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Abstract
In this paper, a noise-robust palmprint recognition system is discussed with a novel feature extraction technique: two-
dimensional Cochlear transform (2D-CT) based on the textural analysis of image sample. Orthogonality of 2D-CT is proved
which shows the high robustness of the proposed 2D-CT to noise. To validate the proposed feature extraction technique,
palmprint recognition has been tested on both left and right palm of IITD database of 230 persons, CASIA palmprint database
of 312 persons, polyU palmprint database of 386 persons and achieved high accuracy. The proposed 2D-CT method is
compared with discriminative and robust competitive code, double orientation code, competitive coding, ordinal coding,
Gabor transform, Gaussian membership-based features, absolute average deviation and mean features. Further, K-nearest
neighbor is used to validate the matching stage. The results show superiority of the proposed method over other feature
extraction methods.

Keywords Biometrics · Palmprint · Cochlear transform · ROI extraction · Feature extraction · Robustness

1 Introduction

In today’s world, personal authentication using biometrics
plays vital role in human life. With the advancement in tech-
nology and boost in biometric applications, biometrics has
been a highly researched topic from the last decade due to its
applications in security and surveillance. Nowadays biomet-
ric authentication systems are inbuilt in most of mobile and
cellular phones, in laptops, or in services likemobile banking,
security systems, etc. In general, biometric systems are of two
types depending upon their characteristics: physical which
includes palmprint, iris, dorsal hand veins, fingerprint, face,
etc; behavioral which includes signature, gait and keystroke
(Jain et al. 2016).

For any biometric system, first requirement is acquisition
of enough data for proper training and testing. For palmprint,
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few systems were reported (Zhang and Shu 1999; Duta et al.
2002) which used ink marking methods for sample acquisi-
tion. These systems were not very user-friendly because of
use of ink during data acquisition. Then, few scanner and
camera-based methods were proposed, which used charge-
coupled device (CCD) scanner and digital scanner (Kong
et al. 2009). They used contact and contact-less types of
systems. Few systems used pin (Noh and Rhee 2005) and
peg (Zhang et al. 2003) for hand placing to avoid rotational
problems. There were several systems in the literature which
acquired imageswithout any constraints (Pan andRuan2009;
Badrinath and Gupta 2007).

After data acquisition, second step is to extract region of
interest (ROI) from the data samples. Most of the general
biometric systems are made to have interclass variations to
make the system more real time and includes those mistakes
that can be added by users at the verification point in offices or
banks. Hence, orientation or rotational variations are made.
In case where data acquisition is constrained by peg or pins,
ROIs can easily be extracted. If database has rotational varia-
tion, then hand samples are normalized beforeROI extraction
to make the system robust to such variations. All the steps
that align database samples for feature extraction are referred
as preprocessing. In most of the preprocessing methods, val-
ley points between the fingers are extracted to crop ROI.
The basic steps are: binarizing to extract the boundary of
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hand which also helps in masking of hand on a background
free image; finding the key points; generating the coordinate
system; cropping the ROI. The primary steps in all the pre-
processing algorithms are similar. However, the other step
(finding the key points and coordinate system) has several
different implementations including tangent (Zhang et al.
2003), bisector (Li et al. 2002; Wu et al. 2004) and finger-
based (Han 2004; Han et al. 2003) to detect the key points
between fingers.

Hand-based biometrics provide easy, efficient and secure
biometric systems and hence are favorites of research groups
working in this area, investigation departments and foren-
sic science departments (Jain et al. 2006). In hand-based
biometrics, palmprint, palm-phalanges, dorsal hand vein,
fingerprint, knuckles, palm vein or their fusion have been
researched in the literature for biometric system. Like fin-
gerprints, palmprint has ridges like structures with a few
distinct principles or main lines, minutiae points, singular
points and textural visible structure which consists of lots
of unique information and hence can be used as biometric
modality. Palmprint-based biometric systems are preferred
in contrast to other systems due to their inherent advantages
like low cost, stable print patterns, easy acquisition, highly
age prone and user acceptable (Hong et al. 2015; Nigam and
Gupta 2015). To date, palmprint recognition has received
increasing research attention, and a variety of methods have
been proposed for palmprint feature extraction and recogni-
tion (Nigam and Gupta 2015; Chen et al. 2013; Ahmad et al.
2016; Zheng et al. 2016; Tiwari et al. 2013; Chakraborty
et al. 2013; Wang et al. 2013; Zhao et al. 2015; Leng and
Teoh 2015; Lin and Tai 2015; Yue et al. 2013; Xu et al. 2015;
Hong et al. 2015; Zhang et al. 2010; Kumar and Shekhar
2011; Malik et al. 2015). A survey of palmprint recognition
method is presented in Kong et al. (2009), Zhang et al. (2012)
and Fei et al. (2018) . It is also studied in Kong et al. (2006)
that no palmprint is duplicate even in case of mono-zygotic
twins; that is why palmprint can be used as reliable pass-
word and provides the highest accuracy if proper hardware
is available. Thus, palmprint-based biometric systems have
ample scope of security applications such as access control,
network and personal security.

Feature extraction in biometrics plays a pivotal role in
extracting unique information from the data samples. In the
literature, palmprint is represented using structural features
which includes extraction of principle lines, wrinkles, datum
points, minutiae points, ridges and crease points (Zhang
and Shu 1999; Duta et al. 2002; Han et al. 2003). These
approaches are also known as line-based approaches. In
these methods, either these structures are matched directly
or mapped in other format for matching. For example, Chen
et al. (2013) andHuang et al. (2008) used the intrinsic features
of palmprint, e.g., principal lines and wrinkles, for palmprint
recognition.

The second type of approach is subspace-based approach
which includes principle component analysis (Lu et al. 2003),
linear discriminant analysis (LDA) (Wuet al. 2003), indepen-
dent component analysis (ICA) (Shang et al. 2006), discrete
cosine transformation (DCT) (Jing and Zhang 2004). These
methods are applied on images or their subsections to evalu-
ate the subspace coefficients. In these subspace, coefficients
are used as features.

Last types of methods are statistical methods which
include Fourier transforms (Li et al. 2002), mean (Kumar
and Shen 2004), AAD (Lu et al. 2004), GMF-based features
(Chaudhary et al. 2016; Srivastava et al. 2016), Gabor filter
(Chu et al. 2007), scale invariant feature transform (SIFT)
(Zhu and Zhang 2010), fusion code (Badrinath and Gupta
2009) andwavelets (Lu et al. 2004). In these approaches, first
images are transformed into another domain using Fourier
transforms, wavelets, Gabor transform, Stockwell transform
(Badrinath and Gupta 2011), etc; then, images are divided
into nonoverlapping windows, and local statistics like mean,
variance, moments, centers of gravity (weighted mean) are
calculated. Then, these statistics are used as features.

Due to the presence of lines and unique textures, palm-
print carries rich distinctive orientation information. Gabor
transform-based feature extraction methods extract certain
orientation feature of palmprint images such as palmcodes
(Zhang et al. 2003), competitive code (CompC) (Kong and
Zhang 2004), ordinal code (Sun et al. 2005), double ori-
entation code (DOC) (Fei et al. 2016) and discriminative
and robust competitive code (DRCC) (Xu et al. 2016). The
CompC codemethod (Kong and Zhang 2004) uses six Gabor
filters with different orientations to extract the dominant ori-
entation feature from a palmprint. Six Gabor filters with
six orientations [e.g., j/6( j = 0, 1, . . . , 5)] are convoluted
with the palmprint image. The dominant orientation is the
one that produces the most strong response is taken as the
competitive code. In DOC (Fei et al. 2016), two top-most
dominant orientation responses of gabor filters are encoded
and used as DOC features. In DRCC (Xu et al. 2016),
side code with dominant orientation code is also extracted
to improve the accuracy. From the above-mentioned meth-
ods, subspace-based approaches and statistical methods are
highly comparable.

In addition to feature extraction-based approaches, fusion-
based palmprint recognition methods were also proposed to
enhance the performance of biometric system. In Xu et al.
(2015), both the left and right palmprint images were fused
for more accurate personal identification. In Hong et al.
(2015) and Zhang et al. (2010), the multispectral palm-
print recognitions methods were proposed, which fused the
features of palmprint images captured under a different spec-
trum. In addition, Kumar and Shekhar (2011) investigated
the rank-level fusion of multiple palmprint representations.
To further improve the performance of palmprint-based
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recognition, severalmultimodal-based palmprint recognition
methods were proposed where palmprint is fused with differ-
ent biometric modalities like palm vein. In Srivastava et al.
(2016), fusion of palm-phalanges print with palmprint and
dorsal hand vein is proposed. In Lin and Tai (2015), the
palmprint with palm vein fusion was proposed. In Yue et al.
(2013), a hashing-based fast palmprint recognition method
was proposed.

Till now, none of method has mentioned the noise robust-
ness of their approaches. But a combinatorial algorithm is
suggested in Liambas and Tsouros (2007) that only extract
ROI from a highly noise image. What would happen if noisy
conditions during security check, access control occur ? Like
in palmprint systems, user hands can be dirty, marked or
dusty. Noise may be due to poor illumination and reflection
of light. Hence, biometric systems must be robust so as to
adopt these noisy conditions.

Taking into consideration the above facts, a biometrics
recognition system has been suggested in this work with
a novel feature extraction technique: two-dimensional (2D)
Cochlear transform (CT)which is a powerful time-frequency
transform for signal and texture analysis (Li and Huang
2011). This transform is similar to wavelet and Gabor trans-
form in few respects and is able to extract the frequency
contribution of the palmprint. The performance of 2D-CT
has been validated using KNN with Euclidean distance. The
proposed 2D-CT method is compared with CompC coding,
ordinal coding, standard Gabor transform, GMF-based fea-
tures, AAD and mean features. The method is compared
on CASIA palmprint database (CASIA-Palmprint database)
and Indian Institute of Technology Delhi (IITD) palmprint
database (IIT Delhi Palmprint Image Database version 1.0).
Results prove that the proposed feature extraction method is
better than other transform methods. Graphical abstract of
the proposed work is shown in Fig. 1.

The 2D-CT is also validated in the presence of noise and
found to be robust. The performance of the various modal-
ities using different feature extraction techniques has been
analyzed on the basis of receiver operative characteristics
curves (ROC),which show the clear superiority of the 2D-CT
technique. All the above-mentioned databases do not contain
any noise or disturbances. Hence, different types of noise,
e.g., Gaussian noise (that is similar to the poor illumination
of light), salt and pepper noise (that is similar to noise due to
dust) and speckle noise (that is similar to the reflection light)
are added and tested to evaluate the proposed method in real
environment. Principal sources of Gaussian noise in digital
images arise during acquisition, e.g., sensor noise caused by
poor illumination and/or high temperature, and/or transmis-
sion, e.g., electronic circuit noise. In palmprint recognition
system, images are scanned using light illuminations. So, if
light illumination is poor, this noise can be modeled as Gaus-
sian noise (Philippe Cattin 2013).

1.1 Contributions of the paper

1. Abiometrics recognition system is describedwith a novel
feature extraction technique: two-dimensional (2D)Coch-
lear transform 2D-CT.

2. Robustness of the proposed method is also validated the-
oretically using orthogonality and experimentally in the
presence of different noises.

3. The proposed feature extraction technique is compared
with DRCC, DOC, ordinal coding, gabor transform,
GMF, AAD and mean features on IITD palmprint
database, CASIA palmprint database and PolyU palm-
print database. Results prove that the proposed feature
extraction method is better than existing techniques.

The organization of the paper is as follows. Section 2
presents feature extraction method. Section 3 demonstrates
simulations and result analysis. Section 3.1 describes the
method of preprocessing used for ROI extraction. Finally,
Sect. 4 concludes the suggested work.

2 Feature extraction

Cochlear transform (CT) is basically a time-frequency trans-
form comprised of a pairing of a forward transform and an
inverse transform (Li and Huang 2011) which can be shown
through admissibility property.

All wavelet-based orthogonal transforms are integral
transforms that can be expressed as an inner product of the
signal x(t)with a transform kernel function ϕa,b(t). The gen-
eralizedCTC(τ, f ) of time varying 1D-signal x(t) is defined
as

C(τ, f ) = x(t) ⊗ ϕa,b(t) (1)

ϕa,b(t) = 1√
a

ϕ

(
t − b

a

)
(2)

where ⊗ denotes the convolution operator and the kernel
function ϕa,b(t) represents the member of a family of com-
plete basis functions that span the space in which the signal
x(t) exist. Here, CT is also an integral transform based on a
set of kernel functions and may be referred to as the daugh-
ter wavelets, all derived from a mother wavelet ϕa,b(t) that
satisfies the following conditions:

1. ϕa,b(t) should have a compact support, i.e., ϕa,b(t) �= 0
only inside a bounded range a < t < b. {(a, b)|ϕa,b(t) �=
0} : D1

2. ϕa,b(t) has zero-mean or zero-DC component.

∫ ∞

−∞
ϕa,b(t)dt = 0 (3)
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Fig. 1 Graphical abstract of the
proposed work

Compared to FFT, CT has flexible time-frequency reso-
lution and its frequency distribution can take any linear or
nonlinear form. In FFT, the time information is completely
lost and frequency axis is divided uniformly. Frequency res-
olution can be very precise if we integrate along the whole
time axis. The scaling parameter a is inversely proportional
to the frequency. If we want to focus on low frequencies,
larger a is used, while higher frequencies use small a. This
flexibility increases the time-frequency analysis.

A typical Cochlear impulse response function or Cochlear
filter can be defined as:

ϕa,b(t) = 1√
a

(
t − b

a

)α

e−2π fLβ( t−b
a )e− j2π fLβ( t−b

a ) (4)

Further, CT C(τ, f ) of x(t) is given by

C(τ, f )

= 1√|a|
∫ ∞

−∞
x(t)

(
t − b

a

)α

e−2π fLβ( t−b
a )e− j2π fLβ( t−b

a )dt

(5)

= aα+1

√|a|
∫ ∞

−∞
x(t)tαe−2π f αβt e− j2π f αβtdt (6)

where a = fL/ f and fL is lowest central frequency of filter.
The CT C(τ, f ) of signal x(t) can be represented in ampli-
tude and phase form as Stockwell (2007)

C(τ, f ) = Ax (τ, f , α, β)eiφx (τ, f ,α,β) (7)

where Ax (τ, f , α, β) represents the amplitude spectrum of
the transform which is time−frequency representation and
depends on parameterα, β. It is seen that amplitude spectrum

is effected by noise and illumination. Hence, tomake the sys-
tem more robust to noise and illumination, phase spectrum
is used for feature extraction. Phase spectrum is represented
by φx (τ, f , α, β). This phase is dependent on parameters α

and β, and hence, phase spectrum gives resonating peaks
by suitably choosing these parameters. However, Stockwell
transform used for palmprint recognition in Badrinath and
Gupta (2011) gives constant phase and this daughter wavelet
does not satisfy the zero-mean condition for an admissible
wavelet (Saedi andCharkari 2014), which is a necessary con-
dition for orthogonality.

In a system, lighting condition may differ that changes the
pixel intensity of two images. Assume that illumination of
two palmprint differs by constant k. This illumination may
change the signal x(t) to kx(t) where k > 0.

The CT C(τ, f ) of signal kx(t) is given by

= aα+1

√|a|
∫ ∞

−∞
kx(t)tαe−2π f αβt e− j2π f αβtdt (8)

C(τ, f ) = k Ax (τ, f , α, β)eiφx (τ, f ,α,β) (9)

It is seen in Eq. (9) that phase is independent of constant
k which is the illumination difference, and hence, it is unaf-
fected due to illumination. Hence, it is shown theoretically
that Cochlear transform is robust to illumination.

A signal or an image is unfortunately corrupted by various
factors which enter as noise during acquisition or transmis-
sion. Usually, noise is modeled as high-frequency signal
(Pizurica et al. 2003). On filtering the noise from the original
signal, prominent part of the original signal must be con-
served. The wavelet-based noise removal techniques have
provided this conservation of the prominent part (Benesty
et al. 2012). The wavelet transform generally has used
for the decomposition of the signal into high- and low-
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frequency components. In practice, the wavelet transform is
implemented with a perfect reconstruction filter bank using
orthogonal wavelet family. The idea is to decompose the
signal into sub-signals corresponding to different frequency
contents. In the decomposition step, a signal is decomposed
on to a set of orthonormal wavelet function that constitutes
a wavelet basis. A wavelet expansion of CT in terms of an
orthogonal component proves the robustness of the method
due to highly uncorrelated nature. If the chosen mother
wavelet has orthogonal properties, then the multi-resolution
algorithm decomposes a signal into scales with different time
and frequency resolutions. The noise in signal is typically of
high frequency, and it is possible to discriminate it through
the decomposition of multi-resolution into different levels.

2.1 Orthogonality of Cochlear transform

We define a mother wavelet function ϕ(t) ∈ L2(R), which
is limited in time domain. That is, ϕ(t) has values in a cer-
tain range and zeros elsewhere. To find the orthogonality, the
inner product of basis function is calculated.

∫
1√|a|ϕ

(
t − b

a

)
1√|a|ϕ

(
t ′ − b

a

)
f (a)dadb = δ(t ′ − t)

(10)

Taking Fourier transform both sides,

e− jwt ′ =
∫

f (a)

|a| ϕ̂ (aw) e− jwbϕ

(
t ′ − b

a

)
da db (11)

=
∫

f (a)

|a| ϕ̂ (aw) da
∫

ϕ

(
t ′ − b

a

)
e− jwbdb (12)

by substituting t ′−b
a = x , |a| dx = db, this gives,

∫
ϕ

(
t ′ − b

a

)
e− jwbdb =

∫
ϕ (x) e− jw(t ′−ax) |a| dx

(13)∫
ϕ (x) e− jw(t ′−ax) |a| dx = ϕ̂ (aw) e− jwt ′ |a| (14)

substituting the value from Eq. 14 in Eq. 12 and we get,

∫
f (a)

∣∣∣ ˆϕ (aw)

∣∣∣2 da = 1 (15)
∫

f
( a

w

) ∣∣∣ ˆϕ (a)

∣∣∣2 da

|w| = 1 (16)

Now, putting the value of scaling function f (ζ ) = 1
|ζ |

∫ ∣∣∣ ˆϕ (a)

∣∣∣2
|a| da = 1 (17)

This equation is also called the admissibility condition which
is sufficient condition for orthogonality.

∫
f (t)

1√|a|ϕ
(
t − b

a

)
1√|a|ϕ

(
t ′ − b

a

)
da db

=
∫

f (t)δ(t ′ − t)dt = f (t) (18)

The transform is found orthogonal, this implies that a
function f can be recovered easily from the inner products
< ϕ, X >. Hence, it is shown theoretically that Cochlear
transform is orthogonal which shows that this is robust to
noise.

2.2 Two-dimensional Cochlear transform

Same idea has been utilized to transform an image in fre-
quency domain. Here, we have proposed a two-dimensional
Cochlear transform for images henceforth named as two-
dimensional Cochlear Transform (2D-CT). It has a bell-
shaped response whose values depend upon the system
parameters and image sample. It is worthwhile to mention
here, about the unique feature of this proposed technique
that it is quite successful in feature extraction of various
image-based modalities like palmprint, fingerprint, dorsal
hand vein, etc. To extract the features, 2D-CT technique is
applied over the ROI of testing and training samples. For
any image sample I (x, y), cropped ROI R(m, n) is extracted
after preprocessing which is further used in feature extrac-
tion.

On the basis of CT, we define ϕa,b(x, y) having dilation
and translation parameters (ax , ay) and (bx , by), respec-
tively, each varying over�2. On the basis ofwavelet analysis,
2D-CT can be written as dilated and translated mother
wavelet as shown in Eq. (19).

ϕa,b(x, y) = 1√
axay

ϕ

(
x − b

ax
,
y − b

ay

)
(19)

Like wavelet transform, factor ax and ay are scaling vari-
ables in x and y direction. Factor (bx , by) is time shift. 1√

axay
is energy normalizing factor.

As wavelet, the Fourier transform of this wavelet becomes

ϕ̂ax ,ay ,bx ,by (u, v)

= 2π√∣∣axay∣∣
∫ ∞

−∞

∫ ∞

−∞
e− jπ(ux+uy)ϕax ,ay ,bx ,by (x, y) dx dy

= 1√∣∣axay∣∣
e− jπ(ubx+uby)ϕ̂

(
uax , vay

)
(20)

where ϕax ,ay ,bx ,by (x, y)=ϕ
(
x−bx
ax

,
y−by
ay

)
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A transform of f (x, y) with respect to ϕa,b(x, y) is
defined as

T (τ, f ) = f (x, y) ⊗ ϕa,b(x, y)

= < f , ϕa,b >

=
∫ ∞

−∞

∫ ∞

−∞
1√∣∣axay∣∣

f (x, y)ϕ

(
x − bx
ax

,
y − by
ay

)
dx dy

(21)

where ⊗ denotes the convolution operator.
To prove the orthogonality of 2D-CT, we define

ϕax ,bx (x)ϕay ,by (y) = (ϕax ,bx ⊗ ϕay ,by )(x, y) = ϕa,b(x, y)
where a = [

ax ay
]
and b = [

bx by
]
.

∫
ϕa,b (x, y) ϕa,b

(
x ′, y′) daxdaydbxdby∣∣axay∣∣ =δ(x−x ′)δ(y−y′)

(22)

To ensure the orthogonality, there exists a resolution of the
identity for wavelets. One finds, for all fl , f2 ∈ L2(�2),

∫
< ϕ, f1 >< f2, ϕ >

daxdaydbxdby
(axay)2

= Cϕ( f1, f2)

(23)

where Cϕ is constant and is defined as.

Cϕ =
∫ ∫

daxday∣∣axay∣∣ ϕ
∣∣axay∣∣2 (24)

leading to inversion formula

f (x, y) = C−1
ϕ

∫ ∫
daxdaydbxdby∣∣axay∣∣2 [< ϕ, f >]ϕax ,ay ,bx ,by

(25)

Now, 2D Cochlear transform is defined as

ϕa,b(x, y) = 1√
axay

sα
i exp(−2πβsi ) cos(2π fl si ) (26)

where si normalizes energy and β defines the shape of filter
and β > 0. The term exp(−2πβsi ) cos(2π fl si ) acts as band
pass filter which is used in image enhancement and noise
filtration.

si =
[(

m − b

ax

)2

+
(
n − b

ay

)2
]1/2

(27)

The 2D-CT T (τ, f ) of signal f (x, y) can be represented
in amplitude and phase form as Stockwell (2007)

T (τ, f ) = Rx,y(τ, f , α, β)eiφx,y(τ, f ,α,β) (28)

Then, final features are calculated by negative derivative
of phase φx,y(τ, f , α, β).

log T (τ, f ) = log Rx,y(τ, f , α, β) + iφx,y(τ, f , α, β)

(29)

C(τ, f ) = −φx,y(τ, f , α, β)

d f
(30)

The obtained featuresC(τ, f ) are dependent on the phase
φx,y(τ, f , α, β) which is dependent on α, β that gives the
time-frequency domain representation which is more robust.

2.3 Robustness to noise

Assume the corrupted image to be X(x, y) = f (x, y) +
n(x, y). Using the wavelet analysis of 2D-CT, the transfor-
mation of corrupted image is shown in Eq. (31).

WϕX(a, b)=
∫

X(x, y)ϕ

(
x − bx
ax

)
ϕ

(
y − by
ay

)
dxdy√
axay

(31)

Through linearity property of wavelet transform, this gives-,

WϕX(a, b) = Wϕ f (a, b) + Wϕn(a, b) (32)

Now, we define the transformed region of image and noise as
D∈ f and D∈n, respectively. In their respective region, D∈ f
and D∈n, image and noise are dominating by a threshold ∈
( in case of noise, ∈ is defined by average intensity that is
variance σ 2

n ).

{
(a, b)|Wϕ f (a, b) >∈} : D∈ f

{
(a, b)|Wϕn(a, b) >∈} : D∈n

where D∈ f
⋂

D∈n = Φ is a empty set which shows the
minimum or zero interaction of noise and image. We define

ϕa,b(x, y)
daxdaydbxdby

|axay | = Ψ dadb (33)

Now, corrupted image is present in four region, D∈ f and
D∈n and their compliments, Dc∈ f and Dc∈n.
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X(x, y)

=
∫
D∈ f

Wϕ f (a, b)Ψ dadb +
∫
Dc∈ f

Wϕ f (a, b)Ψ dadb

+
∫
D∈ f

Wϕn(a, b)Ψ dadb +
∫
Dc∈ f

Wϕn(a, b)Ψ dadb

(34)

Now, in region D∈ f , difference of the corrupted image and
clear image gives the compliment of noise present in same
region.

∣∣∣∣
∫
D∈ f

WϕX(a, b)Ψ dadb −
∫
D∈ f

Wϕ f (a, b)Ψ dadb

∣∣∣∣
≤

∫
Dc∈ f

∣∣Wϕn(a, b)Ψ dadb
∣∣

≤ K ∈

(35)

where D∈ f
⋂

D∈n = Φ and D∈ f ⊂ Dc∈n. Here K < 0,
which implies than in regionD∈ f , differenceof the corrupted
image and clear image is lower than the defined threshold
(that is lower than average intensity of noise). If we choose

K = 0.5, Then, σ 2
X − σ 2

f ≤ σ 2
n
2 . Hence we can reject the

noise in region D∈ f .
Now, over the range where

∣∣Wϕ f (a, b)
∣∣ <∈, this lies only

in Dc∈ f where noise exists. This clearly implies that,

∫
|Wϕ f (a,b)|<∈

Wϕ f (a, b)Ψ dadb

=
∫
Dc∈ f

∣∣Wϕn(a, b)Ψ dadb
∣∣ (36)

If we integrate the clear image over the union (D∈ f ∪ Dc∈ f ),

∣∣∣∣
∫
D∈ f

WϕX(a, b)Ψ dadb −
∫

(D∈ f ∪Dc∈ f )
Wϕ f (a, b)Ψ dadb

∣∣∣∣
=

∣∣∣∣
∫
D∈ f

WϕX(a, b)Ψ dadb − f (a, b)

∣∣∣∣
≤ K ∈ +

∫
|Wϕ f (a,b)|<∈

Wϕ f (a, b)Ψ dadb

≤ 2K ∈
(37)

This shows that over the whole range of a and b, we can
easily remove the noise if threshold is set as ≤ 2K ∈. If
we choose K = 0.5, then σ 2

X − σ 2
f ≤ σ 2

n . This shows that
difference of corrupted image and clear image is lower than
noise intensity in the range (D∈ f ∪ Dc∈ f ). That means 2D-
CT has already removed the most part of noise. Hence, we
can easily reconstruct the clear image, which directly states
the robustness of 2D-CT in the presence of noise.

On summarizing, firstly, it is shown that compared to
FFT, CT has flexible time-frequency resolution and its fre-
quency distribution can take any linear or nonlinear form.
Secondly, it is shown that in C(τ, f ), amplitude spectrum is
effected by noise and illumination. Hence, to make the sys-
temmore robust to noise and illumination, phase spectrum is
used for feature extraction. Phase spectrum is represented by
φx (τ, f , α, β). This phase is dependent on parameters α and
β . Then, it is shown that proposed method is unaffected due
to illumination also. Then, orthogonality of Cochlear trans-
form is shown. Finally, it is also shown that 2D-CT (two
dimensional) is also orthogonal, which directly states the
robustness of 2D-CT in the presence of noise which is also
proved experimentally.

2.4 Stage-wise steps followed in proposed work

Steps followed in proposed work are discussed in the form of
algorithm as below. The graphical representation of this work
mainly includes three stages shown in Fig. 1. A general block
diagram of the proposed work is shown in Fig. 2. First stage
explains the procedure of data collection. Stage 2 explains the
preprocessing of the databases to make system hand rotation
invariant. In stage 3, feature extraction and matching.

Stage 1 Collection of database
1. Different palmprint databases are procured from

standard source for comparison and analysis.

Stage 2 Preprocessing
1. Hand samples of both the databases have position

difference. To make hand samples rotation invari-
ant, coordinates of fingertips and finger valleys and
centroid are calculated.

2. Hand samples are straightened using fingertips and
centroid.

3. Next ROIs are extracted using finger valleys of
straightened hand samples.

Stage 3 Feature extraction and matching
1. Apply adaptive histogram equalization (AHE) Sri-

vastava et al. (2016) on eachROI, based onRayleigh
distribution. Dimensions of ROI are kept as 150 ×
150 in the experiments. After preprocessing, the
ROIs are partitioned into nonoverlapping windows
of size 15×15 each. Thereby, this divides each ROI
in 100 windows.

2. For feature extraction, image f (x, y) is convolved
with respect to ϕa,b(x, y) with different values of
α, β to evaluate T (τ, f ) shown in Eq.26 . For
this normalized energy for each window is calcu-
lated using Eq. 27. Then, final features C(τ, f )
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Fig. 2 A general block diagram of the proposed work

are calculated by negative derivative of phase
φx,y(τ, f , α, β) where

C(τ, f ) = −φx,y(τ, f ,α,β)

d f as shown in Eqs. 29 and
30.

3. For identification, recognition rate is adopted which
is obtained by KNN classifier.

4 For verification, Euclidean distance is used to calcu-
late the scores between the training and test sample.
Using scores, obtain Receiver Operating Character-
istic (ROC), Equal Error Rate (EER) andArea under
the curve of ROC (AUC) for each database.

3 Experimental results

In simulations, the implementation of the suggested 2D-CT
method has been validated in both verification and identifica-
tion modes. For verification, person is validated from its own
previous enrolled samples i.e., 1:1 mapping. While in identi-
fication, system validates a person from the entire N enrolled
person, i.e., 1: N mapping. Dimensions of ROI are kept as
150×150 in the experiments. After preprocessing, the ROIs
are partitioned into nonoverlapping windows of size 15×15
each. Thereby, this divides each ROI in 100 windows.

3.1 Preprocessing

For feature extraction, the orientation of data samples must
be same to withdraw the same set of information. There are
variations in sample position in database as shown in Fig. 3.

1. Binarizing the palm images first, a binary mask of the
gray-scale hand image is prepared using Ostu’s thresh-

Fig. 3 Samples of IITD palmprint database

olding (Xu 2011). This is mathematically passing an
image through a low-pass filter with a threshold τ . This
gives Ibin(x, y) = 1, If I (x, y) ⊗ Lfilter(x, y) ≥ τ , oth-
erwise Ibin(x, y) = 0, where Ibin is binarized image,
I (x, y) is original image and Lfilter is low-pass filter. This
is shown in Fig. 4a.
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2. Finding boundary of the binarized image this can be done
by boundary tracing algorithmwhich basically search the
number of pixel neighbors in the binarized image.

3. After building the line from the center of gravity of each
pixel, the centroid of the image is calculated which can
be mathematically represented as Xc = (x̂, ŷ), where
(x̂, ŷ) are the arithmetic mean of x, y in binary region �.

4. Then, thinning operation is applied on this mask to get a
hand skeleton like structure. Next, the coordinates of the
end points of the previously obtained thinned skeleton
image are computed using the logic of crossing num-
ber. In this, fingertips and finger valleys are calculated to
capture the most accurate and similar ROI. After finding
the fingertips and centroid, masking of original bounded
image is done. The ordering of fingertips is done by
doing circular traversal with centroid as the center of
the hand in clockwise direction so that the first coordi-
nates are that of small finger and last coordinates are of
thumb. In this way, the coordinates of all the fingertips
are obtained. With the help of centroid and fingertips,
the image is rotated such that the line joining the tips
of the index finger and ring finger becomes horizontal
(in Fig. 4d). Next, finger valleys are calculated using the
rate of change of the slope of boundary. Then, coordi-
nates of finger valleys are used to crop the region of
interest (ROI) of each palm. This method can be eas-
ily applied to both the right and left hand palmprint only
by changing the indexing of fingers. This is shown in
Fig. 4.

3.2 Databases for palmprint

In this work, three palmprint databases, Hong Kong Poly-
technic University (PolyU) database, Chinese Academy of
Sciences Institute of Automation (CASIA) database and
Indian Institute of Technology Delhi (IITD) database, were
used to validate the proposed 2D-CTmethod. IITDpalmprint
database consists of both the left and right hand. Proposed
method was applied on both hands treating as different
database. As resolution, illumination and setup in both the
databases are different, so the different environmental con-
ditions are thereby included.

3.2.1 IITD database

IIT Delhi palmprint database version 1.0 contains left and
right hand anterior samples of approximately 230 persons
in the age group 14–56 years. This database consists of 5
to 6 samples of each hand. So, from each group 200 people

Fig. 4 Preprocessing a binarized image, b fingertips and centroid in
the binary image, c indexing of fingertips: small, ring, middle, index,
thumb, d fingertips of index finger and ring finger are connected with a
line, e straitening of the hand bymaking joined line parallel to horizontal
line, f masked image with valley points, g line joining the valley points
is made parallel to horizontal line, h extracted ROI
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Fig. 5 Performance of proposed
feature extraction with different
valves of α and β on CASIA
database
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are selected having 6 samples for the experiments. Database
acquisition is based on contact-less type of scanning system
with a digital CMOS camera. This type of system is effortless
and highly useful in office environment. There is no use of
pegs for the placement of hand.

3.2.2 CASIA database

CASIA Palmprint Image Database contains 312 subjects
with approximately 8 left and right hand images. Database
is acquired by a CMOS camera without any constraint and
saved in 8 bit gray-level .J PEG format. In the experiments,
six images of right hand from every person are used to vali-
date the proposed method.

3.2.3 PolyU database

The PolyU palmprint database contains anterior samples of
approximately 386personswith overall 7752gray-scale sam-
ples. In this, every person has 20 samples collected in two
sessions with a difference of approximately 60days. In this
system, pegs are used to position the hand sample to remove
position variance. From the database, only ten samples of
each individual are selected to perform the training and test-
ing.

3.3 Identification

For identification, recognition rate is adopted to evaluate the
performance of 2D-CT. The recognition rate is the fraction of
the test samples which are correctly recognized by identifica-
tion system. K-nearest neighbor (KNN) classifier (Srivastava
et al. 2016) is used to classify the features, finally. After
the preprocessings, 2D-CT features are calculated on each
window with different values of α and β. Performance of
proposed feature extraction with different valves of α and β

on CASIA database is shown in Fig. 5. Results show that 2D-
CT features are dependent on parameters α and β and hence

Table 1 Identification results of different feature extraction methods of
different database

Features CASIA IITD left IITD right PolyU

Gabor 90.20 89.10 86.30 91.20

Mean 91.98 92.40 89.10 96.80

GMF 94.40 94.50 91.20 97.20

AAD 93.20 93.00 89.80 96.10

CompC Code 97.60 96.40 95.80 98.70

Ordinal Code 96.10 96.10 94.70 97.80

DOC 97.80 95.60 96.10 99.60

DRCC 98.10 96.20 96.60 99.80

2D-CT 98.66 98.80 96.90 99.80

Table 2 Identification results of proposed method using KNN, SVM
and random forest

2D-CT CASIA IITD Left IITD Right PolyU

KNN 98.66 98.80 96.90 99.80

SVM 96.80 96.10 94.54 99.22

Random forest 96.20 96.34 95.12 99.50

phase spectrum gives resonating peaks by suitably choosing
these parameters.

To compare the performance of the proposed method and
other palmprint authentication techniques, 2D-CT features
are calculated on each window by suitably choosing the nec-
essary parameters α = 2.6 and β = 0.034. Now, proposed
method is compared with DOC (Fei et al. 2016), DRCC (Xu
et al. 2016), gabor transform (Chu et al. 2007), CompC Code
(Kong and Zhang 2004), Ordinal Code (Sun et al. 2005),
GMF (Arora and Srivastava 2015; Srivastava et al. 2016),
Mean (Srivastava et al. 2016) and AAD (Srivastava et al.
2016). For the Gabor transform, we have used 5-scale and 8-
orientation Gabor filter bank (40 Gabor filters) (Mohammad
and Mahoor 2014).
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For CASIA database, the results show that recognition
rate (RR) for 2D-CT, DRCC, DOC, CompC Code, ordinal,
GMF, AAD, Gabor and Mean are 98.66%, 98.1%, 97.8%,
97.6%, 96.1%, 94.4%, 93.2 %, 90.2% and 91.98%, respec-
tively. For other database, the results are shown inTable 1.We
have 10 samples for each individual in PolyU database. The
training to testing ratio is taken as 6: 4. The PolyU database
is acquired with pegs, so interclass variations are very few.
Hence the results obtained are higher than other database.
Results obtained from IITD Left and Right database varied
on the selection of testing and training samples and different
group of individuals whose total count is constant, i.e., 200.
From IITD database, 6 samples are selected randomly. The
training to testing ratio is taken as 4: 2. For CASIA database,
six images of right hand from every person are used to val-
idate the proposed method. The training to testing ratio is
taken as 4: 2.

First, it is shown that K-NN is worth considering and
achieved good overall performance than SVM and RF. Sec-
ond, as compared to SVM, both K-NN and RF are very
simple and well understood. Paper concentrates more on
noise robustness. We formulated the proposed method using
SVM, random forest also. The SVMusing polynomial kernel
gave much better results than those from radial basis func-
tion. Therefore, only the results from polynomial kernel are
reported. For degree-d polynomials, quadratic polynomial
d = 2 is reported as it is giving better results than d = 1, and
d = 3. Random forest (RF), a pattern recognition method
based on “ensemble learning” strategy, is also reported here

with learning rate as 0.1. Identification results of proposed
method using KNN, SVM and random forest are shown in
Table 2.

Noisy conditions which can occur during security check,
access control and taking attendance of user are usually dealt
by biometric systems. In palmprint systems, user hands can
be dirty, marked or dusty. At that time, our recognition sys-
tem should not consider a genuine as an imposter. Hence,
biometric systems must be robust in nature. All the above-
mentioned databases do not contain noise or disturbances.
Hence, different type of noise, for example, Gaussian noise,
salt and pepper noise and speckle noise are added and tested
to evaluate the proposed method in real environment.

To check the robustness of proposed technique, we have
intentionally added different types of noises while perform-
ing the simulation study. Three types of noises are selected
which includes Gaussian noise (with meanμ = 0 at variance
σ 2 = 0.1, σ 2 = 0.3, σ 2 = 0.5), salt and pepper noise (with
noise intensity σ 2 = 0.1, 0.2, 0.3) and speckle noise (with
mean μ = 0 at variance σ 2 = 0.1 , σ 2 = 0.3, σ 2 = 0.5).
Figure 6 shows some noisy palmprint images with Gaussian
noise, salt and pepper noise and speckle noise at different
database.

Recognition rates between the training and noisy test sam-
ple are calculated usingK-nearest neighbor (KNN) classifier.
Recognition rates of 2D-CT-based features of left and right
hand palmprint for IITD palmprint database version 1.0,
CASIA database and PolyU database on addition of noise
are tabulated in Table 3. In Fig. 7a–c, it is seen that per-

Fig. 6 a Salt and pepper noise in PolyU database, b Gaussian noise in CASIA database, c speckle noise in IITD database

Table 3 Average recognition rate of 2D-CT on addition of different noise

Database Average recognition rate (%)

Gaussian noise μ = 0 Salt and pepper noise Speckle noise μ = 0

σ 2 = 0.1 σ 2 = 0.3 σ 2 = 0.5 σ 2 = 0.1 σ 2 = 0.3 σ 2 = 0.5 σ 2 = 0.1 σ 2 = 0.3 σ 2 = 0.5

IITD Right Palm 96.9 96.7 95.1 96.9 96.1 95.3 96.9 96.1 94.3

IITD Left Palm 98.8 98.8 97.6 98.8 98.3 96.5 98.8 98.1 96.1

CASIA Palmprint 98.66 98.1 97.3 98.66 97.9 97 98.66 98.6 97.1

PolyU Palmprint 99.8 99.2 98.4 99.8 98.6 97.4 99.8 98.5 97.2
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Fig. 7 Variation of average recognition rate of 2D-CT in presence of a Gaussian noise, b Salt and pepper noise, c speckle noise

Fig. 8 Variation of average
recognition rate of different
feature extraction methods in
presence of speckle noise on
CASIA database
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Fig. 9 Variation of average
recognition rate of different
feature extraction methods in
presence of Gaussian noise on
CASIA database
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Fig. 10 Receiver operating
characteristic of different
methods on CASIA palmprint
database
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DOC (AUC=0.9802)
AAD (AUC=0.8976)
CompC (AUC=0.9788)
DRCC  (AUC=0.9811)
2D-CT (AUC=0.9858)

Table 4 Verification results of different feature extraction methods on
CASIA palmprint database

CASIA palmprint database

Features FAR = 0.1 FAR = 1 AUC EER

Gabor 82.65 90.89 0.7281 2.4122

Mean 87.83 92.46 0.8892 1.7881

GMF 88.93 94.97 0.9136 1.1221

AAD 86.89 93.68 0.8976 1.8122

CompC Code 96.40 98.67 0.9788 0.2798

Ordinal Code 96.53 97.50 0.9732 0.2888

DOC 98.74 99.21 0.9802 0.2052

DRCC 99.40 99.60 0.9811 0.1998

2D-CT 99.73 99.98 0.9858 0.1821

formance of the proposed system is highly robust and does
not change much in the presence of noise. By varying the
intensity of noise, maximum rate of change is only 0.027%
in case of 200 subjects in IITD database, 0.0168% in case
of CASIA palmprint database and in PolyU database, the
maximum rate of change is quite low, i.e., 0.0068% in 386
subjects.

Now, comparison of the robustness of proposed technique
with other feature extraction methods in presence of speckle
noise (with mean μ = 0 at variance σ 2 = 0.1 , σ 2 = 0.3,
σ 2 = 0.5) and gaussian noise (with mean μ = 0 at vari-
ance σ 2 = 0.1 , σ 2 = 0.3, σ 2 = 0.5) on CASIA database
is observed in Figs. 8 and 9. It is observed that proposed
method is highly robust and a slow variation in recognition
rate is seen by varying the intensity of noise. Also, DRCC
has shown a good performance due to its robust properties
and fusion of side and top orientation indices. It was found
in the simulations that both GMF and Ordinal coding has
shown good performance. Since, GMF is based on Gaus-
sian membership function so it is inherently more stable to

Table 5 Verification results of different feature extraction methods on
IITD Right palmprint database

IITD Right palmprint database

Features FAR = 0.1 FAR = 1 AUC EER

Gabor 73.87 82.89 0.7814 2.2442

Mean 79.81 84.15 0.8014 1.4881

GMF 83.05 89.51 0.8888 0.9888

AAD 81.91 87.07 0.8322 1.7884

CompC Code 88.88 94.94 0.9722 0.2264

Ordinal Code 86.87 93.68 0.9123 0.2664

DOC 92.06 94.85 0.9802 0.1999

DRCC 96.03 97.64 0.9911 0.1896

2D-CT 97.84 98.40 0.9964 0.1722

Table 6 Verification results of different feature extraction methods on
IITD Left palmprint database

IITD Left palmprint database

Features FAR = 0.1 FAR = 1 AUC EER

Gabor 83.45 86.78 0.7987 2.1180

Mean 86.87 93.68 0.8122 1.1211

GMF 88.88 94.94 0.8901 0.8112

AAD 86.45 92.90 0.8666 1.4112

CompC Code 98.57 99.60 0.9887 0.2002

Ordinal Code 96.40 98.67 0.9782 0.2149

DOC 97.95 98.80 0.9883 0.1921

DRCC 99.08 99.97 0.9971 0.1672

2D-CT 99.73 100 0.9989 0.1654

noise and Ordinal coding is also based on the orthogonality
property of wavelets, so both of them are highly uncorrelated
to noise and are more robust. Further, Mean and AAD are
statistical features, so they are highly affected by noise. Per-
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Table 7 Verification results of different feature extraction methods on
PolyU palmprint database

PolyU palmprint

Features FAR = 0.1 FAR = 1 AUC EER

Gabor 83.45 86.78 0.9087 0.5839

Mean 86.87 93.68 0.9012 0.4641

AAD 86.45 92.90 0.9066 0.4722

GMF 88.88 94.94 0.9868 0.1864

Ordinal Code 96.40 98.67 0.9982 0.1180

CompC Code 98.57 99.60 0.9987 0.0969

DOC 98.40 99.21 0.9993 0.0619

DRCC 99.46 99.60 0.9996 0.0509

2D-CT 100 100 1.0000 0.0398

formance of Gabor transform and CompC coding is found to
be lower than others due to the use magnitude spectrum for
extraction of their features and magnitude is more affected
by noise.

3.4 Verification

ROC curves are used to visually analyze the implementation
of the suggested method in verification. Typically, ROC is
the curve between the Genuine acceptance rate (GAR) and
False Acceptance Rate (FAR) where GAR = 100 − FRR
and FRR is False Rejection Rate. FAR is the rate of wrongly
accepted person, while FRR is the rate of genuine subjects
wrongly rejected. To calculate the scores between the train-
ing and test sample, Euclidean distance is calculated with
features obtained from each biometric modality. For verifica-
tion, EER is chosen as a performance measurement quantity
where its lower values show high performance of the sys-
tem (Xu et al. 2016). EER is calculated where FAR equals
FRR. Also, area under the curve of receiver operative char-
acteristics is also used to validate the results. The AUC has

an important statistical property: the AUC of a classifier is
equivalent to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly
chosen negative instance. The maximum value of AUC is
1. The higher the value, the better the performance of the
system.

As shown in Fig. 10, ROC curves for CASIA palmprint
database are shown for proposed 2D-CT with other features.
It is clear that ROCof the proposed technique covers themax-
imum area under the curve (AUC) and reaches 100% GAR
at a faster rate as compared to ROC’s of other technique. The
AUC values are shown in Fig. 10.While the convergence rate
of mean features and gabor features is slower, DRCC and
DOC shows good performance. Ordinal Code and CompC
Code shows comparable performance. The GMF-based fea-
tures also shows good performance. As shown in Table 4 at
FAR = 0.1, GAR is 98.74 for 2D-CT, 98.74 for DOC, 99.4
for DRCC, 96.4 for CompC Code, 96.53 for ordinal code,
88.93 forGMF, 86.89 forAAD, 82.65 for gabor and 87.83 for
mean features. While at FAR = 1, 2D-CT reaches to 99.22,
while others are slower than proposed results. Other verifi-
cation results from IITD right, IITD left and PolyU database
are shown in Tables 5, 6 and 7.

In Figs. 11, 12, and 13, ROC curves are plotted for IITD
palmprint database for both right and left hands and PolyU
palmprint database. The ROC of the proposed technique
reaches 100%GAR faster and cover themaximumarea under
the curve.

3.5 Statistical performance

To show the quantitative analysis of the performance, results
are shown in form of Identification results (recognition rate)
in Table 1, in AUC and EER in Tables 4, 5, 6 and 7. The
recognition rate is the fraction of the test samples which are
correctly recognized by identification system. 2D-CT shown
good performance with respect to other methods such as,

Fig. 11 Receiver operating
characteristic of different
methods on IITD Left palmprint
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Fig. 12 Receiver operating
characteristic of different
methods on IITD Right
palmprint
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Fig. 13 Receiver operating
characteristic of different
methods on PolyU palmprint
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Table 8 Statistical analysis using standard deviation of Recognition
rate (RR), AUC and EER

Features σRR σAUC σEER

DOC 1.8136 0.0090 0.0688

DRCC 1.6358 0.0082 0.0687

2D-CT 1.2054 0.0065 0.0671

8.6–9.8% to gabor feature and 2.63% to DRCC. In the terms
of AUC and EER, 2D-CT is found to be superior. However,
Paper concentrates more on noise robustness. The perfor-
mance improvement on addition of noise can be seen in
Figs. 8 and 9. To prove that the performance of the proposed
method is superior to the existing methods, standard devia-
tion is calculated using recognition rate, AUC and EER from
different database as shown in Table8.

To further show the signification difference, percentage
improvement in standard deviation (%)Δσ of 2D-CT is cal-
culated with respect to DRCC and DOC. The formula to
calculate (%)Δσ is given in Eq. 38. Table 9 shows the sig-
nificant difference of proposedmethodwith respect toDRCC

Table 9 Percentage improvement in standard deviation (%)Δσ of 2D-
CT over DRCC and DOC

Features (%)ΔσRR (%)ΔσAUC (%)ΔσEER

DOC 50.4528 39.2939 2.5735

DRCC 35.7022 26.7332 2.4032

Table 10 Speed comparison

Features Feature extraction (ms) Matching (ms) Total (ms)

Gabor 380.218 10.783 391.001

Mean 201.224 22.482 223.706

GMF 419.670 22.486 442.156

AAD 218.230 22.546 240.776

CompC Code 361.124 29.567 390.691

Ordinal Code 191.141 31.562 222.703

DOC 422.230 10.672 432.902

DRCC 408.481 10.442 418.923

2D-CT 344.988 22.678 367.666
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and DOC.

(%)Δσ = σ(xprevious) − σ(xproposed)

σ (xproposed)
× 100 (38)

3.6 Speed

To evaluate the speed, we compare the computational time of
the proposedmethod andothermentionedmethods for PolyU
database. All methods are implemented using MATLAB on
a PC with configuration of double-core Intel i3 (2.40GHz),
RAM 4.00GB and Windows 7.0 operating system. Table 10
summarizes the comparison results. The total computational
cost of the proposed method is about 367.666 ms, which
is comparable to other compared methods. The code size
of CompC coding and ordinal coding is same. However, the
ordinal code scheme can perform filter level combination. As
a result, the filtering process can be performed on only three
orientations, which makes it save half the time for feature
extraction compared to competitive coding scheme. Mean,
AAD and GMF are statistical methods where GMF com-
bines both Mean and AAD. So GMF take double the time of
mean and AAD. Speed of DRCC and DOC is a little more
than that of the competitive code method. The main reason
is that it extracts the additional side code. Proposed method
is different from coding algorithms. It is also a statistical
method but slower than GMF, AAD and mean. This method
concentrates more on noise robustness. So there is a trade-off
between speed and noise robustness. Still speed is compara-
ble with DRCC and DOC.

4 Conclusion

In this paper, 2D-CT which is a powerful time-frequency
transform for texture analysis has been proposed. The per-
formance of 2D-CT is validated using KNN with Euclidean
distance. The method has been tested on IITD palmprint
database, PolyU palmprint database and CASIA palmprint
database and has achieved high accuracy. The proposed
2D-CT method is compared with several state-of-the-art
methods. The ROC curves show the superiority of the pro-
posedmethod over other existingmethods. PolyU database is
acquired with pegs and pins. So intra-class variations of indi-
vidual user are very less. Hence, there are little differences in
EER, AUC between the mentioned methods. The proposed
method is validated in the presence of noise and found to
be very robust. By varying the intensity of noise, maximum
rate of change is only 0.027% in case of 200 subjects in IITD
database, 0.0168% in case of CASIA palmprint database and
in PolyU database, the maximum rate of change is quite low,
i.e., 0.0068% in 386 subjects. The use of different database

shows that method is independent of environmental condi-
tions.

5 Future perspectives

In future, the proposed 2D-CT feature extraction method
can be applied to other biometric modalities. When 2D-CT
is applied, the parameters α and β are manually chosen.
These values can be optimized using some optimization
algorithm like genetic algorithm, cuckoo search, etc. Further-
more, fusion of different modalities with proposed feature
extraction method can also improve the performance of sys-
tem.
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