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Abstract
This paper presents a robust fuzzy control approach for the lateral path-following of autonomous road vehicles (ARVs). The
dynamics of the ARV is estimated online thorough a new non-singleton fuzzy system based on the non-stationary fuzzy sets.
The asymptotic stability of the proposed method is ensured, and the adaptation laws for the proposed fuzzy system are derived
based on the Lyapunov stability theorem. The robustness of the proposed control method is verified for a vehicle system
performing a double-lane-change maneuver at different forward speeds subjected to structured and unmodeled uncertainties
and different disturbances. The effectiveness of the proposed approach is further investigated under different measurement
noise levels. Based on the obtained results, it is concluded that the proposed control strategy can be effectively applied to the
path-following task of ARVs under a wide range of operating conditions and external disturbances.

Keywords Fuzzy system · Non-stationary fuzzy sets · Compensator · Robustness · Autonomous vehicles

1 Introduction

The emerging progress in cyber-physical systems, advanced
control paradigms and deployment of artificial intelligence
techniques have strongly assisted to address the long-term
demands of human driver safety, ease of ride, accident
avoidance, energy efficiency, road utilization and conve-
nient trafficking through the application of the automated
and connected vehicles, advanced driving assistance sys-
tems (ADAS) and parallel steering control (Guo et al.
2018; Hu et al. 2016). However, the sophisticated road
conditions, modern urban infrastructure complexities and
dynamic trafficking requirements impose the introduction of
more effective and state-of-the-art control frameworks for
autonomous road vehicles (ARVs) (González et al. 2016; Zhu
et al. 2017). There is a broad range of operational objectives
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related to the performance of ARVs. Lateral path-following
and lane keeping criteria serve as the substantial motion
control objectives for ARVs in order to ensure the vehi-
cle security and the lateral motion stability (Naranjo et al.
2008; Wang et al. 2017). The controllers employed for lat-
eral path-following of ARVs are typically the active front
wheel steering (AFS), direct yaw moment control (DYC) or
invariants of the coupled control paradigm. The integrated
control schemas are suggestive of the improved vehicle han-
dling and stability performance by employing AFS and DYC
in a simultaneous manner. Therefore, path-following task
can be also effectively achieved by employing the integrated
control approach even at considerably higher speed limits
because of the flexibility and availability of independently
actuated controllers (Yim et al. 2016).

The path-following task of ARVs comprises the precise
navigation of the target vehicle on a prescribed path, and
this in turn causes significant difficulties. The navigation of
ARVs is entirely performed without the driver intervention
or any prior understanding of the desired trajectory in the
time domain (Aguiar and Hespanha 2007). Additionally, the
constraints on the vehicle states and the ambient vehicles,
pedestrians and their unpredictable responses significantly
increase the burdens of an effective controller design for
ARVs. Theminimal path-following errors are typically intro-
duced in terms of the lateral offset and the heading error under
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varying driving conditions (Hu et al. 2015, 2019; Hu 2016).
Consequently, the primary goal in the design of control laws
is regularly to push the lateral path-following error toward
zero, while the vehicle stability is upheld during various
maneuvering conditions. In the case of smooth trajectories
with the known system dynamics, typically the invariants
of feedback control laws can accomplish reasonably effec-
tive results (Li et al. 2017). Practically speaking, though,
the desired trajectories are non-smooth paths and even fail to
complywith the vehicle constraining kinematic or dynamics.
In emergent scenarios and critical maneuvering conditions
such as collision avoidance, a huge actuator input may be
required in a short span of time. An improper feedback
law can perhaps cause critical instability for highly curved
paths or those maneuvers demanding swift yaw stabiliza-
tion. Therefore, only those control schemas which address
the optimality and robustness against the unknown dynam-
ics of the system can potentially serve as a remedy to the
practical setbacks related to the path-following of ARVs.

The archived reported studies are indicative of a broad
class of control theories employing for the path-following of
ARVs such as composite nonlinear feedback (Hu et al. 2016),
adaptive neural network (Wai et al. 2010; Yang et al. 2013),
genetic-based method (Shih et al. 2017), robust H∞ output
feedback control (Wang et al. 2016) and backstepping con-
trol method (Kang et al. 2018). The aforesaid approaches can
typically enhance the effectiveness of the path-following per-
formance of ARVs; however, most of them ignore the effect
of unknown dynamics of the vehicle on the system response.
Indeed, the controllers should be generic and expandable to
any other vehicle system with slight variations and the con-
trol laws should not vary from one vehicle to another. For
instance, MPC technique requires an explicit model of the
system and the exact states of the system over the prediction
horizon. However, the vehicle system is not deterministic
and holds extensive amount structural and unmodeled uncer-
tainties. For example, the tires are substantially subjected
to saturation, and therefore, the lateral force can be insuf-
ficient for the vehicle handling. Therefore, the response of
the tire in terms of the force deflection enters the hard non-
linearity region. In response, though, the tires cornering force
hardly varies or, at times, deteriorates with the develop-
ment of sideslip angle and pushes the vehicle to the driving
limits (Ji et al. 2018). In light of the arguments explored
above, it is essential to examine the ways to diminish the
unfavorable impact of the modeled or unmodeled uncer-
tainties as well as the external disturbances on the lateral
path-following of ARVs. The adaptive intelligent control
schemes can potentially meet the requirement of desired
control performance against the considerable system uncer-
tainty by learning to approximate any arbitrary nonlinear and
uncertain but bounded models (He et al. 2016; Ghaffari and
Homaeinezhad 2018; Jeon et al. 2016).

The fuzzy systems are popular in control systems, fault
detection systems and feature extractionmethods (Deng et al.
2018; Zhao et al. 2016). The fuzzy systems have also been
employed in path-following of autonomous robot vehicles
(Saffiotti 1997), commercial vehicles (Rodriguez-Castaño
et al. 2016) and ARVs (Zhang et al. 2019; Rastelli and
Peñas 2015; Hwang et al. 2018). A T-S fuzzy model with
the additional norm-bounded uncertainty-based controller
was developed for vehicle path-following in the presence
of non-linearities and parametric uncertainties related to the
variations in vehicle mass and cruise control (Zhang et al.
2019). AFS was employed as the only controlling effort, and
later, a method to the fuzzy observer-based output feedback
AFS control for ARV was designed using the Lyapunov sta-
bility theorem. Another study was reported by employing a
similar controlling strategy using AFS as the only control
input (Rastelli and Peñas 2015). A fuzzy logic system for
ARVs and the cascade structure for lateral path-following
control and parametric trajectory for inside the roundabout
were designed. The potential drawback for discussed papers
is the presence of a single control input which can be simply
saturated at driving limits and exhibit limited functionality.
An integrated AFS and DYC method serves as a reasonable
solution for heading angle and lateral offset error stabi-
lization independently. Hwang et al. Hwang et al. (2018)
employed a hierarchically improved fuzzy dynamical slid-
ing mode control for the path-following purpose of ARVs,
while the designed controller comprised of two stages: One
was related to the virtual desired input and the other was the
path-following control. The proposed hierarchical dynamic
fuzzy sliding mode controller was designed to address the
challenge related to the system uncertainties, particularly,
varying payloads. The proposed controller realized a tun-
ing mechanism to withstand the uncertainties related to the
weight of the vehicle by the Lyapunov stability with the hier-
archical concept with minimal computational demand.

The reviewed literature indicates that few studies have
been reported on the adaptive robust fuzzy control, for the
path-following task of ARVs considering the unmodeled and
parametric uncertainties of the vehicles. According to the
above motivations, a robust fuzzy control is proposed in this
paper. The performance of the fuzzy controllers depends
on the approximation capability of the fuzzy systems. To
improve the estimation performance of the traditional fuzzy
systems and to cope with the computational cost of the
type 2 fuzzy systems, a new non-singleton fuzzy system
based on the non-stationary fuzzy sets is proposed. To tune
the parameters of the fuzzy systems in the control scheme
many optimization methods can be used such as ant colony
optimization (Deng et al. 2019), particle swarm optimiza-
tion (Deng et al. 2019, 2017) and genetic algorithm (Deng
et al. 2017). In this paper some adaptation laws are extracted
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through the robustness analysis of the closed-loop system to
optimize the fuzzy systems.

The most important advantages of the proposed control
scheme are summarized as follows:

1. The proposed control scheme does not use the mathe-
matical model of the vehicle. The dynamics are assumed
to be unknown and are perturbed by some disturbances
such as changing of the tire cornering stiffness.

2. The unknown and perturbed dynamics of the vehicle
are estimated online using proposed non-singleton fuzzy
systems based on the non-stationary fuzzy sets. Then
the estimation ability of the traditional fuzzy systems is
improved.

3. The robustness of control scheme against the measure-
ment errors is taken to account.

4. The robustness of the proposed control method against
external disturbances and different longitudinal veloci-
ties is guaranteed by the proposed new adaptive compen-
sator.

The remainder of the paper is organized as follows. In
Sect. 2, the ARV dynamic model is formulated to follow a
desired path trajectory. The proposed fuzzy system is illus-
trated in Sect. 3. In Sect. 4, the robust fuzzy control theory
is developed. The simulations and results are provided in
Sect. 5, and the conclusions are outlined in Sect. 6.

2 Problem formulation

Typically, the contribution of longitudinal forces applied to
the vehicle such as rolling resistance and traction force devel-
oped at the tire–ground interface is assumed infinitesimal
on the cornering response of the vehicle. However, the for-
ward vehicle speed has to be sufficient for generating the
lateral forces proportional to the slip angles. In this study,
a two-degree-of-freedom (2-DOF) bicycle model is consid-
ered (Fig. 1) due to the symmetric dynamics of the right
and left tracks of the vehicle. The major goal of yaw angle
or heading angle control system is to prevent vehicles from
rotating and losing yaw stability and to keep the yaw velocity
as close as possible to the nominal value anticipated from an
expert driver. Hence, the yaw angle is desired to remain at a
slight magnitude range. For the path-following as indicated
in Fig. 1, the lateral offset error indicates the closest distance
between the vehicle and the desired trajectory as an orthog-
onal projection. Furthermore, the yaw rate γ is defined as
the derivative of the vehicle heading angle. The difference
between the vehicle yaw rate and the desired one γd is repre-
sentative of the yaw rate error γe which is further denoted by
the derivatives of the vehicle heading angle ϕ and the desired
heading angle. The path-following errors can be therefore

determined as:

⎧
⎨

⎩

γe = γ − γd = γ − vx/R (ρ)

ẏ = vx sin ϕ + vy cosϕ

ϕ̇ = γ

(1)

where R (ρ) is the radius of curvature of the desired path at
the point shown in Fig. 1 and ρ represents the arc length of
the represented point which changes by the trajectory of the
road; the curvature will change accordingly. The purpose is
indeed to devise a robust controller to globally asymptoti-
cally converge the terms γe and ẏ to zero. Consequently, the
vehicle can follow the desired trajectory after stabilization.
Regarding the governing equations of the motion, it is note-
worthy that due to the infinitesimal contribution of the pitch
and roll motions to the path-following of the vehicle in yaw
plane, these terms are dismissed in the model. Furthermore,
the front steering is considered in the model as the control
input since the external yaw moment generation has limited
application in real tests where a robust steering controller is
sufficient in practical experiments (Fang et al. 2011). The
2-DOF yaw plane vehicle model can be simply expressed as:

{
v̇y = 1

m

(
Fy f + Fyr

)− vxγ

γ̇ = 1
Iz

(
Fy f l f − Fyr lr + �T

) (2)

where vx and vy are the longitudinal and lateral velocities
in the body-fixed coordinate y and ẏ represent the lateral
displacement and velocity of the vehicle center of gravity
(C .G.), ϕ and ϕ̇ denote the vehicle heading angle and yaw
rate, �T is the external yaw moment, Fy f and Fyr are the
lateral tire force related to the front and rear wheels, l f and
lr are the distance between the (C .G.) and front and rear
wheels, respectively, m is the vehicle mass and Iz is the
mass moment of inertia about the yaw axis. The external
yaw moment applied to the vehicle with track width lb can
be expressed as:

�T =
∑

i

2∑

j=1

(−1) j Fxi j
lb
2

i = f , r (3)

Considering the aforesaid proportionality between the tire
lateral force and the sideslip angles, the lateral forces are
simply presented as a function of the front and rear tire cor-
nering stiffness parameters (i.e., C f and Cr ) as follows.

Fy f = C f α f , Fyr = Crαr (4)

Aiming to consider the nonlinear cornering characteristics of
tire, the role of uncertainty can be included as:

C f = C̃ f + �C f , Cr = C̃r + �Cr (5)
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Fig. 1 Schematic representation of an autonomous vehicle yaw plane
model and the path-following maneuver

where C̃ f and C̃r denote for the nominal cornering stiffness
for the front and rear tires, respectively, limited to the linear
region of tire deformation, and �C f and �Cr represent the
bounded uncertainties for tire cornering stiffness of front and
rear wheels, respectively. Furthermore, the sideslip angles
related to the front and rear tires can be represented as:

⎧
⎨

⎩

α f = tan−1
[

vx sin(β)+l f γ
vx cos(β)

]
− δ f

αr = tan−1
[

vx sin(β)−lrγ
vx cos(β)

] (6)

where δ f and β represent the front wheel steering angle and
sideslip angle (β ≈ vy/vx ). By substituting (3)–(6), in (2)
and (1), the following can be derived:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ = vx sin ϕ + vy cosϕ

v̇y = C f
m

{
tan−1

[
vx sin(β)+l f γ

vx cos(β)

]
− δ f

}

+Cr
m

{
tan−1

[
vx sin(β)−lrγ

vx cos(β)

]}
− vxγ

γ̇ = 1
Iz

({
l f C f tan−1

[
vx sin(β)+l f γ

vx cos(β)

]
− δ f

}

+
{
lrCr tan−1

[
vx sin(β)−lrγ

vx cos(β)

]}
+ �T

)

(7)

The dynamics of the system are rewritten as follows:

ẋ1 = f1
(
x
)+ b1u1

ẋ2 = f2
(
x
)+ b2u2 (8)

where x1 = vy , x2 = γ , u1 = δ f , u2 = �T , b1 = 1
Iz
,

b2 = C f
m and

f1
(
x
) = C f

m

{

tan−1
[
vx sin (β) + l f γ

vx cos (β)

]}

+Cr

m

{

tan−1
[
vx sin (β) − lrγ

vx cos (β)

]}

− vxγ (9)

f2
(
x
) = 1

Iz

{

l f C f tan
−1
[
vx sin (β) + l f γ

vx cos (β)

]

− δ f

}

+
{

lrCr tan
−1
[
vx sin (β) − lrγ

vx cos (β)

]}

(10)

The general view on the proposed control scheme is shown
in Fig. 2. The details are described below.

3 Proposed non-singleton fuzzy system
based on non-stationary fuzzy sets

As mentioned before, the dynamics of the vehicle are
assumed to be unknown and are estimated online. It has
been shown that the approximation capability of the type 2
fuzzy systems is more than type 1 counterpart and the type 2
fuzzy systems result in good performance in contrast to type
1 fuzzy systems. But computational cost of type 2 fuzzy sys-
tems is significantly more than type 1 counterpart (Castillo
et al. 2011). To improve the estimation performance of the
traditional fuzzy systems and to cope with the computational
cost of the type 2 fuzzy systems, a new non-singleton fuzzy
system based on the non-stationary fuzzy sets is proposed.
A non-stationary fuzzy set is defined as follows (Garibaldi
et al. 2008):

A =
∫

x∈X

∫

t∈T
μA (t, x) /x/t (11)

where (t, x) ∈ T × X , T × X → [0, 1] and μA (t, x)
is expressed as μA (t, x) = μA (x, p1 (t) , . . . , pm (t)), in
which pi (t) = pi + ki fi (t) , i = 1, . . . ,m and fi (t) is a
perturbation function. In this paper by using the concept of
non-stationary fuzzy sets, a non-singleton fuzzy system is
proposed for estimation of uncertainties. The structure of the
proposed fuzzy system is shown in Fig. 3.

The output of the fuzzy system is obtained step by step as
follows:

(1) Input layer Get the input x = [x1, . . . , xn]T .
(2) Fuzzification layer Apply non-singleton fuzzification by

considering a fuzzy set for each input as follows:

μBi (xi ) = exp

(

−
(
xi − x ′

i
)2

σ 2
x

)

i = 1, . . . , n (12)

where x ′
i is the value of input xi and σx is a constant

parameter which represents the level of input uncertainty.
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Fig. 2 Block diagram of the
proposed control scheme

Fig. 3 Proposed fuzzy system
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(3) Membership layer Compute the memberships of all MF
for each input as follows:

μ
Ã j
i
(xi ) = 1

K

K∑

k=1

xp

⎛

⎜
⎝−

(
x̄i (k) − c

Ã j
i

)2

σ 2
Ã j
i

(k)

⎞

⎟
⎠

i = 1, . . . , n j = 1, . . . , M (13)

where Ã j
i represent the j th non-stationary MF for i th

input. The center of Ã j
i is c

Ã j
i
and its width is changed

between σ 2
Ã j
i

(1) and σ 2
Ã j
i

(K ). K is the number of embed-

ded MFs (see Fig. 4). M is the number of MFs for each
input, n is the number of inputs and x̄i (k) is obtained
based on minimum t-norm inference as follows:

x̄i (k) =
σ 2
x cÃ j

i
+ σ 2

Ã j
i

(k) x ′
i (k)

σ 2
x + σ 2

Ã j
i

(k)
(14)

(4) Rule layer Consider the rules as follows:

i f x1 is Al
1 and · · · and xi is Al

i
and · · · and xn is Al

n then y is θl
l = 1, . . . , M

(15)

where M is the number of rules, Ai
1 is the lth MF for i th

input and θl is the lth consequent parameter. Then the
degrees of rule firing are computed as follows:

zl =
∏n

i=1
μAli

, l = 1, . . . , M (16)

where zl represent the firing degree of lth rule.
(5) Output layer The output of the fuzzy system is obtained

as follows:

f̂ =
∑M

l=1 zlθl
∑M

l=1 zl
(17)

The fuzzy system can be written as the following vector
form:

f̂ = θT ξ (18)

where

θ = [θ1, . . . , θM ]T

ξ = [ξ1, . . . , ξM ]T

ξl = zl
∑M

l=1 zl
(19)

4 Control design and stability analysis

The dynamics of the system in (8) are estimated as follows:

˙̂x1 = f̂1
(
w1|θ1

)+ b̂1u1
˙̂x2 = f̂2

(
w2|θ2

)+ b̂2u2 (20)

where x̂1 and x̂2 are the estimations of x1 and x2, respec-
tively. f̂1 and f̂2 are the proposed T2FNN, which estimate
the uncertainties and disturbances. b̂1 and b̂2 are the estima-
tions of control gains b̂1 and b̂2, respectively. u1 and u2 are
control signals, and θ 1 and θ 2 are the trainable parameters
of f̂1 and f̂2, respectively. w1 and w2 are the input variables
of f̂1 and f̂2, respectively, which are considered as follows:

w1 = [x1, x2]
T

w2 = [x1, x2, u1]
T (21)

Then by considering (8) and (20), the dynamics of the esti-
mation errors x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2 are obtained
as follows:

˙̃x1 = f1
(
x
)− f̂1

(
w1|θ1

)+
(
b1 − b̂1

)
u1

˙̃x2 = f2
(
x
)− f̂2

(
w2|θ2

)+
(
b2 − b̂2

)
u2 (22)

By defining the optimal values of the parameters θ i , i = 1, 2
as θ∗

i , the dynamics of x̃1 and x̃2 in (22), are rewritten as
follows:

˙̃x1 = f̂1
(
w1|θ∗

1

)− f̂1
(
w1|θ1

)

+ f1
(
x
)− f̂1

(
w1|θ∗

1

)+
(
b1 − b̂1

)
u1

˙̃x2 = f̂2
(
w2|θ∗

2

)− f̂2
(
w2|θ2

)

+ f2
(
x
)− f̂2

(
w2|θ∗

2

)+
(
b2 − b̂2

)
u2 (23)

The approximation errors are defined as follows:

E1 = f1
(
x
)− f̂1

(
w1|θ∗

1

)

E2 = f2
(
x
)− f̂2

(
w2|θ∗

2

) (24)

From (24) and the vector form of fuzzy system (18), equation
(23) is rewritten as follows:

˙̃x1 = θ̃
T
1 ξ1 + E1 +

(
b1 − b̂1

)
u1

˙̃x2 = θ̃
T
2 ξ2 + E2 +

(
b2 − b̂2

)
u2 (25)

where θ̃ i = θ̃
∗
i − θ̃ i , i = 1, 2.

Remark 1 The approximation errors E1 and E2 are written
as E1 = ε1e1 and E1 = ε1e1, respectively, in which ε1 and
ε2 are estimated as ε̂1 and ε̂2, respectively.
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Fig. 4 Non-singleton
fuzzification
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Theorem 1 System (8) is asymptotically stable if the control
signals and adaptation laws are chosen as follows:

u1 = 1

b̂1

(
− f̂1

(
w1|θ1

)+ ṙ1 − λ1e1 + us1
)

u2 = 1

b̂2

(
− f̂2

(
w2|θ2

)+ ṙ2 − λ2e2 + us2
)

(26)

us1 = −x̃1ε̂1

us2 = −x̃2ε̂2 (27)

θ̇1 = ηx̃1ξ1

θ̇2 = ηx̃2ξ2 (28)
˙̂b1 = ηx̃1u1
˙̂b2 = ηx̃2u2 (29)
˙̂ε1 = ηx̃1e1
˙̂ε2 = ηx̃2e2 (30)

where r1 and r2 are the reference signals. λ1 and λ2 are
positive constants. us1 and us2 are compensators. e1 and e2
are tracking errors, which are defined as e1 = x̂1 − r1 and
e2 = x̂2 − r2, x̃1 = x1 − x̂1, x̃2 = x2 − x̂2 and η is the
adaptation rate.
From (20) and (26), the dynamics of the tracking errors are
obtained as follows:

ė1 = −λ1e1 + us1

ė2 = −λ2e2 + us2 (31)

For the aim of stability analysis, the following Lyapunov
function is considered:

V = 1

2
e21 + 1

2
e22 + 1

2
x̃21 + 1

2
x̃22

+ 1

2η
θ̃
T
1 θ̃1 + 1

2η
θ̃
T
2 θ̃2

+ 1

2η
ε̃21 + 1

2η
ε̃22 + 1

2η
b̃21 + 1

2η
b̃22 (32)

where ei = x̂i − ri , x̃i = xi − x̂i , θ̃ i = θ̃
∗
i − θ̃ i , ε̃i = εi − ε̂i ,

b̃i = bi − b̂i , i = 1, 2 and η is the adaptation rate.

Time derivative of V in (32) yields:

V̇ = e1ė1 + e2ė2 + x̃1 ˙̃x1 + x̃2 ˙̃x2
−1

η
θ̃
T
1 θ̇1 − 1

η
θ̃
T
2 θ̇2

−1

η
ε̃1

˙̂ε1 − 1

η
ε̃2

˙̂ε2 − 1

η
b̃1

˙̂b1 − 1

η
b̃2

˙̂b2 (33)

By substituting ėi and x̃i , i = 1, 2, from (25) and (31), into
(33), V̇ becomes:

V̇ = e1 (−λ1e1 + us1) + e2 (−λ2e2 + us2)

+x̃1
(
θ̃
T
1 ξ1 + E1 + b̃1u1

)
+ x̃2

(
θ̃
T
2 ξ2 + E2 + b̃2u2

)

−1

η
θ̃
T
1 θ̇1 − 1

η
θ̃
T
2 θ̇2

−1

η
ε̃1

˙̂ε1 − 1

η
ε̃2

˙̂ε2 − 1

η
b̃1

˙̂b1 − 1

η
b̃2

˙̂b2 (34)

By some simplifications, one obtains:

V̇ = −λ1e
2
1 + e1us1 − λ2e

2
2 + e2us2

+θ̃
T
1

(

x̃1ξ1 − 1

η
θ̇1

)

+ x̃1E1

+θ̃
T
2

(

x̃2ξ2 − 1

η
θ̇2

)

+ x̃2E2

b̃1

(

x̃1u1 − 1

η

˙̂b1
)

+ b̃2

(

x̃2u2 − 1

η

˙̂b2
)

−1

η
ε̃1

˙̂ε1 − 1

η
ε̃2

˙̂ε2 (35)

By choosing the adaptation laws as (28) and (29), V̇ becomes:

V̇ = −λ1e
2
1 − λ2e

2
2

+x̃1E1 + e1us1

+x̃2E2 + e2us2

−1

η
ε̃1

˙̂ε1 − 1

η
ε̃2

˙̂ε2 (36)
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By adding and subtracting x̃i ε̂i ei and replacing Ei as Ei =
εi ei , i = 1, 2, into (36), one obtains:

V̇ = −λ1e
2
1 − λ2e

2
2

+x̃1ε̃1e1 + e1us1 + x̃1ε̂1e1

+x̃2ε̃2e2 + e2us2 + x̃2ε̂2e2

−1

η
ε̃1

˙̂ε1 − 1

η
ε̃2

˙̂ε2 (37)

Equation (37) is simplified as follows:

V̇ = −λ1e
2
1 − λ2e

2
2

+ε̃1

(

x̃1e1 − 1

η
˙̂ε1
)

+ e1us1 + x̃1ε̂1e1

+ε̃2

(

x̃2e2 − 1

η
˙̂ε2
)

+ e2us2 + x̃2ε̂2e2 (38)

Then by choosing adaptation laws as ˙̂ε1 = ηx̃1e1 and ˙̂ε2 =
ηx̃2e2, it can be expressed that:

V̇ = −λ1e
2
1 − λ2e

2
2

+e1us1 + x̃1ε̂1e1

+e2us2 + x̃2ε̂2e2 (39)

Then if us1 and us2 are chosen as us1 = −x̃1ε̂1 and us2 =
−x̃2ε̂2, respectively, V̇ becomes:

V̇ = −λ1e
2
1 − λ2e

2
2 (40)

To show that lim
t→∞ e1 (t) → 0 and lim

t→∞ e2 (t) → 0, the

Barbalat’s lemma is used. Then it must be shown that e1 ∈ �2

and e2 ∈ �2. From (40), one has:

−
∫ t

0
V̇ (υ) dυ =V (0) − V (t)

≤ V (0) < ∞ (41)

From (41), it is concluded that:

λ1

∫ t

0
e21 (υ) dυ + λ2

∫ t

0
e22 (υ) dυ < ∞ (42)

and

∫ t

0
e21 (υ) dυ < ∞

∫ t

0
e22 (υ) dυ < ∞ (43)

Then, e1 ∈ �2 and e2 ∈ �2 and the asymptotically stability is
derived.

Table 1 Simulation parameters Parameter Value Unit

m 1480 kg

Iz 2350 kgm2

l f 1.05 m

lr 1.63 m

C f 67,500 N/rad

Cr 47,500 N/rad

5 Simulations

In this section, the effectiveness of the proposed method is
examined by simulations for a typical road vehicle where the
parameters employed in the study are specified in Table 1.
Throughout the simulations, it is assumed that the vehicle
travels on a dry asphalt road where the tire–road adhesion
coefficient is sufficient to avoid the vehicle from lateral slide
motion. The primary goal of the proposed controller is to
push the autonomous vehicle to follow the desired path by
minimizing the vehicle lateral offset and heading angle errors
with a guaranteed stability. It is assumed to be constant and
the reference trajectories are given as follows (Falcone et al.
2007):

r1 = d
dt tan

−1
{

4.05
(

1
cos h( p̄)

)2
1.2
25

−5.7
(

1
cos h(q̄)

)2 ( 1.2
21.95

)
}

r2 = d
dt

{ 4.02
2 (1 + tanh ( p̄))−

5.7
2 (1 + tanh (q̄))

}

(44)

where p̄ = 2.4 (vt − 27.19) /25 − 1.2 and q̄ = 2.4
(vt − 56.46) /21.95 − 1.2.
The longitudinal velocity is v = 10m/s.

The trajectories of the lateral displacement and head-
ing angle of the autonomous vehicle following the desired
trajectories are illustrated in Fig. 5. It is evident that the vehi-
cle holds the capacity to reach the desired trajectories very
swiftly and keeps the track of them during the entire range of
the simulation. The coupled effect of the vehicle yaw angle
on the lateral displacement is suggestive of the reasonably
considerable performance of the vehicle to follow the pre-
scribed path because the vehicle yaw angle can be directly
adjusted by an auxiliary control input (i.e., the direct yaw
moment). Figure 5 shows that vehicle heading angle starts to
vary from near t = 3s until about t = 9s, the range which
the two lane changes occur successively and the lateral dis-
placement trajectory exhibits a conforming response. The
corresponding tracking errors are also presented in Fig. 6. It
can be seen that the greatest lateral offset error is in the order
of 0.06 m near t = 5s which is related to the second lane-
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Fig. 5 Lateral displacement and
yaw angle
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Fig. 6 Tracking error for lateral
displacement and yaw angle
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Fig. 7 Control signals
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Table 2 Comparison of RMS
and maximum values of
tracking error for different
control methods

ADRC (Xia et al. 2016) LQT (Xia et al. 2016) Proposed method

y 0.2207 1.1049 0.0268

max(ey) 0.5592 1.7757 0.0451

ψ 0.0178 0.0592 0.0014

max(eψ) 0.0363 0.1456 0.0017
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Fig. 8 Lateral displacement and
yaw angle, when the
longitudinal velocity is 20m/s
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Fig. 9 Lateral displacement and
yaw angle, when the
longitudinal velocity is 30m/s
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change onset. The peak lateral offset error is attributed to
the effect of inertial forces for an abrupt lateral force change
direction. The heading angle error also lies within the small
range ±0.005 rad which ensures the vehicle path-following
stability. The control signals related to the proposed method
are also illustrated in Fig. 7 for the path-following control
of the autonomous vehicle at nominal operating condition
without disturbance. It is seen that the greatest AFS input
occurs at the onset of the motion with a peak-to-peak mag-
nitude of about 1 rad and then a quick stabilization of the
controller signal. A similar trend is also observed for the
DYC input where the peak magnitude approaches to 5000
N.m at the onset of simulation, followed by a quick atten-
uation of the control demand. The peak magnitude at the
start of the motion is partly due to the time needed for the
training of proposed FS adaptation laws, and the very swift
stabilization of the controller inputs can be due to employing
non-stationary fuzzy sets in the proposedmethod. The perfor-
mance of the proposed control method is compared with the
linear quadratic tracker (LQT) and active disturbance rejec-

tion control (ADRC) method (Xia et al. 2016) in terms of
the RMS and maximum values of tracking errors (Table 2).
According to the performance measures, it is observed that
the proposed controller outperforms the benchmarkingmeth-
ods. To show the robustness of the proposed control method,
the simulations are further carried out under different lon-
gitudinal velocities, external disturbances and measurement
errors.

5.1 Robustness against different longitudinal
velocities

Forward speed of vehicle plays a significant role in the lateral
stability of the vehicle through the coupled motion, which is
demonstrated in terms of generating centrifugal acceleration.
Hence, the tracking performance of the autonomous vehicle
is further evaluated under an increased speed of 20 m/s and
30 m/s. The results related to the increased vehicle speed are
illustrated in Figs. 8 and 9, respectively. The course of the
same double-lane-change maneuver, therefore, is completed
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Table 3 Comparison of RMS and maximum values of tracking error
for different longitude velocities

10 m/s 20 m/s 30 m/s

y 0.0268 0.0638 0.0963

max(ey) 0.0451 0.1198 0.1718

ψ 9.6829e−4 7.8903e−4 8.4453e−4

max(eψ) 0.0017 0.0018 0.0030

within shorter simulation time in compliance with the for-
ward speed. The values of RMS and maximum of tracking
errors for different velocities are given in Table 3. As it can
be seen, the variations in longitudinal velocity do not show
significant effect on the tracking performance although the
lane-change maneuvers have to be performed more abruptly.
Table 3 shows further suggestive of the increase in the RMS
andmaximum values of tracking errors in terms of the lateral
offset and heading angle under different longitudinal veloc-
ities. Such a trend can be also further confirmed according
to Figs. 8 and 9. However, the increased errors related to
the variations in the forward speed are in a reasonably small
range and the ARV can keep the track of the desired path
during the entire simulation period.

5.2 robustness against external disturbances

Althoughvehicle forward speed serves as a substantial source
of uncertainty affecting the lateral force variations, there are
other significant uncertainty and disturbances applied to the
vehicle. According to (4), the nominal cornering stiffness for
the front and rear tires can be varied to exceed the linearity
region, and therefore, the lateral force saturation occurs. Fur-
thermore, the role of different road–tire adhesion related to
a low-adhesive icy road or high-adhesive dry asphalt can be
consisted by the uncertainty term incorporated in the model
based on (4). The different external disturbances are given
in Table 4. For the first uncertainty case, the nominal corner-
ing stiffness terms of the tires are perturbed by employing a
sinusoidal function at frequency of 1 Hz and approximately
10 of the nominal magnitude. Other external disturbance
sources related to a pulse-shaped function and random vari-
ations in the cornering stiffness at the longitudinal velocity
of 20 m/s are further given in Table 4. The comparison of
tracking performance under different disturbance conditions
is presented in Table 5. It can be seen that the robustness
of the proposed controller to withstand the effect of differ-
ent disturbance functions is upheld and the performance of
the proposed controller for the system subjected to external
disturbances is on the verge of its unperturbed condition.

Table 4 Different external disturbances, in the longitudinal velocity
20m/s

Case 1: Variation in c f and cr as c f = c f + 5000 sin(t)

Case 2: Variation in c f and cr as c f = c f + 20, 000[1 − 2×
(a random number between 0 and 1)]

Case 3: A pulse with width 0.1 at time 2.5 s

5.3 robustness against measurement errors

To show the robustness of the proposed control method
against measurement errors, the simulations are carried out
in this section for the vehicle traveling at 10 m/s of lon-
gitudinal velocity subjected to white noise with different
variances to the measured in the states. The values of RMS
and maximum of tracking errors for different noise levels
are given in Table 6 and are compared with the use of type 1
fuzzy systems (T1FSs) in the control scheme. Table 6 shows
that the increase in noise variance level invariably increases
the path-following errors of the autonomous vehicle. How-
ever, it is evident that the proposed control scheme, by using
the proposed non-singleton fuzzification, results in a high
robust performance while it is subjected to the measurement
errors. The performance of both control methods has not
been degraded in terms of the heading angle error, and the
measurement noise only affects the lateral offset error within
a limited band. It must be noted that the effect of approxi-
mation errors is eliminated by the use of proposed adaptive
compensator. Then in the normal condition, the tracking per-
formance with the use of T1FS and proposed fuzzy system
is almost equal.

6 Conclusion

The problem of path-following of autonomous vehicles as
an arduous task of control design has gained a consider-
able attention because of the range of effective parameters
and their variations at critical driving maneuvers. In this
paper, a robust fuzzy control approach is proposed for the
path-following control of autonomous vehicles by employing
non-singleton fuzzy system and non-stationary fuzzy sets.
Active front wheel steering (AFS) and direct yaw moment
control (DYC) were employed as the control inputs of the
closed-loop system, and the asymptotic stability of the pro-
posed method is guaranteed based on the Lyapunov stability
theorem. It is shown that the proposed approach holds the
capacity to improve the transient performance, eliminates
the steady-state errors in the path-following maneuver and
withstands the effects arising from the system uncertainties
and time-varying reference which is due to the variations in
the forward speed. The effectiveness of the proposed control
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Table 5 Comparison of RMS
and maximum values of
tracking error in the presence of
different external disturbances

Normal Case 1 Case 2 Case 3

y 0.0638 0.0638 0.0639 0.0621

max(ey) 0.1198 0.1198 0.1200 0.1165

ψ 7.8899e−04 7.8879e−4 7.9045e−4 7.7564e−04

max(eψ) 0.0018 0.0018 0.0018 0.0018

Table 6 Comparison of RMS
and maximum values of
tracking error in the presence of
different measurement errors

Noise variance Fuzzy system y max(ey) ψ max(eψ)

0 T1FS 0.0269 0.0452 0.0010 0.0017

Proposed FS 0.0268 0.0451 0.0010 0.0017

0.5 T1FS 0.0374 0.0632 0.0010 0.0018

Proposed FS 0.0367 0.0609 0.0010 0.0018

1 Singleton 0.0700 0.1430 0.0010 0.0019

Proposed FS 0.0683 0.1385 0.0010 0.0019

method is verified for a vehicle system performing a double-
lane-change (DLC) maneuver at different forward speeds
subjected to different disturbances related to uncertainty in
the lateral force variations. Furthermore, the robustness of the
proposed approach is evaluated under different measurement
noise levels. Based on the obtained results, it is demonstrated
that the proposed control strategy can be effectively applied
for the path-following task of autonomous vehicles under a
wide range of operating conditions and external disturbances.
The most important disadvantage of proposed control sce-
nario that can be considered in the future studies is that there
is no constraint on the control signals.
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