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Abstract
Given an undirected, connected, edge-weighted graph G and a positive integer d, the degree-constrained minimum spanning
tree (dc-MST) problem aims to find a minimum spanning tree T on G subject to the constraint that each vertex is either a
leaf vertex or else has degree at most d in T , where d is a given positive integer. The dc-MST isNP-hard problem for d ≥ 2
and finds several real-world applications. This paper proposes a hybrid approach (HSSGA) combining a steady-state genetic
algorithm and local search strategies for the this problem. An additional step (based on perturbation strategy at a regular
interval of time) in the replacement strategy is applied in order to maintain diversity in the population throughout the search
process. On a set of available 107 benchmark instances, computational results show the superiority of our proposedHSSGA
in comparison with the state-of-the-art metaheuristic techniques.

Keywords Degree-constrained · Spanning tree · Steady-state genetic algorithm · Problem-specific crossover operator · Local
search · Replacement strategy

1 Introduction

Given an undirected, connected and edge-weighted graph
G(V , E, w), where V is the set of nodes or vertices; E is
the set of edges; and w(i, j) is a positive weight that is asso-
ciated with each edge ei j ∈ E whose end points are i and
j vertices, the degree-constrained minimum spanning tree
(dc-MST) problem aims to find a minimum spanning tree
(T ) of G such that each vertex is either a leaf vertex or else
has degree at most d in T , where d is a given positive integer.

There is a rich literature related to dc-MST problem. For
example, minimum branch vertices and minimum degree
sum of branch vertices based spanning tree problems (Cer-
rone et al. 2014; Gargano et al. 2002; Marín 2015; Moreno
et al. 2018; Silvestri et al. 2017; Sundar and Singh 2012), and
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a closely related version of dc-MST has been recently intro-
duced in an uncertain random network, where some weights
are uncertain variables and others are random variables (Gao
et al. 2017).

The dc-MST is NP-Hard for d ≥ 2 (Garey and Johnson
1979). This problem finds several real-world applications,
such as in the context of backplanewiring among pins, where
any pin could be wrapped by at most a fixed number of wire-
ends on the wiring panel (Boldon et al. 1996); in designing
the road system that can be used to serve the suburbs with
the constraint that no more than four roads may meet at any
crossing (Savelsbergh and Volgenant 1985); in VLSI design-
ing, where the number of transistors that can be driven by
the output current of a transistor is the degree bound for
VLSI routing trees (Boldon et al. 1996); in electrical circuits
design (Narula and Ho 1980); and in communication net-
works where the maximum degree in a spanning tree is a
measure of vulnerability to single-point failures (Ravi et al.
1993).

The dc-MST is a well-studied problem. Many approaches
including exact as well as heuristic approaches have been
developed for this problem.Among these approaches, Narula
and Ho (1980) proposed a primal and a dual heuristic pro-
cedure and a branch-and-bound algorithm for this problem.
Later, two general heuristic and a branch-and-bound algo-
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rithm were proposed (Savelsbergh and Volgenant 1985).
Boldon et al. (1996) proposed four heuristic based on Prim’s
algorithm (Prim 1957).

Literature has also witnessed a number of metaheuris-
tic approaches for this problem. Among metaheuristic
approaches, various versions of genetic algorithm (GA) have
been proposed. For example, Zhou andGen (1997) presented
a GA based on Prufer-encoding, Knowles and Corne (2000)
presented a GA based on a |V |× (d-1) array encoding, and
Raidl and Julstrom (2000) presented GA using a weight-
coding. Later, Raidl and Julstrom (2003) further presented
two versions (ES-EAandHES-EA) of evolutionary approach
in which the first version (ES-EA) demonstrates the use-
fulness of the edge-set encoding, and the second version
(HES-EA) which also uses edge-set encoding, but incor-
porates edge-cost heuristic in the initialization, crossover
operator and mutation operator. The basic idea behind edge-
cost heuristic in HES-EA (Raidl and Julstrom 2003) is to
include low-cost edges into a candidate solution with higher
probabilities thanhigh-cost edges.Experimental results show
that the edge-set encoded with edge-cost heuristic, i.e., HES-
EA, performs better than the previous versions of GA.

In addition, various ant colony optimization approaches
(Bau et al. 2005; Bui and Zrncic 2006; Doan 2007) as
well as particle swarm optimization approaches (Binh and
Nguyen 2008; Ernst 2010) have been proposed for the dc-
MST problem. Bui et al. (2012) proposed an ant-based
algorithm (ABA) for the dc-MST problem. In ABA, ants,
while exploring the graph, identify a subset of edge-set so
that a degree-constrained spanning tree can be constructed
from this set of edges.ABAuses two local search strategies—
2-EdgeReplacement and 1-EdgeReplacement—to further
improve the solution quality of currently constructed solu-
tion. In 2-EdgeReplacement, two edges associated with the
current feasible degree-constrained spanning tree (say T ) are
examined for replacement with the two new edges ∈ E \ T
without violating the degree constraint of T with the aim
of further reduction in the weight of T . Whereas, in 1-
EdgeReplacement, an edge in the current T is examined for
replacement with a new edge ∈ E \ T without violating the
degree constraint of T with the aim of further reduction in
the weight of T .

GA is a well-known evolutionary algorithm and has an
array of various encodings, genetic operators (crossover and
mutation operators) for combinatorial optimization prob-
lems. Even GA is flexible to integrate with problem-specific
heuristic in order to find high-quality solutions to the combi-
natorial optimization problem under consideration, leading
to various variants of GA or hybrid GAs for the same com-
binatorial optimization problem in the literature. For the
dc-MST problem, many researchers have proposed many
variants ofGAor hybridGA (Raidl and Julstrom2000, 2003;
Zhou and Gen 1997) in search of finding high-quality solu-

tions. In this paper,we also develop avariant of hybrid genetic
algorithm (hybrid approach) for the dc-MST problem. The
motivation behind the development of hybrid approach is our
new designed problem-specific crossover operator which is
quite different from the existing crossover operators includ-
ing crossover operator of HES-EA (Raidl and Julstrom 2003)
(see Sect. 3.5). To make our hybrid approach effective and
robust, we incorporate various strategies (such as local search
strategies, if applied, are used to intensify the search around
the generated child solution and an additional step (based
on perturbation strategy at a regular interval of time) in
the replacement strategy is applied in order to maintain
diversity in the current population throughout the search pro-
cess) that try to balance the trade-off between exploitation
and exploration throughout the search. Hence, our hybrid
approach combines a steady-state genetic algorithmand local
search strategies for the dc-MST problem. On the avail-
able 107 benchmark instances, experimental results show
the superiority of our proposed hybrid approach in com-
parison with the best-so-far hybrid GA (i.e., HES-EA Raidl
and Julstrom 2003) and other state-of-the-art metaheuristic
technique (ABA Bui et al. 2012). Hereafter, our proposed
hybrid approach will be referred to as HSSGA. Note that
our proposed hybrid approach HSSGA is quite different
the hybrid approach (HES-EA) (Raidl and Julstrom 2003)
on mainly three components—problem-specific crossover
operator, local search strategies and an additional step in
the replacement strategy. Also, note that local search strate-
gies in HSSGA which is based on two-edges replacement
(referred to as 2ER) and one-edge replacement (referred to
as 1ER) are applied conditionally. 2ER follows the idea of
2-EdgeReplacement local search strategy used in ABA (Bui
et al. 2012), but 1ER which is common idea is different from
1-EdgeReplacement local search strategy used in ABA (Bui
et al. 2012).

The organization of the remaining paper is as fol-
lows: Sect. 2 presents a brief discussion on steady-state
genetic algorithm (SSGA); Sect. 3 presents our proposed
hybrid approach (HSSGA) for the dc-MST problem; Sect. 4
presents computational results; and Sect. 5 presents conclud-
ing remarks.

2 Steady-state genetic algorithm

Genetic algorithm (GA) is a stochastic search technique that
is stem from the principles of natural evolution (Holland
1975). In nature, during the evolution of the population,
individuals in the population compete with each other to
survive. Individuals who are more fit remain intact, while
less fit individuals do not survive. Similarly, in GA, more fit
chromosomes (solutions) have higher chances to participate
in genetic operators and to propagate their genes from one
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generation to another. Genetic operators help GA in exploit-
ing the promising regions of the search space as well as in
exploring new region of the search space. Readers who are
interested in a general introduction toGA and its applications
may find in Cerrone et al. (2016), Goldberg (1989), Iordache
et al. (2007) , Pop et al. (2013).

This paper presents a hybrid steady-state genetic algo-
rithm for the dc-MST problem. Steady-state GA (SSGA)
is different from generational GA (GGA) (Davis 1991), as
GGA, in each generation, generates a population of new child
solutions from the old population with the help of genetic
operators and replaces usually the current parent population
with the newly generated child population. While SSGA, in
each generation, typically generates a single new child solu-
tion from the old populationwith the help of genetic operators
and replaces an individual (solution) in the current population
with the newly generated child solution.

3 Hybrid steady-state genetic algorithm for
the dc-MST

Algorithm 1: The pseudocode of HSSGA
Input : A connected, edge-weighted and undirected complete

graph G = (V , E, w), and a positive integer constant d
Output: A degree-constrained spanning tree T gb

1 Generate a population of initial solutions < T1, T2, . . . , Tpop >

of size pop;
2 T gb ← Best-so-far solution in the population;
3 while Termination criterion is not met do

// u01 is a uniform variate
4 if μ01 < Pc then
5 p1 ← BT S(T1, T2, . . . , Tpop);
6 p2 ← BT S(T1, T2, . . . , Tpop);
7 T C ← Xover(p1, p2);

8 else
9 p1 ← BT S(T1, T2, . . . , Tpop);

10 T C ← Mut(p1);

// See Sect. 3.7 for the local search

11 if (
F(T gb)

F(T C )
+ α × dis(T gb, T C )) > 1) then

12 Apply LS on T C ;

13 if T C is Unique then
// Apply replacement strategy

14 if T C is better than T gb then
15 T gb ← T C ;

16 Replace a solution of the current population, whose
fitness is greater than the average fitness of the current
population, with T C ;

17 if T gb does not improve a certain number of generations
then

18 Apply population update strategy (RS+); // See
Sect. 3.8 for Replacement Strategy

This section discusses the framework of our proposed
hybrid approach (HSSGA) for the dc-MST problem that
combines a steady-state genetic algorithm and local search
strategies.

Algorithm 1 presents the pseudocode of HSSGA for the
dc-MST problem, where < T1, T2, . . . , Tpop > are feasible
solutions of the population with population size pop; T gb

stores the best-so-far solution; BT S(T1, T2, . . . , Tpop) is a
function of binary tournament selection method that returns
a parent solution; Xover(p1, p2) is a function of crossover
operator applied on two selected parent solutions (p1 and p2)
and returns a child solution T C ; and Mut(p1) is a function of
mutation operator applied on the selected parent solution (p1)
and returns a child solution T C . Both crossover (Xover ) and
mutation (Mut) operators are applied in a mutually exclu-
sive way. u01 is a uniform variate, and Pc is a probability
parameter that is to be determined empirically. Once the child
solution T C is generated, local search strategies (LS) based
on two-edge replacement (2ER) and one-edge replacement
(1ER) methods are applied conditionally (See line no. 11 of
Algorithm 1) in order to further improve the solution quality
of T C . Hereafter, if the current child solution T C is found
to be unique, then it is inserted into the current population
by replacing an individual (solution) of the current popula-
tion whose fitness is greater than the average fitness of its
current population. If T C is not unique, T C is discarded.
An additional step in the replacement strategy is applied in
order to maintain diversity in the current population through-
out the search process. Once the termination criterion is met,
HSSGA stops executing.

The following subsections discuss the details of various
components of HSSGA.

3.1 Encoding

To represent a chromosome (solution or spanning tree (Ti )),
an edge-set encoding (Raidl and Julstrom 2003) is used. As
per this encoding, each solution Ti consists of a set of |V |-
1 edges. The reason to choose this encoding is that it not
only offers high locality and heritability, but also adaptive to
problem-specific genetic operators.

3.2 Generation of initial solutions of the population

HSGGA follows Prim’s algorithm (Prim 1957) to generate
an initial solution of the population. Initially, a degree-
constrained spanning tree (Ti ) and the set S are empty; create
a copy, say U , of V ; label each vertex v ∈ V unmarked
(mark[v] ← 0); and set the degree of each vertex v ∈ V
of Ti to zero (deg[v] ← 0). Select a vertex v1 ∈ U ran-
domly, and add this selected v1 to S. Delete this selected v1
from U . Label v1 marked (mark[v1] ← 1). Select a random
edge ev1v2 that connects a vertex v1 ∈ S to a vertex v2 ∈ U ,
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and add this selected edge ev1v2 to Ti . Increment the value
of deg[v1] and deg[v2] in Ti by one due to addition of an
edge ev1v2 to Ti . Add v2 to S, and then delete v2 from U .
Label v2 marked (mark[v2] ← 1). Hereafter, iteratively at
each step, search a random edge (say ei j ) that connects a
vertex i ∈ S (deg[i] < d) to an unmarked vertex j ∈ U .
Add this searched ei j to Ti and increment the value of deg[i]
and deg[ j] in Ti by one. Add j to S, and then delete j from
U . Label j marked (mark[ j] ← 1). This whole procedure
is repeated again and again until U becomes empty. At this
juncture, a feasible degree-constrained spanning tree (solu-
tion) Ti is constructed.

Hereafter, uniqueness of each generated Ti is checked
against the initial solutions of the population generated so
far. If the current generated initial solution is unique, it is
included into the population, otherwise it is discarded.

3.3 Fitness

Once an initial solution Ti is generated, its fitness (say
(F(Ti )) is computed as the sum of weight of edges in Ti .

3.4 Selection

HSGGA follows binary tournament selection method to
select a parent solution. This method is applied two times
in order to select two parent solutions for the crossover oper-
ator, whereas this method is applied one time in order to
select a parent solution for the mutation operator. As per this
method, two different solutions are picked uniformly at ran-
dom from the current population.With probability (Pb), fitter
one between these two selected solutions is selected as a par-
ent solution, otherwise the worse one is selected as a parent
solution with probability (1 -Pb).

3.5 Crossover operator

Our proposed crossover operator (Xover) is a problem-
specific crossover operator (say Xover) that tries to inherit
good edges of parent individuals in the newly generated child
solution (say T C ) as much as possible and at the same time
Xover maintains the degree constraint of all non-leaf ver-
tices of T C . Algorithm 2 presents the pseudocode of Xover
for HSSGA whose description is as follows:

Xover starts with selecting two chromosomes (solutions)
as parents (say, p1 and p2 ) from the population with the
help of binary tournament selection method. Initially, con-
sider the degree-constrained spanning tree T associated with
an empty solution (say child solution T C ) as an empty set,
and also consider a set (say S) as an empty set. Set the degree
of each vertex v ∈ V in T zero (i.e., deg[v] ← 0 ∀v ∈ V ),
and label each vertex v ∈ V unmarked (mark[v] ← 0).

Algorithm 2: The pseudocode of crossover operator (Xover) in

HSSGA
Input : Two different parent individuals (p1 and p2)
Output: A child solution T C (a degree-constrained spanning tree T )

1 T ← ∅, S ← ∅, deg[i] ← 0 ∀i ∈ V in T , mark[i] ← 0 ∀i ∈ V ;
2 Pick a vertex v1 ∈ V randomly;
3 S ← S ∪ v1, mark[v1] ← 1;
// u01 is a uniform variate

4 if (u01 < Pbp1 p2 ) then
5 Pick an edge ev1v2 , connecting v1 ∈ S to v2 ∈ V \ S, randomly

from p1;

6 else
7 Pick an edge ev1v2 , connecting v1 ∈ S to v2 ∈ V \ S, randomly

from p2;

8 mark[v2] ← 1, S ← S ∪ v2, T ← T ∪ ev1v2 , deg[v1] + +,
deg[v2] + +;

9 while (V \ S �= ∅) do
10 if (u01 < Pbp1 p2 ) then
11 for (each vertex i ∈ S) do
12 if (deg[i] < d) then
13 Search a random edge ei j (i ∈ S and j ∈ V \ S) from

p1;
14 if (the search is successful) then
15 mark[ j] ← 1, S ← S ∪ j , T ← T ∪ ei j ,

deg[i] + +, deg[ j] + +, break;

16 if (the search is not successful) then
17 for (each vertex i ∈ S) do
18 if (deg[i] < d) then
19 Search a random edge ei j (i ∈ S and j ∈ V \ S)

from p2;
20 if (the search is successful) then
21 mark[ j] ← 1, S ← S ∪ j , T ← T ∪ ei j ,

deg[i] + +, deg[ j] + +, break;

22 if (the search is not successful) then
23 Add an edge ei j ∈ E \ T of minimum edge-weight,

connecting a vertex i ∈ S (deg[i] < d) to a vertex
j ∈ V \ S;

24 mark[ j] ← 1, S ← S ∪ j , T ← T ∪ ei j ,
deg[i] + +, deg[ j] + +;

25 else
26 for (each vertex i ∈ S) do
27 if (deg[i] < d) then
28 Search a random edge ei j (i ∈ S and j ∈ V \ S) from

p2;
29 if (the search is successful) then
30 mark[ j] ← 1, S ← S ∪ j , T ← T ∪ ei j ,

deg[i] + +, deg[ j] + +, break;

31 if (the search is not successful) then
32 for (each vertex i ∈ S) do
33 if (deg[i] < d) then
34 Search a random edge ei j (i ∈ S and j ∈ V \ S)

from p1;
35 if (the search is successful) then
36 mark[ j] ← 1, S ← S ∪ j , T ← T ∪ ei j ,

deg[i] + +, deg[ j] + +, break;

37 if (the search is not successful) then
38 Add an edge ei j ∈ E \ T of minimum edge-weight,

connecting a vertex i ∈ S (deg[i] < d) to a vertex
j ∈ V \ S;

39 mark[ j] ← 1, S ← S ∪ v2, T ← T ∪ ev1v2 ,
deg[v1] + +, deg[v2] + +;
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At the beginning of Xover, add a vertex v1 ∈ V , which
is selected uniformly at random, to S. Label v1 marked
(mark[v1] ← 1). With probability (Pbp1 p2), pick a random
edge among all candidate edges in p1, otherwise pick a ran-
dom edge among all candidate edges in p2 with probability
(1-Pbp1 p2 ). Here a candidate edge is an edge that connects a
vertex in S to a vertex v2 ∈ V \ S; and the probability Pbp1 p2

is defined as 1/F(p1)
1/F(p1)+1/F(p2)

(Beasley and PC 1996). F(p1)
and F(p2), respectively, are the fitness of p1 and p2. Such
probability mechanism favors the fitter parent so that more
and more number of edges of fitter parent would participate
in constructing T of T C in comparison with that of lesser fit
parent. Add this selected edge ev1v2 to T of T C . Increment the
value of deg[v1] and deg[v2] by one. Add v2 to S, and label
v2 marked (mark[v2] ← 1). Hereafter, iteratively at each
step, search a random edge (say ei j ) that connects a vertex
i ∈ S (deg[i] < d) to an unmarked vertex j ∈ V \ S, from
either p1 with probability (Pbp1 p2) or p2 with probability
(1 − Pbp1 p2 ). If the search is successful, add this searched
ei j to T of T C . Increment the value of deg[i] and deg[ j] by
one. Add j to S, and label j marked (mark[ j] ← 1). If the
search is not successful, Xover switches to other parent in
order to search another random edge (say ei j ). If the search
is successful, add this searched edge ei j to T of T C . Incre-
ment the value of deg[i] and deg[ j] by one. Add j to S,
and label j marked (mark[ j] ← 1). If the search is still not
successful, then search a minimum edge-weight edge (say
ei j ) that connects a vertex i ∈ S (deg[i] < d) to a vertex
j ∈ V \ S from E-{ edges of both parent solutions p1 and
p2 }. Add this searched edge ei j to T of T C . Increment the
value of deg[i] and deg[ j] by one. Add j to S, and label
j marked (mark[ j] ← 1). This procedure is repeated until
V \ S becomes empty. At this juncture, a feasible degree-
constrained spanning tree T of T C (newly generated child
solution) is constructed.

Though our Xover shares similar ideas of crossover oper-
ator used in ES-EA (Raidl and Julstrom 2003) and HES-EA
(Raidl and Julstrom 2003), but the way of inheriting edges
from parents is quite different. In ES-EA, the crossover oper-
ator selects edges of parents in a random order, whereas in
HES-EA, the crossover operator uses edge-cost heuristic to
select edges of parents. The basic idea of edge-cost heuristic
is to include low-cost edges into a candidate solution with
higher probabilities than high-cost edges. After considering
edges from both parents in ES-EA andHES-EA, if the gener-
ated degree-constrained spanning tree T associated with the
child solution is not feasible, then to make it feasible, edges
are selected from the set of edges E \ T .

We present an example that illustrates the difference
between crossover operator used in HES-EA (Raidl and
Julstrom 2003) and our proposed Xover. For that we con-
sider the dc-MST problem with d = 3. In this example, we

Fig. 1 Weight matrix C1 of graph G1
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Fig. 2 Parents p1 and p2

consider an edge-weighted, undirected and connected graph
G1(V , E, w), where |V | = 7; |E | = 21; and a weight (w) is
associated with each edge ∈ E (one can see Fig 1). Figure 1
presents the edge-weight matrix (C1) of G1. Figure 2a, b
represents two parent solutions p1 and p2, respectively. The
fitness of p1 and p2 is 27 and 24, respectively. To generate a
child solution T C , Xover for HSSGA starts with selecting
a vertex (say v7) randomly (see Fig. 3a). Xover probabilisti-
cally selects an edge ev7v6 that connects a vertex v7 ∈ S to a
vertex v6 ∈ V \ S from parent p2 (as per Algorithm 2) and
adds this selected edge to the empty degree-constrained span-
ning tree (say T ) of T C (see Fig. 3b). Hereafter, iteratively, at
each step, Xover selects an edge either from p1 with proba-
bility (Pbp1 p2) or from p2 with probability (1-Pbp1 p2 ). Once
an edge is selected, it is added to T . Continuing this iterative
process, an edge ev7v2 is selected from parent p2 and is added
to T of T C (Fig. 3c). In a similar way, ev7v4 and ev6v3 , respec-
tively, selected from parent p1 and p1 are added to T of T C

(see Fig. 3d, e). Figure 3e shows the situation of no candidate
edge from the current parent p1, then Xover switches to p2
in order to select a candidate edge; however, Xover also fails
to find a single candidate edge after switching to p2. Xover ,
then, greedily selects a candidate edge ev6v5 ∈ E \ T (see
Fig. 3f). Similarly, edge ev1v2 ∈ E \ T is also selected and is
added to T of T C (see Fig. 3g). Figure 3g presents a feasible
generated T of T C whose fitness is 13. Figure 4a–f illustrates
how the crossover operator in HES-EA (Raidl and Julstrom
2003) is applied to generate a child solution T C . Figure 4a
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Fig. 3 Xover in HSSGA

shows the set of edges (E p1 p2 ) that are common (E p1 ∩ E p2 )
to both parents (p1 and p2), where E p1 and E p2 are the set of
edges of p1 and p2, respectively. Figure 4b shows the set of
edges (say E ′) that includes (E p1 ∪E p2)−(E p1 ∩E p2) edges
from both parents. According to crossover operator used in
HES-EA (Raidl and Julstrom 2003), first it includes all edges
from the set E p1 p2 to the empty degree-constrained spanning
tree (T ) of the child solution T C (see Fig. 4c). Hereafter, iter-
atively, at each step, it greedily selects an edge from the set
E ′ without violating the degree constraint of T of T C . Con-
tinuing this iterative process, first an edge ev7v6 is selected
(see Fig. 4d). Hereafter, edges ev7v4 and ev4v2 are selected and
are added to T of T C (see Fig. 4e, f). Figure 4f denotes the
resultant feasible T of T C whose fitness is 23. ES-EA (Raidl
and Julstrom 2003) follows the same procedure to generate
T C with the difference that it selects edges randomly from
the set E ′.
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Fig. 4 Crossover in HES-EA (Raidl and Julstrom 2003)

3.6 Mutation operator

The role of mutation operator is used to provide diversity in
the population. InHSSGA, mutation operator (referred to as
Mut) starts with a parent solution (p1) selected from the pop-
ulation with the help of binary tournament selection method.
Copy this selected parent solution to an empty child solution
(say T C ). Hereafter, Mut performs edge-deletion-insertion
operation on T C . In this operation, first deletion of an edge
(say euv) selected randomly from the spanning tree T of T C

is performed, leading to the partition of T into two different
components (say Tu and Tv). To connect these two compo-
nents, an edge (different from euv) is searched in E \ T in
such a way that the degree constraint of the resultant T does
not get violated after insertion of this searched edge. Note
that ES-EA (Raidl and Julstrom 2003) and HES-EA (Raidl
and Julstrom 2003) follow edge-insertion-deletion in muta-
tion operator, whereas Mut follows edge-deletion-insertion.
HES-EA (Raidl and Julstrom 2003) inserts low-weight edge
instead of a random edge like ES-EA.

Also note that similar to (Sundar 2014; Sundar and Singh
2015, 2017), crossover operator (Xover) and mutation oper-
ator (Mut) for HSSGA are applied in a mutually exclusive
way which is different from the way crossover and mutation
operators are applied in ES-EA (Raidl and Julstrom 2003)
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and HES-EA (Raidl and Julstrom 2003). With probability
Pc, Xover is selected, otherwise Mut is selected with the
probability (1-Pc). The reason behind this one is that Xover
generates T C with potentially good edges inherited from
their parents, whereas Mut generates T C based on edge-
deletion-insertion operation. If Mut is applied after Xover,
then the chances are high that the resultant child solution
may lose some potentially good edges inherited from parent
solutions of Xover.

3.7 Local search strategies (LS)

To further improve the quality of a currently generated child
solution T C , local search strategies (LS) based on two-edges
replacement (referred to as 2ER) and one-edge replacement
(referred to as 1ER) methods are applied conditionally. Edge
replacement strategy is a common idea that is based on dele-
tion of an edge euv ∈ T of T C and inclusion of a new edge
exy ∈ E . LS are applied on T C only when the following
condition holds true:

(
F(T gb)

F(T C )
+ α × dis(T gb, T C )

)
> 1; (1)

where T gb is the best-so-far generated solution; F(T gb) and
F(T C ) are, respectively, the fitness of T gb and T C ; α is a
parameter to be determined empirically; and dis(T gb, T C )

denotes the distance between T gb and T C in terms of fraction
of edges of T C that are not common to the edges of T gb. The

first part F(T gb)

F(T C )
in conjunction with the second part α ×

dis(T gb, T C ) of Eq. 1 relates to the quality-and-distance
feature. The rationale behind using this condition (equation)
is that this equation avoids applying LS on such generated
child solution which is slightly inferior to F(T gb) (quality),
but is not sufficiently far from T gb (distance). This way also
saves the computational time. If the current child solution T C

satisfies equation 1, then the LS will be applied on T C . LS is
applied on T C in the following order: two-edges replacement
(2ER)→ one-edge replacement (1ER). Descriptions of 2ER
and 1ER are as follows:

2ER in HSSGA follows the idea of 2-EdgeReplacement
local search strategy (Bui et al. 2012); however,
2-EdgeReplacement local search strategy in Bui et al. (2012)
uses |V |/2 iterations until no improvement is possible in Bui
et al. (2012), whereas 2ER is applied at most three iterations.
In each iteration of 2ER, a random edge (say euv ∈ T of
T C ) is picked, and among all candidate non-adjacent edges
of euv in T of T C , only that edge (say ewx ) is picked if
replacement of euv and ewx with two new edges euw ∈ E \ T
and evx ∈ E \ T leads to the maximum improvement in the
resultant T of T C .

Algorithm 3: The pseudocode of 1ER of LS

Input : Degree-constrained spanning tree T of the current child
solution T C

Output: A new feasible spanning tree T of T C , iff, 1ER takes place
1 i t ← 3 ;
2 count ← 0 ;
3 Fc ← F(T C ) ;
4 while(count < i t) do

// First stage of 1ER
5 for (each edge euv ∈ T whose degree of at least one end vertex

degree is equal to d (i.e., deg[u] == d || deg[v] == d)) do
6 Search an edge exy ∈ E \ T whose w(x, y) ≤ w(u, v) and

exy ∪ T does not violate the degree constraint of the resultant
T , if edge-replacement takes place;

7 if (the search is successful) then
8 T ← (T − euv) ∪ exy ;
9 Fc ← (Fc − w(u, v)) + w(x, y);

// Second stage of 1ER
10 for (each edge euv ∈ T ) do
11 Search an edge exy ∈ E \ T whose w(x, y) < w(u, v) and

exy ∪ T does not violate the degree constraint of the resultant
T , if edge-replacement takes place;

12 if (the search is successful) then
13 T ← (T − euv) ∪ exy ;
14 Fc ← (Fc − w(u, v)) + w(x, y);

15 if (F(T C ) > Fc) then
16 F(T C ) ← Fc ;

17 count ← count + 1 ;

1ER inHSSGA examines the edges of T of T C for possi-
ble edge-replacement in two stages followed one-by-one. In
the first stage of 1ER, for each edge euv ∈ T whose degree of
at least one end point (vertex) is equal to d (i.e., deg[u] == d
or deg[v] == d), search an appropriate edge exy ∈ E \ T
whosew(x, y) ≤ w(u, v) for edge-replacement without vio-
lating the degree constraint of the resultant T of T C if such
edge-replacement takes place. If the search is successful, then
euv is replaced with exy in T (see Algo. 3, line no. 5–9). The
idea behind this edge-replacement is that if the degree of the
vertex v (deg[v] == d) in T is reduced, then in the second
stage, therewill be possibility that the edgewith lesserweight
may attach to v. Keeping this idea, after completion of the
first stage, the second stage is applied. In the second stage, for
each edge euv ∈ T , search an appropriate edge exy ∈ E \ T
whose edge-weightw(x, y) is less than edge-weightw(u, v)

of euv for exchange. If the search is successful, replace euv

with exy in T (see Algo. 3, line no. 10–14), resulting in the
reduction of weight of the resultant T of T C .

Note that our proposed 1ER for HSSGA is different
from 1-EdgeReplacement (Bui et al. 2012). 1ER consists
of two stages and is based on first-fit improvement strategy,
whereas 1-EdgeReplacement (Bui et al. 2012) consists of
only one stage and is based on best-fit improvement. Also,
1-EdgeReplacement in Bui et al. (2012) is applied repeatedly
until no improvement is possible, whereas 1ER is applied at
most three iterations (see the pseudocode of 1ER of LS in
Algorithm 3).
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3.8 Replacement strategy (RS)

Uniqueness of each newly generated child solution T C is
checked against all individuals of the current population.
If T C is found to be unique, then T C replaces a randomly
selected solution of the current population whose fitness is
greater than the average fitness of the current population.

In addition to the above replacement strategy (RS), we
follow one more step in this replacement strategy (referred
to as RS+). This strategy is followed onlywhen T C is unique.
The need of RS+ was felt intuitively during our initial exper-
imentations that the search process ofHSSGA without RS+
often got trapped into local optimum, indicating the lack
of carrying out diversity in the population generation-over-
generation in the search space effectively. RS+ is applied
onlywhen this indication is identified.Our assumption of this
identification is based on this fact if the best-so-far generated
solution (T gb) stops emerging (in terms of better solution
quality) for a certain number of generations, say P Rpop

(P Rpop is set to 500 empirically after a large number of
trials) in the course of search. In RS+, a perturbation strat-
egy is applied on the current population at a regular interval
of time (i.e., P Rpop). In this perturbation strategy, a subset
(say rs) of individuals (solutions) of the current population
is selected randomly, where rs is a parameter to be deter-
mined empirically. Each solution (say Ti ∈ rs) is perturbed
with the help of mutation operator Mut (see Sect. 3.6). If
the perturbed solution T

′
of Ti is unique against all indi-

viduals of the current population, then T
′
is included into

the current population by replacing its own old solution Ti .
Otherwise, T

′
is discarded. Applying perturbation strategy

on a set of random solutions (rs) force the population to be
diversified throughout the search process, helping in finding
high-quality solutions.

4 Computational results

HSSGA is implemented in C and executed on a Linux-based
operating system with the configuration of Intel Core i5 pro-
cessor 3.3 GHz × 4 with 4 GB RAM. In all our experiments
withHSSGA, we have used pop = 300 (population of solu-
tions), Pb = 0.90 (see Sect. 3.4) and Pc = 0.50 (crossover
probability, see Sect. 3.6), α = 0.10 (see Sect. 3.7), and rs =
0.05 (5% solutions of pop are perturbed (see Sect. 3.8)).
All these parameters are set empirically after a large num-
ber of trials. Although these parameter values provide good
results on most of the instances, they may not be optimal for
all instances. We have tested HSSGA on the available 107
benchmark instances which were also used for the recent
one ant-based algorithm (ABA) (Bui et al. 2012). Some
of these instances were also used for HES-EA (Raidl and
Julstrom 2003). These instances can be classified into two

groups—Euclidean and non-Euclidean instances. Euclidean
instances consist of three different sets, i.e., CRD, SYM and
STR, whereas non-Euclidean instances consist of three dif-
ferent sets, i.e., SHRD, random hard (R) and misleading
hard (M). These benchmark instances can be downloaded
from the link https://turing.cs.hbg.psu.edu/benchmarks/file_
instances/spanning_tree/. The descriptions of 107 bench-
mark instances that are classified into six different data sets
with varying sizes from 15 to 500 vertices (nodes) are as
follows:

– CRD data set This data set consists of graphs whose
sizes vary from 50 to 100 vertices. Vertices in such a
graph are generated by using a uniform distribution in a
two-dimensional plane and edge-weight is the Euclidean
distance between two vertices.

– SYM data set This data set consists of graphs whose
sizes vary from 50 to 70 vertices. These graphs are anal-
ogous to the CRD instances except vertices are generated
by using a uniform distribution in a higher dimensional
Euclidean space. Edge-weight is the Euclidean distance
between two vertices.

– STRdata set This data set consists of graphswhose sizes
vary from 50 to 100 vertices. Vertices in such a graph
are randomly distributed points in a higher dimensional
space grouped together as cluster and edge-weight is the
Euclidean distance between two vertices.

– SHRD data set This data set consists of graphs whose
sizes vary from 15 to 30 vertices. These graphs are gen-
erated by assignment of non-Euclidean distances to the
graph edges in such a way that the number of optimal
solutions is limited (Krishnamoorthy et al. 2001).

– Random-hard (R) data set This data set consists of
graphs whose sizes vary from 50 to 200 vertices. These
are non-Euclidean graph instances and edge-weights are
randomly generated from a pre-defined interval by using
a uniform distribution.

– Misleading-hard (M) data set This data set consists of
graphs whose sizes vary from 50 to 500 vertices. These
are non-Euclidean graph instances and edge-weights
are randomly generated from a pre-defined interval by
using a uniform distribution. Graphs of M-data sets are
designed to mislead greedy algorithms.

We compare our approachHSSGAwith two state-of-the-
art metaheuristic techniques, i.e., ant-based algorithm (ABA)
(Bui et al. 2012) and HES-EA (Raidl and Julstrom 2003).
Since authors (Bui et al. 2012) carried out all their experi-
ments on a system based on Intel Core 2 Duo E8600 at 3.33
GHz with 6 GBRAM and executed ABA for 50 runs on each
instance. Note that authors (Bui et al. 2012) used available
97 benchmark instances, but results of ABA on 97 instances
reported by authors are partial in terms of average solution
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quality and average total execution time. Out of 97 instances,
authors (Bui et al. 2012) reported the best value obtained over
50 runs on all instances, but did not report the average solu-
tion quality and average total execution time over 50 runs for
56 and 40 instances, respectively. Also, the computer sys-
tem used for HSSGA is different from that of ABA (Bui
et al. 2012). For HES-EA (Raidl and Julstrom 2003), authors
performed 50 runs on each considered instance and used a
termination criterion when the best-so-far solution obtained
does not improve over 1,00,000 generations on considered
instance, but did not report computational time on each con-
sidered instance. Authors carried out their experiments on a
system based on Pentium-III/800-MHz PC, which is differ-
ent from the computer system used for HSSGA. Hence, we
find difficulty to analyze exact comparison with ABA due to
different computer platform and the way the computational
results are reported in their paper as well as HES-EA due to
different computer platform and unavailability of computa-
tional time on each considered instance. Looking at all these
aspects of difficulties, we have implemented HES-EA and
ABA using same values of parameters mentioned in their
respective papers for the purpose of giving a fair comparison
with HSSGA. Like HSSGA, we have implemented ABA
and HES-EA in C and executed on a Linux-based operating
system with the configuration of Intel Core i5 processor 3.3
GHz × 4 with 4 GB RAM. All approaches (HSSGA, HES-
EA and ABA) have been executed for 50 independent runs
on each instance in order to test their robustness. We have set
the same stopping criterion (in terms of computational time)
for each approach (HSGGA, HES-EA and ABA) as per the
instance size (1 s for |V | <100, 10 s for |V | == 100, 60 s for
|V | == 200, 200s for |V | == 300, 600s for |V | == 400,
and 1000s for |V | == 500).

Subsequent subsections discuss a detailed comparison of
HSSGA with HES-EA (Raidl and Julstrom 2003) and ABA
(Bui et al. 2012).

4.1 Comparison ofHSSGAwith HES-EA (Raidl and
Julstrom 2003) and ABA (Bui et al. 2012)

HSSGA has been compared with HES-EA (Raidl and
Julstrom 2003) and ABA (Bui et al. 2012) on a set of avail-
able 107 benchmark instances. Since ABA uses the two
local search strategies based on 2-EdgeReplacement and 1-
EdgeReplacement in order to further improve the solution
quality of the currently constructed solution, and our pro-
posed approach HSSGA combines a steady-state genetic
algorithm (SSGA) and local search strategies based on 1ER
and 2ER. Therefore, in addition to analyzing the compar-
ison of HSSGA with ABA, we have also analyzed the
individual effect of 1ER and 2ER that combines with only
SSGA (including RS+ step) part of HSSGA (referred to

as, respectively, (SSGA)+1ER and (SSGA)+2ER) on bench-
mark instances.

Tables 1, 2 and 3 report the results of HES-EA, ABA,
(SSGA)+2ER, (SSGA)+1ER andHSSGA on Euclidean and
non-Euclidean instances. In these tables, column Instance
denotes the nameof instance; column |V | denotes the number
of vertices corresponding to its instance; column d denotes
the degree constraint on its corresponding instance; each
next four columns Best, Avg, SD and ATET, respectively,
denote the best value, the average solution quality, standard
deviation and the average total execution time obtained by
HES-EA, ABA, (SSGA)+2ER, (SSGA)+1ER and HSSGA
over 50 runs. For each instance, the best value (Best) and the
best average solution quality (Avg) among HES-EA, ABA,
(SSGA)+2ER, (SSGA)+1ER andHSSGA are highlighted in
bold.

Table 1 reports the results of 27Euclidean instances. Com-
paring with HES-EA,HSSGA, in terms of Best, is better on
19, equal on 6 and is worse on 2 instances;HSSGA, in terms
ofAvg, is better on 18, equals on 1 and isworse on 8 instances.
Comparing with HES-EA, (SSGA)+1ER, in terms of Best,
is better on 20, equals on 6 and is worse on 1 instances;
(SSGA)+1ER, in terms of Avg, is better on 21, equals on 1
and is worse on 5 instances. Similarly, comparing with HES-
EA, (SSGA)+2ER, in terms of Best, is better on 8, equals on
4 and is worse on 15 instances; (SSGA)+2ER, in terms of
Avg, is better on 2, equals on 1 and is worse on 24 instances.
Comparing with ABA, HSSGA, in terms of Best, is better
on 23 and equals on 4 instances; HSSGA, in terms of Avg,
is better on 26 and equals on 1 instances. Comparing with
ABA, (SSGA)+1ER, in terms of Best, is better on 22 and
equals on 5; (SSGA)+1ER, in terms of Avg, is better on 26
and equals on 1 instances. Similarly, comparing with ABA,
(SSGA)+2ER, in terms of Best, is better on 20, equals on 2
and is worse on 5; (SSGA)+2ER, in terms of Avg, is better
on 17 equals on 1 and is worse on 9 instances.

Table 2 reports the results of 52 instances. Comparing
with HES-EA, HSSGA, in terms of Best, is better on 11
and equals on 41 instances; HSSGA, in terms of Avg, is
better on 26, equals on 24 and is worse on 2 instances.
Comparing with HES-EA, (SSGA)+1ER, in terms of Best,
is better on 11, equals on 40 and is worse on 1 instances;
(SSGA)+1ER, in terms of Avg, is better on 20, equals on 28
and is worse on 4 instances. Similarly, comparing with HES-
EA, (SSGA)+2ER, in terms of Best, is better on 5, equals on
29 and is worse on 18 instances; (SSGA)+2ER, in terms of
Avg, is better on 11, equals on 7 and is worse on 34 instances.
Comparing with ABA, HSSGA, in terms of Best, is better
on 19 and equals on 33 instances;HSSGA, in terms of Avg,
is better on 31 and equals on 21 instances. Comparing with
ABA, (SSGA)+1ER, in terms of Best, is better on 19 and
equals on 33 instances; (SSGA)+1ER, in terms of Avg, is
better on 29, equals on 22 and worse on 1 instances. Simi-
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larly, comparing with ABA, (SSGA)+2ER, in terms of Best,
is better on 16, equals on 22 and is worse on 14 instances;
(SSGA)+2ER, in terms of Avg, is better on 23, equals on 6
and is worse on 23 instances.

Table 3 reports the results of 28 non-Euclidean instances.
ComparingwithHES-EA,HSSGA, in terms ofBest, is better
on 5 and equal on 23 instances; HSSGA, in terms of Avg,
is better on 12 and equals on 16 instances. Comparing with
HES-EA, (SSGA)+1ER, in terms of Best, is better on 4 and
equals on 24 instances; (SSGA)+1ER, in terms of Avg, is
better on 8, equals on 15 and worse on 5 instances. Similarly,
comparing with HES-EA, (SSGA)+2ER, in terms of Best, is
better on 3 andworse on 25 instances; (SSGA)+2ER, in terms
of Avg, is better on 3 and worse on 25 instances. Comparing
with ABA, HSSGA, in terms of Best, is better on 6 and
equals on 22 instances;HSSGA, in terms of Avg, is better on
16, equals on 11 and worse on 1 instances. Comparing with
ABA, (SSGA)+1ER, in terms of Best, is better on 3, equals
on 22 and worse on 3 instances; (SSGA)+1ER, in terms of
Avg, is better on 10, equals on 10 and worse on 8 instances.
Similarly, comparing with ABA, (SSGA)+2ER, in terms of
Best, is worse on all 28 instances; (SSGA)+2ER, in terms of
Avg, is worse on all 28 instances.

One can observe clearly from the results of Tables 1, 2
and 3 that HSSGA and (SSGA)+1ER are superior to both
HES-EA and ABA in terms of both Best and Avg.

4.2 Analyses on the two key components ofHSGGA

In this subsection, we carry out analyses on the two key
components of HSGGA: (i) effectiveness of quality-and-
distance feature in the local search strategies (ii) effectiveness
of RS+ in the replacement strategy. In addition, we also carry
out statistical analyses about significant differences between
HSGGA vs HES-EA and HSGGA vs ABA.

4.2.1 Effectiveness of quality-and-distance feature in the
local search strategies

To analyze the effectiveness of quality-and-distance feature
in the local search strategies (LS), we have performed exper-
iments based on (i) HSSGA that uses quality-and-distance
feature in the LS and (ii) HSSGA that does not use quality-
and-distance feature (i.e.,HSSGA - {quality-and-distance})
in the LS for the dc-MST problem. In these experiments, we
consider two instances (SYM702 and SYM704 for d = 2)
selected randomly. The stopping criterion of HSSGA and
HSSGA - {quality-and-distance} is set to 1 s for SYM702
and SYM704 instances. Figure 5a, b depicts the evolution
of average solution quality (Avg) based on 50 runs) over
average total execution time (ATET ). Y-axis represents the
Average Solution Quali t y, whereas X-axis represents the
Average T otal Execution T ime. The curves in Fig. 5a,

b clearly demonstrate that HSSGA that uses quality-and-
distance feature in the LS finds better solution qualities as
well as converges faster than that ofHSSGA - {quality-and-
distance}. Hence, such experiments justify the usefulness of
quality-and-distance feature in the LS.

4.2.2 Effectiveness of RS+ in the replacement strategy

To analyze the effect of RS+,we have performed experiments
based on (i) HSSGA that uses RS+ and (ii) HSSGA with-
out RS+ (i.e., HSSGA - {RS+}) for the dc-MST problem.
In these experiments, we consider two instances (SYM702
and SYM704 for d = 2) selected randomly. Figure 6a,
b exhibit the average solution quality (Avg) over 50 runs
versus the number of generations on considered instances.
In these experiments, HSSGA and HSSGA - {RS+} are
allowed to execute over 50000 generations. X-axis represents
theGeneration, while Y-axis represents Average Solution
Quali t y. The curves in Fig. 6a, b clearly demonstrate that
HSSGA that uses RS+ finds better solution qualities as well
as converges faster than that ofHSSGA-{RS+}.Hence, such
experiments justify the usefulness of RS+ in the replacement
strategy.

4.2.3 Statistical analysis

For statistical analysis,weperformnonparametricWilcoxon’s
signed-rank test (García et al. 2009) on each group of
instances (Euclidean and non-Euclidean) in order to com-
pare HSSGA with HES-EA (Raidl and Julstrom 2003) and
ABA (Bui et al. 2012) in terms of the best (Best) and average
solution quality (Avg). We use Wilcoxon’s signed-rank test
calculator available at the link http://www.socscistatistics.
com/tests/signedranks/Default2.aspx. For this statistical test,
we first calculate the difference between the results obtained
by each two compared approaches (HES-EA vs. HSSGA
and ABA vs. HSSGA) on each group, and then, rank them
according to its absolute value. For each group, R+ is the
sum of ranks in which the second approach outperforms the
first, while R− denotes the sum of ranks for the opposite
case. If min{R+; R−} is less than or equal to the critical
value, then this test detects significant difference between the
two compared approaches. The critical values are taken from
the statistical table available at the link http://users.stat.ufl.
edu/athienit/Tables/tables. Table 4 and 5 report the results
of Wilcoxon’s signed-rank test with a level of significance
α = 0.05 for the Best and Avg over 50 runs, respectively.

In Tables 4 and 5, columnGroup denotes the name of each
groups; column Comparison denotes the name of two com-
pared approaches; the next five columnsSample Size,Critical
Value, R+, R− and Significant, respectively, denote the sam-
ple size, critical value, R+, R− and significant difference
between the two compared approaches (“yes” if there exists
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(a) (b)

Fig. 5 Improvement of average solution quality over average total execution time

(a) (b)

Fig. 6 Improvement of average solution quality over successive generations
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Table 4 Results of statistical comparison for the best value (Best)

Group Comparison Best

Sample size Critical value R+ R− Significant

Euclidean HES-EA versus HSSGA 31 147 479 17 Yes

ABA versus HSSGA 41 279 861 0 Yes

Non-Euclidean HES-EA versus HSSGA 5 Unknown 15 0 Not applicable

ABA versus HSSGA 7 2 28 0 Yes

Table 5 Results of statistical comparison for the average solution (avg) over 50 runs

Group Comparison Avg

Sample size Critical value R+ R− Significant

Euclidean HES-EA versus HSSGA 46 361 925 156 Yes

ABA versus HSSGA 47 378 1128 0 Yes

Non-Euclidean HES-EA versus HSSGA 19 46 190 0 Yes

ABA versus HSSGA 26 98 337 14 Yes

Table 6 Overall comparison ofHSSGA with HES-EA (Raidl and Jul-
strom 2003) and ABA (Bui et al. 2012)

Approaches Best Avg

HES-EA ABA HES-EA ABA

Better 35 48 56 73

Equal 70 59 41 33

Worse 2 0 10 1

a significant difference between two compared approaches,
otherwise “no”) for each Best and Avg on each group. On
comparison with HES-EA,HSSGA, in terms of Best, is bet-
ter on 3 out of 4 statistical tests, and HSSGA, in terms of
Avg is better on 4 out of 4 statistical tests. The result of test
HES-EA vs. HSSGA for the Best is unknown because the
sample size is not big enough to return a critical value at the
level of significance α = 0.05. On comparison with ABA,
HSSGA, in terms of Best, is better on 4 out of 4 statistical
tests, andHSSGA, in termsofAvg is better on4out of 4 statis-
tical tests. This test discloses significant differences between
HES-EA vs. HSSGA and ABA vs. HSSGA. Tables 4
and 5 clearly show that HSSGA is superior to HES-EA
and ABA.

4.3 Collective picture

This subsection presents a collective picture that describes
an overall comparison of HSSGA with HES-EA (Raidl and
Julstrom 2003) and ABA (Bui et al. 2012) on 107 benchmark
instances.

Table 6 gives an overall comparison ofHSSGAwithHES-
EA (Raidl and Julstrom 2003) and ABA (Bui et al. 2012) on
both best value (Best) and average solution quality (Avg).One
can observe clearly from the results of Table 6 thatHSSGA
is superior to HES-EA and ABA in terms of both Best and
Avg.

5 Conclusion

In this paper, we have presented a hybrid approach (HSSGA)
combining a steady-state genetic algorithm and local search
strategies for the degree-constrained minimum spanning
tree (dc-MST) problem. HSSGA is quite different from
the hybrid approach (HES-EA) (Raidl and Julstrom 2003)
which is the best one among all existing variants of
genetic algorithm for dc-MST problem, particularly on three
components—problem-specific crossover operator, local
search strategies and an additional step in the replace-
ment strategy. The way problem-specific crossover operator
(Xover) inherits good edges of parent individuals in the newly
generated child solution (say T C ) as much as possible and
at the same time Xover maintains the degree constraint of
all non-leaf vertices of T C makes it quite different from the
existing crossover operators designed for this problem. The
role of local search strategies if applied on newly generated
child solution is used to intensify the search around the gen-
erated child solution, whereas the role of an additional step
(based on perturbation strategy at a regular interval of time)
in the replacement strategy is used tomaintain diversity in the
current population throughout the search process.All compo-
nents of HSSGA effectively coordinate with each other and
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help in makingHSSGA more effective and robust in finding
high-quality solutions. On a set of 107 benchmark instances,
computational results show that HSSGA is overall superior
to state-of-the-art metaheuristic techniques (HES-EA Raidl
and Julstrom 2003 and ABA Bui et al. 2012). We have also
performed experimental analyses that justify the usefulness
of quality-and-distance feature in the local search strategies
and RS+ in the replacement strategy in HSSGA.

In future work, quality-and-distance feature in the local
search strategies aswell as RS+ in the replacement strategy in
HSSGA can be applied to develop variants of hybrid genetic
algorithm for other NP-hard spanning tree problems as
well as otherNP-hard combinatorial optimizationproblems.
Even quality-and-distance feature in the local search strate-
gies inHSSGAcan be applied to develop othermetaheuristic
techniques for NP-hard combinatorial optimization prob-
lems. The idea used in designing problem-specific crossover
operator for the dc-MST problem can be also applied to
develop variants of hybrid genetic algorithm for other NP-
hard spanning tree problems.
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