ð5Þ

l ~A
xð Þ ¼ b x; c; rL; pL; qLð Þ ð6Þ

2.3 Type-2 hierarchical flexible beta fuzzy
system (T2HFBFS)

In general, building a hierarchical fuzzy model is consid-

ered as a difficult task. This is because we have to define

the number of hierarchical levels, the rule base of each

Fig. 1 T1 BMFs with different shapes Fig. 2 IT2 BMFs with uncertain r, p and q having different FOUs

Hierarchical fuzzy design by a multi-objective evolutionary hybrid approach 3617

123



module (sub-fuzzy model), the number of modules in

intermediate levels, how to arrange the original input

variables in the different levels and so on.

In this study, the design of an accurate type-2 hierar-

chical fuzzy system having a simple structure is considered

as a search problem in both architecture and parameter

spaces. For that, firstly, the multi-level aspect is illustrated

by employing a tree-based encoding scheme. In fact, the

tree representation can provide more adjustable and mod-

ifiable structures due to its natural and flexible hierarchical

representation. In addition, the presented hierarchical tree

design is proposed for type-2 beta fuzzy systems. In this

case, the resulted system is termed the type-2 hierarchical

flexible beta fuzzy system (T2HFBFS). The proposed

system is characterized by the following node set S:

S ¼ N [ T ¼

BFIIlkj=k 2 2; . . .:;Kf g; j 2 1; . . .; Jf g; l 2 1; . . .; L� 1ð Þf g
n o

[ x1; . . .; xMf g
ð7Þ

where:

• N is the non-terminal node set formed by a number of

type-2 beta sub-fuzzy models BFIIlkj. Each BFIIlkj
presents an interval A2-C1 TSK fuzzy model (Liang

and Mendel 1999) having one output and a number of

fuzzy rules. These rules rely on an antecedent part

based on interval type-2 beta membership functions

(IT2 BMFs) and a consequent part based on interval

type-1 fuzzy sets.

For a FIIlkj, k defines the number of inputs, while K is

the maximal degree of the tree. j is the index of the

corresponding BFIIlkj with k inputs, while J is the

number of times in which BFIIlkj occurs with k inputs.

And l is the index of the level, while L presents the

number of the tree levels;

• T is the terminal node set formed by the input variables

x1, x2,…, xM;

The evaluation of a T2HFBFS is executed recursively

from the lower level to the final one. Each level can con-

tains one or several sub-fuzzy models. The inputs of a level

can be the outputs of its lower level, or a combination of

some original inputs with its lower-leveled outputs. For

further clarification about the evaluation process of a

T2HFBFS, Fig. 3 is considered as a simple example of a

possible obtained T2HFBFS (Fig. 3b) from a tree structural

representation (Fig. 3a). The evaluation process for this

example is done as follows:

Firstly, the BFII222 of the second level is evaluated. The

fuzzy rules format of this system is as follows:

Rl¼2
i : If x3 is ~A2

1i and x4 is ~A2
2i then

Y2
i ¼ C2

0i þ C2
1ix3 þ C2

2ix4 ð8Þ

where x3 and x4 are the original inputs and Y2
i is the output

of rule i. ~A2
1i and

~A2
2i are, respectively, the antecedent fuzzy

sets of variables x3 and x4 modeled by the IT2 BMFs.

C2
0i; C

2
1i and C2

2i are the consequent elements presented by

interval type-1 fuzzy sets.

Next, the output of the whole T2HFBFS is evaluated by

computing the root node output of BFII121. This module has

two inputs which are y1 (the output of its lower level

BFII222) and x1. Rules of BFII
1
21 have the following format:

Rl¼1
j : If y1 is ~A1

1j and x1 is ~A1
2j then

Y1
j ¼ C1

0j þ C1
1jy1þ C1

2jx1 ð9Þ

where Y1
j is the output of rule j. ~A1

1j and
~A1
2j are, respec-

tively, the antecedent fuzzy sets modeled by the IT2 BMFs.

C1
0j; C

1
1j and C1

2j are the interval type-1 consequent ele-

ments. The final output of the whole system is given by y2

(the output of BFII121). Note that, for each BFIIlkj, its IT2

BMF parameters and rule consequents will be further

optimized in the phase of parameter tuning.

3 Initialization step by a clustering method

The first step of optimization is a learning step of a set of

T2HFBFS structures in order to get the best structure. But,

it is important to note that optimizing the structures of a set

of T2HFBFSs having totally random rules and parameters

will not contribute to good results and will slow down the

process of optimization. Therefore, a first step of T2HFBFS

initialization is required before starting the optimization

process. In this sense, the subtractive clustering (SC)

algorithm is implemented in this work as a first step to

automatically extract the initial rule bases of the hierarchy

and the initial beta membership functions shapes.

In fact, the subtractive clustering algorithm proposed by

Chiu (1994) is an unsupervised algorithm employed to

divide a given data set into meaningful subgroups called

Fig. 3 a An example of a tree representation, b the corresponding

T2HFBFS: N = {BFII121, BFII
2
22}, T = {x1, x3, x4}
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clusters. By applying this algorithm, the generated centers

of clusters will correspond to the membership function

centers, and each center of a cluster will be converted into a

fuzzy rule. Based on this concept, an initialization mech-

anism using the SC algorithm is introduced in this study

and is described as follows:

After generating a random population of trees, for each

tree, terminal nodes of input variables are clustered in order

to create the different BFIIlkj modules of the hierarchy.

These sub-fuzzy models are automatically generated with

initial values of beta MF parameters and with rule bases

extracted from data. In consequence, the resulting extrac-

ted rules are more adjusted to the input data than they are in

fuzzy models generated randomly. Such initialization step

by clustering terminal nodes of trees will speed up the

whole evolutionary search process. Readers may refer to

(Chiu 1994) to get all the details about the SC algorithm.

4 Multi-objective structure learning
by MOEIP algorithm

4.1 Basic concepts of EIP for single optimization
problem

In Musileket al. (2006), the authors proved that the immune

programming (IP) algorithm is more effective than the

genetic programming (GP) algorithm: Successful solutions

are obtained using a smaller size of population and with

less number of generations. In addition, the IP algorithm

has a great ability to evolve structures of trees or programs

and proves high flexibility to create more adjustable archi-

tectures. For that, we choose to employ in this work a

modified version of the IP algorithm in the structure

learning phase of T2HFBFSs. The employed algorithm is

termed the extended immune programming (EIP) algo-

rithm and is described by the following steps:

a. Initialization An initial population of T2HFBFSs

(antibodies) is randomly created with random struc-

tures (random number of levels and random nodes for

each level). For each T2HFBFS, the IT2 BMFs

parameters of BFIIlkj modules and the fuzzy rules are

initialized by the SC algorithm except for the beta form

parameters (p and q) which are randomly generated.

EIP_Itr = 0, EIP_Itr is the generation counter.

b. Evaluation An antigen representing the problem to be

addressed is introduced. The antigen is compared to all

antibodies (NA antibodies), and their affinity fitness

Fit(i) with respect to the antigen is determined.

c. Cloning in this step, an antibody Abi is selected from

the actual population and a random number forming

the cloning probability Pc is generated. If the Abi

affinity is higher than Pc, then Abi is cloned and

introduced in the next population.

d. Mutation: if the previous selected high-affinity anti-

body Abi has not performed a cloning step because of

the stochastic nature of this step, so it is presented to

hypermutation. As shown in Fig. 4, four mutation

operators were used in this study:

Modifying one terminal node: choose a terminal node at

random and replace it by another terminal node;

Modifying all terminal nodes: all terminal nodes of Abi
are selected and replaced by other random terminal nodes;

Growing: choose a terminal node at random and replace

it by a randomly created sub-fuzzy model.

Pruning: select randomly a non-terminal node (sub-

fuzzy model) and replace it with another randomly gener-

ated terminal node.

The mutation operators are used based on the method of

Chellapilla (1998). This method is described as follows:

(i) generate a number N which presents a sample from a

Poisson variable generated at random, (ii) choose N oper-

ators randomly from the previously proposed mutation

operators and (iii) execute consecutively the N operators on

the parents and obtain the offspring.

The mutation step is presented in various manners so

that a population with a high genetic diversity is obtained.

This diversity will help to overcome local optimum.

e. Replacement if Abi is not selected for mutation or

cloning steps, then we generate a new antibody for the

next population (using a replacement probability Pr).

Consequently, candidate solutions with low affinity

fitness are implicitly replaced.

f. Iteration population steps c–e presenting EIP operators

are repeated until a full novel population is created.

g. Iteration algorithm increment the generation counter

after the creation of the new population, EIP_Itr =

EIP_Itr ? 1. The EIP is iteratively executed (steps b–

f) until attaining stopping criteria.

This section introduces the EIP algorithm as a single

optimization algorithm and the used fitness function

reflects only the accuracy of the system. The next sub-

sections will present an extended version of this algorithm

showing how we can improve not only the system’s

accuracy but also the interpretability objective. In this case,

the problem is called multi-objective.

4.2 Multi-objective optimization problem

A minimization multi-objective problem may be formu-

lated as:

Hierarchical fuzzy design by a multi-objective evolutionary hybrid approach 3619
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Min f xð Þ ¼ f1 xð Þ; . . .; fk xð Þ½ � ð10Þ

subject to:

gj xð Þ� 0 j ¼ 1; . . .p ð11Þ

hj xð Þ ¼ 0 j ¼ 1; . . .q ð12Þ

where x ¼ x1; . . .; xnð Þ 2 Rn is a vector of solutions defined

on the space of decision variables. gj xð Þ and hj xð Þ are the

functions that represent the constraints of the problem. k

presents the number of objective functions, and p and q are,

respectively, the number of equality and inequality

constraints.

Unlike single-objective optimization problems where

only one optimal solution is created, multi-objective opti-

mization algorithms create a number of optimal solutions

named Pareto optimal solutions or non-dominated solu-

tions. The concept of dominance is presented as follows: a

solution x dominates a solution y (expressed by x 	 y) if

and only if x is greater than y in at least one objective

function and x is not worse than y in any objective function.

x is named Pareto optimal if x is not dominated by any

other solution of the present population. In the objective

space, the set of all Pareto optimal solutions is called the

Pareto optimal front.

4.3 Objective functions

Multi-objective fuzzy design requires the consideration of

different objective functions in the search process. In this

study, both the accuracy and the interpretability metrics are

treated in the multi-objective structure learning step. While

the accuracy is measured by the root mean squared error

(RMSE), the system’s interpretability is defined by the

number of used fuzzy rules:

Objective 1 : RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
j¼1

y
j
t � y

j
out

� �2
vuut ð13Þ

where m defines the number of samples, and y
j
t and y

j
out are,

respectively, the actual and the calculated outputs.

Objective2 : Interpretability ¼ NR ð14Þ

where NR is the total number of fuzzy rules.

4.4 Multi-objective extended immune
programming algorithm (MOEIP)

In this section, a multi-objective version of the EIP algo-

rithm is proposed and called the multi-objective extended

immune programming (MOEIP) algorithm. This algorithm

Fig. 4 Examples of the EIP mutation operators: a original T2HFBFS. b Modify one terminal node. c Modify all terminal nodes. d Growing.

e Pruning
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is based on an elitist strategy and uses the EIP operators

combined with a dominance concept to search for elite

solutions. For that, an archive A formed by a number of

non-dominated antibodies is used. This archive forms a

secondary population of Pareto optimal solutions. In the

MOEIP strategy, each antibody of the population is pre-

sented by a T2HFBFS, and as the search progresses, the

dominance criterion with the EIP operators is applied to

evolve the population toward an optimal Pareto front.

Moreover, in the evolutionary single optimization case,

a child is selected over its parent if it has better fitness

value. In the proposed MOEIP, the superiority is measured

as a dominance relationship, and a child is selected over its

parent only if this latter dominates the parent. Conse-

quently, as the search progresses, the different solutions

move closer to the Pareto front.

On the other hand, to generate a well-distributed Pareto

front with good diversity, a pruning method using the

crowding distance measure (applied in non-dominated

sorting genetic algorithm II (NSGA II) (Deb et al. 2002)) is

implemented. In fact, we calculate for each solution of the

front a crowding distance value which presents the distance

between this solution and its neighbors in the fitness

function space. In each generation, the solutions of the

archive A are sorted according to their values of crowding

distance: Solutions with the highest crowding distance

values (with best diversity) are maintained and the worst

are discarded from the archive.

Suppose that xi is a Pareto front solution. The crowding

distance cd xið Þ of xi is calculated as follows:

(i) The crowding distance of xi is

initialized:cd xið Þ ¼ 0;

(ii) For each objective function fj do:

• Sort the different non-dominated solutions

along the objective function fj;

• cd xið Þ ¼ cd xið Þ þ fj (the solution which pre-

cedes xi in the ordered sequence)—fj (the

solution which follows xi in the ordered

sequence);

A pseudo-code of the MOEIP is introduced by Algo-

rithm 1. To summarize, the basic ideas of this algorithm

are:

– The structure learning of a population of T2HFBFSs

has taken into consideration the optimization of both

the accuracy and the interpretability.

– Guide the search process through an optimal Pareto

front of non-dominated elite solutions.

– Keep a diverse set of spaced non-dominated solutions

using the crowding distance measure.

– In the mutation step, the replacement of antibodies is

done using dominating offspring.

It should be noted that the MOEIP structure learning

step terminates when the maximum number of iterations is

reached. As a result, a Pareto optimal front of T2HFBFS

solutions is generated. In this case, the most suit-

able structure solution (having a good balance between the

accuracy and the interpretability) is selected to undergo a

second step of parameter optimization.

Algorithm 1: MOEIP Algorithm

Input: NA (size of the population)
Max_Itr: (maximum iteration number)
Max_Size: (the archive maximum size)

Output: A (an archive containing non-dominated solutions)

Begin
a. Generation of an initial random population of anti-

bodies (T2HFBFSs) with random structures and crea-
tion of an initial external empty archive 
MOEIP_Itr = 0;

b. Evaluation of .
c. Applying dominance criterion on in order to store 

the initial Pareto optimal solutions in the archive .
d. Pruning of based on the crowding distance value: If 

the archive size (number of Pareto optimal solutions) 
is greater than Max_Size, then the crowding distances
of all individuals of the archive are calculated and 
sorted in a descending order. The first Max_Size anti-
bodies are then chosen to update the archive.

e. While (MOEIP_Itr<Max_Itr) do
• Update of the population Apply EIP operators 

on to generate the new population 
(section 4.1):

- Replacement (
- Cloning (
- Mutation: if an offspring dominates the parent, 

then this latter is replaced by its offspring.
• Update of the archive Applying the domi-

nance criterion on to create the external 
archive 

• Pruning of based on the crowding distance 
measure (as in step d).

• MOEIP_Itr = MOEIP_Itr +1.
End
f. Return the final non-dominated solutions of
End
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5 Parameter optimization using the hybrid
PSOUM-IHS

The harmony search (HS) proposed by Gem et al. (2001) is

a well-known evolutionary meta-heuristic music-inspired

algorithm. The harmony search was inspired from musical

jazz improvisation when a musician (decision variable)

plays (create) a note (value) to reach a better state of

harmony (global optimum). The HS explores the solution

space to attain the optimum value. The main steps of the

HS are briefly described as follows:

• Step 1 Formulate the problem and initialize the

parameters.

• Step 2 Initialize at random the harmony memory.

• Step 3 Improvise a novel harmony.

• Step 4 Update of the harmony memory.

• Step 5 Repeat steps 3 and 4 until a stopping criterion is

reached.

In 2007, Mandavi et al. (2007) suggested an optimized

version of the original HS named the improved harmony

search (IHS) algorithm. The authors suggested adjusting

and evolving the parameters of the HS in the different

iterations instead of using them with fixed values. Conse-

quently, during the execution, the pitch adjustment rate

(PAR) will increase linearly and the bandwidth (the Fret’s

width (FW)) will decrease exponentially according to the

following expressions:

PAR ¼ PARmax � PARmin

MaxItr

 currentIterationþ PARmin

ð15Þ
FW ¼ FWmax 
 exp coef 
 currentIterationð Þ ð16Þ

coef ¼
log FWmin

FWmax

� �
NI

ð17Þ

Although the HS was improved, it still has some weakness.

In fact, most of the decision variables stored in the new

harmony are taken from the elements of the harmony

memory. In addition, it should be noted that in most of the

time, the harmony memory is stable and does not present a

wide variety of values to the improvisation. Thus, in gen-

eral, the harmony search algorithm has a small probability

to provide a good quality of new harmony vectors, and this

may affect the convergence speed of the algorithm. To

tackle this problem, Ammar et al. (2013) proposed to

include the idea of the particle swarm optimization (PSO)

velocity in the search process of IHS algorithm. Such

hybridization will allow creating a wide variety of solu-

tions in memory (with respect to their allowable ranges)

and will help the convergence to the optimal solution. In

fact, PSO mechanism can create iteratively a new

population totally updated and closer to the optimum

solution. Over the iterations, the particles in PSO converge

together around an optimum through a combination of

exploration and exploitation steps of the search space. The

proposed hybrid algorithm is named PSO-based update

memory for improved harmony search (PSOUM-IHS)

(Ammar et al. 2013). Its flowchart is shown in Fig. 5. Here,

the main idea focuses on exploiting the stochastic and

dynamic aspects of particle velocities which aid to guide

the search to the right areas of the work space. To realize

this hybridization, the vectors of memory in IHS are con-

sidered as particles of the swarm, and the new values of

memory for the new improvisation are considered as the

novel positions reached by these particles. For each parti-

cle, the velocity vj and the position xj are calculated

according to the following equations:

vj t þ 1ð Þ ¼ W tð Þvj tð Þ þ c1u1 pj tð Þ � xj tð Þ
� �

þ c2u2 pg tð Þ � xj tð Þ
� �

ð18Þ

xj t þ 1ð Þ ¼ xj tð Þ þ 1�W tð Þð Þvj t þ 1ð Þ ð19Þ

where:

c1 and c2: acceleration/weighting factors.

u1 and u2: random numbers in [0,1].

W: inertia factor.

pj: local best position (found by the th particle).

pg: global best position (found by the swarm).

Readers can find more details concerning this hybrid

algorithm in (Ammar et al. 2013).

Step 1: Problem formulation and parameter setting

Step 2: Initialize the Harmony Memory (HM) at random

Step 3: Improvise a new harmony

Step 4-a: Update the harmny memory

Step 4-b:  
 - Determine  and  
 - Calculate the particle velocity according to equation (18) 
 - Update the particle position according to equation (19) 

Yes

Terminal condition
No

Stop

Fig. 5 Flowchart of PSOUM-IHS
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In this study, the PSOUM-IHS is employed for the

parameter adjustment phase of the obtained T2HFBFS. For

that, the parameters of the best T2HFBFS (generated by the

MOEIP structure learning phase) constitute an element of

the memory to be evolved via the PSOUM-IHS. So, each

element of the memory is represented by a NParm9Size

matrix. Nparm defines the parameter number, while Size is

the number of BFIIlkj modules of the best T2HFBFS found.

The parameters encoded in the matrix are the IT2 BMFs

(c; rL; rU ; pL; pU ; qL; qU) and the linear weights of the

consequent parts of rules. The used objective function in

this phase is the RMSE (defined previously).

6 Hybrid algorithm to evolve the T2HFBFS

In general, the modeling of high-dimensional problems is

usually preceded by a data preparation phase known as

feature selection. Instead of working with all features of the

original data set, feature selection algorithms allow the

reduction in the feature space, which enhance the predic-

tion performance of the system and speed up the search

process. In this paper, a feature scoring technique called the

statistical dependency (SD) algorithm (Pohjalainen et al.

2015) is exploited as a data preparation phase when the

tested data set is a classification data set formed by a high

input dimension. Next, the training process starts: The

MOEIP and the PSOUM-IHS are alternately applied to find

an optimum or a near-optimum T2HFBFS with good pre-

cision and a minimum number of rules. The following steps

give a brief description of the hybrid evolving algorithm:

(a) A data preparation step: The most useful input data

are selected by the SD feature selection algorithm.

This step is performed only when we are testing a

high-dimensional classification problem.

(b) Initialization step: An initial population of random

trees is generated with random architectures. A

population of T2HFBFSs is built by executing the

subtractive clustering algorithm on the trees

(Sect. 3).

Global_Gn = 0; (the global generation number)

Global_Itr = 0; (the global iteration number)

(c) Multi-objective structure learning phase: The

MOEIP algorithm is applied to evolve the T2HFBFS

population toward a Pareto front of non-dominated

solutions. Each solution of the Pareto front corre-

sponds to a T2HFBFS tree. The used objective

functions are defined by (13) and (14).

(d) Go to step (e) in the case of attaining the maximum

number of MOEIP_Itr.

Global_Itr = Global_Itr ? MOEIP_Itr;

Otherwise, go back to step (c);

(e) The most suitable solution (T2HFBFS having a good

trade-off between the accuracy and the interpretabil-

ity) is selected to be the output of the multi-objective

structure learning phase.

(f) Parameter optimization phase: The PSOUM-IHS is

applied to evolve the parameters of the best

T2HFBFS. These parameters formulate an element

of the memory. The used objective function here is

defined by (13).

g) Go to step (h) in the case of attaining the maximum

number of Parm_Itr, or in the case of not finding a

better matrix of parameters after a fixed time.

Global_Itr = Global_Itr ? Parm_Itr;

Otherwise return to step (f);

(h) Stop in the case of generating a satisfactory

T2HFBFS or reaching a maximum number of global

iterations.

Otherwise, Global_Gn = Global_Gn ? 1 and go

back to step (c).

7 Experimental results

The performance of the T2HFBFS is evaluated through six

data sets of different nature. These data sets include four

cases of time series forecasting problems and two cases of

high-dimensional classification problems. For all experi-

ments, the minimum and the maximum number of levels

(depth of the trees) is, respectively, 2 and 4. Moreover, the

minimum and the maximum number of nodes (degree of

the used trees) is, respectively, 2 and 5. Table 1 gives the

best-suited list of parameters used in the experiment.

Table 1 Parameter initialization

Parameters Initial values

MOEIP

Population size 30

Probability of cloning (Pc) 0.7

Probability of replacement (Pr) 0.5

PSOUM-IHS

Population size 20

PARmin 0.00001

PARmax 1

HMCR 0.9

c1 0.2

c2 0.7
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7.1 T2HFBFS for time series forecasting

For this kind of problems, four types of nonlinear bench-

mark prediction time series are tested, including the

Mackey–Glass chaotic time series, the Box and Jenkins’

gas furnace time series, the monthly NAO climatic index

time series and the sunspot number time series.

For a meaningful comparison with other state-of-the-art

learning systems, all the data sets are divided into the same

number of training and testing patterns. The simulations are

running 10 times and then results are averaged.

7.1.1 Predicting the Mackey–Glass Chaotic Time Series

The Mackey–Glass time series (MG) (Mackey and Glass

1977) is one of the widely known benchmark problems

which have been intensively studied in several works. The

chaotic system is the signal x tð Þ produced by the numerical

solution of the following time delay differential equation:

d x tð Þð Þ
dt

¼ ax t � sð Þ
1þ xc t � sð Þ � bx tð Þ ð20Þ

The chaotic behavior of this series depends on the

parameter s. If s[ 16.8, MG has a chaotic behavior. In our

case, the parameters are initialized as follows: s = 17,

a = 0.2, b = 0.1 and c = 10. These initial conditions are the

same ones used by the comparison systems. Four past

values are used to predict x t þ 6ð Þ, which are x tð Þ, x t � 6ð Þ,
x t � 12ð Þ and x t � 18ð Þ. A total of 1000 observations were

generated, where the first 500 samples are used for the

training and the last 500 samples are used for the test.

After performing 13 global iterations, 2 global genera-

tions and 520 number of Function Evaluations FEs, a near-

optimum T2HFBFS was obtained with 7 rules. The training

and testing RMSE values of the generated T2HFBFS are

equal to 9.2112e-16 and 9.1012e-16, respectively.

Figure 6 shows the prediction result of the T2HFBFS for

training and testing data.

In Table 2, we make a comparison between the results

of the proposed T2HFBFS and other state-of-the-art type-

1/type-2 fuzzy systems and neural network approaches. As

can be observed in this table, the proposed T2HFBFS

shows better performance than the other works in terms of

achieving high levels of accuracy using simpler fuzzy rule

base.

7.1.2 Predicting the Box–Jenkins chaotic time series

The proposed T2HFBFS is applied to the Box and Jenkins

gas furnace prediction problem. The data set was recorded

from a combustion procedure of a methane–air mixture.

This time series is a well-known real-world benchmark

example frequently exploited for testing prediction meth-

ods. The used data set consists of 296 pairs of input–output

measurements collected from a laboratory furnace

(Box and Jenkins 1976). The first 200 data points were

employed for training and the remaining 96 were employed

for testing. u tð Þ is the gas flow into the furnace considered

as input, and y tð Þ is the CO2 concentration in outlet gas

considered as output. In order to make meaningful com-

parisons with previous works, y t � 1ð Þ and u t � 4ð Þ are

selected to be used as inputs to predict y tð Þ.
After performing 6 global iterations, 1 global generation

and 240 number of FEs, the obtained RMSE values for the

training data and the testing data are, respectively, 0.0044

and 0.0108. The optimum T2HFBFS is generated with 4

fuzzy rules. Figure 7 illustrates the prediction results

including the actual and the predicted outputs for training

and testing data. From these results, it is remarkable that

the proposed system might attain good results after only

few hundreds of FEs and using the minimum number of

rules.

The proposed approach is compared in Table 3 with

several learning techniques such as the genetic and

memetic fuzzy design methods (Wadhawan et al. 2013),

the belief rule-based (BRB) system (Chen et al. 2013), the

adaptive neuro-fuzzy inference system (ANFIS) (Samanta

2011), the beta basis function neural network (BBFNN)

system (Dhahri et al. 2013), the single multiplicative neu-

ron trained with cooperative sub-swarms of PSO (SMN-

COPSO) (Samanta 2011), the flexible neural tree (FNT)

system (Chen et al. 2005) and the fuzzy granular evolving

modeling (FBeM) system (Leite et al. 2011). Our system is

also compared with the interval type-2 intuitionistic fuzzy

logic system IT2 IFLS (Eyoh et al. 2018). As can be

observed from the table, the T2HFBFS achieves better

performance in terms of attaining the best training and

testing errors with few number of fuzzy rules.

Fig. 6 Results of MG prediction for training and testing data
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7.1.3 Predicting the monthly NAO index time series

The North Atlantic Oscillation (NAO) index (Hurrell and

van Loon 1997) can be defined as the difference of sea

level pressure between two stations located near the centers

of Azores High and Icelandic Low. Positive values of the

NAO index indicate a wet and warm winter in northern

Canada and Greenland, in the Western Europe and in the

Eastern US. Negative values of the NAO indicate a cold

winter in these regions and storms are heading south

toward the Mediterranean Sea. This leads to increase

rainfall and storm activity in North Africa and southern

Europe.

To make a faithful comparison with other existing

models, the used data set in this experiment is formed by

712 mean monthly NAO index values given by daily

measures of the NAO index since January 1950 to April

2009. Six values are used to predict y t þ 1ð Þ, and the input–
output data format is defined by: [inputs; output] = y t�ð½
5Þ; y t � 4ð Þ; y t � 3ð Þ; y t � 2ð Þ; y t � 1ð Þ; y tð Þ; y t þ 1ð Þ�.
where t defines an identifier of the month/year of measure

and y tð Þ presents the NAO monthly index. From the 712

data points, the first 500 data points are used for training

and the remaining 212 are used for the test. The data set is

available from: http://www.cpc.ncep.noaa.gov/products/

precip/CWlink/pna/nao.shtml.

After 12 global iterations of learning, 2 global genera-

tions and 480 number of FEs, a near-optimum T2HFBFS

was generated with 7 rules. The training and testing

RMSEs of T2HFBFS are 1.6870e-07 and 1.3021e-07,

respectively. Figure 8 shows the actual and the T2HFBFS

predicted outputs. These results confirm again the capacity

of the proposed system to achieve high levels of accuracy

using a reduced number of rules. In fact, this is due to the

multi-objective nature of the learning process which allows

considering the two performance measures of accuracy and

Table 2 Comparison results of

Mackey–Glass time series
Approach Training RMSE Testing RMSE Rules

SuPFuNIS (Paul and Kumar 2002) 3.7e-03 3.74e-03 10

NARMA (da Silva 2008) 6.3e-04 6.2e-04 –

Memetic-T2FS (León et al. 2015) 3.1e-03 –

TSK-SVR II (Uslan et al. 2014) – 7.0e-03 32

GT2FLS-VSCTR (Almaraashi et al. 2016) 3.9e-02 3.9e-02 –

SA-IT2FLS (Almaraashi and John 2011) 9.0e-03 8.9e-03 16

IT2 IFLS (Eyoh et al. 2018) – 4.0e-03 16

FBBFNT (Bouaziz et al. 2016) 9.9e-07 2.0e-06 –

T2HFBFS 9.2e-16 9.1 e-16 7

Fig. 7 Results of Box and Jenkins prediction for training and testing

data

Table 3 Comparison results of

Box and Jenkins time series
Approach Training RMSE Testing RMSE Rules

Fuzzy-GA (Wadhawan et al. 2013) 0.2779 – 8

BRB (Chen et al. 2013) 0.2939 0.4616 25

ANFIS (Samanta 2011) 0.0374 0.0640 –

Fuzzy-MA (Wadhawan et al. 2013) 0.0871 – 8

BBFNN (Dhahri et al. 2013) 0.2258 0.3876 –

SMN-COPSO (Samanta 2011) 0.2151 0.3416 –

FNT model (Chen et al. 2005) 0.0257 0.0264 –

FBeM (Leite et al. 2011) 0.0421 – 3

IT2 IFLS (Eyoh et al. 2018) – 0.0249 4

T2HFBFS 0.0044 0.0108 4
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interpretability at the same time. Also, the proposed hier-

archical fuzzy design contributes to the improvement in the

system’s approximation capacity by generating more

accurate and interpretable solutions.

As given in Table 4, the performance of T2HFBFS is

compared with that of the F-transforms (Di Martino et al.

2011), Wang–Mendel method (Wang and Mendel 1992)

and the local linear wavelet neural network (LLWNN)

system (Chen et al. 2006). RMSE testing values presented

in this table indicate that the T2HFBFS gives considerably

smaller error values than its competitors.

7.1.4 Predicting the sunspot number time series

It is a real-world non-stationary and highly complex time

series. This data set presents the yearly average relative

number of sunspots observed (Izeman et al. 1985). It is

recorded for the years 1700–1979. To make a meaningful

comparison with other existing studies, samples between

1700 and 1920 are exploited as training data. And for the

test, two additional sets are used: the first set is from 1921

to 1955 and the second is from 1956 to 1979. The used

inputs are y t � 4ð Þ; y t � 3ð Þ; y t � 2ð Þ and y t � 1ð Þ, and the

predicted output is y tð Þ.
After attaining 12 global iterations, 2 global generations

and 480 number of FEs, an optimum T2HFBFS was gen-

erated with a training RMSE value equal to 2.8301e-016

and with a number of fuzzy rules equal to 6. Regarding the

testing part, the RMSE testing values for the first and the

second testing sets are, respectively, 1.2741e-016 and

1.6433e-016. Figure 9 presents the actual and the

T2HFBFS predicted outputs for training and testing data.

A comparison with existing studies is made in Table 5

such as the beta basis function neural network system

trained by the artificial bee colony (BBFNN-ABC) (Dhahri

et al. 2012), the fuzzy wavelet neural network (FWNN)

systems (Yilmaz and Oysal 2010), the recurrent fuzzy

neural networks (RFNN) (Aliev et al. 2009) and the flex-

ible beta basis function neural tree trained by a hybrid

evolutionary algorithm (FBBFNT_EIP & HBFOA)

(Bouaziz et al. 2013). As shown in the table, the T2HFBFS

proves again its superiority against the other fuzzy and

neural techniques by reaching lower training and testing

errors.

7.2 T2HFBFS for high-dimensional biomedical
classification problems

To more analyze the efficiency of the proposed system, the

T2HFBFS is further applied for testing two examples of

high-dimensional classification problems, which are the

lung cancer and the prostate cancer data sets. These clas-

sification data sets were taken from the Kent Ridge Bio-

medical Data Set Repository (Available at http://leo.ugr.es/

elvira/DBCRepository/). For this kind of problems having

high input dimension, the SD feature selection algorithm is

applied as an initial filtering step to select the most useful

inputs. In addition, to more estimate the efficiency of the

model, fivefold cross-validation method is implemented on

the data in order to give a more honest assessment of the

true classification accuracy. In general, k-fold cross-vali-

dation involves dividing randomly the data set into k folds,

or groups, of approximately equal size. The first group of

data is considered as a validation set, and the remaining

Fig. 8 Results of NAO index prediction for training and testing data

Table 4 Comparison results of NAO index time series

Approach Testing RMSE

F-transforms (Di Martino et al. 2011) 6.88e-01

LLWNN (Chen et al. 2006) 6.72e-01

Wang–Mendel (Wang and Mendel 1992) 2.86e-02

T2HFBFS 1.30e-07

Fig. 9 Results of sunspot number prediction for training and testing

data
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k - 1 groups are treated as training sets. This process is

repeated k times; each time, a different group of data is

used as a validation set. The results are then given by

computing the mean of the model skill scores.

7.2.1 Lung cancer data set

It is a classification data set utilized in the classification of

adenocarcinoma (ADCA) and malignant pleural mesothe-

lioma (MPM) of the lung. This data set is composed by 181

data points: Among them, 150 tissues are ADCA and the

remaining 31 are MPM. Each data point is described by

12,533 features (genes).

After applying the SD feature selection algorithm on the

data set, the number of the used features is reduced from

12,533 to 12 features. The classification results of fivefold

cross-validation are, respectively, 98.87% for training data

and 97.82% for the testing part. An optimum T2HFBFS

with 6 fuzzy rules is generated after executing 5 global

iterations, 1 global generation and 200 number of FEs. The

evolved T2HFBFS is shown in Fig. 10.

As given in Table 6, the performance of the T2HFBFS

is compared with other existing approaches, including a

bootstrapping gene selection method (Pang et al. 2007), a

linear discriminant analysis-based genetic algorithm (LDA-

GA) (Huerta et al. 2008), a multi-objective evolutionary

algorithm based on interpretable fuzzy (MOEAIF) method

(Wang and Palade 2011) and a fuzzy logic method com-

bined with the ant colony optimization (ACO) algorithm

and the principal components analysis (PCA) (Ayat and

Rahi 2014). As can be seen from the table, the T2HFBFS

outperformed all the other models and succeeds to achieve

satisfactory classification performance with a small fuzzy

rule base.

7.2.2 Prostate cancer data set

The prostate cancer database is used to more evaluate the

classification performance of the system. This data set is

employed for normal versus tumor classification. It is

composed by 12,600 genes (features) and 136 data points

(77 samples contain tumors and 59 do not contain tumors).

The features introduce normalized gene expression values

taken from the microarray image.

By applying the SD feature selection algorithm on the

data, the number of features is reduced from 12,600 to 20

features. After performing 16 global iterations, 2 global

generations and 640 number of FEs, an optimum

T2HFBFS is generated with a rule base formed by 7 rules.

The average classification rates on training and testing data

are, respectively, 97.42% and 96.22%. The best-evolved

T2HFBFS is shown in Fig. 11.

Table 7 makes some comparisons with other related

works such as the granular support vector machines–re-

cursive feature elimination (GSVM-RFE) algorithm (Tang

et al. 2005), the transductive support vector machine

(TSVM) method (Innocent and Kurian 2014) and the

classification method based on association rule and infor-

mation gain ratio on fuzzy rough set (AR-FRS-GR) theory

(Innocent and Kurian 2014). As given in Table 7,

Table 5 Comparison results of

sunspot number time series
Approach Training RMSE Testing 1 RMSE Testing 2 RMSE

BBFNN-ABC (Dhahri et al. 2012) 0.0012 0.0018 0.0044

FWNN (Yilmaz and Oysal 2010) 0.0895 0.1093 0.1510

RFNN (Aliev et al. 2009) – 0.074 0.210

FBBFNT_EIP& HBFOA (Bouaziz et al. 2013) 1.95e-10 4.15e-10 7.27e-10

T2HFBFS 2.83e-16 1.27e-16 1.64e-16

Fig. 10 Evolved T2HFBFS in the lung cancer case

Table 6 Performance

comparison in the case of lung

cancer data set

Approach Classification accuracy Rules

Bootstrapping gene selection (Pang et al. 2007) 91.2% –

MOEAIF (Wang and Palade 2011) 91.28% 3

LDA-GA (Huerta et al. 2008) 97.7% * 98.3% –

Fuzy-PCA-ACO (Ayat and Rahi 2014) 98.21% 20

T2HFBFS 98.87% 6
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classification results prove again the superiority of the

T2HFBFS against the other competing systems.

8 Conclusion

In this paper, the hierarchical design of type-2 fuzzy sys-

tem is considered using a tree representation. The proposed

T2HFBFS is formed by a set of low-dimensional rule bases

arranged in a multi-level structure. The different sub-fuzzy

models of the hierarchy are based on interval type-2 beta

fuzzy sets in the premise, while the consequent part uses

the TSK-type fuzzy reasoning. Regarding the learning

process, two hybrid tasks of structure learning and

parameter update are iteratively performed. The structure

learning task relies on the MOEIP algorithm as a multi-

objective algorithm in order to learn a population of

T2HFBFSs. This step allows the generation of an optimal

structure of T2HFBFS with a good balance of inter-

pretability accuracy. The approximation ability of the

obtained system is further enhanced by performing a sec-

ond parameter tuning step using the PSOUM-IHS algo-

rithm. This step allows the optimization of the IT2 BMF

parameters and the consequent elements of rules. Simula-

tions on time series forecasting problems and classification

data sets show that the T2HFBFS outperforms other

competing type-1/type-2 fuzzy approaches and neural

network methods. In most of the cases, the proposed sys-

tem is able to achieve higher levels of accuracy with a

small rule base as compared to its competitors.
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