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Abstract
Condition monitoring of piston pumps has great significance to ensure the reliability and security of hydraulic systems.

However, the complex working conditions of the integrated electromechanical systems make the fault mechanism unclear

which is difficult for fault diagnosis by feature matching techniques. In this paper, a novel minimum entropy deconvolution

(MED)-based convolutional neural network (CNN) is presented to classify faults in axial piston pumps. Firstly, the

collected raw signals are preprocessed using the MED technique. Then, the filtered signals are used to construct training

samples and testing samples. Finally, the constructed samples are fed into the CNN to classify the multi-faults of axial

piston pumps. With the convolution and subsampling operations, the present model can automatically obtain data features

via iterative learning processes, which is suitable for the unknown fault mechanism problems. The learned features are

visualized by t-distributed stochastic neighbor embedding technique. A benchmark data simulation of mechanical trans-

mission systems and an experimental data investigation of an axial piston pump are performed to manifest the superiority

of the present method by comparing with the traditional CNN.
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1 Introduction

Hydraulic transmission systems play an important role in

modern industry. Condition monitoring of hydraulic sys-

tems has attracted increasing attention in recent decades

(Jegadeeshwaran and Sugumaran 2015; Sepasi and Sas-

saniv 2010; Fu et al. 2014). Axial piston pumps are com-

monly used in hydraulic systems. The piston pumps defects

may cause the machine breakdowns, lead to severe eco-

nomic loss or even catastrophic casualty. As a matter of

fact, pump defects take up a large percentage of elec-

tromechanical equipments faults (Ferdowsi et al. 2014; Lan

et al. 2018; Wang et al. 2018a, b). Consequently, precisely

and effectively detect faults in pumps has become an

urgent task to ensure the safety and reliability of hydraulic

systems.

Faults of axial piston pump mostly occurred in cylinder

block, swash plate, bearings, pistons, etc. Pump health

condition monitoring can be undertaken using different

sensors, e.g., accelerometers, flowmeters, electric current,

etc. Among them, vibration signals collected by

accelerometers have enjoyed great success in condition

monitoring and fault diagnosis of rotating machinery

(Wang and Liang 2012; Xiang et al. 2015; Samanta et al.

2006; Pandya et al. 2014; Wang et al. 2009; Qiao et al.

2017). Many of the existing machinery diagnosis methods

have been referred and introduced to detect faults in

hydraulic pumps, including wavelet packet analysis (Gao

and Zhang 2006), intermittent chaos (Zhao et al. 2009),

local mean decomposition (LMD) (Jiang et al. 2014),

empirical mode decomposition (EMD) (Lu et al.

2016, 2015), and minimum entropy deconvolution (MED)

(He et al. 2016; Du et al. 2017; Dong et al. 2017), etc. Gao

and Zhang (2006) performed wavelet packet transforma-

tion and wavelet coefficient residual analysis to discharge

pressure signals to detect faults in hydraulic piston pumps.

Zhao et al. (2009) introduced intermittent chaos combined

with sliding window symbol sequence statistic to detect

early faults in hydraulic pumps. Jiang et al. (2014)
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proposed an improved adaptive multi-scale morphology

analysis (IAMMA) in associated with LMD to detect faults

of hydraulic pumps using vibration signals. Lu et al. (2016)

developed a two-step fault diagnosis method based on

EMD and fuzzy C-means clustering. EMD and Hilbert

transform were employed to extract fault features from the

discharge pressure signals collected by flowmeters. Fuzzy

C-means clustering algorithm was applied to recognize

hydraulic pump fault conditions. Meanwhile, Lu et al.

(2015) also investigated fault severity recognition methods

of hydraulic piston pumps, which would attain higher

recognition accuracy. He et al. (2016) investigated multiple

faults detection in rotating machinery by means of MED

combined with SK analysis, which obtain a nice impulse

restoration result of the vibration signals from a vacuum

pump.

Generally speaking, once there are faults occurred to the

components of the working piston pump, they are reflected

in the measured signals with certain characteristics, which

can be obtained through signal processing techniques. Most

fault diagnosis methods are based on matching the

extracted fault features with the corresponding analyzed

fault characteristics. Unfortunately, many researches have

reported that the frequencies of some different faults are

identical (Gao and Zhang 2006; Lu et al. 2015). Besides,

the fault mechanism of some faults is unclear, namely it is

hard to point out such a fault with its corresponding

characteristic. In such cases, the feature matching is failed.

To tackle the challenge mentioned above, the main

objective of the paper is to search for an automatic feature

learning method for axial piston pump fault diagnosis.

Deep learning is new branch of machine learning, which

has the great capacity in feature learning from raw data

(Hinton and Salakhutdinov 2006; LeCun et al. 2015;

LeCun and Bengio 1998). Although conventional shallow

learning models, such as support vector machine (Su-

ganyadevi et al. 2016; Liu et al. 2017) and artificial neural

network (Trujillo et al. 2017; Huang et al. 2016), are

usually employed to solve pattern recognition problems,

they depend heavily on manually selected features by

signal processing techniques. Compared with the shallow

learning model, the deep learning model can realize very

complicated transformation and abstraction of the raw data

with its multilayer structures (LeCun et al. 2015). That is to

say, deep learning models can decrease the dependence on

various signal processing techniques. CNN (LeCun and

Bengio 1998) is a kind of the deep learning model with

powerful feature learning ability, which enjoyed great

success in a variety of fields (Vu et al. 2018; Rafique et al.

2018; Liu et al. 2018). Nowadays, many researchers have

exploited the excellent performance of CNN in mechanical

fault diagnosis. Ince et al. (2016) constructed a motor

condition monitoring and early fault detection system by

employing one-dimensional CNNs. Appana et al. (2018)

proposed an CNN-based feature learning and fault diag-

nosis method for the condition monitoring of bearings

under varying rotational speeds. Janssens et al. (2016)

introduced the CNN to autonomously learn useful features

for bearing fault detection from the raw data. Wang et al.

(2018a, b) proposed a CNN-based hidden Markov models

for rolling element bearing fault identification. Ding and

He (2017) presented an energy-fluctuated multi-scale fea-

ture mining approach based on wavelet packet energy and

convolutional networks to classify faults in spindle

bearings.

In the light of the feature learning ability of CNN

models and great impulse restoration capacity of MED

technique, a MED-enhanced CNN model is proposed in

terms of detecting faults in axial piston pumps, and the

contributions of this job is summarized as follows:

(1) To solve automatic feature learning problem in

detecting faults of axial piston pumps, the CNN

model is introduced, which could effectively avoid

feature matching difficulty due to the unclear fault

mechanism.

(2) To prompt the feature learning stability and classi-

fication accuracy, the MED technique is used to

preprocess the raw vibration data. In fact, the

preprocessing step here is something like a data

cleaning method (Xu et al. 2019).

(3) The feature learning process is visualized using the

t-distributed stochastic neighbor embedding (t-SNE)

technique (van der Maaten and Hinton 2008), and the

stability of the MED-enhanced CNN is demonstrated

by the learning trials.

The remainder of this paper is organized as follows.

Section 2 gives a brief review of the basic theory of MED

and CNN. In Sect. 3, the fault detection method is intro-

duced in details. A benchmark study is investigated in

Sect. 4. In Sect. 5, the proposed method is applied to

analyze the vibration signals from an axial piston pump.

Conclusion remarks are drawn in Sect. 6.

2 A brief review of MED and CNN

2.1 Minimum entropy deconvolution

The minimum entropy deconvolution technique aims at

modeling an inverse filtering process against the commonly

signal transfer process (Sawalhi et al. 2007; Endo and

Randall 2007). The main target is to find an optimum

inverse filter coefficient vector f to recover the fault impact

by
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y ¼ f � x: ð1Þ

As shown in Fig. 1, without any prior knowledge about

the input x, the MED filter could adaptively adjust the filter

coefficients by optimizing the objective function of the

output y.

High-order statistics are well known for depicting the

shape of the probability density function (PDF). For

example, a high value of kurtosis (fourth-order statistics) is

usually related to spikes in the PDF. Therefore, kurtosis is

often employed as an objective function to quantify the

characteristics of a signal, which is given as

K y nð Þð Þ ¼
1
N

PN
n¼1 y nð Þj j4

1
N

PN
n¼1 y nð Þj j2

h i2 ð2Þ

where y(n) ðn ¼ 1; 2; . . .;NÞ is the output sequence after

data sampling. As mentioned by Endo and Randall (2007),

kurtosis is an effective indicator that reflects the ‘‘peaki-

ness’’ of a signal, therefore the property of impulses.

The main process of the MED filtering is summarized as

follows:

Step 1 Construct the relationship between y and f. The

relationship can be generalized as

y nð Þ ¼
XL

l¼1

f lð Þ x n� lþ 1ð Þ ð3Þ

where x(n) ðn ¼ 1; 2; . . .;NÞ is the input sequence after

data sampling, f(l) ðl ¼ 1; 2; . . .; LÞ is lth element in f,

and finally get

oy nð Þ
of lð Þ ¼ x n� lþ 1ð Þ: ð4Þ

Step 2 Maximize the objective function with respect to

f(l)

o O4
2 y nð Þð Þ

� �

o f lð Þð Þ ¼ 0 ð5Þ

Step 3 Update f by adjusting f(l) iteratively through

XNþL�1

n

XL

k¼1

f kð Þ x n� k þ 1ð Þ
" #

x n� lþ 1ð Þ
( )

¼
PNþL�1

n y nð Þð Þ2
PNþL�1

n y nð Þð Þ4
XNþL�1

n

y nð Þð Þ3x n� lþ 1ð Þ
" #

ð6Þ

Step 4 Obtain the final output y to approximate fault

impact by the updated f using Eq. (3).

2.2 Convolutional neural network

A CNN is one kind of deep learning model with distinctive

operation, namely convolution, subsampling and fully

connection. There are three main traits of a CNN, that’s

local field, subsampling and weight sharing (LeCun and

Bengio 1998).

Figure 2 demonstrates the main architecture of a CNN

model with five hidden layers. The hidden layers include

convolutional layer C1 (first hidden layer), subsampling

layer S1 (second hidden layer), convolutional layer C2

(third hidden layer), subsampling layer S2 (fourth hidden

layer) and fully connected layer FC (fifth hidden layer). In

order to illustrate the transfer process concisely, we give

the input layer ‘‘S0.’’

Supposing an input map xS0 to the CNN model, the kth

(k ¼ 1; 2; . . .;K, where K is the number of feature maps)

feature map xC1

k in layer C1 can be represented by

xC1

k ¼ f xS0 � wC1

k þ bC1

k

� �
ð7Þ

where f(•) is the output activation function, wC1

k denotes the

kth kernel of C1, and bC1

k is the kth bias of C1. Every kernel

is like a small window observing local fields of xS0 with a

certain stride, and thus is the first trait of a CNN.

The precise location of data features is no more

important once they are obtained by the convolution

operation. Hence, subsampling operation is directly fol-

lowed to decrease the computation complexity. As shown

in Fig. 2, the K feature maps in C1 is the input maps to

layer S1, and the transformation in this layer can be

expressed by

xS1k ¼ f sS1k down xC1

k

� �
þ bS1k

� �
ð8Þ

where xS1k is the kth feature map in S1, s
S1
k denotes the kth

scale of S1, down(•) represents the subsampling function

and bS1k is the kth bias of S1. This is the second trait of a

CNN.

Different from the situation of one input map in Eq. (7),

the kth feature map xC2

k in layer C2 is

xC2

k ¼ f
X

i2Mk

xS1i � wC2

ik þ bC2

k

 !

ð9Þ

MED filter
f

Objective function

Input
x

Output
y

Fig. 1 The main process of the MED filtering
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where Mk represents a selection of feature maps in layer S1,

i is the ith feature map of Mk, w
C2

ik is the kernel of C2 and

bC2

k is the kth bias of C2. Equation (9) indicates that each

feature map xS1i shares the same weights wC2

ik , which illus-

trates the weight sharing trait of a CNN.

Similarly, the kth feature map xS2k in layer S2 is

xS2k ¼ f sS2k down xC2

k

� �
þ bS2k

� �
: ð10Þ

The feature maps in S2 are fully connected in layer FC.

Input maps are transformed hierarchically by feedforward

pass. The weights and bias in each hidden layers are

updated by backpropagation pass. We can finally get the

learned features by the whole training process, which can

be referred in (Bouvrie 2006).

3 Automatic fault diagnosis using the MED
based CNN

When faults occur, the vibration signals are different from

those of the normal working pumps, which exhibit certain

characteristics, such as impulses. However, the fault exci-

tation impulses are usually too weak to be observed under

strong noise environments (Antoni 2016; Li et al. 2017; Li

and Zhao 2017; Xu et al. 2018). Meanwhile, due to the

disturbances of transfer path in mechanical systems, the

collected signals of a specific faulty component are inevi-

tably distorted. Therefore, the MED technique is intro-

duced with its great impulse restoration capacity.

In light of the strong feature learning ability of CNNs,

this paper proposed a MED based CNN to the multi-fault

detection of axial piston pumps. The MED technique is

firstly employed to enhance the fault impulses in the raw

vibration signals. To address the fault feature matching

failure problem, a deep CNN model is then applied to

automatically learn fault features from the vibration

signals.

The flowchart of the automatic fault diagnosis procedure

is described in Fig. 3. The general procedure is summa-

rized as follows:

Step 1 First, predefine the common fault patterns from 1

to R, which is the prerequisite of the next labeling work

for collected samples.

Step 2 The raw vibration data are collected from the axial

piston pump under different fault patterns by data

acquisition system.

Step 3 The collected raw signals are filtered using the

MED technique to largely get rid of disturbances of

transfer paths and environments.

Fig. 2 The common

architecture of a CNN model

1 2 ... r R...

Collect vibration signals

Filter signals using the MED technique

Pattern definition

Construct training & testing samples

Train the CNN model hierarchically

Visualize the learned features

Obtain the automatic fault diagnosis results

Unknown fault r

Fig. 3 The flowchart of the automatic fault diagnosis procedure
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Step 4 The raw signals after MED filtering are directly

separated into training sample set and testing sample set.

Step 5 The CNN model is trained hierarchically by

alternate convolution and subsampling operations using

the training sample set.

Step 6 The feature learning process is manifested via the

two convolutional stage with t-SNE visualization.

Step 7 The testing sample set is treated as unknown

faults to obtain the eventually fault classification results.

In real applications, unknown fault pattern r must be

included in the known fault patterns category.

It should be noted that, it is the lack of faulty training

samples that prevents the intelligent classification based

methods from practical applications. Numerical simulation

(Xiang and Zhong 2016) of mechanical systems might be a

probable tool to establish fault samples for machines under

all kinds of working conditions.

4 Simulation verification with benchmark
data

In this section, simulation verification is conducted with the

benchmark data from Case Western Reserve University

(CWRU) bearing data center (http://csegroups.case.edu/

bearingdatacenter/home). The experimental bearing test

setup contains an electrical driving motor, torque trans-

ducer and encoder, and a dynamometer.

4.1 Data source description

Table 1 gives detailed bearing data specifications in the

case. Twelve bearing operating states are considered, as

given in Table 2. The time waveform of the vibration

signals (the first 12,000 points) and the corresponding

spectrums are displayed in Fig. 4.

4.2 Results and analysis

The simulation verification is devoted to applying the

CWRU data mentioned above to evaluate the feature

learning performance of the proposed MED-based CNN

model. Every bearing state contains 120,000 data points.

There are 2400 (200 9 12) training samples and 1200

(100 9 12) testing samples, respectively. The size of the

input map to CNN model is 20 9 20. The filter length of

MED is chosen as 30, and the iteration number is 50. The

main parameters of the CNN model are listed in Table 3.

The classification results using the MED-based CNN

(MED–CNN) and the traditional CNN are shown in

Fig. 5a, b, respectively. Confusion matrix is employed as

an effective tool to describe classification results. The

classification accuracies are listed in the diagonal line of

the matrix. The rest elements describe the probability that a

certain fault pattern is identified as another pattern. For

example, as shown in Fig. 5a, the classification accuracy

ratio of pattern 1 is 98% and 2% of the pattern 1 is iden-

tified as pattern 11. The average classification accuracy

ratio using MED-based CNN is 97.33%, while that of the

traditional CNN only remains 34.50%.

Table 1 Bearing specifications
Bearing type Bearing location Motor load (HP) Sample frequency (Hz) Motor speed (rpm)

SKF6205 Drive-end 0 12,000 1797

Table 2 Fault category and

sample distribution in

simulation verification

Rolling bearing state Fault severity (in.) Size of training samples/testing samples Fault pattern

Normal state No damage 200 100 1

Inner race fault 0.007 200 100 2

Ball fault 0.007 200 100 3

Outer race fault 0.007 200 100 4

Inner race fault 0.014 200 100 5

Ball fault 0.014 200 100 6

Outer race fault 0.014 200 100 7

Inner race fault 0.021 200 100 8

Ball fault 0.021 200 100 9

Outer race fault 0.021 200 100 10

Inner race fault 0.028 200 100 11

Ball fault 0.028 200 100 12

A minimum entropy deconvolution-enhanced convolutional neural networks for fault diagnosis… 2987
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To validate the feature learning ability of the CNN

model in diagnosing mechanical faults, the t-distributed

stochastic neighbor embedding (t-SNE) technique is

introduced for feature visualization. The feature learning

process is described by three-dimensional scatter plot (3D

plot) through the three representative stages, i.e., the input

stage, the C1-S1 learning stage and the C2-S2 learning

A
m

pl
itu

de
 (m

/s
2 ) 

A
m

pl
itu

de
 (m

/s
2 ) 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

t / s f / Hz

Fig. 4 Time waveform and the

corresponding spectrums

a normal state, b 0.007 in./inner

race fault, c 0.007 in./ball fault,

d 0.007 in./outer race fault,

e 0.014 in./inner race fault,

f 0.014 in./ball fault,

g 0.014 in./outer race fault,

h 0.021 in./inner race fault,

i 0.021 in./ball fault, j 0.021 in./

outer race fault, k 0.028 in./

inner race fault, l 0.028 in./ball

fault

Table 3 The main parameters

of the CNN model
CNN layer Parameters

Input layer Size of the input maps: 20 9 20

C1 Kernel size: 5, number of output feature maps: 6

S1 Scale: 2, number of output feature maps: 6

C2 Kernel size: 5, number of output feature maps: 12

S2 Scale: 2, number of output feature maps: 12

Other parameters Maximum iterations: 100, learning rate: 1, batch size: 30
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stage. In real world, we can get a complete visual experi-

ence by rotating the 3D plot to observe the learned features.

Figure 6a1–a3 gives vivid description of the feature

learning processes of the MED–CNN (D1, D2 and D3

denote the three dimensions). Figure 6a1 shows the fea-

tures of the input data after the MED filtering. Pattern 8 and

pattern 10 are well identified after the MED filtering pro-

cess. However, the other ten patterns are still mixed toge-

ther. Features of the twelve patterns are learned in progress

through the second stage by C1-S1 operations. As shown in

Fig. 6a2, fault patterns can already be identified using the

learned features. Compared with the second stage, features

are further learned with smaller intra-category distances

and larger inter-category distances, which can be seen in

Fig. 6a3.

The feature learning processes of the traditional CNN

model are illustrated by the three stages. As shown in

Fig. 6b1–b3, the features are learned constantly but still fail

to describe for some individual pattern except for patterns

1, 2 and 4. From Fig. 5, we can conclude that the feature

learning ability of the traditional CNN model is greatly

enhanced by the advanced MED filtering.

Table 4 shows the comparison results among traditional

stacked auto-encoder (SAE), MED-enhanced SAE (MED–

SAE), traditional CNN and the present MED–CNN. We

chose SAE here for comparison in that it is known as a

feature mapping model which could also learn features

automatically by encoder and decoder process. The archi-

tecture of the SAE here is 400-200-100-80-12, learning rate

is 0.05, number of pre-training epochs is 10, and number of

fine-tuning epochs is 500 (these are chosen by experi-

ences). It can be seen that, the MED techniques indeed

prompt the classification accuracy of SAE from 52.67% to

58.17%. However, it still cannot achieve a satisfactory

result. Fortunately, the present MED-enhanced CNN shows

superiority against others.

To further evaluate the effectiveness and robustness of

the MED–CNN to detect multi-faults in mechanical sys-

tems, thirty trails are conducted. We train the model using

6 batch size under 5 iteration number conditions. Figure 7

shows the average accuracy ratio in the 30 trails. The

maximum iteration number is chosen as 500, 400, 300, 200

and 100, respectively. The batch size is given successively

as 30, 25, 20, 15, 10 and 5. The detailed accuracies in the

30 trails are listed in Tables 5 and 6, respectively.

As shown in Fig. 7, the MED–CNN gives a higher and

steadier classification accuracy ratio compared with the

traditional CNN. It can also be seen that, with the increase in

iterations, the classification steadiness gets stronger. More-

over, in addition to trail 23, the batch size 30, 25, 15 and 10

give similar high classification accuracy while the batch size

5 gives lower classification accuracy instead. Deepening the

network did not obviously improve the classification accu-

racy. MED–CNN with seven hidden layers (i.e., three con-

volutional layers, three subsampling layers, and one FC

layer) are tested, and Table 7 lists the results.

5 Experimental investigation for axial
piston pumps

5.1 Data source description

This section is devoted to the experimental investigations

on the common faults diagnosis of axial piston pumps.

Figure 8 shows the experimental platform. The tested axial

(b) The traditional CNN

Predicted label Predicted label

Fa
ul

t p
at

te
rn

Fa
ul

t p
at

te
rn

(a) The MED based CNN

Fig. 5 Multi-class confusion matrices in simulation verification
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piston pump (A in Fig. 8) is made by Ningbo Hilead

Hydraulic Co., Ltd. (P. R. China), which is located at the

end of the test rig. The data acquisition system includes a

signal conditioner, a laptop with data acquisition software

and multiple accelerometers. Some parameters of the tested

axial piston pump are list in Table 8.

In the experimental investigation, one channel (ac-

celerometer#3, marked with red circle in Fig. 8) vibration

signals that sampled at 48 k Hz are applied. The pump

running states and sample distributions are list in Table 9.

Every kind operating state contains 160,000 data points.

There are 1500 (300 9 5) training samples and 500

(100 9 5) testing samples, respectively.

The four common faults (shown in Fig. 9, marked with

red circle) were as follows:

(a) Wear in three pistons, 0.03 mm wear amount in

diameter to the tagged pistons.

(b) Blocked support hole in static pressure slippers.

(c) Wear in shaft shoulder, 0.03 mm wear amount in

diameter.

(a2)

(a3) (b3)

(b2)

(b1)(a1)

D1D2

D3 D3

D1
D2

D3

D2 D1

D3

D2 D1

D3

D2
D1

D3

D2
D1

(a1)-(a3): The MED based CNN (b1)-(b3): The traditional CNN

Fig. 6 The feature learning

processes in simulation

verification

Table 4 Comparison results in simulation verification

Methods description Classification

accuracy (%)

Traditional SAE (400-200-100-80-12) 52.67

MED-SAE (the same as traditional SAE) 58.17

Traditional CNN 34.50

Present MED-CNN 97.33
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Fig. 7 The average accuracy

ratio of the 30 trails in

simulation verification

Table 5 The average accuracy

ratio of the 30 trails based on

MED-CNN in simulation

verification

Batch size Trails 1–6 Trails 7–12 Trails 13–18 Trails 19–24 Trails 25–30

(500 iterations) (400 iterations) (300 iterations) (200 iterations) (100 iterations)

30 0.9975 0.9967 0.9967 0.9933 0.9733

25 0.9967 0.9950 0.9933 0.9950 0.9900

20 0.9967 0.9958 0.9950 0.9942 0.9933

15 0.9967 0.9975 0.9967 0.9942 0.9900

10 0.9975 0.9967 0.9958 0.9117 0.9958

5 0.9133 0.9075 0.9067 0.9142 0.9033

Table 6 The average accuracy

ratio of the 30 trails based on

traditional CNN in simulation

verification

Batch size Trails 1–6 Trails 7–12 Trails 13–18 Trails 19–24 Trails 25–30

(500 iterations) (400 iterations) (300 iterations) (200 iterations) (100 iterations)

30 0.7667 0.7492 0.7442 0.6742 0.3450

25 0.7875 0.7208 0.6783 0.6808 0.2333

20 0.7625 0.7433 0.7317 0.7058 0.3558

15 0.7483 0.7692 0.7417 0.7108 0.5992

10 0.7783 0.7642 0.8175 0.7467 0.6117

5 0.7342 0.8050 0.7767 0.8250 0.6917

Table 7 Results of MED-CNN

with 7 hidden layers in

simulation verification

Batch size Trails 1–6 Trails 7–12 Trails 13–18 Trails 19–24 Trails 25–30

(500 iterations) (400 iterations) (300 iterations) (200 iterations) (100 iterations)

30 0.9975 0.9967 0.9950 0.9958 0.9833

25 0.9975 0.9967 0.9958 0.9958 0.9408

20 0.9975 0.9967 0.9975 0.9125 0.9917

15 0.9967 0.9958 0.9967 0.9967 0.9908

10 0.9158 0.9975 0.9967 0.9983 0.7425

5 0.5825 0.9150 0.7483 0.8292 0.7442

A minimum entropy deconvolution-enhanced convolutional neural networks for fault diagnosis… 2991
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(d) Cylinder block with a pitting defect, 0.5 mm in

width, 0.3 mm in depth.

The time waveform of the vibration signals (the first

0.5 s) and the corresponding spectrums are displayed in

Fig. 10.

5.2 Results and analysis

In order to realize automatic feature learning from the raw

data, we adopt 400 data points as a sample. Therefore, the

size of the input map is 20 9 20. In this case study, we

adopt the same model parameters as listed in Table 3.

Figure 11 demonstrates the multi-class confusion

matrices of the experimental data. Figure 11a, b gives the

classification results using the MED–CNN and the tradi-

tional CNN. The average classification accuracy ratio using

MED based CNN is 100%, and that of the traditional CNN

remains 71.20%.

The fault patterns are totally identified as itself using the

MED–CNN model, which is demonstrated by the diagonal

line of confusion matrix in Fig. 11a. It is not so well of

using the traditional CNN model. As shown in Fig. 11b,

pattern 3 is identified as itself with 100%; 2% of pattern 1

is identified as pattern 4; 2% of pattern 2 is identified as

pattern 1, 26% of pattern 2 is identified as pattern 4; 4% of

pattern 4 is identified as pattern 1, 54% of pattern 4 is

identified as pattern 2, and 6% of pattern 4 is identified as

pattern 5; 18% of pattern 5 is identified as pattern 1, 9% of

pattern 5 is identified as pattern 2 and 23% of pattern 5 is

identified as pattern 4.

To validate the feature learning ability of the CNN

model in diagnosing multi-faults of axial piston pumps,

three-dimensional scatter plot is employed to describe the

learning results through the three representative stages.

Figure 12a1–a3 gives vivid description of the pump fault

feature learning processes of the MED–CNN. Figure 12a1
shows the features of the pump data after the MED filter-

ing. The fault features are comparably visible even with

large intra-category distances after the MED filtering pro-

cess. Features of the five patterns of axial piston pump are

learned by C1-S1 operations. As shown in Fig. 12a2, fault

patterns are explicitly observed using the learned features.

Zoom in on A

A

Laptop

Accelerometer#3

Signal conditioner

Axial piston pump

Test rig

Fig. 8 Experimental platform for the tested axial piston pump

Table 8 Some parameters of the tested pump

Parameter Number

of piston

Rated pressure

(Mpa)

Rated pressure

(rpm)

Value 9 35 1500

Table 9 Fault category and

sample distribution in

experimental investigation

Axial piston pump state Size of training samples/testing samples Fault pattern

Normal state 300 100 1

Wear in three pistons 300 100 2

Blocked support hole in static pressure slippers 300 100 3

Wear in shaft shoulder 300 100 4

Cylinder block with a pitting defect 300 100 5

(a) piston wear (b) support hole blocked (c) shaft shoulder wear (d) cylinder block pitting

Fig. 9 The four common faults in the axial piston pump
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Different from the results of the second stage, features are

further learned with smaller intra-category distances and

larger inter-category distances, which can be seen in

Fig. 12a3.

Similarly, the pump fault feature learning processes of

the traditional CNN model are also illustrated by the three

stages. As shown in Fig. 12b1–b3, the features are learned

constantly but still failed to describe for some individual

pattern except for pattern 3. The traditional CNN has

limited ability to describe the explicit features of the axial

piston pump data.

Table 10 shows the comparison results in the case study.

The architecture of the SAE here is 400-200-100-80-5,

learning rate is 0.05, number of pre-training epochs is 10,

and number of fine-tuning epochs is 500 (the same as in

simulation verification). The results also demonstrate the

effectiveness of the present MED–CNN.

To further evaluate the effectiveness and robustness of

the MED–CNN to detect multi-faults in the axial piston

pump, thirty trails are conducted, which is the same as in

the simulation verification section.

Figure 13 shows the average accuracy ratio of axial

piston pump in the 30 trails. Similar to the simulation

verification, the maximum iteration number is chosen as

500, 400, 300, 200 and 100, respectively. Meanwhile, the

batch size is given as 30, 25, 20, 15, 10 and 5. The detailed

accuracies in the 30 trails are listed in Tables 11 and 12,

respectively.

As shown in Fig. 13, the MED–CNN gives a higher and

steadier classification accuracy ratio compared with the

A
m
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itu

de
 (m

/s
2 )

A
m

pl
itu

de
 (m

/s
2 )

t / s f / Hz

(a)

(b)

(c)

(d)

(e)

Fig. 10 Time waveform and

corresponding spectrums

a normal state, b wear in three

pistons, c blocked support hole

in static pressure slippers,

d wear in shaft shoulder,

e Cylinder block with a pitting

defect

(a) The MED based CNN (b) The traditional CNN

Predicted label Predicted label

Fa
ul

t p
at

te
rn

Fa
ul

t p
at

te
rn

Fig. 11 Multi-class confusion matrices in experimental investigation
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traditional CNN. With the increase in iterations, the clas-

sification accuracies tend to be steadier with high values,

which illustrate the effectiveness and robustness of the

MED–CNN to detect multi-faults in axial piston pumps.

The MED-CNN with seven hidden layers in the case study

is also tested whose results are given in Table 13.

6 Conclusion

Faults occurred in the piston pumps are difficult to be

detected due to the complex working environment in

hydraulic systems. In order to get rid of feature selection

expertise, this paper proposed a MED based CNN model to

automatically detect faults in axial piston pump. Both

simulations and experiments are conducted to investigate

the performance of the present model by comparing with

the traditional CNN model. Using the present model, the

(a1)-(a3):The MED based CNN

(a1) (b1)

(a2)

(a3)

(b2)

(b3)

D1D2

D3

D1D2

D3

D3

D3

D2

D2

D1

D1 D1D2

D1D2

D3

D3

(b1)-(b3):The traditional CNN

Fig. 12 The feature learning

processes in experimental

investigation

Table 10 Comparison results in experimental investigation

Methods description Classification

accuracy (%)

Traditional SAE (400-200-100-80-5) 61.00

MED-SAE (the same as traditional SAE) 79.00

Traditional CNN 71.20

Present MED-CNN 100.0
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average classification accuracy ratios for benchmark data

with 12 classes of bearing operating states from the CWRU

and for experimental data with five classes of commonly

occurred faults from the experimental axial piston pump,

are 97.33% and 100%, respectively. However, the average

classification accuracy ratios for the traditional CNN model

Trail number

Av
er

ag
e 

ac
cu

ra
cy

Fig. 13 The average accuracy

ratio of the 30 trails in

experimental investigation

Table 11 The average accuracy

ratio of the 30 trails based on

MED-CNN in experimental

investigation

Batch size Trails 1–6 Trails 7–12 Trails 13–18 Trails 19–24 Trails 25–30

(500 iterations) (400 iterations) (300 iterations) (200 iterations) (100 iterations)

30 1 1 0.9920 0.9920 1

25 0.9980 1 1 0.9920 1

20 1 0.9940 1 0.9980 0.9840

15 1 0.9980 1 0.9980 0.9860

10 1 1 1 1 0.9520

5 1 1 0.9980 0.9980 0.9920

Table 12 The average accuracy

ratio of the 30 trails based on

traditional CNN in experimental

investigation

Batch size Trails 1–6 Trails 7–12 Trails 13–18 Trails 19–24 Trails 25–30

(500 iterations) (400 iterations) (300 iterations) (200 iterations) (100 iterations)

30 0.9260 0.9420 0.8980 0.8500 0.7120

25 0.9500 0.9440 0.9380 0.8760 0.7460

20 0.9080 0.9380 0.9480 0.9380 0.8360

15 0.9460 0.9400 0.9540 0.9100 0.8920

10 0.9360 0.9500 0.9240 0.9420 0.8680

5 0.9620 0.9380 0.9440 0.9420 0.9480

Table 13 Results of MED-CNN

with 7 hidden layers in

experimental investigation

Batch size Trails 1–6 Trails 7–12 Trails 13–18 Trails 19–24 Trails 25–30

(500 iterations) (400 iterations) (300 iterations) (200 iterations) (100 iterations)

30 1 1 0.9980 0.8000 0.800

25 1 1 1 0.8000 0.9320

20 1 1 1 0.9920 0.8000

15 1 1 1 0.9980 0.8000

10 1 1 1 0.97 0.6320

5 1 0.9980 0.9980 0.7980 0.9900
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only attain 34.50% and 71.20%, respectively. In addition,

the superiority for classification robustness of the present

model is illustrated by thirty trails under different iteration

numbers and batch sizes. Therefore, the proposed model

can learn effective fault features with comparable satis-

factory results in multi-fault classifications and is expecting

to classify faults in more complex mechanical systems.
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