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Abstract
This study proposes a new parallel local search algorithm (Par-LS) for solving the maximum vertex weight clique problem
(MVWCP) in large graphs. Solving theMVWCP in a large graph with millions of edges and vertices is an intractable problem.
Parallel local search methods are powerful tools to deal with such problems with their high-performance computation capa-
bility. The Par-LS algorithm is developed on a distributed memory environment by using message passing interface libraries
and employs a different exploration strategy at each processor. The Par-LS introduces new operators parallel(ω,1)-swap and
parallel(1,2)-swap, for searching the neighboring solutions while improving the current solution through iterations. During
our experiments, 172 of 173 benchmark problem instances from the DIMACS, BHOSLIB and Network Data Repository
graph libraries are solved optimally with respect to the best/optimal reported results. A new best solution for the largest
problem instance of the BHOSLIB benchmark (frb100-40) is discovered. The Par-LS algorithm is reported as one of the best
performing algorithms in the literature for the solution of the MVWCP in large graphs.

Keywords Maximum clique problem · Parallel search · Vertex weight · MPI

1 Introduction

The maximum vertex weight clique problem (MVWCP) is
a general form of the maximum clique problem (MCP) (Wu
and Hao 2016; Zhou et al. 2017a). The MVWCP decides
a clique with the maximum total value of vertices’ weight.
When each vertex of a graph has weight 1, then MVWCP
becomes the classical MCP (Wu and Hao 2015b; Wu et al.
2012). The MCP is NP-complete, and MVWCP is at least
as hard as MCP (Alidaee et al. 2007; Dijkhuizen and Faigle
1993).Given an undirected graphG= (V,E)with vertex set of
V = {1,…, n} and edge set of E ⊆ V ×V . Let w : V → Z+
be a weighting function that assigns each vertex v ∈ V a pos-
itive value. The MVWCP has many applications in different
areas such as computer vision (Ma and Latecki 2012), coding
theory (Zhian et al. 2013), bioinformatics (Zheng et al. 2007),
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protein structure prediction (Mascia et al. 2010), community
(cluster) detection (Tepper and Sapiro 2013), combinatorial
auctions (Wu and Hao 2015a; Li et al. 2018).

Exact (brute-force) algorithms that are proposed for solv-
ing the MVWCP require too much time and computation
power due to the intractable nature of this problem. There-
fore, local search techniques and heuristics are more feasible
approaches for large and dense graph instances, because they
can obtain high-quality solutions in practical times. Here, we
can list some of the most important algorithms that are pro-
posed for the solution of the MC and MVWCP. Kumlander
(2004) proposes a backtrack tree search algorithm that relies
on a heuristic coloring-based vertex order. The algorithm is
a brute-force algorithm that is based on a fact that vertices
from the same independent set could not be included in the
samemaximumclique. Those sets are obtained fromaheuris-
tic vertex coloring. Color classes and a backtrack search are
used for pruning branches of the maximum weight clique
search tree. Warren and Hicks (2006) propose three B&B
algorithms for the maximum weight independent set prob-
lem. The algorithms use weighted clique covers to generate
upper bounds, and all performbranching and using according
to themethodofBalas andYu (1986). Pullan andHoos (2006)
propose a new stochastic local search algorithm (DLS-MC)
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for the maximum clique problem. The DLS-MC algorithm
alternates between phases of iterative improvement, during
which suitable vertices are added to the current clique, and
plateau search, duringwhich vertices of the current clique are
swappedwith vertices not contained in the current clique.Wu
et al. (2012) introduce a tabu search heuristic whose key fea-
tures include a combined neighborhood and a dedicated tabu
mechanism using a randomized restart strategy for diversifi-
cation. Benlic and Hao (2013) present breakout local search
(BLS) algorithm. The BLS can be applied to both MC and
MVWCP problems without any particular adaptation. BLS
explores the search space by joint use of local search and
adaptive perturbation strategies. Wang et al. (2016a) recast
the MVWCP into a model that is solved by a probabilistic
tabu search algorithm designed for binary quadratic pro-
gramming (BQP). El Baz et al. (2016) propose a parallel
ant colony optimization-based meta-heuristic (PACOM) for
solvingMVWCP. Zhou et al. (2017b) introduce amove oper-
ator called PUSH that generalizes the conventional add and
swap operators commonly used and can be employed in a
local search process for the MVWCP. Nogueira et al. (2017)
introduce a hybrid iterated local search technique for the
maximum weight independent set (MWIS) problem, which
is related to MVWCP. Nogueira and Pinheiro (2018) present
a CPU–GPU local search heuristic for solving the MWCP
in massive graphs. The neighborhoods are explored using
an efficient procedure that is suitable to be mapped onto a
GPU-based massively parallel architecture. The algorithm
outperforms the best-known heuristics for the MWCP with
its speed-up of up to 12 times over the CPU-only imple-
mentation. Kiziloz and Dokeroglu (2018) propose a robust
and cooperative parallel tabu search algorithm (PTC) for the
MVWCP.

Cai et al. (2016) propose a new method that interleaves
between clique construction and graph reduction. They pro-
pose three novel approaches and design FastWClq algorithm.
Wang et al. (2016b) introduce two heuristics and propose
two local search algorithms for the MWCP, strong configu-
ration checking (SCC), and develop a local search algorithm
named LSCC. In order to improve the performance, a low-
complexity heuristic best from multiple selection (BMS)
is applied to select the swapping vertex pair quickly and
effectively (LSCC+BMS algorithm). The proposed algo-
rithms outperform the state-of-the-art local search algorithm
MN/TS and its improved version MN/TS+BMS.

An exact algorithm, branch and bound (B&B) for the
MVWCP (WLMC), is suited for large vertex-weighted
graphs by Jiang et al. (2017). A new B&B algorithm (TSM-
MWC) for the MVWCP is proposed by Jiang et al. (2018).
The proposed algorithm is an exact algorithm and uses
MaxSAT reasoning to reduce the search space. Another B&B
MWCP algorithm (WC-MWC) that reduces the number of
branches of the search space incrementally is proposed by

Li et al. (2018). Experimental results show that the algo-
rithm WC-MWC outperforms some of the best-performing
exact and heuristicMWCPalgorithms on both small/medium
graphs and real-world massive graphs.

Parallel local search algorithms have been reported to
be effective tools for the optimization of NP-hard prob-
lems for the last few decades (Kiziloz and Dokeroglu 2018;
Cantú-Paz 1998; Dokeroglu 2015; Dokeroglu and Mengu-
soglu 2017; Kucukyilmaz and Kiziloz 2018). In our opinion,
a scalable parallel heuristic algorithm with intelligent and
cooperative operators can improve the solution quality of
an optimization process significantly. Our study proposes a
novel parallel local search algorithm (Par-LS) for the solu-
tion of the MVWCP in large graphs. The Par-LS algorithm
is specially developed for very large in-memory graphs with
millions of edges and vertices. Exploring and exploiting the
search space of large graphs requires a great deal of com-
putation power. The search space is intractable, and exact
(brute-force) algorithms are not efficient enough to solve
the MVWCP in feasible execution times. The Par-LS algo-
rithm introduces a new parallel local search technique with
new operators parallel(ω,1)-swap and parallel(1,2)-swap for
searching neighboring solutions. The operators are adapted
to parallel computation to diversify the exploration by select-
ing different vertices during the addition and deletion of the
vertices. These operators are used in parallel for the first time
in the literature (Lourenço et al. 2010; Hansen et al. 2010).
The local search Par-LS algorithm uses some algorithmic
parameters as it is required by most of the meta-heuristic
algorithms. As we experience from our previous studies,
tuning the parameters of a heuristic algorithm increases
the performance of a local search algorithm significantly.
Therefore, we develop and employ a simple and efficient
parameter-setting technique for the optimization process of
thePar-LS.At each processor,weuse a different set of param-
eters for the Par-LS algorithm. The parameters are randomly
selected from a range of values.

The Par-LS is an enhanced parallel version of a recent
algorithm called a hybrid iterated local search (ILS-VND)
that is proposed for the maximum weight independent set
problem (Nogueira et al. 2017). We adapt this algorithm to
theMVWCPby evolving its operators to the parallel environ-
ment, introducing a new parallel parameter tuning technique
and a seeding mechanism for each processor that provides
a diversified searching capability. 173 problem instances are
optimized from the DIMACS, BHOSLIB and Network Data
Repository graph libraries. 172 problems are solved opti-
mally with respect to the optimal/best-known solutions of
the problem instances. A new best solution for the largest
problem instance of the BHOSLIB benchmark (frb100-40)
is discovered. The evaluation of the experiments shows that
the Par-LS algorithm can outperform most of the state-of-
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Fig. 1 Parallel (ω,1)-swap
operator is concurrently
operating with several
processors on different solution
candidates that are different than
one another. Processor 1 inserts
vertex d into the current solution
and removes vertices a, b, and c.
Processor n inserts vertex c into
the current solution while
vertices a and b are being
removed

the-art heuristic algorithms and can be reported as one of the
best algorithms.

The Par-LS algorithm is introduced in Sect. 2. Section 3
gives the details for the performance evaluation of the exper-
imental results and comparison of the algorithm to the
state-of-the-art algorithms on selected set of large graphs.
Concluding remarks and future work are provided in the last
section.

2 Proposed parallel local search algorithm,
Par-LS

In this section, we present our proposed Par-LS algorithm for
the MVWCP. Par-LS is an enhanced parallel version of the
ILS-VND algorithm introduced by Nogueira et al. (2017).
The Par-LS is developed by using C++ and Message Pass-
ing Interface (MPI) library. A seeding function is used to
diversify random number generation at each node while ini-
tializing a starting point. A star communication topology is
used between processors. The master node/processor con-
trols the slaves and receives their best solutions at the end of
the optimization process.

Parallel (ω,1)-swap operator adds a new vertex, v, to the
existing solution and deletes vertices that are neighbors of the
v. This is the newer parallel version of the operators intro-
duced by Nogueira et al. (2017). The total weight of the
new generated clique is calculated, and if its vertex weight
is better than the existing one, it replaces the older clique.
With its distributed nature and a seeding function that makes
use of the ranks of the processors in the environment, par-
allel (ω,1)-swap operator generates and searches the new

cliques efficiently by selecting diversified vertices at each
processor. In Fig. 1, we can see how the parallel (ω,1)-
swap operator works on the current solutions at different
processors concurrently. If there are n number of processors
in the computation environment, randomly selected vertices
are inserted to the current solution and its neighbors inside
the clique are removed. The parallel (ω,1)-swap operator
provides a diversified exploration search space and it is a
very efficient way of optimizing the maximum vertex weight
clique.

Parallel (1,2)-swap operator deletes one vertex and adds
two vertices to the current solution. Depending on the rank
number of the processors, the selection of the vertices
for insertion and deletion is executed from well-diversified
locations. Therefore, our new enhanced operators, parallel
(ω,1)-swap and parallel (1,2)-swap operators are very effi-
cient while exploring the search space of large graphs. In
Fig. 2, we can follow how the parallel(1,2)-swap opera-
tor works on different candidate solutions concurrently. The
parallel(1,2)-swap selects two vertices from outside of the
current solution.

Generate_a_random_Clique function selects a random
vertex number and continues adding newvertices to construct
an initial maximum vertex weight clique. This procedure is
repeated until there is no examined vertex left. The pertur-
bation function changes the current clique by adding new
vertices and removing older ones randomly depending on the
seeding mechanism of the processor. Local Search function
uses our two new distributed operators parallel (ω,1)-swap
and parallel (1,2)-swap during the optimization. The selec-
tion of the new vertices continues until the new vertex fails
to improve the quality of the solution.
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Fig. 2 parallel(1,2)-swap
operator is concurrently
operating with several
processors. Processor 1 inserts
the vertices a and b into the
current solution and removes the
vertices c. Processor n inserts
vertices a and b into the current
solution while vertex c is being
removed

Acceptance function monitors the exploration and inten-
sification processes during the optimization. If a new clique
is better, it is always accepted. Parameters (p1, p2, p3, p4)
are used as search exploration and intensification parameters
in the Par-LS algorithm. p1 is for shrinking the non-solution
vertices set where uniformly chosen non-solution vertices
into the current solution. The smaller the size is, the shorter
the search time will be. p2 is for limiting the search space
whenever a local maximum is met. This will decrease the
search time. p3 is similar to p2. When a global maximum is
reached, the counter is adjusted for less exploring the search
space. p4 is similar to p1 which commonly takes the val-
ues between 1 and 4. It again forces and squeezes the search
space for spending less exploration time. The flowchart of
the algorithm is presented in Fig. 3. Algorithms 1, 2, and 3
give the details of the Par-LS Algorithm.

Parameter tuning technique of the Par-LS algorithm The
performance of the local search algorithms mostly depends
on selecting the best algorithmic specific parameters. Decid-
ing the algorithmic parameters is a crucial process for good
performance. In order to provide (near-)optimal settings for
the Par-LS algorithm, we apply a simple mechanism that
generates different sets of parameters at each processor.
The Par-LS algorithm uses these four parameters during the
optimization, and each parameter set is selected as a dif-
ferent set at each processor. The parameters are randomly
decided within a range of values. This technique provides
an efficient way to optimize with different set of values.
In addition to this, the structure of the optimization prob-

lems is varied. Therefore, an optimized set of parameters
may not be a good preference for all the problem instances
(Pullan 2008).

Algorithm 1: Proposed parallel local search algorithm,
Par-LS
Data: G = (V, E), termination_limit
Result: Maximum Vertex Weight Clique C∗

1 if (Master node) then
2 receive_results_from_slaves(); find_the_best_result();

report_the_best_result();
3 else
4 (Slave node) C0 = Generate_a_random_Clique(G); C=

Local_Search(C0, G); // current clique C∗= C; // best clique
solution best_weight =Weight(C); //best local weight counter
= 0 ; // iterations k = 1; // local iterations

5 while (counter ++ ≤ termination_limit) do
6 C ′ = Perturb(p1, C, G); C ′ = Local_Search(C ′, G); (C,

C∗, k , best_weight) = Accept(C, C∗, C ′, k, best_weight,
G)

7 end

8 send C∗ to the master node;
9 end

3 Performance evaluation of the
experimental results

We give details of our high-performance computation envi-
ronment, problem instances, solution quality, execution time,
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Fig. 3 Flowchart of the Par-LS algorithm

Algorithm 2: Local search procedure
Data: Clique C, Graph G = (V, E)
Result: Maximum vertex weight clique C

1 k=1; // structure selector while k ≤ 2 do
2 C ′ = FirstImprovement(k, C, G) if Weight(S′) ≤ Weight(C)

then
3 k ++ ;
4 else
5 k = 1; C = C ′; C = AddFreeVertices(C, G); // add free

vertices randomly
6 end
7 end

8 return C;

speed-up, and scalability evaluations of the Par-LS algo-
rithm. We discuss the Par-LS algorithm and compare its
performance with state-of-the-art MVWCP algorithms for

Algorithm 3: Algorithm of the acceptance function
Data: Current solution C, best solution C∗, candidate solution C ′
Result: New current solution C, new best solution C∗

1 Acceptance(C, C∗, C ′, i, local_best_w, G) if Weight(C)<
Weight(C ′) then

2 C = C ′ // accept a solution that improves the current one i = 1;
if local_best_w < Weight(C) then

3 local_best_w = Weight(C) i = i - (| C | / c2);
4 end
5 if Weight(C∗) < Weight(C) then
6 C∗ = C; i = i - (| C | * c3);
7 end
8 else
9 if i ≤ | C |/c2 then

10 i++;
11 else
12 // if the current solution is not improved and i >| C |/c2

local_best_w = Weight(C); C = Perturb(c4, C, G); i = 1;
13 end
14 end
15 return C, C∗, i, local_best_w

Fig. 4 The effect of increasing the number of iterations onMANN-a45
problem instance

Table 1 The effect of increasing
the number of processors for the
MANN-a45 problem instance.
The number of processors is
increased from 1 to 128 for the
instance, and the performance is
observed. 0.4% improvement is
obtained

#processors Result

1 34252.1

2 34253.3

4 34256.2

8 34258.4

16 34260.4

32 34263.7

64 34264.6

128 34265.0

DIMACS,1 BHOSLIB, 2 and selected large graphs fromNet-
work Data Repository.3

1 http://www.cs.hbg.psu.edu/txn131/clique.html.
2 http://iridia.ulb.ac.be/.
3 http://networkrepository.com/.
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Table 2 Detailed results of the
Par-LS algorithm on 80
DIMACS-W benchmark
instances node is the number of
vertices ω is the maximum
clique size,W_best is the best
value that is found until now,
best is the best value found by
the algorithm, |C | is the
cardinality of the obtained
maximum weighted clique,
avg-sum is the average of the
results, #proc is the number of
processors used during the
optimization process

Instance node ω W_best) best) |C | avg-sum Time (s) #proc.

brock200_1 200 21 2821 2821 19 2821 0.1 2

brock200_2 200 12 1428 1428 9 1428 0.1 2

brock200_3 200 15 2062 2062 13 2062 0.4 2

brock200_4 200 17 2107 2107 13 2107 36.2 2

brock400_1 400 27 3422 3422 21 3422 0.1 2

brock400_2 400 29 3350 3350 21 3350 0.3 2

brock400_3 400 31 3471 3471 23 3471 0.1 2

brock400_4 400 33 3626 3626 22 3626 0.8 2

brock800_1 800 23 3121 3121 20 3121 0.1 2

brock800_2 800 34 3043 3043 18 3043 0.1 2

brock800_3 800 25 3076 3076 20 3076 0.1 2

brock800_4 800 26 2971 2971 26 2971 0.1 2

C125.9 125 34 2529 2529 30 2529 0.7 2

C250.9 250 44 5092 5092 40 5092 0.1 2

C500.9 500 57 6955 6955 48 6955 0.1 2

C1000.9 1000 68 9254 9254 61 9254 176.3 2

C2000.5 2000 16 2466 2466 14 2466 1.7 2

C2000.9 2000 80 10,999 10,999 72 10,999 1600.2 64

C4000.5 4000 18 2792 2792 16 2792 30.4 64

Dsjc500.5 500 13 1725 1725 12 1725 4.2 64

Dsjc1000.5 1000 15 2186 2186 13 2186 1.4 64

keller4 171 11 1153 1153 11 1153 0.1 10

keller5 776 27 3317 3317 27 3317 0.1 10

keller6 3361 59 8062 8062 56 8062 58.4 64

MANN_a9 45 16 372 372 16 372 0.2 10

MANN_a27 378 126 12283 12283 126 12283 0.8 10

MANN_a45 1035 345 34254 34,254 342 34,254 2445.2 10

MANN_a81 3321 1100 111,400 111,400 1100 111,395.4 3401.8 64

hamming6-2 64 32 1072 1072 32 1072 0.1 2

hamming6-4 64 4 134 134 4 134 0.1 2

hamming8-2 256 128 10,976 10,976 128 10,976 0.1 10

hamming8-4 256 16 1472 1472 16 1472 0.1 10

hamming10-2 1024 512 50,512 50,512 512 50,512 0.1 10

hamming10-4 1024 40 5129 5129 35 5129 8.5 64

gen200_p0.9_44 200 44 5043 5043 37 5043 0.1 10

gen200_p0.9_55 200 55 5416 5416 52 5416 0.1 10

gen400_p0.9_55 400 55 6718 6718 47 6718 0.1 10

gen400_p0.9_65 400 65 6940 6940 48 6940 0.1 10

gen400_p0.9_75 400 75 8006 8006 75 8006 0.1 10

c-fat200-1 200 12 1284 1284 12 1284 0.1 10

c-fat200-2 200 24 2411 2411 23 2411 0.1 10

c-fat200-5 200 58 5887 5887 58 5887 0.1 10

c-fat500-1 500 14 1354 1354 12 1354 0.1 10

c-fat500-2 500 26 2628 2628 24 2628 0.1 10

c-fat500-5 500 64 5841 5841 62 5841 0.1 10

c-fat500-10 500 126 11,586 11,586 124 11,586 0.1 10

johnson8-2-4 28 4 66 66 4 66 0.1 10

johnson8-4-4 70 14 511 511 14 511 0.1 10
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Table 2 continued Instance node ω W_best) best) |C | avg-sum Time (s) #proc.

johnson16-2-4 120 8 548 548 8 548 0.1 10

johnson32-2-4 496 16 2033 2033 16 2033 0.1 10

p_hat300-1 300 8 1057 1057 7 1057 0.1 10

p_hat300-2 300 25 2487 2487 20 2487 0.1 10

p_hat300-3 300 36 3774 3774 29 3774 0.1 10

p_hat500-1 500 9 1231 1231 8 1231 0.1 10

p_hat500-2 500 36 3920 3920 31 3892 0.1 10

p_hat500-3 500 50 5375 5375 42 5375 0.1 10

p_hat700-1 700 11 1441 1441 9 1441 0.1 10

p_hat700-2 700 44 5290 5290 40 5290 0.1 10

p_hat700-3 700 62 7565 7565 58 7565 0.1 10

p_hat1000-1 1000 10 1514 1514 9 1514 0.1 10

p_hat1000-2 1000 46 5777 5777 40 5777 0.1 10

p_hat1000-3 1000 68 8111 8111 58 8111 0.1 10

p_hat1500-1 1500 12 1619 1619 10 1619 0.1 10

p_hat1500-2 1500 65 7360 7360 58 7360 0.1 10

p_hat1500-3 1500 94 10321 10,321 84 10,321 0.1 10

san200_0.7_1 200 30 3370 3370 30 3370 0.1 10

san200_0.7_2 200 18 2422 2422 14 2422 0.1 10

san200_0.9_1 200 70 6825 6825 70 6825 0.1 10

san200_0.9_2 200 60 6082 6082 60 6082 0.1 10

san200_0.9_3 200 44 4748 4748 34 4748 0.1 10

san400_0.5_1 400 13 1455 1455 8 1455 0.1 10

san400_0.7_1 400 40 3941 3941 40 3941 3.4 10

san400_0.7_2 400 30 3110 3110 30 3110 1.4 10

san400_0.7_3 400 22 2771 2771 18 2771 0.2 10

san400_0.9_1 400 100 9776 9776 100 9776 14.3 64

san1000 1000 15 1716 1716 9 1716 0.1 10

sanr200-0.7 200 18 2325 2325 15 2325 0.1 10

sanr200-0.9 400 42 5126 5126 36 5126 0.1 10

sanr400-0.5 400 13 1835 1835 11 1835 0.1 10

sanr400-0.7 400 21 2992 2992 18 2992 0.1 10

Average 97.4

3.1 Experimental setup and problem instances

Our experiments are performed on a high-performance clus-
ter (HPC) computer, HP ProLiant DL585 G7, that has AMD
Opteron 6212 CPU running at 2.6 GHz and having 8 cores.
CPU has 64-bit computing capacity and AMD SR5690
chipset. The server uses 128 GB PC3-10600 RAM and 1.5
TB hard disk. The software comprises: a Scientific Linux
v4.5 64-bit operating system, Open MPI v1.2.4, and C++.
We have performed our experiments with 64 processors. We
carry out our experiments with large graphs that fit in our
main memory and do not use virtual memory. Because using
virtual memory has a dramatic negative effect on the perfor-
mance of the optimization process, we observe that it may

cause thousands of times longer execution time due to the
paging process of virtual memory. The selected large graph
instances are run 10 times, and their best/average results and
execution times are reported. The time to read the problem
instance from the disk is not included in the execution time
of the Par-LS algorithm.

The Par-LS algorithm is tested on 173 graphs from
DIMACS benchmark (80 problem instances), the BHOSLIB
benchmark (40 instances) and the Network Data Repository
(53 instances). All the benchmark instances are originally
unweighted. In order to provide the standard weighted
instances, we use the literature and give each vertex i aweight
given by (i mod 200) + 1 (Pullan 2008). In Table 4, we give
the details of the large graphs that are used in our experi-
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Table 3 Detailed results of the
Par-LS algorithm on
BHLOBS-W benchmark
instances

Instance Node ω W_best Best |C | Avg-sum Time (s) #proc.

frb30-15-1 450 30 2990 2990 27 2990 2.1 64

frb30-15-2 450 30 3006 3006 28 3006 1.4 64

frb30-15-3 450 30 2995 2995 27 2995 1.6 64

frb30-15-4 450 30 3032 3032 28 3032 1.3 64

frb30-15-5 450 30 3011 3011 27 3011 0.1 64

frb35-17-1 595 35 3650 3650 33 3650 8.9 64

frb35-17-2 595 35 3738 3738 33 3738 11.5 64

frb35-17-3 595 35 3716 3716 33 3716 2.6 64

frb35-17-4 595 35 3683 3683 35 3683 5.7 64

frb35-17-5 595 35 3686 3686 33 3686 1.8 64

frb40-19-1 760 40 4063 4063 37 4063 17.8 64

frb40-19-2 760 40 4112 4112 36 4112 4.7 64

frb40-19-3 760 40 4115 4115 36 4115 16.8 64

frb40-19-4 760 40 4136 4136 37 4136 7.5 64

frb40-19-5 760 40 4118 4118 36 4118 3.6 64

frb45-21-1 945 45 4760 4760 41 4760 24.2 64

frb45-21-2 945 45 4784 4784 41 4784 15.7 64

frb45-21-3 945 45 4765 4765 43 4765 7.7 64

frb45-21-4 945 45 4799 4799 42 4799 2.9 64

frb45-21-5 945 45 4779 4779 43 4779 15.4 64

frb50-23-1 1150 50 5494 5494 47 5494 64.8 64

frb50-23-2 1150 50 5462 5462 47 5462 34.2 64

frb50-23-3 1150 50 5486 5486 47 5486 34.2 64

frb50-23-4 1150 50 5454 5453 46 5453 28.1 64

frb50-23-5 1150 50 5498 5498 47 5498 21.8 64

frb53-24-1 1272 53 5670 5670 50 5670 20.8 64

frb53-24-2 1272 53 5707 5707 48 5707 33.6 64

frb53-24-3 1272 53 5640 5655 49 5655 38.4 64

frb53-24-4 1272 53 5714 5714 48 5714 28.4 64

frb53-24-5 1272 53 5659 5659 49 5657.6 9.6 64

frb56-25-1 1400 56 5916 5916 53 5912.4 37.2 64

frb56-25-2 1400 56 5872 5872 52 5868.1 32.6 64

frb56-25-3 1400 56 5859 5859 51 5847.2 41.5 64

frb56-25-4 1400 56 5892 5892 51 5888.1 47.1 64

frb56-25-5 1400 56 5839 5839 51 5834.3 3.4 64

frb59-26-1 1534 59 6591 6591 55 6591 29.7 64

frb59-26-2 1534 59 6645 6645 56 6645 26.4 64

frb59-26-3 1534 59 6608 6608 56 6608 19.2 64

frb59-26-4 1534 59 6592 6592 54 6592 29.3 64

frb59-26-5 1534 59 6584 6584 53 6584 84.2 64

Average 20.4

ments. The number of nodes, number of vertices, the density
of the graph, the best and average results discovered by the
Par-LS algorithm, execution time, and the number of pro-
cessors used during the optimization are presented in the
Table. At first, we try to solve the problem instances with
five processors. These are the easier problem instances like

bio-dmela, bio-yeast, and ca-AstroPh. At the next step, we
apply 64 processors for harder problem instances that need
more computation power. hamming10-4, p-hat1000-2, and
san1000 are the examples of harder large graphs in the prob-
lem set.
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Table 4 The properties of the large graph instances that are used during our experiments and the obtained solutions by the Par-LS algorithm

Instance name |V | |E | edge density best average time (s) #processors

bio-dmela 7393 25,569 0.000936 805 805 199.1 5

bio-yeast 1458 1948 0.001834 629 629 0.4 5

C.1000.9 1000 450,079 0.901059 954 954 176.3 64

C.2000.5 2000 999,836 0.500168 2466 2466 1.7 64

C.2000.9 2000 1,799,532 0.900216 10,999 109,999 1600.2 64

C4000.5 4000 4000,268 0.500,159 2792 2792 30.4 64

ca-AstroPh 17,903 196,972 0.001229 5338 5338 95.0 5

ca-CondMat 21,363 91,286 0.000400 2887 2887 14.2 5

ca-CSphd 1882 1740 0.000983 489 489 4.32 5

ca-Erdos992 6100 7515 0.000404 958 958 4.6 5

ca-GrQc 4158 13,422 0.001553 4279 4279 4.3 5

ca-HepPh 11,204 117,619 0.001874 24,533 24,533 18.9 5

DSJC1000-5 1000 249,826 0.500152 2186 2186 1.4 64

frb100-40 4000 7,425,226 0.928385 10,709 10,681.4 2645.7 64

hamming10-2 1024 518,656 0.990225 50,512 50,512 5.2 64

hamming10-4 1024 518,656 0.990225 5129 5129 6.4 64

ia-email-EU 32,430 54,397 0.000103 1350 1350 153.4 5

ia-email-univ 1133 5451 0.008500 1473 1473 1.8 5

ia-enron-large 33,696 180,811 0.000319 2490 2490 152.3 5

ia-fb-messages 1266 6451 0.008056 791 791 1.8 5

ia-reality 6809 7680 0.000331 374 374 7.4 5

inf-power 4941 6594 0.000540 888 888 8.0 5

keller6 3361 4,619,898 0.818191 8062 8062 58.4 64

MANN-a45 1035 533,115 0.996300 34,265 34,265 2445.2 64

MANN-a81 3321 5,506,380 0.998825 111,400 111,400 3401.8 64

p-hat1000-1 1000 122,253 0.244751 1514 1514 2.3 64

p-hat1000-2 1000 244,799 0.490088 5777 5.777 2.4 64

p-hat1000-3 1000 371,746 0.744236 8111 8111 1.9 64

p-hat1500-1 1500 284,923 0.253434 1619 1619 2.3 64

p-hat1500-2 1500 568,960 0.506080 7360 7360 2.1 64

p-hat1500-3 1500 847,244 0.753608 10,321 10,321 1.9 64

san1000 1000 250,500 0.501502 1716 1716 1.8 64

sc-nasasrb 54,870 1,311,227 0.000871 4548 4548 620.2 5

soc-brightkite 56,739 212,945 0.000132 3672 3672 728.1 5

soc-buzznet 101,163 2,763,066 0.000540 2981 2981 6.4 5

soc-epinions 26,588 100,120 0.000283 1657 1657 111.7 5

socfb-Berkeley13 22,900 852,419 0.003251 4906 4906 86.8 5

socfb-CMU 6621 249,959 0.011406 4141 4141 8.7 5

socfb-Duke14 9885 506,437 0.010367 3694 3694 64.6 5

socfb-Indiana 29,732 1,305,757 0.002954 5412 5412 242.9 5

socfb-MIT 6402 251,230 0.012261 3658 3658 10.9 5

socfb-OR 63,392 816,886 0.000407 3523 3523 88.7 5

socfb-Penn94 41,536 1,362,220 0.001579 4738 4738 485.9 5

socfb-Stanford3 11,586 568,309 0.008468 5769 5769 20.4 5

socfb-Texas84 36,364 1,590,651 0.002406 5546 5546 695.7 5

socfb-UCLA 20,453 747,604 0.003574 5595 5595 98.8 5
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Table 4 continued

Instance name |V | |E | edge density best average time (s) #processors

socfb-Uconn 17,206 604,867 0.004087 5733 5733 41.4 5

socfb-UCSB37 14,917 482,215 0.004334 5669 5669 29.6 5

socfb-UF 35,111 1,465,654 0.002378 6043 6043 666.0 5

socfb-Uillinois 30,795 1,264,421 0.002667 5730 5730 215.7 5

socfb-Wisconsin87 23,831 835,946 0.002944 4239 4239 117.9 5

tech-as-caida2007 26,475 53,381 0.000152 1869 1869 87.1 5

tech-internet-as 40,164 85,123 0.000106 1692 1692 219.8 5

tech-p2p-gnutella 62,561 147,878 0.000076 703 703 609.6 5

tech-routers-rf 2113 6632 0.002972 1460 1460 1.2 5

tech-WHOIS 7476 56,943 0.002038 6154 6154 35.3 5

web-edu 3031 6474 0.001410 2077 2077 1.0 5

web-google 1299 2773 0.003289 1749 1749 0.5 5

web-indochina-2004 11,358 47,606 0.000738 6997 6997 33.0 5

web-spam 4767 37,375 0.003290 2503 2503 3.4 5

web-webbase-2001 16, 062 25,593 0.000198 3574 3574 11.8 5

A new best solution is discovered for the largest problem instance of the BHOSLIB benchmark, frb100-40

3.2 The effect of iterations and increasing the
number of processors

In Fig. 4, we give the effect of the iterations for the Par-
LS algorithm. The experiments are run with the MANN-a45
problem instance from BHOSLIB benchmark library. The
figure presents the obtained resultswith increasing number of
iterations. Increasing the number of iterations has a positive
effect on the optimization process of the Par-LS algorithm.
1,800,000 iterations are used during the optimization process
of all problem instances. Most of the time, the Par-LS algo-
rithm was able to obtain the optimal/best results at earlier
iterations. The reported execution time of the Par-LS algo-
rithm is the average execution time of the ten runs that the
optimal/best results are discovered. The improvement of the
optimization is observed to be 0.6% in the average when the
number of iterations is increased from1 to 100,000.Although
there is an improvement in the quality of the solutions, the
robustness of the Par- LS algorithm is also affected signif-
icantly, which means that larger number of iterations can
guarantee the same results with less deviation than lower
number of iterations.

We analyze the effect of increasing the number of pro-
cessors for the Par-LS algorithm. Table 1 gives the effect
of increasing the number of processors for the MANN-a45
problem instance. The number of processors is 1 with the
initial tests, and we double this value by two with every
new experiment up to 128 processors. The positive effect of
the increasing number of processors is observed during the
experiments. 0.4% improvement is obtained. It can be seen
that optimizations performed with larger number of proces-

sors are less prone to stagnation. As the number of processors
is increased, better results are observed at earlier phases of
the optimization.

3.3 Experiments with DIMACS-W and BHLOBS-W
benchmark instances

In this part of our experiments, we carry out some experi-
mentswith thewell-known problem instances from the graph
libraries DIMACS-W and BHLOBS-W. Although most of
the problem instances of these benchmarks are not large
graphs, obtaining the performance results of the PAR-LS
algorithm will give valuable evaluations about the robust-
ness, scalability, and speed-up performance of the algorithm.
The size of the maximum vertex weight clique size, exe-
cution time of the algorithm, and obtained best results are
reported for the problem instances. At the last column of
Tables 2 and 3, we report the number of the processors that
we use during the optimization process. For easier problem
instances, we try tominimize the number of processors while
we are using 64 processors for harder problems.

During the experiments performed with DIMACS-W
problem instances, all the problem instances are observed to
be solved optimally with respect to the reported optimal/best
results. The average execution time of the algorithm is 79.4 s.
These results outperform those of state-of-the-art algorithms
in the literature. Except the frb50-23-4 problem instance (the
optimal result is reported to be 5454, we discover 5453)
from BHOSLIB library, all the problems are solved opti-
mally by finding the best/optimal results. For the problem
instance frb53-24-3, the BHLOBS-W library reports 5640
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Table 5 Selected #vertices for the reported best resulting maximum vertex weight cliques. weight is the total sum of the weights of the nodes. A
new best solution is reported for the instance frb100-40 with weight 10,709

Instance name Weight #vertices Selected vertices

C2000-9 10,999 72 138, 141, 155, 177, 178, 244, 287, 323, 328, 385, 387, 390, 394, 396, 439, 511, 526, 561, 566, 578,
625, 669, 749, 757, 765, 768, 770, 780, 791, 796, 938, 942, 970, 976, 987, 997, 1120, 1133,
1152, 1155, 1168, 1181, 1184, 1186, 1196, 1353, 1363, 1385, 1429, 1457, 1527, 1533, 1548,
1572, 1586, 1591, 1595, 1599, 1695, 1727, 1732, 1733, 1764, 1784, 1794, 1797, 1917, 1975,
1977, 1980, 1986, 1997

ca-CondMat 2,887 26 846, 1345, 2331, 2561, 2861, 3187, 3511, 4789, 6763, 6826, 7176, 7185, 7278, 8045, 8380, 10312,
10455, 13145, 14213, 14841, 15464, 15699, 15850, 17707, 17873, 17992

ca-GrQc 4279 44 5, 97, 117, 250, 350, 436, 470, 529, 673, 739, 1002, 1064, 1103, 1266, 1419, 1553, 1759, 1783,
1923, 1942, 1994, 2004, 2211, 2250, 2276, 2386, 2753, 2759, 2984, 3074, 3174, 3206, 3283,
3297, 3347, 3387, 3418, 3487, 3613, 3653, 3714, 3951, 4011, 4079

frb100-40 10,709 89 26, 69, 108, 155, 192, 277, 286, 354, 362, 442, 519, 531, 595, 634, 643, 719, 740, 797, 837, 867,
906, 958, 996, 1063, 1118, 1156, 1174, 1277, 1319, 1355, 1397, 1428, 1468, 1515, 1553, 1594,
1672, 1717, 1757, 1792, 1838, 1875, 1918, 1948, 1976, 2069, 2114, 2157, 2189, 2233, 2264,
2313, 2339, 2396, 2438, 2474, 2503, 2557, 2587, 2621, 2657, 2715, 2752, 2793, 2838, 2913,
2950, 2987, 3076, 3113, 3127, 3195, 3277, 3319, 3356, 3388, 3504, 3558, 3590, 3631, 3660,
3713, 3751, 3796, 3809, 3857, 3911, 3951, 3967

keller6 8062 56 93, 157, 250, 257, 278, 292, 300, 366, 373, 393, 432, 514, 684, 692, 706, 723, 777, 778, 791, 797,
994, 1172, 1180, 1182, 1388, 1506, 1515, 1597, 1706, 1708, 1716, 1748, 1986, 1994, 1996,
2154, 2156, 2164, 2281, 2288, 2308, 2388, 2482, 2509, 2583, 2587, 2592, 2594, 2785, 2790,
2843, 2960, 2987, 3145, 3354, 3359

sc-nasasrb 4,548 24 48186, 48187, 48188, 48189, 48190, 48191, 48192, 48193, 48194, 48195, 48196, 48197, 48978,
48979, 48980, 48981, 48982, 48983, 48984, 48985, 48986, 48987, 48988, 48989

soc-brightkite 3,672 37 250, 2809, 2810, 2813, 2817, 2828, 2838, 2856, 2898, 2913, 6885, 6901, 6903, 6906, 10314,
10320, 10329, 10331, 10343, 10363, 10571, 10574, 10576, 10580, 10584, 10586, 10587, 10593,
10598, 10601, 10603, 10608, 10627, 10631, 10674, 10683, 10695

soc-buzznet 2,981 21 504, 731, 791, 1997, 2577, 2585, 2586, 2592, 2594, 2603, 2714, 2719, 2896, 28143, 30979, 31699,
82695, 82890, 83197, 99278, 99369

socfb-Berkeley13 4,906 41 381, 548, 594, 597, 797, 1060, 1125, 1322, 1491, 1499, 1580, 1749, 2139, 2685, 2714, 3148, 3259,
3570, 4686, 4894, 5009, 5781, 8133, 8255, 8562, 9699, 10757, 10796, 11169, 11245, 14303,
14682, 14993, 17043, 17544, 18271, 20408, 21731, 22073, 22332, 22600

socfb-Texas84 5,546 54 1861, 1999, 3097, 3210, 3256, 3787, 3790, 4572, 4680, 4982, 5124, 5330, 5738, 5751, 6476, 7772,
7811, 7864, 8456, 9327, 10715, 10750, 15251, 15724, 15988, 16229, 16398, 16513, 16830,
18155, 22854, 23370, 23435, 23471, 25951, 26381, 26936, 27463, 27561, 27613, 28055, 28166,
28689, 28971, 29121, 29328, 29714, 31240, 32576, 34315

socfb-UIllinois 5,730 50 797, 1169, 1960, 3290, 3929, 4656, 4722, 6495, 7141, 7991, 8049, 8182, 10240, 10403, 10587,
10650, 11190, 12159, 12385, 12667, 12801, 12888, 13895, 15789, 17270, 17393, 18287, 18670,
18904, 19546, 19778, 20499, 20522, 20534, 20726, 20985, 21729, 21977, 22443, 22446, 23324,
23623, 23638, 24460, 24786, 25032, 25531, 29112, 29537, 30643

tech-WHOIS 6,154 56 271, 364, 385, 454, 455, 472, 498, 543, 547, 702, 707, 741, 771, 773, 814, 844, 963, 1086, 1319,
1341, 1438, 1467, 1744, 1843, 1854, 2054, 2131, 2262, 2453, 2479, 2522, 2644, 2739, 2996,
3127, 3157, 3180, 3787, 3819, 3929, 3941, 3966, 3995, 4072, 4176, 4271, 4570, 4636, 4801,
4928, 4985, 5209, 5511, 5939, 6040, 6127

web-indochina-2004 6,997 40 7358, 7359, 7360, 7361, 7362, 7363, 7364, 7365, 7366, 7367, 7368, 7369, 7370, 7371, 7372, 7373,
7374, 7375, 7376, 7377, 7378, 7379, 7380, 7381, 7382, 7383, 7384, 7385, 7386, 7387, 7388,
7389, 7390, 7391, 7392, 7393, 7394, 7395, 7396, 7414

as the optimal solution. We obtain 5665 value for the same
problem instance during our experiments, which has been
only reported by ILS-VND algorithm so far. The average
execution time of the algorithm is reported to be 20.4 s for
the problems in BHLOBS-W library. It is interesting that
we discover some maximum vertex size clique sizes that are
smaller than the maximum clique of the optimized graph. It
shows that the size of the maximum vertex weight clique can

be smaller than maximum clique in the graph but the weight
of the vertices can be larger. Although ILS-VND algorithm
obtainsmost of the optimal/best results reported in the bench-
mark libraries, Par-LS is better in the average results and also
there are new best results that have been reported by the Par-
LS algorithm.

We compare our results with state-of-the-art heuris-
tic algorithms in the literature for the DIMACS-W and
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Table 6 Selected vertices for the maximum vertex weight of the MANN-a45 problem instance with weight 34,265

14, 16, 19, 21, 22, 23, 24, 27, 28, 30, 32, 38, 40, 41, 42, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86,

88, 92, 95, 98, 101, 103, 107, 109, 112, 116, 119, 121, 125, 128, 130, 134, 137, 140, 143, 146, 148, 152, 153, 156,

159, 163, 167, 169, 172, 174, 178, 182, 185, 186, 189, 194, 197, 198, 209, 210, 215, 218, 221, 223, 227, 229, 232,

236, 238, 242, 245, 246, 249, 254, 257, 260, 263, 265, 269, 272, 275, 278, 280, 284, 285, 289, 292, 296, 299, 301,

304, 306, 311, 314, 317, 320, 323, 324, 327, 332, 333, 338, 341, 344, 346, 349, 352, 356, 359, 362, 365, 368, 369,

374, 377, 380, 383, 384, 389, 390, 393, 396, 401, 404, 405, 408, 411, 416, 419, 422, 425, 428, 430, 433, 437, 439,

443, 446, 449, 451, 453, 456, 461, 464, 467, 470, 473, 476, 477, 482, 483, 488, 491, 494, 496, 500, 503, 506, 509,

512, 515, 516, 521, 523, 525, 530, 532, 535, 537, 541, 543, 546, 550, 552, 557, 560, 563, 564, 569, 572, 575, 578,

580, 584, 587, 590, 593, 595, 598, 600, 603, 607, 611, 614, 615, 619, 621, 626, 629, 632, 635, 638, 640, 642, 647,

648, 653, 656, 659, 661, 663, 667, 671, 674, 676, 680, 681, 684, 689, 692, 693, 698, 699, 702, 707, 709, 713, 716,

719, 722, 725, 728, 731, 734, 735, 740, 742, 746, 749, 751, 755, 756, 761, 764, 766, 770, 771, 776, 779, 782, 785,

788, 791, 792, 797, 798, 803, 806, 809, 810, 815, 818, 821, 824, 827, 830, 831, 836, 838, 841, 845, 847, 850, 852,

856, 858, 862, 865, 867, 872, 875, 878, 880, 884, 886, 890, 891, 894, 899, 902, 904, 908, 909, 913, 917, 918, 923,

926, 929, 932, 935, 938, 941, 944, 945, 950, 952, 956, 959, 961, 965, 967, 971, 974, 976, 980, 981, 986, 989, 991,

995, 997, 1001, 1004, 1007, 1010, 1013, 1014, 1019, 1021, 1024, 1026, 1031, 1034

Table 7 Selected vertices for the maximum vertex weight of the MANN-a81 problem instance with weight 111,400

13, 26, 32, 37, 41, 43, 44, 48, 49, 52, 53, 61, 67, 68, 69, 71, 74, 76, 77, 79, 83, 86, 89, 92, 95, 98, 101, 104,

107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 160, 163, 167, 169, 173,

176, 179, 182, 185, 187, 191, 194, 196, 198, 203, 205, 209, 212, 215, 218, 221, 223, 227, 230, 233, 236, 239, 242,

245, 248, 251, 254, 257, 260, 263, 266, 268, 271, 275, 277, 281, 284, 287, 290, 293, 295, 299, 302, 305, 308, 311,

314, 317, 320, 323, 326, 329, 332, 335, 338, 341, 344, 347, 350, 353, 356, 359, 362, 365, 368, 371, 374, 377, 380,

383, 386, 389, 392, 395, 398, 401, 404, 407, 410, 413, 416, 419, 422, 425, 428, 430, 434, 436, 440, 443, 446, 449,

452, 455, 458, 461, 464, 467, 470, 472, 474, 478, 480, 484, 488, 490, 494, 497, 499, 501, 506, 509, 510, 513, 517,

519, 524, 525, 530, 533, 534, 538, 542, 545, 546, 550, 552, 556, 560, 562, 566, 569, 571, 573, 578, 579, 582, 585,

590, 591, 596, 597, 601, 604, 606, 611, 614, 617, 619, 622, 625, 627, 632, 634, 638, 641, 642, 646, 650, 651, 656,

659, 662, 665, 668, 671, 674, 677, 680, 683, 686, 688, 691, 694, 698, 699, 704, 706, 709, 712, 714, 719, 722, 724,

728, 731, 734, 737, 740, 743, 746, 749, 752, 755, 758, 761, 764, 766, 769, 773, 776, 777, 780, 785, 788, 791, 794,

796, 798, 803, 805, 809, 812, 814, 818, 821, 822, 826, 828, 833, 835, 837, 842, 843, 847, 851, 852, 856, 858, 863,

866, 867, 872, 875, 877, 881, 884, 885, 890, 892, 894, 899, 902, 903, 908, 911, 913, 917, 920, 921, 926, 929, 930,

933, 936, 940, 944, 945, 950, 951, 956, 958, 960, 964, 967, 971, 974, 976, 980, 983, 985, 989, 992, 994, 998, 1001,

1004, 1007, 1010, 1013, 1016, 1019, 1021, 1023, 1028, 1031, 1032, 1037, 1039, 1041, 1045, 1048, 1052, 1054, 1058,

1060, 1064, 1066, 1069, 1073, 1076, 1079, 1082, 1085, 1088, 1091, 1093, 1095, 1100, 1103, 1104, 1109, 1112, 1114,

1118, 1119, 1122, 1127, 1129, 1133, 1136, 1139, 1142, 1145, 1146, 1151, 1154, 1156, 1160, 1163, 1165, 1169, 1172,

1174, 1176, 1180, 1184, 1186, 1188, 1193, 1195, 1198, 1202, 1203, 1207, 1209, 1214, 1217, 1219, 1223, 1226, 1227,

1232, 1235, 1236, 1241, 1242, 1246, 1250, 1253, 1254, 1259, 1262, 1264, 1268, 1271, 1273, 1277, 1280, 1281, 1284,

1287, 1290, 1295, 1297, 1301, 1303, 1307, 1308, 1311, 1315, 1318, 1322, 1325, 1327, 1331, 1334, 1336, 1340, 1343,

1344, 1349, 1352, 1355, 1358, 1361, 1364, 1367, 1370, 1371, 1375, 1379, 1382, 1383, 1388, 1390, 1393, 1396, 1398,

1403, 1404, 1409, 1411, 1415, 1416, 1420, 1424, 1427, 1430, 1433, 1436, 1439, 1442, 1444, 1447, 1451, 1454, 1455,

1460, 1463, 1465, 1469, 1471, 1473, 1478, 1479, 1484, 1487, 1490, 1492, 1496, 1499, 1502, 1505, 1508, 1511, 1514,

1517, 1520, 1523, 1524, 1529, 1530, 1533, 1538, 1540, 1544, 1546, 1550, 1551, 1554, 1559, 1561, 1563, 1566, 1569,

1574, 1576, 1580, 1582, 1586, 1587, 1590, 1595, 1597, 1601, 1602, 1605, 1610, 1612, 1616, 1618, 1622, 1623, 1626,

1631, 1632, 1635, 1638, 1643, 1644, 1648, 1652, 1653, 1656, 1661, 1663, 1667, 1670, 1671, 1676, 1679, 1682, 1685,

1688, 1691, 1694, 1697, 1700, 1703, 1704, 1708, 1711, 1715, 1717, 1720, 1724, 1726, 1729, 1733, 1735, 1739, 1742,

1743, 1748, 1751, 1754, 1757, 1760, 1763, 1766, 1769, 1772, 1775, 1776, 1781, 1783, 1786, 1790, 1792, 1796, 1798,

1802, 1804, 1807, 1811, 1814, 1817, 1820, 1821, 1825, 1828, 1832, 1833, 1838, 1841, 1844, 1847, 1849, 1853, 1856,

1858, 1862, 1865, 1867, 1871, 1874, 1876, 1879, 1882, 1886, 1887, 1890, 1895, 1897, 1900, 1904, 1906, 1909, 1911,

123



A novel parallel local search algorithm for the maximum vertex weight clique problem in… 3563

Table 7 continued

1916, 1919, 1921, 1925, 1928, 1930, 1934, 1937, 1939, 1943, 1945, 1948, 1952, 1955, 1957, 1961, 1964, 1966, 1970,

1973, 1975, 1979, 1982, 1984, 1987, 1990, 1993, 1997, 1998, 2003, 2005, 2009, 2011, 2014, 2017, 2020, 2024, 2027,

2028, 2033, 2036, 2038, 2042, 2045, 2047, 2051, 2054, 2057, 2060, 2063, 2066, 2069, 2072, 2074, 2077, 2081, 2084,

2085, 2090, 2091, 2095, 2098, 2101, 2105, 2107, 2111, 2113, 2117, 2119, 2122, 2126, 2129, 2132, 2135, 2138, 2141,

2144, 2146, 2149, 2153, 2156, 2158, 2162, 2165, 2167, 2171, 2173, 2175, 2180, 2182, 2186, 2189, 2192, 2195, 2198,

2201, 2204, 2207, 2210, 2213, 2216, 2219, 2222, 2225, 2228, 2229, 2234, 2237, 2240, 2243, 2246, 2249, 2252, 2255,

2258, 2261, 2264, 2267, 2270, 2273, 2276, 2279, 2280, 2284, 2288, 2291, 2292, 2297, 2300, 2303, 2306, 2309, 2312,

2315, 2318, 2321, 2324, 2327, 2330, 2333, 2336, 2339, 2342, 2345, 2348, 2351, 2354, 2357, 2360, 2363, 2366, 2369,

2372, 2373, 2378, 2381, 2384, 2387, 2390, 2393, 2396, 2397, 2402, 2405, 2408, 2410, 2414, 2417, 2420, 2423, 2426,

2429, 2432, 2435, 2438, 2441, 2444, 2447, 2450, 2452, 2456, 2459, 2460, 2465, 2468, 2469, 2474, 2477, 2480, 2483,

2486, 2488, 2492, 2495, 2497, 2501, 2504, 2506, 2510, 2513, 2516, 2519, 2522, 2525, 2528, 2531, 2532, 2537, 2540,

2543, 2545, 2549, 2552, 2555, 2558, 2561, 2564, 2567, 2570, 2573, 2576, 2578, 2582, 2584, 2587, 2591, 2592, 2597,

2598, 2603, 2604, 2608, 2612, 2613, 2617, 2620, 2623, 2627, 2629, 2633, 2635, 2639, 2641, 2644, 2648, 2650, 2654,

2656, 2659, 2663, 2665, 2669, 2671, 2675, 2677, 2680, 2684, 2686, 2689, 2692, 2696, 2698, 2701, 2705, 2707, 2710,

2714, 2716, 2720, 2723, 2725, 2729, 2732, 2735, 2738, 2741, 2744, 2747, 2750, 2753, 2756, 2758, 2761, 2764, 2768,

2770, 2772, 2777, 2779, 2782, 2786, 2787, 2792, 2795, 2797, 2801, 2804, 2807, 2810, 2813, 2816, 2819, 2822, 2825,

2828, 2829, 2834, 2836, 2839, 2843, 2845, 2849, 2851, 2855, 2857, 2860, 2864, 2867, 2870, 2873, 2875, 2877, 2881,

2885, 2887, 2891, 2894, 2897, 2900, 2903, 2906, 2909, 2912, 2915, 2918, 2921, 2924, 2927, 2930, 2931, 2936, 2939,

2942, 2945, 2948, 2951, 2954, 2957, 2960, 2963, 2966, 2969, 2972, 2975, 2978, 2981, 2982, 2985, 2990, 2993, 2995,

2997, 3002, 3005, 3008, 3011, 3014, 3017, 3020, 3023, 3026, 3029, 3032, 3035, 3038, 3041, 3044, 3047, 3050, 3053,

3056, 3059, 3062, 3065, 3068, 3071, 3074, 3076, 3080, 3083, 3086, 3089, 3092, 3095, 3098, 3101, 3104, 3107, 3110,

3111, 3116, 3119, 3122, 3125, 3128, 3131, 3134, 3137, 3140, 3143, 3146, 3149, 3152, 3154, 3158, 3161, 3163, 3167,

3170, 3171, 3176, 3179, 3182, 3185, 3188, 3189, 3194, 3197, 3198, 3203, 3206, 3208, 3212, 3215, 3218, 3221, 3224,

3227, 3230, 3233, 3234, 3239, 3242, 3245, 3248, 3251, 3254, 3257, 3260, 3262, 3266, 3269, 3272, 3275, 3278, 3280,

3282, 3286, 3290, 3291, 3296, 3299, 3301, 3305, 3306, 3310, 3314, 3315, 3320

BHLOBS-W problem instances: phased local search (PLS)
(Pullan 2008), multi-neighborhood tabu search (MN/TS)
(Wu et al. 2012), breakout local search (BLS) (Benlic and
Hao 2013), ReTS-I (Zhou et al. 2017b), iterated local search
variable neighborhood descent (ILS-VND) (Nogueira et al.
2017), and BQP problem with the probabilistic tabu search
algorithm (BQP-PTS) (Alidaee et al. 2007). For the other
119 instances, the Par-LS algorithm provides better or the
same results that have been found by the other algorithms.
Even for the hard problem instances,MANN-a45 andMANN-
a81, the Par-LS performs better than the other algorithms.
Detailed performance comparison of the Par-LS algorithm is
presented in Table 8 for large graph problem instances.

3.4 Performance analysis of the Par-LS algorithm on
large graphs

Experiments are carried out with 61 different large graph
instances from DIMACS, BHOSLIB, and Network Data
Repository. The number of vertices, edges and the density
of the edges of the graphs is presented in Table 4. We report
twoweight results (the best and the average). The best results
are the maximum values obtained during experiments. Aver-

age results are the mean of ten different executions. First,
we try to solve the problem instances with five processors.
If we cannot get good performance, then we increase our
number of processors up to 64. Tables 5, 6, and 7 report the
selected vertices of the maximum vertex weight cliques for
some of the large graphs. A new best solution is reported for
the largest graph instance of BHOSLIB benchmark (frb100-
40). All of the other results are the best/optimal results that
have been reported by researchers up to now. The average of
the execution time is observed as 268.9 s. The simple param-
eter setting mechanism of the Par-LS algorithm is observed
to provide better results. We carried out a set of experiments
on theMANN-a81 problem instance. It was possible to obtain
the maximum vertex weight value as 111,400 when we use
different parameters for each processor. With 10 different
runs, it was not possible to get the value, 111,400, when the
simple parameter setting mechanism is not used.

3.5 Comparison with state-of-the-art algorithms

The Par-LS algorithm is compared with state-of-the-art large
MVWCP algorithms for large graphs. LSCC (Wang et al.
2016b), MN/TS (Wang et al. 2016b), ReTS-I (Zhou et al.
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2017b), and GPULS (CPU)-R (Nogueira and Pinheiro 2018)
are the selected best performing recent algorithms. Table 8
gives the details of comparison with the algorithms. LSCC,
MN/TS, ReTS-I and GPULS(CPU)-R obtain 57, 56, 57,
and 57 of the optimal results, respectively, whereas the Par-
LS algorithm is able to find 61 optimal results. When the
average value results are considered, the Par-LS algorithm
outperforms the other four algorithms. Although the Par-
LS algorithm spends more time for some of the problem
instances, its execution time can be considered as reason-
able when compared with the others. Parallel ant colony
optimization-based meta-heuristic (PACOM) for solving the
MVWCP is a high-performance algorithm (El Baz et al.
2016). The Par-LS performs better than the PACOM algo-
rithm with all the instances. WLMC is a recent exact B&B
algorithm that is reported to be very efficient for large graphs
(Jiang et al. 2017). With its limited (3600s) optimization
process, Par-LS finds the same or better results than this algo-
rithm. WLMC reports 111,139 for the MANN-a81 instance,
whereas the Par-LS reports 111,400.

In order to evaluate the performance of our algorithm,
the available results of experiments for FastWClq (Cai and
Lin 2016) and LSCC+BMS (Wang et al. 2016b) are added
to Table 8. The execution time of the FastWClq is fast. It
finds the solutions in a few seconds. Due to space limita-
tion of the page, we are not able to give the details of each
algorithm’s execution time. The cutoff times for FastWClq
and LSCC+BMS are 100s. Some of the problems cannot be
solved optimally by these two algorithms, whereas Par-LS is
capable of finding optimal/best results for 172 of 173 prob-
lem instances. The execution time of Par-LS is worse than
these two algorithms.

TSM-MWC (Jiang et al. 2018) and WC-MWC (Li et al.
2018) are exact algorithms that we can compare Par-LS algo-
rithm to. In a recent study by Li et al. (2018), comprehensive
experimental results can be observed for these exact algo-
rithm. WC-MWC algorithm has the highest performance
on DIMACS and BHOSLIB problem instances. The Par-LS
algorithm again has the longest execution times (but still rea-
sonable when compared with brute-force approaches) when
compared with these algorithms. However, the performance
of the Par-LS is higher than the other algorithmswhile finding
optimal/best solutions.

3.6 Speed-up and scalability performance

Since the Par-LS algorithm is a kind of island parallel
heuristic algorithm, it does not spend much time due to the
dependent jobs that will be sent by the other processors.
The speed-up of an algorithm is described as the ratio of the
sequential execution of the algorithm for solving a problem
to the time obtained by the parallel algorithm. The Par-LS
algorithm provides nearly a linear speed-up. This is one of

the best properties of this algorithm. For each processor, a
different local search algorithm with different parameter set-
tings and with a different clique selection is processed. With
the increasing number of processors, the delay of the paral-
lel algorithm is observed to be very small. Therefore, we can
evaluate the Par-LS algorithm as a scalable parallel algorithm
with an almost linear speed-up performance. Stagnation is a
critical drawback of local search algorithms. A scalable and
diversified parallel algorithm that performs a (near)-linear
speed-up can provide good performance while dealing with
the stagnation problem.

4 Conclusions and future work

In this study, we introduce a novel parallel local search
algorithm for the solution of the MVWCP in large graphs.
Single-processor computers have reached to their compu-
tation limitations due to the technological restrictions and
power wall problem. Therefore, we believe that large NP-
Hard problem instances will be solved better with parallel
computation tools. Our experiments prove that we have
obtained significantly improved results. We report a new
best result for the largest problem instance of the BHOSLIB
benchmark and better average maximum values for large
graph instances. Absolutely, intelligent operators are still
important means of optimization algorithms. We introduce
new operators parallel(ω,1)-swap and parallel(1,2)-swap by
using parallel computation techniques. The Par-LS algo-
rithm is observed to be a scalable algorithm during the
experiments. This means that increasing the number of pro-
cessors will positively influence the optimization quality of
the Par-LS algorithm. Stagnation is a common problem of
the optimization algorithms. Parallel computation that starts
each optimization process from a different starting point
(vertex) and works with diversified vertices can be consid-
ered as a mechanism to prevent stagnation of local search
optimization techniques. As future work, the performance
of the Par-LS can be improved by using CUDA program-
ming. Hyper-heuristics that make use of several heuristic
approaches is a hot topic and it can also be applied to the
MVWCP.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Humanand animals participants This article does not contain any stud-
ies with human participants or animals performed by any of the authors.

Informed consent There is no individual participant included in the
study.

123



A novel parallel local search algorithm for the maximum vertex weight clique problem in… 3567

References

Alidaee B, Glover F, Kochenberger G, Wang H (2007) Solving the
maximumedgeweight clique problemvia unconstrained quadratic
programming. Eur J Oper Res 181:592–597

Balas E, Yu CS (1986) Finding a maximum clique in an arbitrary graph.
SIAM J Comput 15:1054–1068

Benlic U, Hao J-K (2013) Breakout local search for maximum clique
problems. Comput Oper Res 40:192–206

Cai S, Lin J (2016) Fast solving maximum weight clique problem in
massive graphs. In: IJCAI, pp 568–574

Cantú-Paz E (1998) A survey of parallel genetic algorithms. Calcula-
teurs paralleles, reseaux et systems repartis 10:141–171

Dijkhuizen G, Faigle U (1993) A cutting-plane approach to the edge-
weighted maximal clique problem. Eur J Oper Res 69:121–130

Dokeroglu T (2015) Hybrid teaching-learning-based optimization algo-
rithms for the quadratic assignment problem. Comput Ind Eng
85:86–101

Dokeroglu T, Mengusoglu E (2017) A self-adaptive and stagnation-
aware breakout local search algorithm on the grid for the steiner
tree problem with revenue, budget and hop constraints. Soft Com-
put 22:1–19

Dokeroglu T, Sevinc E, Cosar A (2019) Artificial bee colony opti-
mization for the quadratic assignment problem. Appl Soft Comput
76:595–606

El BazD,HifiM,WuL, ShiX (2016)A parallel ant colony optimization
for the maximum-weight clique problem. In: IEEE international
parallel and distributed processing symposium workshops, 2016,
IEEE, pp 796–800
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