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Abstract
Considering L being a frame with an order-reversing involution, three new types of L-fuzzy relations are introduced, which
are called mediate, Euclidean and adjoint L-fuzzy relations, respectively. By means of these L-fuzzy relations, three types of
L-fuzzy rough approximation operators are constructed and their connections with those three L-fuzzy relations are examined,
respectively. An axiomatic approach is adopted to deal with L-fuzzy rough approximation operators. It is shown that each
type of L-fuzzy rough approximation operators corresponding to mediate, Euclidean and adjoint L-fuzzy relations as well as
their compositions can be characterized by single axioms.

Keywords Approximation operator · Rough set · Fuzzy rough set

1 Introduction

Since Pawlak (1982) proposed the concept of rough sets,
rough set theory has recently received wide attention in both
of the theoretical research and practical applications. There
are usually twoapproaches for the development of this theory,
i.e., the constructive approach and the axiomatic approach.
In the constructive approach, upper and lower rough approxi-
mation operators are constructed from the primitive concepts,
such as binary relations (Yao 1998a; Zhu 2007), neighbor-
hood systems (Lin 1992; Mi et al. 2005; Yao 1998b) and
coverings (Kryszkiewicz 1998; Zhu andWang 2007). In con-
trast to the constructive approach, the axiomatic approach
takes set-theoretic operators as primitive notions. Under
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someaxiomson apair of set-theoretic operators, there exists a
binary relation such that the upper and lower rough approx-
imation operators coincide with the set-theoretic operators
(Lin 1992; Thiele 2000). More systematic axiomatic studies
for classical rough sets were made by Yao (1996, 1998a) and
so on.

With the development of fuzzymathematics,manymathe-
matical structures have been combined with fuzzy set theory,
such as fuzzy convergence structures (Pang 2014, 2017a, b,
2018; Pang and Xiu 2018b), fuzzy convex structures (Pang
and Shi 2017, 2018, 2019; Pang and Xiu 2018a, 2019;
Pang and Zhao 2016; Pang et al. 2018; Xiu and Pang 2017,
2018a, b) and so on. Rough sets have also been general-
ized to the fuzzy case. In the framework of fuzzy rough set
theory, various fuzzy generalizations of approximation oper-
ators, based on fuzzy binary relations, have been proposed
and investigated, such as Liu (2006), Liu and Sai (2010),
Mi and Zhang (2004), Mi et al. (2008), Pang et al. (2019),
Morsi and Yakout (1998), Radzikowska and Kerre (2002),
She and Wang (2009), Yao et al. (2019), Thiele (2001), Wu
andZhang (2004),Wuet al. (2013),Wuet al. (2015),Wuet al.
(2016). In the above-mentioned works, researchers usually
considered serial, reflexive, symmetric and transitive L-fuzzy
relations. As we know, there are some other types of binary
relations in the classical case, such as Euclidean relations
(Yao1998a),mediate relations (Zhu2007) and (positive, neg-
ative) alliance relations (Zhu 2007). Furthermore, classical
rough approximation operators corresponding to these types
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of binary relations have been investigated in the constructive
and axiomatic approaches (Yao 1998a; Zhu 2007). Thismoti-
vates us to consider fuzzy generalizations of these classical
binary relations and their induced fuzzy rough approxima-
tion operators. From the viewpoint of fuzzy set theory, we
will consider fuzzy counterparts of classical binary relations
except serial, reflexive, symmetric and transitive relations
and will construct fuzzy rough approximation operators
based on the resulting fuzzy relations. As the first aim of this
paper,wewill adopt a frame L with anorder-reversing involu-
tion “′” as the lattice background. Thenwewill propose three
new types of L-fuzzy relations, includingmediate, Euclidean
and adjoint L-fuzzy relations. Moreover, we will explore the
connections between these new types of L-fuzzy relations
and their induced L-fuzzy rough approximation operators.

Using single axioms to characterize rough approxima-
tion operators is important in the study of crisp and fuzzy
rough set theory. Following this idea, many researchers
sought single axioms to describe classical and fuzzy rough
approximation operators, see for example, Bao et al. (2018),
Liu (2013), Wang (2018), Wu et al. (2015, 2016), Yang
(2007). In these literatures, researchers usually considered
single axioms to characterize L-fuzzy rough approximation
operators corresponding to serial, reflexive, symmetric and
transitive L-fuzzy relations as well as their compositions.
Following the first aim of this paper, we have proposedmedi-
ate, Euclidean and adjoint L-fuzzy relations. Sowewill focus
on axiomatic characterizations of L-fuzzy rough approxi-
mation operators corresponding to mediate, Euclidean and
adjoint L-fuzzy relations in this paper. Concretely, as the
second aim of this paper, we will provide single axioms to
characterize upper and lower L-fuzzy rough approximation
operators corresponding to mediate, Euclidean and adjoint
L-fuzzy relations as well as their compositions.

This paper is organized as follows. In Sect. 2, we recall
some necessary concepts and notations. In Sect. 3, we pro-
pose three new types of L-fuzzy relations and provide their
characterizations by their induced upper and lower L-fuzzy
rough approximation operators. In Sect. 4, we provide an
axiomatic approach to L-fuzzy rough approximation opera-
tors corresponding tomediate, Euclidean and adjoint L-fuzzy
relations. Further, we show that L-fuzzy rough approxi-
mation operators corresponding to three types of L-fuzzy
relations as well as their compositions can be characterized
by single axioms. In Sect. 5, we conclude the paper with a
summary.

2 Preliminaries

Throughout this paper, let L denote a frame. That is a com-
plete lattice, where finite meets is distributive over arbitrary
joins, i.e.,

a ∧
∨

i∈I
bi =

∨

i∈I
(a ∧ bi ) (ID)

holds for all a, bi ∈ L (i ∈ I ). Let 0 and 1 denote the
smallest element and the biggest element in L , respectively.
Further, L is equipped with an order-reversing involution “′”,
which means that a′′ = a and a � b implies b′ � a′.

The concept of L-fuzzy sets was first proposed byGoguen
(1967) and it was considered as a generalization of the notion
of Zadeh’s fuzzy sets. In what follows, we first recall the
definition of L-fuzzy sets.

Definition 2.1 (Goguen 1967) For a nonempty setU , a map-
ping A : U −→ L is called an L-subset on U .

The family of all L-subsets on U will be denoted by
FL(U ). Let ≤ denote the pointwise order on FL(U ), that
is, for A, B ∈ FL(U ), A ≤ B means A(x) ≤ B(x). Then
0U and 1U defined by

0U (x) = 0, ∀x ∈ U ,

1U (x) = 1, ∀x ∈ U ,

are the smallest element and the largest element in FL(U ),
respectively.

Given A, B ∈ FL(U ), {Ai }i∈I ⊆ FL(U ), we can define
new L-fuzzy sets as follows:

(A ∧ B)(x) = A(x) ∧ B(x), ∀x ∈ U ,

(A ∨ B)(x) = A(x) ∨ B(x), ∀x ∈ U ,( ∧

i∈I
Ai

)
(x) =

∧

i∈I
Ai (x), ∀x ∈ U ,

( ∨

i∈I
Ai

)
(x) =

∨

i∈I
Ai (x), ∀x ∈ U .

For each a ∈ L and each x ∈ U , let â denote the constant
L-subset and let ax denote the L-subset which is defined
by ax (y) = a if y = x , and ax (y) = 0 if y 
= x . The
characteristic function of each crisp set V is denoted by 1V ,
and the Cartesian product of U and U is denoted by U ×U .

Definition 2.2 (Goguen 1967) An L-subset R on U × U
is called an L-fuzzy relation on U . R(x, y) represents the
degree of relation between x and y, where (x, y) ∈ U ×U .

By equipping additional conditions on L-fuzzy relations,
several types of L-fuzzy relations are introduced, such as
serial, reflexive, symmetric and transitive L-fuzzy relations.
Here we presented the definition of reflexive L-fuzzy rela-
tions.

Definition 2.3 (Bělohlávek 2004) An L-fuzzy relation R on
U is called reflexive if for each x ∈ U , R(x, x) = 1.
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Based on fuzzy relations, where the lattice background is
taken as the unit interval [0, 1], fuzzy rough approximation
spaces are proposed and studied in many literatures (Mi and
Zhang 2004; Mi et al. 2008; Wu and Zhang 2004). By means
of L-fuzzy relations, where L is a more general lattice, such
as a residuated lattice, L-fuzzy rough approximation spaces
are proposed as follows:

Definition 2.4 (She and Wang 2009) Suppose that U is a
nonempty set and R is an L-fuzzy relation on U . Then the
pair (U , R) is called an L-fuzzy rough approximation space.

3 Constructions of L-fuzzy rough
approximation operators

In this section, we will first introduce the concept of L-
fuzzy rough sets by constructing upper and lower L-fuzzy
rough approximation operators from an L-fuzzy relation and
explore some of its basic properties. Then we will propose
three new types of L-fuzzy relations and characterize themby
their induced upper and lower L-fuzzy rough approximation
operators.

Definition 3.1 Suppose that (U , R) is an L-fuzzy rough
approximation space. Define R, R : FL(U ) −→ FL(U )

as follows: ∀A ∈ FL(U ), ∀x ∈ U ,

R(A)(x) =
∨

y∈U
(R(x, y) ∧ A(y)),

R(A)(x) =
∧

y∈U
(R(x, y)′ ∨ A(y)).

Then R and R are called the upper and the lower L-fuzzy
rough approximation operators of (U , R), respectively, and
the pair (R(A), R(A)) is called the L-fuzzy rough set of A
with respect to (U , R).

Remark 3.2 Definition 3.1 can be viewed as generalizations
of fuzzy rough sets in Wu and Zhang (2004) and Dubois and
Prade (1990). Concretely,

(1) If L = [0, 1] and a′ = 1 − a for each a ∈ L , then
Definition 3.1 coincides with Definition 4 in Wu and
Zhang (2004).

(2) If L = [0, 1], a′ = N (a) and R is a fuzzy similarity
relation onU , then Definition 3.1 is exactly the same as
the fuzzy rough sets in Dubois and Prade (1990).

Theorem 3.3 Let (U , R) be an L-fuzzy rough approximation
space. Then for each A ∈ FL(U ),

(DFUL) R(A) = R(A′)′,
(DFLU) R(A) = R(A′)′.

Proof (DFUL) Take each x ∈ U . Then

R(A′)′(x) =
( ∧

y∈U
(R(x, y)′ ∨ A′(y))

)′

=
∨

y∈U
(R(x, y) ∧ A(y)) = R(A)(x).

This means R(A) = R(A′)′.
(DFLU) can be proved similarly.

Now let us study the properties of upper and lower L-fuzzy
rough approximation operators.

Theorem 3.4 Let (U , R) be an L-fuzzy rough approximation
space. Then for each A ∈ FL(U ), {Ai }i∈I ⊆ FL(U ) and
a ∈ L,

(FU1) R

(
∨

i∈I
Ai

)
=

∨

i∈I
R(Ai ),

(FU2) R(̂a ∧ A) = â ∧ R(A),

(FU3) R(̂a) ≤ â,

(FL1) R

(
∧

i∈I
Ai

)
=

∧

i∈I
R(Ai ),

(FL2) R(̂a ∨ A) = â ∨ R(A),

(FL3) R(̂a) ≥ â.

Proof We first show that R satisfies (FU1)–(FU3). Indeed,
(FU1) Take each x ∈ U . Then

R
( ∨

i∈I
Ai

)
(x) =

∨

y∈U

(
R(x, y) ∧

∨

i∈I
Ai (y)

)

=
∨

y∈U

∨

i∈I
(R(x, y) ∧ Ai (y)) (by (ID))

=
∨

i∈I

∨

y∈U
(R(x, y) ∧ Ai (y))

=
∨

i∈I
R(Ai )(x).

This shows R(
∨

i∈I Ai ) = ∨
i∈I R(Ai ).

(FU2) Take each x ∈ U . Then

R(̂a ∧ A)(x) =
∨

y∈U
(R(x, y) ∧ (̂a ∧ A)(y))

=
∨

y∈U
(R(x, y) ∧ a ∧ A(y))

= a ∧
∨

y∈U
(R(x, y) ∧ A(y)) (by (ID))

= a ∧ R(A)(x)

= (̂a ∧ R(A))(x).

This shows R(̂a ∧ A) = â ∧ R(A).
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(FU3) Take each x ∈ U . Then

R(̂a)(x) =
∨

y∈U
(R(x, y) ∧ â(y))

=
∨

y∈U
(R(x, y) ∧ a)

= a ∧
∨

y∈U
R(x, y) ≤ a = â(x).

This implies R(̂a) ≤ â.
By Theorem 3.3, it is easy to check that R satisfies (FL1)–

(FL3).

Corollary 3.5 Let (U , R) be an L-fuzzy rough approximation
space. Then for each A, B ∈ FL(U ),

(1) A ≤ B implies R(A) ≤ R(B),
(2) A ≤ B implies R(A) ≤ R(B).

Actually, serial, reflexive, symmetric and transitive L-
fuzzy relations are usually discussed in the framework of
fuzzy rough sets. In the following, we will propose three
new types of L-fuzzy relations, includingmediate, Euclidean
and adjoint L-fuzzy relations, and examine their connections
with L-fuzzy rough approximation operators.

Definition 3.6 An L-fuzzy relation R onU is called mediate
if it satisfies

∀x, y ∈ L, R(x, y) ≤
∨

z∈U
(R(x, z) ∧ R(z, y)).

Example 3.7 Suppose that U = {x, y, z}, L = [0, 1] and
a′ = 1 − a for each a ∈ [0, 1]. Then Rm : U × U −→ L
defined by

Rm x y z

x 0.3 0.1 0.5
y 0.2 0.4 0.4
z 0.6 0.4 0.6

is a mediate L-fuzzy relation on U .

Remark 3.8 (1) If R is a reflexive L-fuzzy relation onU , then
it is mediate.

(2) If L = {0, 1}, then Definition 3.6 reduces to the crisp
mediate binary relation in Zhu (2007).

Theorem 3.9 Let (U , R) be an L-fuzzy rough approximation
space. Then R is mediate if and only if one of the following
conditions holds:

(FU4) R(R(A)) ≥ R(A),∀A ∈ FL(U ),

(FL4) R(R(A)) ≤ R(A),∀A ∈ FL(U ).

Proof The equivalence of (FU4) and (FL4) follows fromThe-
orem 3.3. Now we only need to show that

R is mediate ⇐⇒ (FU4) holds.

(�⇒) Assume that R is mediate. Take each A ∈ FL(U )

and x ∈ U . Then

R(R(A))(x) =
∨

y∈U
(R(x, y) ∧ R(A)(y))

=
∨

y∈U

(
R(x, y) ∧

∨

z∈U
(R(y, z) ∧ A(z))

)

=
∨

y∈U

∨

z∈U
(R(x, y) ∧ R(y, z) ∧ A(z)) (by (ID))

=
∨

z∈U

( ∨

y∈U
(R(x, y) ∧ R(y, z)) ∧ A(z)

)
(by (ID))

≥
∨

z∈U
(R(x, z) ∧ A(z))

= R(A)(x).

(⇐�) Assume that (FU4) holds. Take each (x, y) ∈ U ×
U . Then

∨

z∈U
(R(x, z) ∧ R(z, y)) =

∨

z∈U
(R(x, z) ∧ R(1y)(z))

= R(R(1y))(x)

≥ R(1y)(x) = R(x, y).

This shows that R is mediate, as desired. ��
Definition 3.10 An L-fuzzy relation R on U is called
Euclidean if it satisfies

∀x, y ∈ L, R(x, y)′ ≥
∨

z∈U
(R(x, z) ∧ R(z, y)′).

Example 3.11 Suppose that U = {x, y, z}, L = [0, 1] and
a′ = 1 − a for each a ∈ [0, 1]. Then Re : U × U −→ L
defined by

Re x y z

x 0.2 0.3 0.6
y 0.5 0.4 0.3
z 0.5 0.4 0.6

is a Euclidean L-fuzzy relation on U .

Remark 3.12 When L = {0, 1}, Definition 3.10 can be trans-
lated as follows:

(NA) If ∀x, y ∈ U , ∃z ∈ U such that (x, z) ∈ R and
(z, y) /∈ R, then (x, y) /∈ R.
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This is exactly the definition of negative alliance relations
in the sense of Zhu (see Definition 4 in Zhu 2007). As we
all know, a Euclidean relation R is defined in the following
way.

(E) If ∀x, y ∈ U , ∃z ∈ U such that (z, x) ∈ R and
(z, y) ∈ R, then (x, y) ∈ R.

It is easy to verify that (NA) and E are equivalent. That
is, negative alliance relations in the sense of Zhu (2007) are
equivalent to Euclidean relations. So we define Euclidean L-
fuzzy relations in Definition 3.10 by generalizing negative
alliance relations to the fuzzy case.

In what follows, we will use the upper and lower L-fuzzy
rough approximation operators corresponding to Euclidean
L-fuzzy relations to characterize Euclidean L-fuzzy rela-
tions. To this end, we first present the following lemma.

Lemma 3.13 Let A ∈ FL(U ). Then A = ∨
x∈U (̂A(x)∧1x ).

Proof Take each y ∈ U . Then

∨

x∈U
(̂A(x) ∧ 1x )(y)

=
∨

x=y

(̂A(x) ∧ 1x )(y) ∨
∨

x 
=y

(̂A(x) ∧ 1x )(y)

= ̂A(y)(y) ∨ 0

= A(y),

as desired.

Theorem 3.14 Let (U , R) be an L-fuzzy rough approxima-
tion space. Then R is Euclidean if and only if one of the
following conditions holds:

(FU5) R(R(A)′)′ ≥ R(A),∀A ∈ FL(U ),

(FL5) R(R(A)′)′ ≤ R(A),∀A ∈ FL(U ),

(ULE1) R(R(A)) ≥ R(A),∀A ∈ FL(U ),

(ULE2) R(R(A)) ≤ R(A),∀A ∈ FL(U ).

Proof By Theorem 3.3, it is straightforward to verify that
(FU5), (FL5), (ULE1) and (ULE2) are equivalent. Now we
only need to show that

R is Euclidean ⇐⇒ (ULE1) holds.

(�⇒) For each (x, y) ∈ U ×U , it follows that

R(R(1x ))(y) =
∧

z∈U
(R(y, z)′ ∨ R(1x )(z))

=
∧

z∈U
(R(y, z)′ ∨ R(z, x))

=
( ∨

z∈U
(R(y, z) ∧ R(z, x)′)

)′

≥ R(y, x) (by Definition 3.10)

= R(1x )(y).

Then we have

R(R(A)) = R
(
R
( ∨

x∈U
(̂A(x) ∧ 1x )

))
(by Lemma 3.13)

= R
( ∨

x∈U
R(̂A(x) ∧ 1x )

)
(by Theorem 3.4)

≥
∨

x∈U
R(R(̂A(x) ∧ 1x )) (by Corollary 3.5)

=
∨

x∈U
R(̂A(x) ∧ R(1x )) (by Theorem 3.4)

=
∨

x∈U
R(̂A(x)) ∧ R(R(1x )) (by Theorem 3.4)

≥
∨

x∈U
(̂A(x) ∧ R(1x )) (by Theorem 3.4)

=
∨

x∈U
R(̂A(x) ∧ 1x ) (by Theorem 3.4)

= R
( ∨

x∈U
(̂A(x) ∧ 1x )

)
(by Theorem 3.4)

= R(A). (by Lemma 3.13)

This proves that (ULE1) holds.
(⇐�) For each (x, y) ∈ U × U , put A = 1y . Then it

follows from (ULE1) that

∨

z∈U
(R(x, z) ∧ R(z, y)′)

=
∨

z∈U
(R(x, z) ∧ R(1y)

′(z))

= R(R(1y)
′)(x)

= R(R(1y))
′(x)

≤ R(1y)
′(x)

= R(x, y)′.

This shows that R is Euclidean.

InWu and Zhang (2004),Wu and Zhang proposed a fuzzy
counterpart of Euclidean binary relations and gave a coun-
terexample (Example 1 in Wu and Zhang 2004) to show
that Euclidean fuzzy relations cannot be characterized by
(ULE1) or (ULE2).Here,we definedEuclidean L-fuzzy rela-
tions in Definition 3.10 by generalizing an equivalent form of
Euclidean binary relations. Then we show that Euclidean L-
fuzzy relations can be characterized by (ULE1) or (ULE2).
This result provided a reasonable generalization of the results
in the classical case and gave an answer to the problem with
respect to Euclidean fuzzy relations inWu and Zhang (2004).
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Definition 3.15 An L-fuzzy relation R onU is called adjoint
if it satisfies

∀x, y ∈ L, R(x, y)′ ≥
∧

z∈U

∨

w 
=y

(R(x, z)′ ∨ R(z, w)).

Example 3.16 Suppose that U = {x, y, z}, L = [0, 1] and
a′ = 1 − a for each a ∈ [0, 1]. Then Ra : U × U −→ L
defined by

Ra x y z

x 0.2 0.4 0.3
y 0.1 0.3 0.4
z 0.4 0.6 0.5

is an adjoint L-fuzzy relation on U .

In order to characterize adjoint L-fuzzy relations, we first
present the following lemma.

Lemma 3.17 Let A ∈ FL(U ). Then A = ∧
x∈U (̂A(x) ∨

1U−x ).

Proof Take each y ∈ U . Then

∧

x∈U
(̂A(x) ∨ 1U−x )(y)

=
∧

x=y

(̂A(x) ∨ 1U−x )(y) ∧
∧

x 
=y

(̂A(x) ∨ 1U−x )(y)

= ̂A(y)(y) ∧ 1

= A(y),

as desired.

Theorem 3.18 Let (U , R) be an L-fuzzy rough approxima-
tion space. Then R is adjoint if and only if one of the following
conditions holds:

(FU6) R(R(A′)′) ≥ R(A),∀A ∈ FL(U ),

(FL6) R(R(A′)′) ≤ R(A),∀A ∈ FL(U ),

(ULA1) R(R(A)) ≥ R(A),∀A ∈ FL(U ),

(ULA2) R(R(A)) ≤ R(A),∀A ∈ FL(U ).

Proof The equivalence of (FU6), (FL6), (ULA1) and (ULA2)
follows immediately from Theorem 3.3. Next we only need
to show that

R is adjoint ⇐⇒ (ULA2) holds.

(�⇒) For each (x, y) ∈ U ×U , it follows that

R(1U−y)(x) = R(x, y)′

≥
∧

z∈U

∨

w 
=y

(R(x, z)′ ∨ R(z, w)) (by Definition 3.15)

=
∧

z∈U

(
R(x, z)′ ∨

∨

w 
=y

R(z, w)
)

=
∧

z∈U

(
R(x, z)′ ∨

∨

w∈U
(R(z, w) ∧ 1U−y(w))

)

=
∧

z∈U
(R(x, z)′ ∨ R(1U−y)(z))

= R(R(1U−y))(x).

This means R(1U−y) ≥ R(R(1U−y)). Then we have

R(R(A)) = R
(
R
( ∧

y∈U
(̂A(y) ∨ 1U−y)

))
(by Lemma 3.17)

≤ R
( ∧

y∈U
R(̂A(y) ∨ 1U−y)

)
(by Corollary 3.5)

=
∧

y∈U
R(R(̂A(y) ∨ 1U−y)) (by Theorem 3.4)

=
∧

y∈U
R(R(̂A(y)) ∨ R(1U−y)) (by Theorem 3.4)

=
∧

y∈U
(R(̂A(y)) ∨ R(R(1U−y))) (by Theorem 3.4)

≤
∧

y∈U
(̂A(y) ∨ R(R(1U−y))) (by Theorem 3.4)

≤
∧

y∈U
(̂A(y) ∨ R(1U−y))

=
∧

y∈U
R(̂A(y) ∨ 1U−y) (by Theorem 3.4)

= R
( ∧

y∈U
(̂A(y) ∨ 1U−y)

)
(by Theorem 3.4)

= R(A). (by Lemma 3.17)

This proves that (ULA2) holds.
(⇐�) For each (x, y) ∈ U × U , it follows from (ULA2)

that
∧

z∈U

∨

w 
=y

(R(x, z)′ ∨ R(z, w))

=
∧

z∈U

(
R(x, z)′ ∨

∨

w 
=y

R(z, w)
)

=
∧

z∈U

(
R(x, z)′ ∨

∨

w∈U
(R(z, w) ∧ 1U−y(w))

)

=
∧

z∈U
(R(x, z)′ ∨ R(1U−y)(z))

= R(R(1U−y))(x)

≤ R(1U−y)(x)

= R(x, y)′.

This shows that R is adjoint.
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In this section,we actually applied a constructive approach
to L-fuzzy rough approximation operators (i.e., L-fuzzy
rough sets) corresponding to mediate, Euclidean and adjoint
L-fuzzy relations. We further provided some equivalent
descriptions of three new types of L-fuzzy relations. In the
next section, we will explore L-fuzzy rough approximation
operators corresponding to mediate, Euclidean and adjoint
L-fuzzy relations in an axiomatic approach.

4 Axiomatic characterizations of L-fuzzy
rough approximation operators by single
axioms

In this section, we will provide an axiomatic approach to
L-fuzzy rough approximation operators and will use single
axioms to characterize each kind of L-fuzzy rough approx-
imation operators corresponding to mediate, Euclidean,
adjoint L-fuzzy relations as well as their compositions.

Definition 4.1 Suppose that U ,L: FL(U ) −→ FL(U ) are
twomappings. They are called dual L-fuzzy operators if they
satisfy the following conditions:

(DFUL) U(A) = L(A′)′, ∀A ∈ FL(U ),
(DFLU) L(A) = U(A′)′, ∀A ∈ FL(U ).

Now let us give an axiomatic characterization of dual L-
fuzzy operators by single axioms.

Theorem 4.2 Let U ,L: FL(U ) −→ FL(U ) be a pair of
dual L-fuzzy operators. Then there exists a unique L-fuzzy
relation R on U such that R = U and R = L if and only if
U satisfies (GFU1) or L satisfies (GFL1):
∀a ∈ L, ∀{Ai }i∈I ⊆ FL(U ),

(GFU1)U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
U(Ai ),

(GFL1)L
(
â ∨

∧

i∈I
Ai

)
= â ∨

∧

i∈I
L(Ai ).

Proof Since U and L are dual L-fuzzy operators, we know
(GFU1) and (GFL1) are equivalent. Now we only need to
show that there exists a unique L-fuzzy relation on U such
that R = U if and only if U satisfies (GFU1).

(�⇒) If there exists an L-fuzzy relation on U such that
R = U , then it follows from Theorem 3.4 that U satisfies
(FU1) and (FU2). This implies that

U
(
â ∧

∨

i∈I
Ai

)
= â ∧ U

(∨

i∈I
Ai

)
= â ∧

∨

i∈I
U(Ai ).

Thus, U satisfies (GFU1).

(⇐�) Suppose that U satisfies (GFU1). It is easy to see
that U satisfies (FU1) and (FU2). Define R : U × U −→ L
by

∀(x, y) ∈ U ×U , R(x, y) = U(1y)(x).

Then we have

R(A)(x) =
∨

y∈W
(R(x, y) ∧ A(y))

=
∨

y∈W
(U(1y)(x) ∧ A(y))

=
∨

y∈W
(U(1y) ∧ ̂A(y))(x)

=
∨

y∈W
U(̂A(y) ∧ 1y)(x) (by (FU2))

= U
( ∨

y∈W
(̂A(y) ∧ 1y)

)
(x) (by (FU1))

= U(A)(x). (by Lemma 3.13)

This means R = U . The existence of R is proved. Suppose
that R∗ is another L-fuzzy relation satisfying R∗ = U . Then
for each (x, y) ∈ U ×U ,

R∗(x, y) = R∗(1y)(x) = U(1y)(x) = R(x, y).

That is, R∗ = R, which shows the uniqueness.

For L-fuzzy operators, we can also give another axiomatic
characterization in the following theorem.

Theorem 4.3 Let U ,L: FL(U ) −→ FL(U ) be a pair of
dual L-fuzzy operators. Then there exists a unique L-fuzzy
relation R on U such that R = U and R = L if and only if
U satisfies (GFU2) or L satisfies (GFL2):
∀A, B ∈ FL(U ),

(GFU2)
∨

x∈U
(A(x) ∧ U(B)(x))

=
∨

x∈U

∨

y∈U
(B(x) ∧ U(1x )(y) ∧ A(y)),

(GFL2)
∧

x∈U
(A(x) ∨ L(B)(x))

=
∧

x∈U

∧

y∈U
(B(x) ∨ L(1U−x )(y) ∨ A(y)).

Proof Since U and L are dual L-fuzzy operators, we know
(GFU2) and (GFL2) are equivalent. Then by Theorem 4.2, it
suffices to show that

(GFU1)⇐⇒(GFU2).
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(�⇒) Suppose that (GFU1) holds. Then (FU1) and (FU2)
hold. Take each A, B ∈ FL(U ). Then

∨

x∈U
(A(x) ∧ U(B)(x))

=
∨

x∈U

(
A(x) ∧ U

( ∨

y∈U
(̂B(y) ∧ 1y)

)
(x)

)
(by Lemma 3.13)

=
∨

x∈U

(
A(x) ∧

∨

y∈U
U(̂B(y) ∧ 1y)(x)

)
(by (FU1))

=
∨

x∈U

(
A(x) ∧

∨

y∈U
(̂B(y) ∧ U(1y))(x)

)
(by (FU2))

=
∨

x∈U

∨

y∈U
(A(x) ∧ B(y) ∧ U(1y)(x)) (by (ID))

=
∨

y∈U

∨

x∈U
(B(y) ∧ U(1y)(x) ∧ A(x))

=
∨

x∈U

∨

y∈U
(B(x) ∧ U(1x )(y) ∧ A(y)).

This shows (GFU2) holds.
(⇐�) Take each x ∈ U . Then

U
(
â ∧

∨

i∈I
Ai

)
(x)

=
∨

y∈U

(
1x (y) ∧ U

(
â ∧

∨

i∈I
Ai

)
(y)

)

=
∨

y∈U

∨

z∈U

((
â ∧

∨

i∈I
Ai

)
(y) ∧ U(1y)(z) ∧ 1x (z)

)
(by (GFU2))

= a ∧
∨

i∈I

∨

y∈U

∨

z∈U
(Ai (y) ∧ U(1y)(z) ∧ 1x (z)) (by (ID))

= a ∧
∨

i∈I

∨

y∈U
(1x (y) ∧ U(Ai )(y)) (by (GFU2))

= a ∧
∨

i∈I
U(Ai )(x)

=
(
â ∧

∨

i∈I
U(Ai )

)
(x).

This proves that U
(
â ∧ ∨

i∈I Ai

)
= â ∧ ∨

i∈I U(Ai ).

According to Theorems 3.9 and 4.2, we can characterize
the upper (resp. lower) L-fuzzy rough approximation oper-
ators generated by mediate L-fuzzy relations by the axioms
(GFU1) and (FU4) (resp. (GFL1) and (FL4)). In the follow-
ing theorem, we will replace the axioms (GFU1) and (FU4)
(resp. (GFL1) and (FL4)) by a single axiom (MFU) (resp.
(MFL)).

Theorem 4.4 Let U ,L: FL(U ) −→ FL(U ) be a pair of
dual L-fuzzy operators. Then there exists a unique mediate
L-fuzzy relation R on U such that R = U and R = L if and
only if U satisfies (MFU) or L satisfies (MFL):

∀a ∈ L, ∀{Ai }i∈I ⊆ FL(U ),

(MFU)U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
(U(Ai ) ∧ U(U(Ai ))),

(MFL)L
(
â ∨

∧

i∈I
Ai

)
= â ∨

∧

i∈I
(L(Ai ) ∨ L(L(Ai ))).

Proof Since U and L are dual, it is easy to verify that (MFU)
and (MFL) are equivalent. Now we only need to show that
there is a uniquemediate L-fuzzy relation R such thatU = R
if and only if (MFU) holds.

(�⇒) If there is a mediate L-fuzzy relation R on U
such that U = R, then it follows from Theorem 3.9 that
U(U(Ai )) ≥ U(Ai ) for each i ∈ I . Then by Theorem 4.2,
we have

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
U(Ai )

= â ∧
∨

i∈I
(U(Ai ) ∧ U(U(Ai ))).

(⇐�) For each A ∈ FL(U ), put a = 1, I = {1} and
A1 = A. Then it follows that

U(A) = U(A) ∧ U(U(A)).

This means that U(U(A)) ≥ U(A) for each A ∈ FL(U ).
Then it follows from (MFU) that

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
(U(Ai ) ∧ U(U(Ai )))

= â ∧
∨

i∈I
U(Ai ).

By Theorem 4.2, there exists a unique L-fuzzy relation R on
U such that U = R. Further, we have

R(R(A)) = U(U(A)) ≥ U(A) = R(A).

This implies that R is mediate.

According to Theorems 3.14 and 4.2, we observe that
some axioms can be used to characterize the upper and
lower L-fuzzy rough approximation operators with respect
to Euclidean L-fuzzy relations. For example, (GFU1) and
(FU5) can be used to characterize the upper and lower L-
fuzzy rough approximation operators generated byEuclidean
L-fuzzy relations. Actually, these axioms can be replaced by
single axioms.

Theorem 4.5 LetU ,L:FL(U ) −→ FL(U ) be a pair of dual
L-fuzzy operators. Then there exists a unique Euclidean L-
fuzzy relation R on U such that R = U and R = L if and
only if one of the following conditions holds:
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∀a ∈ L, ∀{Ai }i∈I ⊆ FL(U ),

(EFU1)U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
(U(Ai ) ∧ U(U(Ai )

′)′),

(EFU2)U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
(U(Ai ) ∧ L(U(Ai ))),

(EFL1)L
(
â ∨

∧

i∈I
Ai

)
= â ∨

∧

i∈I
(L(Ai ) ∨ L(L(Ai )

′)′),

(EFL2)L
(
â ∨

∧

i∈I
Ai

)
= â ∨

∧

i∈I
(L(Ai ) ∨ U(L(Ai ))).

Proof The equivalence of (EFU1), (EFU2), (EFL1) and
(EFL2) follows immediately from the duality of U and L.
Now we only need to show that there is a unique Euclidean
L-fuzzy relation R such that U = R and L = R if and only
if (EFU2) holds.

(�⇒) If there is a Euclidean L-fuzzy relation R such that
U = R and L = R, then it follows from Theorem 3.14 that
U(Ai ) ≤ L(U(Ai )) for each {Ai }i∈I ⊆ FL(U ). Then by
Theorem 4.2, we have

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
U(Ai )

= â ∧
∨

i∈I
(U(Ai ) ∧ L(U(Ai ))).

This shows (EFU2) holds.
(⇐�) For each A ∈ FL(U ), put a = 1, I = {1} and

A1 = A. Then it follows from (EFU2) that

U(A) = U(A) ∧ L(U(A)).
This means that U(A) ≤ L(U(A)) for each A ∈ FL(U ).
Then for each Ai ∈ FL(U ), it follows that U(Ai ) ≤
L(U(Ai )). Thus, we obtain

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
(U(Ai ) ∧ L(U(Ai )))

= â ∧
∨

i∈I
U(Ai ).

By Theorem 4.2, there exists a unique L-fuzzy relation R on
U such that U = R and L = R. Then it follows that

R(R(A)) = L(U(A)) ≥ U(A) = R(A).

By Theorem 3.14, we know R is Euclidean.

According to Theorems 3.18 and 4.2, we can examine
that the upper (resp. lower) L-fuzzy rough approximation
operators generated by adjoint L-fuzzy relations can be char-
acterized by some axioms, such as (FYU6) and (GFU1) (resp.
(FYL5) and (GFU2)). In the following theorem, we will use

single axioms to characterize L-fuzzy rough approximation
operators corresponding to adjoint L-fuzzy relations.

Theorem 4.6 LetU ,L:FL(U ) −→ FL(U ) be a pair of dual
L-fuzzy operators. Then there exists a unique adjoint L-fuzzy
relation R on U such that R = U and R = L if and only if
one of the following conditions holds:
∀a ∈ L, ∀{Ai }i∈I ⊆ FL(U ),

(AFU1)U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
(U(Ai ) ∧ U(U(A′

i )
′)),

(AFU2)U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
(U(Ai ) ∧ U(L(Ai ))),

(AFL1)L
(
â ∨

∧

i∈I
Ai

)
= â ∨

∧

i∈I
(L(Ai ) ∨ L(L(A′

i )
′)),

(AFL2)L
(
â ∨

∧

i∈I
Ai

)
= â ∨

∧

i∈I
(L(Ai ) ∨ L(U(Ai ))).

Proof The equivalence of (AFU1), (AFU2), (AFL1) and
(AFL2) follows immediately from the duality of U and L.
Now we only need to show that there is a unique adjoint L-
fuzzy relation R such that U = R and L = R if and only if
(AFU2) holds.

(�⇒) If there is an adjoint L-fuzzy relation R such that
U = R and L = R, then it follows from Theorem 3.18 that
U(Ai ) ≤ U(L(Ai )) for each {Ai }i∈I ⊆ FL(U ). Then by
Theorem 4.2, we have

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
U(Ai )

= â ∧
∨

i∈I
(U(Ai ) ∧ U(L(Ai ))).

This shows (AFU2) holds.
(⇐�) For each A ∈ FL(U ), put a = 1, I = {1} and

A1 = A. Then it follows from (AFU2) that

U(A) = U(A) ∧ U(L(A)).
This means that U(A) ≤ U(L(A)) for each A ∈ FL(U ).
Then for each Ai ∈ FL(U ), it follows that U(Ai ) ≤
U(L(Ai )). Thus, we obtain

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
(U(Ai ) ∧ U(L(Ai )))

= â ∧
∨

i∈I
U(Ai ).

By Theorem 4.2, there exists a unique L-fuzzy relation R on
U such that U = R and L = R. Then it follows that

R(R(A)) = U(L(A)) ≥ U(A) = R(A).

By Theorem 3.18, we know R is adjoint.
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In order to show the reasonability of Theorems 4.4–4.6,
we will show each type of L-fuzzy relations really exists.
Here, we provide some concrete examples.

Example 4.7 (1) Rm in Example 3.7 is mediate but not
Euclidean or adjoint.

(2) Re in Example 3.11 is Euclidean but not mediate or
adjoint.

(3) Ra in Example 3.16 is adjoint but not mediate or
Euclidean.

In the sequel, we will investigate axiomatic characterizations
of L-fuzzy rough approximation operators with respect to
compositions ofmediate, Euclidean and adjoint L-fuzzy rela-
tions.

Theorem 4.8 Let U ,L: FL(U ) −→ FL(U ) be a pair of
dual L-fuzzy operators. Then there exists a unique mediate
and Euclidean L-fuzzy relation R onU such that R = U and
R = L if and only if one of the following conditions holds:

∀a ∈ L, ∀{Ai }i∈I ⊆ FL(U ),

(MEFU1)U
(
â ∧

∨

i∈I
Ai

)

= â ∧
∨

i∈I
(U(Ai ) ∧ U(U(Ai )) ∧ U(U(Ai )

′)′),

(MEFU2)U
(
â ∧

∨

i∈I
Ai

)

= â ∧
∨

i∈I
(U(Ai ) ∧ U(U(Ai )) ∧ L(U(Ai ))),

(MEFL1)L
(
â ∨

∧

i∈I
Ai

)

= â ∨
∧

i∈I
(L(Ai ) ∨ L(L(Ai )) ∨ L(L(Ai )

′)′),

(MEFL2)L
(
â ∨

∧

i∈I
Ai

)

= â ∨
∧

i∈I
(L(Ai ) ∨ L(L(Ai )) ∨ U(L(Ai ))).

Proof It is enough to show that there is a unique mediate and
Euclidean L-fuzzy relation R such that U = R and L = R
if and only if (MEFU2) holds.

(�⇒) If there is a mediate and Euclidean L-fuzzy rela-
tion R such that U = R and L = R, then it follows
from Theorems 3.9 and 3.14 that U(Ai ) ≤ U(U(Ai )) and
U(Ai ) ≤ L(U(Ai )) for each {Ai }i∈I ⊆ FL(U ). By Theo-
rem 4.2, we have

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
U(Ai )

= â ∧
∨

i∈I
(U(Ai ) ∧ U(U(Ai )) ∧ L(U(Ai ))).

This shows (MEFU2) holds.

(⇐�) For each A ∈ FL(U ), put a = 1, I = {1} and
A1 = A. Then it follows from (MEFU2) that

U(A) = U(A) ∧ U(U(A)) ∧ L(U(A)).

This implies that U(U(A)) ≥ U(A). Then it follows from
(MEFU2) that

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
(U(Ai ) ∧ L(U(Ai ))).

By Theorem 4.5, we know there exists a unique Euclidean
L-fuzzy relation R onU such that U = R and L = R. Also,
we have

R(R(A)) = U(U(A)) ≥ U(A) = R(A).

Thus, R is also mediate.

Theorem 4.9 Let U ,L: FL(U ) −→ FL(U ) be a pair of
dual L-fuzzy operators. Then there exists a unique mediate
and adjoint L-fuzzy relation R on U such that R = U and
R = L if and only if one of the following conditions holds:
∀a ∈ L, ∀{Ai }i∈I ⊆ FL(U ),

(MAFU1) U
(
â ∧

∨

i∈I
Ai

)

= â ∧
∨

i∈I
(U(Ai ) ∧ U(U(Ai )) ∧ U(U(A′

i )
′)),

(MAFU2) U
(
â ∧

∨

i∈′ I
Ai

)

= â ∧
∨

i∈I
(U(Ai ) ∧ U(U(Ai )) ∧ U(L(Ai ))),

(MAFL1) L
(
â ∨

∧

i∈I
Ai

)

= â ∨
∧

i∈I
(L(Ai ) ∨ L(L(Ai )) ∨ L(L(A′

i )
′)),

(MAFL2) L
(
â ∨

∧

i∈I
Ai

)

= â ∨
∧

i∈I
(L(Ai ) ∨ L(L(Ai )) ∨ L(U(Ai ))).

Proof It is enough to show that there is a unique mediate and
adjoint L-fuzzy relation R such that U = R and L = R if
and only if (MAFU2) holds.

(�⇒) If there is a mediate and adjoint L-fuzzy rela-
tion R such that U = R and L = R, then it follows
from Theorems 3.9 and 3.18 that U(Ai ) ≤ U(U(Ai )) and
U(Ai ) ≤ U(L(Ai )) for each {Ai }i∈I ⊆ FL(U ). By Theo-
rem 4.2, we have
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U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
U(Ai )

= â ∧
∨

i∈I
(U(Ai ) ∧ U(U(Ai )) ∧ U(L(Ai ))).

This shows (MAFU2) holds.
(⇐�) For each A ∈ FL(U ), put a = 1, I = {1} and

A1 = A. Then it follows from (MAFU2) that

U(A) = U(A) ∧ U(U(A)) ∧ U(L(A)).

This implies that U(U(A)) ≥ U(A). Then it follows from
(MAFU2) that

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
(U(Ai ) ∧ U(L(Ai ))).

By Theorem 4.6, we know there exists a unique adjoint L-
fuzzy relation R on U such that U = R and L = R. Also,
we have

R(R(A)) = U(U(A)) ≥ U(A) = R(A).

Then it follows from Theorem 3.9 that R is mediate.

Theorem 4.10 Let U ,L: FL(U ) −→ FL(U ) be a pair of
dual L-fuzzy operators. Then there exists a unique Euclidean
and adjoint L-fuzzy relation R on U such that R = U and
R = L if and only if one of the following conditions holds:
∀a ∈ L, ∀{Ai }i∈I ⊆ FL(U ),

(EAFU1) U
(
â ∧

∨

i∈I
Ai

)

= â ∧
∨

i∈I
(U(Ai ) ∧ U(U(A′

i )
′ ∧ U(U(Ai )

′)′),

(EAFU2) U
(
â ∧

∨

i∈I
Ai

)

= â ∧
∨

i∈I
(U(Ai ) ∧ U(L(Ai )) ∧ L(U(Ai ))),

(EAFL1) L
(
â ∨

∧

i∈I
Ai

)

= â ∨
∧

i∈I
(L(Ai ) ∨ L(L(A′

i )
′) ∨ L(L(Ai )

′)′),

(EAFL2) L
(
â ∨

∧

i∈I
Ai

)

= â ∨
∧

i∈I
(L(Ai ) ∨ L(U(Ai )) ∨ U(L(Ai ))).

Proof We only need to show that there is a unique Euclidean
and adjoint L-fuzzy relation R such that U = R and L = R
if and only if (EAFU2) holds.

(�⇒) If there is a Euclidean and adjoint L-fuzzy rela-
tion R such that U = R and L = R, then it follows
from Theorems 3.14 and 3.18 that U(Ai ) ≤ U(L(Ai )) and
U(Ai ) ≤ L(U(Ai )) for each {Ai }i∈I ⊆ FL(U ). By Theo-
rem 4.2, we have

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
U(Ai )

= â ∧
∨

i∈I
(U(Ai ) ∧ U(L(Ai )) ∧ L(U(Ai ))).

This shows (EAFU2) holds.
(⇐�) For each A ∈ FL(U ), put a = 1, I = {1} and

A1 = A. Then it follows from (EAFU2) that

U(A) = U(A) ∧ U(L(A)) ∧ L(U(A)).

Thus, we have U(L(A)) ≥ U(A). Then it follows from
(EAFU2) that

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
(U(Ai ) ∧ L(U(Ai ))).

By Theorem 4.5, there exists a unique Euclidean L-fuzzy
relation R on U such that U = R and L = R. Further, we
have

R(R(A)) = U(L(A)) ≥ U(A) = R(A).

This implies that R is also adjoint.

In order to show the reasonability of Theorems 4.8–4.10,
it is necessary to give some concrete examples of each kind
of composite L-fuzzy relations by two types of L-fuzzy rela-
tions.

Example 4.11 Suppose that U = {x, y, z}, L = [0, 1] and
a′ = 1 − a for each a ∈ [0, 1]. Then

(1) Rme : U ×U −→ L defined by

Rme x y z

x 0.2 0.6 0.3
y 0.5 0.6 0.4
z 0.4 0.6 0.4

is mediate and Euclidean but not adjoint.
(2) Rma : U ×U −→ L defined by
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Rma x y z

x 0.3 0.1 0.4
y 0.2 0.4 0.4
z 0.6 0.5 0.6

is mediate and adjoint but not Euclidean.
(3) Rea : U ×U −→ L defined by

Rea x y z

x 0.3 0.4 0.2
y 0.4 0.1 0.5
z 0.1 0.3 0.4

is Euclidean and adjoint but not mediate.

Theorem 4.12 Let U ,L: FL(U ) −→ FL(U ) be a pair of
dual L-fuzzy operators. Then there exists a unique mediate,
Euclidean and adjoint L-fuzzy relation R onU such that R =
U and R = L if and only if one of the following conditions
holds:
∀a ∈ L, ∀{Ai }i∈I ⊆ FL(U ),

(MEAFU1) U
(
â ∧

∨

i∈I
Ai

)

= â ∧
∨

i∈I
(U(Ai ) ∧ U(U(Ai )) ∧ U(U(A′

i ))
′ ∧ U(U(Ai )

′)′),

(MEAFU2) U
(
â ∧

∨

i∈I
Ai

)

= â ∧
∨

i∈I
(U(Ai ) ∧ U(U(Ai )) ∧ U(L(Ai )) ∧ L(U(Ai ))),

(MEAFL1) L
(
â ∨

∧

i∈I
Ai

)

= â ∨
∧

i∈I
(L(Ai ) ∨ L(L(Ai )) ∨ L(L(A′

i )
′) ∨ L(L(Ai )

′)′),

(MEAFL2) L
(
â ∨

∧

i∈I
Ai

)

= â ∨
∧

i∈I
(L(Ai ) ∨ L(L(Ai )) ∨ L(U(Ai )) ∨ U(L(Ai ))).

Proof We only need to show that there is a unique mediate,
Euclidean and adjoint L-fuzzy relation R such that U = R
and L = R if and only if (MEAFU2) holds.

(�⇒) If there is a mediate, Euclidean and adjoint L-fuzzy
relation R such that U = R and L = R, then it follows
from Theorems 3.9, 3.14 and 3.18 that U(Ai ) ≤ U(U(Ai )),
U(Ai ) ≤ U(L(Ai )) and U(Ai ) ≤ L(U(Ai )) for each
{Ai }i∈I ⊆ FL(U ). By Theorem 4.2, we have

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
U(Ai )

= â ∧
∨

i∈I
(U(Ai ) ∧ U(U(Ai )) ∧ U(L(Ai )) ∧ L(U(Ai ))).

This shows (MEAFU2) holds.
(⇐�) For each A ∈ FL(U ), put a = 1, I = {1} and

A1 = A. Then it follows from (MEAFU2) that

U(A) = U(A) ∧ U(U(A)) ∧ U(L(A)) ∧ L(U(A)).

Thus, we have U(U(A)) ≥ U(A). Then it follows from
(MEAFU2) that

U
(
â ∧

∨

i∈I
Ai

)
= â ∧

∨

i∈I
(U(Ai ) ∧ U(L(Ai )) ∧ L(U(Ai ))).

ByTheorem4.10, there exists a unique Euclidean and adjoint
L-fuzzy relation R on U such that U = R and L = R.
Further, we have

R(R(A)) = U(U(A)) ≥ U(A) = R(A).

This implies that R is also mediate, as desired.

In the final, we provide a concrete example which satisfies
all the mediate, Euclidean and adjoint conditions.

Example 4.13 Suppose that U = {x, y, z}, L = [0, 1] and
a′ = 1 − a for each a ∈ [0, 1]. Then Rmea : U × U −→ L
defined by

Rmea x y z

x 0.2 0.3 0.3
y 0.2 0.4 0.4
z 0.4 0.3 0.4

is a mediate, Euclidean and adjoint L-fuzzy relation on U .

5 Conclusions

In this paper, we first introduced three new types of L-
fuzzy relations, including mediate, Euclidean and adjoint
L-fuzzy relations and characterized them by their induced
upper and lower L-fuzzy rough approximation operators.
Secondly, we provided single axioms for axiomatic charac-
terizations of L-fuzzy rough approximation corresponding to
mediate, Euclidean and adjoint L-fuzzy relations as well as
their compositions. Following the constructive and axiomatic
approaches, we presented the above-mentioned results in this
paper, which can be considered as important parts of fuzzy
rough set theory. In the future, we will further consider the
following problems:
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• Using single axioms to characterize L-fuzzy rough
approximation operators corresponding to compositions
of serial, reflexive, symmetric, transitive, mediate, Eucli-
dean and adjoint L-fuzzy relations.

• Generalizing the lattice background from a frame to a
residuated lattice. In particular, a frame equipped with an
order-reversing involutionwill be generalized to a regular
residuated lattice.
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