Soft Computing (2020) 24:2169-2186
https://doi.org/10.1007/s00500-019-04051-x

METHODOLOGIES AND APPLICATION

®

Check for
updates

A hybrid genetic algorithm for the degree-constrained minimum

spanning tree problem
Kavita Singh'! . Shyam Sundar’

Published online: 14 May 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Given an undirected, connected, edge-weighted graph G and a positive integer d, the degree-constrained minimum spanning
tree (dc-MST) problem aims to find a minimum spanning tree 7 on G subject to the constraint that each vertex is either a
leaf vertex or else has degree at most d in T, where d is a given positive integer. The dc-MST is A"P-hard problem for d > 2
and finds several real-world applications. This paper proposes a hybrid approach (HSSGA) combining a steady-state genetic
algorithm and local search strategies for the this problem. An additional step (based on perturbation strategy at a regular
interval of time) in the replacement strategy is applied in order to maintain diversity in the population throughout the search
process. On a set of available 107 benchmark instances, computational results show the superiority of our proposed HSSGA
in comparison with the state-of-the-art metaheuristic techniques.

Keywords Degree-constrained - Spanning tree - Steady-state genetic algorithm - Problem-specific crossover operator - Local

search - Replacement strategy

1 Introduction

Given an undirected, connected and edge-weighted graph
G(V, E,w), where V is the set of nodes or vertices; E is
the set of edges; and w(i, j) is a positive weight that is asso-
ciated with each edge ¢;; € E whose end points are i and
J vertices, the degree-constrained minimum spanning tree
(dc-MST) problem aims to find a minimum spanning tree
(T) of G such that each vertex is either a leaf vertex or else
has degree at most d in T, where d is a given positive integer.

There is a rich literature related to dc-MST problem. For
example, minimum branch vertices and minimum degree
sum of branch vertices based spanning tree problems (Cer-
rone et al. 2014; Gargano et al. 2002; Marin 2015; Moreno
etal. 2018; Silvestri et al. 2017; Sundar and Singh 2012), and

Communicated by V. Loia.

B<I Shyam Sundar
ssundar.mca@nitrr.ac.in

Kavita Singh
ksingh.phd2015.mca@nitrr.ac.in

Department of Computer Applications, National Institute of
Technology Raipur, Raipur 492010, India

a closely related version of dc-MST has been recently intro-
duced in an uncertain random network, where some weights
are uncertain variables and others are random variables (Gao
et al. 2017).

The dc-MST is N'P-Hard for d > 2 (Garey and Johnson
1979). This problem finds several real-world applications,
such as in the context of backplane wiring among pins, where
any pin could be wrapped by at most a fixed number of wire-
ends on the wiring panel (Boldon et al. 1996); in designing
the road system that can be used to serve the suburbs with
the constraint that no more than four roads may meet at any
crossing (Savelsbergh and Volgenant 1985); in VLSI design-
ing, where the number of transistors that can be driven by
the output current of a transistor is the degree bound for
VLSI routing trees (Boldon et al. 1996); in electrical circuits
design (Narula and Ho 1980); and in communication net-
works where the maximum degree in a spanning tree is a
measure of vulnerability to single-point failures (Ravi et al.
1993).

The dc-MST is a well-studied problem. Many approaches
including exact as well as heuristic approaches have been
developed for this problem. Among these approaches, Narula
and Ho (1980) proposed a primal and a dual heuristic pro-
cedure and a branch-and-bound algorithm for this problem.
Later, two general heuristic and a branch-and-bound algo-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-019-04051-x&domain=pdf
http://orcid.org/0000-0001-9679-0892

2170

K. Singh, S. Sundar

rithm were proposed (Savelsbergh and Volgenant 1985).
Boldon et al. (1996) proposed four heuristic based on Prim’s
algorithm (Prim 1957).

Literature has also witnessed a number of metaheuris-
tic approaches for this problem. Among metaheuristic
approaches, various versions of genetic algorithm (GA) have
been proposed. For example, Zhou and Gen (1997) presented
a GA based on Prufer-encoding, Knowles and Corne (2000)
presented a GA based on a |V|x (d-1) array encoding, and
Raidl and Julstrom (2000) presented GA using a weight-
coding. Later, Raidl and Julstrom (2003) further presented
two versions (ES-EA and HES-EA) of evolutionary approach
in which the first version (ES-EA) demonstrates the use-
fulness of the edge-set encoding, and the second version
(HES-EA) which also uses edge-set encoding, but incor-
porates edge-cost heuristic in the initialization, crossover
operator and mutation operator. The basic idea behind edge-
cost heuristic in HES-EA (Raidl and Julstrom 2003) is to
include low-cost edges into a candidate solution with higher
probabilities than high-cost edges. Experimental results show
that the edge-set encoded with edge-cost heuristic, i.e., HES-
EA, performs better than the previous versions of GA.

In addition, various ant colony optimization approaches
(Bau et al. 2005; Bui and Zrncic 2006; Doan 2007) as
well as particle swarm optimization approaches (Binh and
Nguyen 2008; Ernst 2010) have been proposed for the dc-
MST problem. Bui et al. (2012) proposed an ant-based
algorithm (ABA) for the dc-MST problem. In ABA, ants,
while exploring the graph, identify a subset of edge-set so
that a degree-constrained spanning tree can be constructed
from this set of edges. ABA uses two local search strategies—
2-EdgeReplacement and 1-EdgeReplacement—to further
improve the solution quality of currently constructed solu-
tion. In 2-EdgeReplacement, two edges associated with the
current feasible degree-constrained spanning tree (say 7') are
examined for replacement with the two new edges € E\ T
without violating the degree constraint of 7 with the aim
of further reduction in the weight of 7. Whereas, in 1-
EdgeReplacement, an edge in the current 7 is examined for
replacement with a new edge € E \ T without violating the
degree constraint of 7" with the aim of further reduction in
the weight of T'.

GA is a well-known evolutionary algorithm and has an
array of various encodings, genetic operators (crossover and
mutation operators) for combinatorial optimization prob-
lems. Even GA is flexible to integrate with problem-specific
heuristic in order to find high-quality solutions to the combi-
natorial optimization problem under consideration, leading
to various variants of GA or hybrid GAs for the same com-
binatorial optimization problem in the literature. For the
dc-MST problem, many researchers have proposed many
variants of GA or hybrid GA (Raidl and Julstrom 2000, 2003;
Zhou and Gen 1997) in search of finding high-quality solu-

@ Springer

tions. In this paper, we also develop a variant of hybrid genetic
algorithm (hybrid approach) for the dc-MST problem. The
motivation behind the development of hybrid approach is our
new designed problem-specific crossover operator which is
quite different from the existing crossover operators includ-
ing crossover operator of HES-EA (Raidl and Julstrom 2003)
(see Sect. 3.5). To make our hybrid approach effective and
robust, we incorporate various strategies (such as local search
strategies, if applied, are used to intensify the search around
the generated child solution and an additional step (based
on perturbation strategy at a regular interval of time) in
the replacement strategy is applied in order to maintain
diversity in the current population throughout the search pro-
cess) that try to balance the trade-off between exploitation
and exploration throughout the search. Hence, our hybrid
approach combines a steady-state genetic algorithm and local
search strategies for the dc-MST problem. On the avail-
able 107 benchmark instances, experimental results show
the superiority of our proposed hybrid approach in com-
parison with the best-so-far hybrid GA (i.e., HES-EA Raidl
and Julstrom 2003) and other state-of-the-art metaheuristic
technique (ABA Bui et al. 2012). Hereafter, our proposed
hybrid approach will be referred to as HSSGA. Note that
our proposed hybrid approach HSSGA is quite different
the hybrid approach (HES-EA) (Raidl and Julstrom 2003)
on mainly three components—problem-specific crossover
operator, local search strategies and an additional step in
the replacement strategy. Also, note that local search strate-
gies in HSSGA which is based on two-edges replacement
(referred to as 2ER) and one-edge replacement (referred to
as 1ER) are applied conditionally. 2ER follows the idea of
2-EdgeReplacement local search strategy used in ABA (Bui
etal. 2012), but 1ER which is common idea is different from
1-EdgeReplacement local search strategy used in ABA (Bui
et al. 2012).

The organization of the remaining paper is as fol-
lows: Sect. 2 presents a brief discussion on steady-state
genetic algorithm (SSGA); Sect. 3 presents our proposed
hybrid approach (HSSGA) for the dc-MST problem; Sect. 4
presents computational results; and Sect. 5 presents conclud-
ing remarks.

2 Steady-state genetic algorithm

Genetic algorithm (GA) is a stochastic search technique that
is stem from the principles of natural evolution (Holland
1975). In nature, during the evolution of the population,
individuals in the population compete with each other to
survive. Individuals who are more fit remain intact, while
less fit individuals do not survive. Similarly, in GA, more fit
chromosomes (solutions) have higher chances to participate
in genetic operators and to propagate their genes from one

A hybrid genetic algorithm for the degree-constrained minimum spanning tree problem 2171

generation to another. Genetic operators help GA in exploit-
ing the promising regions of the search space as well as in
exploring new region of the search space. Readers who are
interested in a general introduction to GA and its applications
may find in Cerrone et al. (2016), Goldberg (1989), lordache
et al. (2007) , Pop et al. (2013).

This paper presents a hybrid steady-state genetic algo-
rithm for the dc-MST problem. Steady-state GA (SSGA)
is different from generational GA (GGA) (Davis 1991), as
GGA, in each generation, generates a population of new child
solutions from the old population with the help of genetic
operators and replaces usually the current parent population
with the newly generated child population. While SSGA, in
each generation, typically generates a single new child solu-
tion from the old population with the help of genetic operators
and replaces an individual (solution) in the current population
with the newly generated child solution.

3 Hybrid steady-state genetic algorithm for
the dc-MST

Algorithm 1: The pseudocode of HSSGA
Input : A connected, edge-weighted and undirected complete
graph G = (V, E, w), and a positive integer constant d
Output: A degree-constrained spanning tree T2”

1 Generate a population of initial solutions < 71, T3, ..
of size pop;

s Tpop >

2 T8% « Best-so-far solution in the population;
3 while Termination criterion is not met do
// u0l is a uniform variate

4 if ©01 < P, then
5 p1 < BTS(T\, Ta, ..., Tpop);
6 p2 < BTS(T1, Ta, ..., Tpop)s;
7 TC « Xover(p1, p2);
8 else

s Tpop);

9 p1 < BTS(Ty, T, ..
L TC <« Mut(py);

// See Sect. 3.7 for the local search

u | if (FF((TTZ’)’ +a x dis(T¢, TC)) > 1) then

12 L Apply LS on T€;

13 if TC is Unique then
// Apply replacement strategy

10

14 if TC is better than T#” then
15 L T8 « TC,
16 Replace a solution of the current population, whose

fitness is greater than the average fitness of the current
population, with 7€

17 if T8% does not improve a certain number of generations
then

18 Apply population update strategy (RS+); // See
L Sect. 3.8 for Replacement Strategy

This section discusses the framework of our proposed
hybrid approach (HSSGA) for the dc-MST problem that
combines a steady-state genetic algorithm and local search
strategies.

Algorithm 1 presents the pseudocode of HSSGA for the
dc-MST problem, where < T1, Tz, ..., Tpop > are feasible
solutions of the population with population size pop; T8b
stores the best-so-far solution; BT S(T1, T2, ..., Tpep) is a
function of binary tournament selection method that returns
a parent solution; Xover(p1, p2) is a function of crossover
operator applied on two selected parent solutions (p; and p2)
and returns a child solution 7€; and Mut(p1) is a function of
mutation operator applied on the selected parent solution (p1)
and returns a child solution 7€. Both crossover (X over) and
mutation (Mut) operators are applied in a mutually exclu-
sive way. #01 is a uniform variate, and P, is a probability
parameter that is to be determined empirically. Once the child
solution 7€ is generated, local search strategies (LS) based
on two-edge replacement (2ER) and one-edge replacement
(1ER) methods are applied conditionally (See line no. 11 of
Algorithm 1) in order to further improve the solution quality
of TC. Hereafter, if the current child solution 7€ is found
to be unique, then it is inserted into the current population
by replacing an individual (solution) of the current popula-
tion whose fitness is greater than the average fitness of its
current population. If 7€ is not unique, 7€ is discarded.
An additional step in the replacement strategy is applied in
order to maintain diversity in the current population through-
out the search process. Once the termination criterion is met,
HSSGA stops executing.

The following subsections discuss the details of various
components of HSSGA.

3.1 Encoding

To represent a chromosome (solution or spanning tree (7;)),
an edge-set encoding (Raidl and Julstrom 2003) is used. As
per this encoding, each solution 7; consists of a set of |V|-
1 edges. The reason to choose this encoding is that it not
only offers high locality and heritability, but also adaptive to
problem-specific genetic operators.

3.2 Generation of initial solutions of the population

HSGGA follows Prim’s algorithm (Prim 1957) to generate
an initial solution of the population. Initially, a degree-
constrained spanning tree (7;) and the set S are empty; create
a copy, say U, of V; label each vertex v € V unmarked
(mark[v] < 0); and set the degree of each vertex v € V
of T; to zero (deg[v] < 0). Select a vertex v; € U ran-
domly, and add this selected v to S. Delete this selected v
from U. Label v marked (mark[vi] < 1). Select a random
edge ey, y, that connects a vertex vy € S to a vertex vy € U,

@ Springer

2172

K. Singh, S. Sundar

and add this selected edge ey, to T;. Increment the value
of deg[v1] and deg[v>] in T; by one due to addition of an
edge ey,y, to T;. Add vy to S, and then delete v, from U.
Label vy marked (mark[v,] < 1). Hereafter, iteratively at
each step, search a random edge (say ¢;;) that connects a
vertex i € S (degl[i] < d) to an unmarked vertex j € U.
Add this searched e;; to T; and increment the value of degli]
and deg[j] in T; by one. Add j to S, and then delete j from
U. Label j marked (mark[j] < 1). This whole procedure
is repeated again and again until U becomes empty. At this
juncture, a feasible degree-constrained spanning tree (solu-
tion) 7; is constructed.

Hereafter, uniqueness of each generated 7; is checked
against the initial solutions of the population generated so
far. If the current generated initial solution is unique, it is
included into the population, otherwise it is discarded.

3.3 Fitness

Once an initial solution 7; is generated, its fitness (say
(F(T;)) is computed as the sum of weight of edges in 7;.

3.4 Selection

HSGGA follows binary tournament selection method to
select a parent solution. This method is applied two times
in order to select two parent solutions for the crossover oper-
ator, whereas this method is applied one time in order to
select a parent solution for the mutation operator. As per this
method, two different solutions are picked uniformly at ran-
dom from the current population. With probability (Pp), fitter
one between these two selected solutions is selected as a par-
ent solution, otherwise the worse one is selected as a parent
solution with probability (1 - Pp).

3.5 Crossover operator

Our proposed crossover operator (Xover) is a problem-
specific crossover operator (say Xover) that tries to inherit
good edges of parent individuals in the newly generated child
solution (say 7€) as much as possible and at the same time
Xover maintains the degree constraint of all non-leaf ver-
tices of T7C. Algorithm 2 presents the pseudocode of Xover
for HSSGA whose description is as follows:

Xover starts with selecting two chromosomes (solutions)
as parents (say, p; and p») from the population with the
help of binary tournament selection method. Initially, con-
sider the degree-constrained spanning tree 7" associated with
an empty solution (say child solution 7€) as an empty set,
and also consider a set (say S) as an empty set. Set the degree
of each vertex v € V in T zero (i.e., deg[v] < 0 Vv € V),
and label each vertex v € V unmarked (mark[v] < 0).

@ Springer

Algorithm 2: The pseudocode of crossover operator (Xover) in
HSSGA

Input : Two different parent individuals (p1 and pj)
Output: A child solution T€¢ (a degree-constrained spanning tree T)
T <« 0,8 <0, deglil <~ 0Vi € VinT,markli] < 0Vi € V;
Pick a vertex v € V randomly;
S <« SUvy, mark[vy] < 1;
// u0l is a uniform variate
if (u01 < Pbp, p,) then
Pick an edge ey, v, , connecting v € Stovy € V' \ S, randomly
from py;

[FRN SIS

[N

else
L Pick an edge ey, v, , connecting vy € Sto vy € V \ S, randomly

SN

from py;

®

mark[vy] < 1, S < SUwv, T <~ TU ey vy» deglvi]+ +,
deglva] + +;

while (V \ S #) do

10 if (u01 < Pbp, p,) then

°

11 for (each vertex i € S) do

12 if (degli] < d) then

13 Search arandom edge ¢;; (i € Sand j € V' \ §) from
P1;

14 if (the search is successful) then

15 mark[j] < 1,8 <~ SUj, T < T Ue;j,

| degli]l + +, deglj] + +, break;

16 if (the search is not successful) then

17 for (each vertexi € S) do

18 if (degli] < d) then

19 Search a random edge ¢;; (i € Sand j € V'\ §)

from py;
20 if (the search is successful) then
21 mark[j](—l,S(—SUj,T<—TUeij,
degli] + +, deg[j] + +, break;

22 if (the search is not successful) then

23 Add an edge ¢;; € E'\ T of minimum edge-weight,
connecting a vertex i € S (deg[i] < d) to a vertex
JEVAS;

24 mark[j]<—1,S<—SUj,T<—TUe,-j,

degli] + +, deg[j] + +;

25 else

26 for (each vertexi € S) do

27 if (degli] < d) then

28 Search a random edge ¢;; (i € Sand j € V' \ §) from
P2;

29 if (the search is successful) then

30 mark[j] < 1,8 < SUj, T < T Ue;j,

deglil + +, deglj] + +, break;

31 if (the search is not successful) then

32 for (each vertexi € S) do

33 if (degli] < d) then

34 Search a random edge ¢;; (i € Sand j € V'\ §)

from py;
35 if (the search is successful) then
36 mark[j] < 1,8 < SU j,T < T Ue;j,
deglil + +, degl[j] + +, break;

37 if (the search is not successful) then

38 Add an edge ¢;; € E'\ T of minimum edge-weight,
connecting a vertex i € S (deg[i] < d) to a vertex
JEVAS;

39 mark[j]l <~ 1,8 <~ SUv, T < T Ueyv,,

| deglvi] + +, deglv2] + +;

A hybrid genetic algorithm for the degree-constrained minimum spanning tree problem 2173

At the beginning of Xover, add a vertex vy € V, which
is selected uniformly at random, to S. Label v; marked
(mark[vi] < 1). With probability (Pb, ,), pick a random
edge among all candidate edges in pp, otherwise pick a ran-
dom edge among all candidate edges in p> with probability
(1-Pby, p,). Here a candidate edge is an edge that connects a
vertex in § to a vertex v € V'\ S; and the probability Pb, ,,

is defined as % (Beasley and PC 1996). F(p;)
and F(p2), respectively, are the fitness of p; and p». Such
probability mechanism favors the fitter parent so that more
and more number of edges of fitter parent would participate
in constructing 7' of TC in comparison with that of lesser fit
parent. Add this selected edge e, ,, to T of TC. Increment the
value of deg[v;] and deg[v,] by one. Add v; to S, and label
vy marked (mark[va] < 1). Hereafter, iteratively at each
step, search a random edge (say e;;) that connects a vertex
i € §S(degli] < d) to an unmarked vertex j € V \ S, from
either p; with probability (Pby, p,) or pp with probability
(I — Pbyp, p,). If the search is successful, add this searched
ejjtoT of TC. Increment the value of degli] and deg[j] by
one. Add j to S, and label j marked (mark[j] < 1). If the
search is not successful, Xover switches to other parent in
order to search another random edge (say e;;). If the search
is successful, add this searched edge e;; to T’ of T Incre-
ment the value of deg[i] and deg[j] by one. Add j to S,
and label j marked (mark[j] < 1). If the search is still not
successful, then search a minimum edge-weight edge (say
e;j) that connects a vertex i € § (deg[i] < d) to a vertex
j € V\ §from E-{ edges of both parent solutions p; and
P2 }. Add this searched edge e;; to T of TC. Increment the
value of degl[i] and deg[j] by one. Add j to S, and label
j marked (mark[j] < 1). This procedure is repeated until
V \ § becomes empty. At this juncture, a feasible degree-
constrained spanning tree T of TC (newly generated child
solution) is constructed.

Though our Xover shares similar ideas of crossover oper-
ator used in ES-EA (Raidl and Julstrom 2003) and HES-EA
(Raidl and Julstrom 2003), but the way of inheriting edges
from parents is quite different. In ES-EA, the crossover oper-
ator selects edges of parents in a random order, whereas in
HES-EA, the crossover operator uses edge-cost heuristic to
select edges of parents. The basic idea of edge-cost heuristic
is to include low-cost edges into a candidate solution with
higher probabilities than high-cost edges. After considering
edges from both parents in ES-EA and HES-EA, if the gener-
ated degree-constrained spanning tree 7" associated with the
child solution is not feasible, then to make it feasible, edges
are selected from the set of edges E \ T.

We present an example that illustrates the difference
between crossover operator used in HES-EA (Raidl and
Julstrom 2003) and our proposed Xover. For that we con-
sider the dc-MST problem with d = 3. In this example, we

Vertices vi vy v3 V4 Vs
Vi [— 1 65
v - =172

S

S W W

V4 - - - =

—_— N A WS

Vs - - - -

Ve - - - - — -

N [

Fig.1 Weight matrix C; of graph G

()
G
@)

(a)

A
()

()
(b)

Fig.2 Parents p; and p;

consider an edge-weighted, undirected and connected graph
G1(V,E,w),where |V| =7;|E| = 21; and a weight (w) is
associated with each edge € E (one can see Fig 1). Figure 1
presents the edge-weight matrix (C;) of G;. Figure 2a, b
represents two parent solutions pj and p, respectively. The
fitness of p; and p» is 27 and 24, respectively. To generate a
child solution 7€, Xover for HSSGA starts with selecting
a vertex (say v7) randomly (see Fig. 3a). Xover probabilisti-
cally selects an edge e,,,, that connects a vertex v; € Stoa
vertex vg € V \ S from parent p; (as per Algorithm 2) and
adds this selected edge to the empty degree-constrained span-
ning tree (say T') of T'C (see Fig. 3b). Hereafter, iteratively, at
each step, Xover selects an edge either from p; with proba-
bility (Pb, ,) or from p, with probability (1-Pb, ;,). Once
an edge is selected, it is added to 7. Continuing this iterative
process, an edge e,,,,, is selected from parent p, and is added
toT of TC (Fig. 3c). In a similar way, ey,,, and ey, respec-
tively, selected from parent p; and p; are added to T of T€
(see Fig. 3d, e). Figure 3e shows the situation of no candidate
edge from the current parent pp, then Xover switches to p;
in order to select a candidate edge; however, Xover also fails
to find a single candidate edge after switching to p>. Xover,
then, greedily selects a candidate edge eyys € E \ T (see
Fig. 3f). Similarly, edge e,,,, € E \ T is also selected and is
added to T of T (see Fig. 3g). Figure 3g presents a feasible
generated T of 7€ whose fitness is 13. Figure 4a—f illustrates
how the crossover operator in HES-EA (Raidl and Julstrom
2003) is applied to generate a child solution 7. Figure 4a

@ Springer

2174

K. Singh, S. Sundar

9l
o

@
%
%@
®, @

a) (b)

&
©
6@ A

e

d)

~_~
(<)
~

© 9°e®
e°@®

B
@

(®

Fig.3 Xover in HSSGA

shows the set of edges (E, p,) that are common (E,, N E,)
to both parents (py and p2), where E | and E, are the set of
edges of p; and p», respectively. Figure 4b shows the set of
edges (say E’) thatincludes (E,, UE,,) — (Ep, NE ,,) edges
from both parents. According to crossover operator used in
HES-EA (Raidl and Julstrom 2003), first it includes all edges
from the set £, 5, to the empty degree-constrained spanning
tree (T') of the child solution 7€ (see Fig. 4c). Hereafter, iter-
atively, at each step, it greedily selects an edge from the set
E’ without violating the degree constraint of T of T€. Con-
tinuing this iterative process, first an edge e, is selected
(see Fig. 4d). Hereafter, edges e, and e,,,, are selected and
are added to T of TC (see Fig. 4e,). Figure 4f denotes the
resultant feasible 7' of 7€ whose fitness is 23. ES-EA (Raidl
and Julstrom 2003) follows the same procedure to generate
TC with the difference that it selects edges randomly from
the set E’.

@ Springer

O,

&
ONNY
H&Y OB

(a) (b)

(©)

®
e’z

))
(e) ®

Fig.4 Crossover in HES-EA (Raidl and Julstrom 2003)

3.6 Mutation operator

The role of mutation operator is used to provide diversity in
the population. In HSSGA, mutation operator (referred to as
Mut) starts with a parent solution (p1) selected from the pop-
ulation with the help of binary tournament selection method.
Copy this selected parent solution to an empty child solution
(say TC). Hereafter, Mut performs edge-deletion-insertion
operation on TC. In this operation, first deletion of an edge
(say e,) selected randomly from the spanning tree T of 7€
is performed, leading to the partition of 7" into two different
components (say 7, and T;). To connect these two compo-
nents, an edge (different from e,,) is searched in £ \ T in
such a way that the degree constraint of the resultant 7' does
not get violated after insertion of this searched edge. Note
that ES-EA (Raidl and Julstrom 2003) and HES-EA (Raidl
and Julstrom 2003) follow edge-insertion-deletion in muta-
tion operator, whereas M ut follows edge-deletion-insertion.
HES-EA (Raidl and Julstrom 2003) inserts low-weight edge
instead of a random edge like ES-EA.

Also note that similar to (Sundar 2014; Sundar and Singh
2015, 2017), crossover operator (Xover) and mutation oper-
ator (Mut) for HSSGA are applied in a mutually exclusive
way which is different from the way crossover and mutation
operators are applied in ES-EA (Raidl and Julstrom 2003)

A hybrid genetic algorithm for the degree-constrained minimum spanning tree problem 2175

and HES-EA (Raidl and Julstrom 2003). With probability
P., Xover is selected, otherwise Mut is selected with the
probability (1-P,). The reason behind this one is that Xover
generates TC with potentially good edges inherited from
their parents, whereas Mut generates TC based on edge-
deletion-insertion operation. If Mut is applied after Xover,
then the chances are high that the resultant child solution
may lose some potentially good edges inherited from parent
solutions of Xover.

3.7 Local search strategies (LS)

To further improve the quality of a currently generated child
solution 7°€, local search strategies (LS) based on two-edges
replacement (referred to as 2ER) and one-edge replacement
(referred to as 1ER) methods are applied conditionally. Edge
replacement strategy is a common idea that is based on dele-
tion of an edge e,, € T of TC and inclusion of a new edge
eyxy € E. LS are applied on 7€ only when the following
condition holds true:

<F(Tgb)

0 +a x dis(T, TC)> > 1; (1)

where T'8? is the best-so-far generated solution; F (7§ by and
F (TC) are, respectively, the fitness of T8 and TC: o is a
parameter to be determined empirically; and dis(T%?, TC)
denotes the distance between T4? and 7€ in terms of fraction
of edges of Tchthat are not common to the edges of 7¢”. The

8
7o
dis(T#, TC) of Eq. 1 relates to the quality-and-distance
feature. The rationale behind using this condition (equation)
is that this equation avoids applying LS on such generated
child solution which is slightly inferior to F (T8 by (quality),
but is not sufficiently far from T8b (distance). This way also
saves the computational time. If the current child solution 7¢
satisfies equation 1, then the LS will be applied on 7€. LS is
applied on T in the following order: two-edges replacement
(2ER) — one-edge replacement (1ER). Descriptions of 2ER
and 1ER are as follows:

2ER in HSSGA follows the idea of 2-EdgeReplacement
local search strategy (Bui et al. 2012); however,
2-EdgeReplacement local search strategy in Bui et al. (2012)
uses |V|/2 iterations until no improvement is possible in Bui
etal. (2012), whereas 2ER is applied at most three iterations.
In each iteration of 2ER, a random edge (say e,, € T of
TC) is picked, and among all candidate non-adjacent edges
of ey, in T of TC, only that edge (say e,,) is picked if
replacement of e, and ey, with two new edges e, € E\T
and e,y € E \ T leads to the maximum improvement in the
resultant 7' of 7€,

first part in conjunction with the second part o x

Algorithm 3: The pseudocode of 1ER of LS

Input : Degree-constrained spanning tree 7' of the current child
solution 7€

Output: A new feasible spanning tree 7 of TC, iff, 1ER takes place

10t <3,

2 count <0 ;

3 F, <« F(T®);

4 while(count < it) do
// First stage of 1ER

5 for (each edge e,y € T whose degree of at least one end vertex
degree is equal to d (i.e., deg[u] == d || deg[v] == d)) do

6 Search an edge exy € E \ T whose w(x, y) < w(u, v) and

exy U T does not violate the degree constraint of the resultant
T, if edge-replacement takes place;
7 if (the search is successful) then
T < (T —eyy) VY €xys
L Fe < (Fe —w(u, v)) + w(x,);

// Second stage of 1ER

10 for (each edge e, € T) do

1 Search an edge exy € E\ T whose w(x, y) < w(u, v) and
exy U T does not violate the degree constraint of the resultant
T, if edge-replacement takes place;

12 if (the search is successful) then
13 T < (T —eyv) Uexy;
14 Fe < (Fe —w(u, v)) + w(x, y);

15 | if (F(T€) > F.) then
16 L F(TC) «~ F.;

17 count < count +1;

1ER in HSSGA examines the edges of T of T for possi-
ble edge-replacement in two stages followed one-by-one. In
the first stage of 1ER, for each edge e,, € T whose degree of
atleast one end point (vertex) isequaltod (i.e.,deg[u] ==
or deg[v] == d), search an appropriate edge ey, € E\ T
whose w(x, y) < w(u, v) for edge-replacement without vio-
lating the degree constraint of the resultant 7' of 7€ if such
edge-replacement takes place. If the search is successful, then
eyy is replaced with ey, in T (see Algo. 3, line no. 5-9). The
idea behind this edge-replacement is that if the degree of the
vertex v (deg[v] == d) in T is reduced, then in the second
stage, there will be possibility that the edge with lesser weight
may attach to v. Keeping this idea, after completion of the
first stage, the second stage is applied. In the second stage, for
each edge ey, € T, search an appropriate edge ey, € E\ T
whose edge-weight w(x, y) is less than edge-weight w(u, v)
of e,, for exchange. If the search is successful, replace e,
with ey, in T (see Algo. 3, line no. 10-14), resulting in the
reduction of weight of the resultant 7’ of 7€,

Note that our proposed 1ER for HSSGA is different
from 1-EdgeReplacement (Bui et al. 2012). 1ER consists
of two stages and is based on first-fit improvement strategy,
whereas 1-EdgeReplacement (Bui et al. 2012) consists of
only one stage and is based on best-fit improvement. Also,
1-EdgeReplacement in Bui et al. (2012) is applied repeatedly
until no improvement is possible, whereas 1ER is applied at
most three iterations (see the pseudocode of 1ER of LS in
Algorithm 3).

@ Springer

2176

K. Singh, S. Sundar

3.8 Replacement strategy (RS)

Uniqueness of each newly generated child solution 7€ is
checked against all individuals of the current population.
If 7€ is found to be unique, then 7€ replaces a randomly
selected solution of the current population whose fitness is
greater than the average fitness of the current population.

In addition to the above replacement strategy (RS), we
follow one more step in this replacement strategy (referred
to as RS+). This strategy is followed only when 7€ is unique.
The need of RS+ was felt intuitively during our initial exper-
imentations that the search process of HSSGA without RS+
often got trapped into local optimum, indicating the lack
of carrying out diversity in the population generation-over-
generation in the search space effectively. RS+ is applied
only when this indication is identified. Our assumption of this
identification is based on this fact if the best-so-far generated
solution (7'8%) stops emerging (in terms of better solution
quality) for a certain number of generations, say PR,
(PRpop is set to 500 empirically after a large number of
trials) in the course of search. In RS+, a perturbation strat-
egy is applied on the current population at a regular interval
of time (i.e., PR,p). In this perturbation strategy, a subset
(say rs) of individuals (solutions) of the current population
is selected randomly, where rs is a parameter to be deter-
mined empirically. Each solution (say 7; € rs) is perturbed
with the help of mutation operator Mut (see Sect. 3.6). If
the perturbed solution T' of T; is unique against all indi-
viduals of the current population, then T is included into
the current population by replacing its own old solution 7;.
Otherwise, T is discarded. Applying perturbation strategy
on a set of random solutions (rs) force the population to be
diversified throughout the search process, helping in finding
high-quality solutions.

4 Computational results

‘HSSGA is implemented in C and executed on a Linux-based
operating system with the configuration of Intel Core i5 pro-
cessor 3.3 GHz x 4 with 4 GB RAM. In all our experiments
with HSSGA, we have used pop = 300 (population of solu-
tions), P, = 0.90 (see Sect. 3.4) and P. = 0.50 (crossover
probability, see Sect. 3.6), o« = 0.10 (see Sect. 3.7),and rs =
0.05 (5% solutions of pop are perturbed (see Sect. 3.8)).
All these parameters are set empirically after a large num-
ber of trials. Although these parameter values provide good
results on most of the instances, they may not be optimal for
all instances. We have tested HSSGA on the available 107
benchmark instances which were also used for the recent
one ant-based algorithm (ABA) (Bui et al. 2012). Some
of these instances were also used for HES-EA (Raidl and
Julstrom 2003). These instances can be classified into two

@ Springer

groups—Euclidean and non-Euclidean instances. Euclidean
instances consist of three different sets, i.e., CRD, SYM and
STR, whereas non-Euclidean instances consist of three dif-
ferent sets, i.e., SHRD, random hard (R) and misleading
hard (M). These benchmark instances can be downloaded
from the link https://turing.cs.hbg.psu.edu/benchmarks/file_
instances/spanning_tree/. The descriptions of 107 bench-
mark instances that are classified into six different data sets
with varying sizes from 15 to 500 vertices (nodes) are as
follows:

— CRD data set This data set consists of graphs whose
sizes vary from 50 to 100 vertices. Vertices in such a
graph are generated by using a uniform distribution in a
two-dimensional plane and edge-weight is the Euclidean
distance between two vertices.

— SYM data set This data set consists of graphs whose
sizes vary from 50 to 70 vertices. These graphs are anal-
ogous to the CRD instances except vertices are generated
by using a uniform distribution in a higher dimensional
Euclidean space. Edge-weight is the Euclidean distance
between two vertices.

— STR data set This data set consists of graphs whose sizes
vary from 50 to 100 vertices. Vertices in such a graph
are randomly distributed points in a higher dimensional
space grouped together as cluster and edge-weight is the
Euclidean distance between two vertices.

— SHRD data set This data set consists of graphs whose
sizes vary from 15 to 30 vertices. These graphs are gen-
erated by assignment of non-Euclidean distances to the
graph edges in such a way that the number of optimal
solutions is limited (Krishnamoorthy et al. 2001).

— Random-hard (R) data set This data set consists of
graphs whose sizes vary from 50 to 200 vertices. These
are non-Euclidean graph instances and edge-weights are
randomly generated from a pre-defined interval by using
a uniform distribution.

— Misleading-hard (M) data set This data set consists of
graphs whose sizes vary from 50 to 500 vertices. These
are non-Euclidean graph instances and edge-weights
are randomly generated from a pre-defined interval by
using a uniform distribution. Graphs of M-data sets are
designed to mislead greedy algorithms.

We compare our approach HSSGA with two state-of-the-
art metaheuristic techniques, i.e., ant-based algorithm (ABA)
(Bui et al. 2012) and HES-EA (Raidl and Julstrom 2003).
Since authors (Bui et al. 2012) carried out all their experi-
ments on a system based on Intel Core 2 Duo E8600 at 3.33
GHz with 6 GB RAM and executed ABA for 50 runs on each
instance. Note that authors (Bui et al. 2012) used available
97 benchmark instances, but results of ABA on 97 instances
reported by authors are partial in terms of average solution

https://turing.cs.hbg.psu.edu/benchmarks/file_instances/spanning_tree/
https://turing.cs.hbg.psu.edu/benchmarks/file_instances/spanning_tree/

A hybrid genetic algorithm for the degree-constrained minimum spanning tree problem 2177

quality and average total execution time. Out of 97 instances,
authors (Bui et al. 2012) reported the best value obtained over
50 runs on all instances, but did not report the average solu-
tion quality and average total execution time over 50 runs for
56 and 40 instances, respectively. Also, the computer sys-
tem used for HSSGA is different from that of ABA (Bui
etal. 2012). For HES-EA (Raidl and Julstrom 2003), authors
performed 50 runs on each considered instance and used a
termination criterion when the best-so-far solution obtained
does not improve over 1,00,000 generations on considered
instance, but did not report computational time on each con-
sidered instance. Authors carried out their experiments on a
system based on Pentium-I1I/800-MHz PC, which is differ-
ent from the computer system used for HSSGA. Hence, we
find difficulty to analyze exact comparison with ABA due to
different computer platform and the way the computational
results are reported in their paper as well as HES-EA due to
different computer platform and unavailability of computa-
tional time on each considered instance. Looking at all these
aspects of difficulties, we have implemented HES-EA and
ABA using same values of parameters mentioned in their
respective papers for the purpose of giving a fair comparison
with HSSGA. Like HSSGA, we have implemented ABA
and HES-EA in C and executed on a Linux-based operating
system with the configuration of Intel Core i5 processor 3.3
GHz x 4 with 4 GB RAM. All approaches (HSSGA, HES-
EA and ABA) have been executed for 50 independent runs
on each instance in order to test their robustness. We have set
the same stopping criterion (in terms of computational time)
for each approach (HSGGA, HES-EA and ABA) as per the
instance size (1 s for | V| <100, 10s for |V | == 100, 60s for
[V] == 200, 200s for |V| == 300, 600s for |V| == 400,
and 1000s for |V | == 500).

Subsequent subsections discuss a detailed comparison of
HSSGA with HES-EA (Raidl and Julstrom 2003) and ABA
(Bui et al. 2012).

4.1 Comparison of 7{SSGA with HES-EA (Raidl and
Julstrom 2003) and ABA (Bui et al. 2012)

HSSGA has been compared with HES-EA (Raidl and
Julstrom 2003) and ABA (Bui et al. 2012) on a set of avail-
able 107 benchmark instances. Since ABA uses the two
local search strategies based on 2-EdgeReplacement and 1-
EdgeReplacement in order to further improve the solution
quality of the currently constructed solution, and our pro-
posed approach HSSGA combines a steady-state genetic
algorithm (SSGA) and local search strategies based on 1ER
and 2ER. Therefore, in addition to analyzing the compar-
ison of HSSGA with ABA, we have also analyzed the
individual effect of 1ER and 2ER that combines with only
SSGA (including RS+ step) part of HSSGA (referred to

as, respectively, (SSGA)+1ER and (SSGA)+2ER) on bench-
mark instances.

Tables 1, 2 and 3 report the results of HES-EA, ABA,
(SSGA)+2ER, (SSGA)+1ER and HSSGA on Euclidean and
non-Euclidean instances. In these tables, column Instance
denotes the name of instance; column |V | denotes the number
of vertices corresponding to its instance; column d denotes
the degree constraint on its corresponding instance; each
next four columns Best, Avg, SD and ATET, respectively,
denote the best value, the average solution quality, standard
deviation and the average total execution time obtained by
HES-EA, ABA, (SSGA)+2ER, (SSGA)+1ER and HSSGA
over 50 runs. For each instance, the best value (Best) and the
best average solution quality (Avg) among HES-EA, ABA,
(SSGA)+2ER, (SSGA)+1ER and HSSGA are highlighted in
bold.

Table 1 reports the results of 27 Euclidean instances. Com-
paring with HES-EA, HSSGA, in terms of Best, is better on
19, equal on 6 and is worse on 2 instances; HSSGA, in terms
of Avg, is better on 18, equals on 1 and is worse on 8 instances.
Comparing with HES-EA, (SSGA)+1ER, in terms of Best,
is better on 20, equals on 6 and is worse on 1 instances;
(SSGA)+1ER, in terms of Avg, is better on 21, equals on 1
and is worse on 5 instances. Similarly, comparing with HES-
EA, (SSGA)+2ER, in terms of Best, is better on 8, equals on
4 and is worse on 15 instances; (SSGA)+2ER, in terms of
Avg, is better on 2, equals on 1 and is worse on 24 instances.
Comparing with ABA, HSSGA, in terms of Best, is better
on 23 and equals on 4 instances; HSSGA, in terms of Avg,
is better on 26 and equals on 1 instances. Comparing with
ABA, (SSGA)+1ER, in terms of Best, is better on 22 and
equals on 5; (SSGA)+1ER, in terms of Avg, is better on 26
and equals on 1 instances. Similarly, comparing with ABA,
(SSGA)+2ER, in terms of Best, is better on 20, equals on 2
and is worse on 5; (SSGA)+2ER, in terms of Avg, is better
on 17 equals on 1 and is worse on 9 instances.

Table 2 reports the results of 52 instances. Comparing
with HES-EA, HSSGA, in terms of Best, is better on 11
and equals on 41 instances; HSSGA, in terms of Avg, is
better on 26, equals on 24 and is worse on 2 instances.
Comparing with HES-EA, (SSGA)+1ER, in terms of Best,
is better on 11, equals on 40 and is worse on 1 instances;
(SSGA)+1ER, in terms of Avg, is better on 20, equals on 28
and is worse on 4 instances. Similarly, comparing with HES-
EA, (SSGA)+2ER, in terms of Best, is better on 5, equals on
29 and is worse on 18 instances; (SSGA)+2ER, in terms of
Avg, is better on 11, equals on 7 and is worse on 34 instances.
Comparing with ABA, HSSGA, in terms of Best, is better
on 19 and equals on 33 instances; HSSGA, in terms of Avg,
is better on 31 and equals on 21 instances. Comparing with
ABA, (SSGA)+1ER, in terms of Best, is better on 19 and
equals on 33 instances; (SSGA)+1ER, in terms of Avg, is
better on 29, equals on 22 and worse on 1 instances. Simi-

@ Springer

K. Singh, S. Sundar

2178

001 LELT PL'ESLL 6bLL 001 SS°ST 9€6ILL 6bLLI 001 €569 9L0v6l 66L1 001 €6v0l 91C8¢C €0IC 001 <96l 8I'LLLL 6¥VLT T OL 60LINAS
00°T ¥I'LL 9T°¢y81 9IS 001 6L°01 99vE8T 9I8L 001 89'€S 8F6e6l IS8T 00T 68¢6 veo6lec 9¢Ic 001 LTS Y6'0r81 €81 T OL 80LINAS
00°T 9L°CC 886I¥C 88¢Cc 001 80CC 9P8OVC ILET 001 IS9S 9L°6LSC LyPC 00°T LTOIT 08866C 999¢ 001 8L9I 9VCI¥C +8¢C T 0L LOLINAS
00'T 9691 TLLIST 68yL 001 LLTI 99°L0ST 68YL 001 S8vS +E€c9l OISI 00T 9906 V¥O°L68I 9591 00T [ILOI 8S60SI So6vl ¢ 0L 90LINAS
00l Ce0e 9¢96lc T€IT 001 SP9c TTS8IT <CSIC 001 8919 098cec Lccc 001 0CI8 veLS9C LOST 001 L6€l 90°L8IC LSIT T OL SOLINAS
00l ¥T'ST TC990C LIOC 001 €191 #$6'0S0C LIOC 001 ¢¥89 8¥'00cC 080C 001 S¥96 <COBCLC OLVC 001 6861 C6S80C ¢€0C T OL POLINAS
00l L¥'OT OFLcSl €0SI 001 €811 8CTVISI Levl 001 €I'cyr CI'SC9l TSl 001 1898 v¥'8c6l +L91 001 00V CSOIST €0SI ¢ 0L €0LINAS
00T 6SCc Pe9Cc6l 0L 001 C8LC ¥90I6l #98T 001 889 BI'crOC 8e6l 001 OI'CL 0098¢C ¢60C 00T 9I'Cl 096681 ¥981 T OL TOLINAS
00T 099C 8I'6S61 1I€6l 001 II'cl 8TPP6L 1I€61 001 660L +I'00IC 8661 001 T8 TPCe9C L8YC 001 €SvC 06861 OFV6l T OL TOLINAS
00T ILCCT $9°690C TI0C 001 8I'CC 906S0C <TIOC 001 OL8S 8CTBLIC 890C 001 60°ICI 80CO8C 9SSC 001 <T¥9C ¢C6€60C LLOCT T OL O0LINAS
00T S¥'8 0¥8961 €961 001 IST T6'SI6L S961 001 CTSI OvvLel €961 001 L6C6 C8VBEC C9IC 001 +SOI 06'1L61 S96I T 0S5 €0SINAS
00T SI'IT vI'lelc 9IIc 001 ¥L'8 8EPCIT I9IIC 001 0¢Sl 0€Tric 91T 001 +vIC9 Ty CIve €LCC 00'1 806 09°¢clTc 91T ¢ 0S5 TOSINAS
0001 T8CC ¥$9L6CL 98CL 0001 €9°Lc 00°S0cL 98CL 0000 O9¥'L8 TO'SSYL 1¢eL 0000 L6°LZE CO60YL 98CL 0000 I8EIl 0F6908 ILLL T 001 60LAAD
0001 LLOT 8S'SSIL LEIL 0001 8I'cc 8O'SOIL LEIL 0001 SS8L TEO9SCL €SIL 0001 6L°0CC 89SvcL vSIL 00001 €L6CT v8vESL v0eL T 001 SOLAAD
0001 8I'LT 8L6CTLL 0TLL 0001 C¥IT PLEELL OTLL 0001 €1'€8 88998L 9SLL 0001 9¢+¥8L 00€e8L 8CLL 000l +6'8 CryeLL TCLL T 001 LOLAID
000 ¥S'61 00S60L SLOL 0001 ¥o6've OI'TIIL LLOL 0000 ¥S0€l 8S0eCL 080L 000I €06l 9I°09IL LLOL 000I +E€0€ OL'69IL €CIL T 001 SOLAAD
0001 08'¢T PSTSSL TPSL 0001 IL¥C 80TCOSL TbPSL 0001 CTIOL O0°CILL vvSL 0001 69061 TP 199L 1TIPSL 000L €09¢ 90°SY9L ILSL T 001 vOIAAD
0001 6I'vC 8E€LLIL 099L 0001 8¥'€C 9TTOLL 099L 0001 O0L°'L6 OTIY8L 069L 0001 6CTH0l T8'SLLL 099L 0001 CTTST 0€PSLL €O0LL T 001 €0TAID
00°0I ¥I'CC 06'88SL SE€SL 000 899¢ 090I9L S€SL 0001 9I'IL TI'€OLL SLSL 0001 S¥OIl 8I'IL9L 68SL 0001 0¢€¥C 0SPLOL €T9L T 001 TOIAID
000l €6'¥C OVPILL L69L 0001 TSTE POVELL L69L 0001 IL9L 999¢8L 9CLL 0001 S8€0C veS06L LELL 0001 0L0S 8€008L ¢€CLL T 000 TOIAID
00°0I 69°¢c 9T'SLOL +¥OL 0001 808 0CT6LOL #POL 0001 LEVL 0€TOCL 080L 0001 €LTLI 86'¢8IL 080L 0001 €€8C ¥8CYIL 960L T 001 O00IAID
00°T LLOE OT'T6¥9 LI9Y9 001 cThee 8¥0CS9 L9P9 001 S816 CTI'LL99 68Y9 00T 89°6SI 9L96CL 68L9 001 6L'€E 8YCISO OLVY9 T 0L LOLAYD
00°T L&CE 0CTLOL9 TL99 001 SI'6€ ¥I'EIL9 TL99 001 L8I8 0LTLBY SPL9 00T 9TOL 00TCCL ¥669 001 I€¢ 09°€L99 TL99 T OL 90LAYUD
00°T 6I'Sc Or0er9 0L£9 001 <CO0F 0CT0O9%9 00¥9 001 6L°001 TSCT99 L9%9 00T 0070 000299 0299 00°1 L6CC 8Eery9 08¢9 T 0L POLAID
00°T Ceee 0S'86L9 €9L9 001 I8Ch 96%C89 ILL9 001 6£6L PP8169 TLLY 00T TP8Cl 86'99vL 98IL 001 LI'VP TH¥989 LLLO T OL TOLAID
00°T 000 006L0S 6L0S 00’1 000 006L0S 6L0S 001 000 00°'6L0S 6L0S 00'T 000 00'6L0S 6L0S 00T 000 00'6L0S 6L0S T 0S €0SAYD
00'T ST¢ 99¢8bS 08vS 001 88 9¢98YS 08PS 001 90°SC <CO0ISS 08PS 00T 10°0r 88'LLLS €99 001 9¢0l +6'68YS 08bS T 05 TOSAIAD
LIV as DAV 1599 1ALV as DAV 1599 1ALV as DAV 1599 IHILV as DAV 1599 1ALV as DAV 15°¢

VOSSH YAT+HVISS) AATHVISS) vav VA-SAH P |Al ouesuy

SAOUBISUT JNA'S PUB (YD oY} 10] VOSSH, Pue (Z10¢ '[8 10 Ing) VAV pue (€00 Wwons[nf pue [prey]) VH-SHH Jo SINsay | 3|qeL

pringer

Qs

2179

A hybrid genetic algorithm for the degree-constrained minimum spanning tree problem

00°0L 000 009vsy 9pSy 0001 000 009¥Sy 9vsy 0000 [0¥I 09°L6Sy 69SF 0001 000 009¥Sy 9pvsy 00°0I 000 009vsy 9vSy v 001 000TALS
000l 000 00°C0LF TOLF 0000 ¥I'0 TOCOLY COLY 0000 €S°L v9°6ILy 80LY 000l Sv'0 0LC0Ly TOLY 0001 LZTO0 80COLY <COLy € 001 000TILS
00°0L S99 0S¥00S 000 000l 80FtC ¥e'6C0S 000 00°0I SELL ¥9+C0S 000 000l L9I€ 96°0¢0s +00S 00°0I [6°8 OI'1C0S 000 ¢ 001 000TALS
00T 000 00001y 00LF 00T 000 0000y 00IF 001 008 9¢08cy €Oy 001 000 00001y o00LF 00T 000 0000y 00IF S OL O0LALS
00l 000 00svey Ssycy 001 000 O00Svey Ssvcy 001 €8°¢€C 08°06ey Ivey 00°1 000 00'svey Ssycb 00T 000 00Svey Ssvey + 0L O00LALS
00T 000 00Léey Lety 00T 000 00Leey L6y 001 66°SI 8CI0Sy S9vy 00°1 000 00°L6gy Léty O00'T 000 00Leey Létey ¢ OL 00LILS
00T TE€9 8YVYOLP €69v 001 ¥9°cl 9L CeELY 10LY 00'1T 0611 ¥6'8ILy €69 00l 1081 96°€08y v¥Ly 001 8CT9 VYL CILY 00LF T OL O0LILS
00l I€T T6'LCI9 9CI9 00T 6S¥ O0¥cel9 9219 001 SLy 8E€Cel9 9219 00°1 I8°0L OI'I8I9 6SI9 00T 60T 9SLCI9 9C19 T 0S¢ TOSULS
00T 000 00L08 LOS8E 00T 000 00L08E L08E 00T vO€l vyov8c 8C8E 001 000 00°L08€ LO8E 00T 000 00L08E LOSE S 0S 00SILS
00'T 000 009s6€ 9S6€ 00’1 000 009s6€ 9S6€ 001 L86 Pe'S86E L96c 001 000 009s6€ 9S6€ O00'T 000 009s6€ 9s6€ + 0S 00SYLS
00'l 000 008IIy SIIF 00T 000 O008IIy SIIF 001 v¥S <CPLClvy SIIY 001 000 00'8IIy S8IIF 00T 000 O008IIy SIIy ¢ 05 00SYLS
00'T 000 000cky OCTPY 001 CSTL 8BTSy OTbP 00'1 €8'L vricyy 0pb 00'1 10CL 96 CLyy 0tyr 00'1 88T 8CTTcvy O0cvy T 05 00SULS
00T Co6'Sl 0T9Ov8l ¢C81 00T [I¥I1 0€LEST 9I8L 001 6LLS vO'LS61 6981 001 0€C6 0L°¢cleCc 8CICT 00T L8 CTrVIv8lL €81 T 0L 80LINAS
00T 000 0098IL 98IT 00T 000 0098IT 98IL 00T <065 808¥cl ¢cecl 001 000 0098IT 98IT 00T 000 0098IT 98II S OL TOLINAS
00T 000 0086IL 86IL 00T 000 O0086IT 86IL 001 I[IS¥E vO0cel LSCI 001 ¢CT vee6ll 86IT 00T 000 0086IT 86IT + OL TOLINAS
00'T 000 000LCT 0LZI 001 000 000LL 0LZT 00T T9vE 98+veel Ie€l 00°1 0I'cl og's6cl OLZL 00°T 081 <CI'ILCl OLZE € 0L TOLINAS
00T CI'S #0998 T98T 001 LECT O0€PI8T 1981 001 €€0l CI'6981 T98T 00°1 SY'LL 90°9SIC 6861 001 [T0°€l vO'SL8T 1981 T 0S 80SINAS
00'T 000 00860I 860I 001 000 00860L 860I 001 ST'8I 068111 8601 001 000 00860 8601 00'T 000 00860I 860 S 0S O00SINAS
00T 000 00S0IT SOLL 00T 000 O00SOIT SOIL 00T €C0l ¢9SIIT SOIT 001 000 00'SOIT SOIT 00T 000 00SOIT SOIT ¥ 0S O0SINAS
00'T 000 009SII 9SIT 00T 000 O009SIT 9SIT 00T 8L6 ¥809IT 9SIT 00°1 000 00°9SIT 9SIT 00'T 000 009SIT 9SIT ¢ 0S O0SINAS
00'T LV'L v¥69Ll 6SLL 001 +69 #$S8ILL 6SLI 001 LTI vTI8LT TOLT 00°1 8L'6L ¥S0L0C €981 001 9¢'8 O9CTLLLL 6SLT T 0S O00SINAS
000l 000 009619 9619 000 000 009619 9619 000l SLO¥ ¢8¢9C9 1029 000l 000 009619 9619 000 000 009619 9619 ¢ 001 00IAIAD
00'T 000 0068LS 68LS 001 000 O0068LS 68LS 001 ¥E€'8 9I'cCl9 L¥y09 00°1 000 00'68LS 68LS 00'T 000 0068LS 68LS ¢ 0L 00LAID
00°T 988¢ ¥H'S9€9 80€9 001 96'Lv 86°CCHY +IE9 001 9CICIOL'STSY $EE9 00°] 06°Ce 88'0S0L €€69 00°T 98+ 099¢v9 99¢9 T 0L 00LAIAD
00°T 000 009¢IS 9TIS 00’1 000 009TIS 9CIS 001 [I€LE vL99IS 9TIS 001 000 009¢IS 97IS O00'T 000 009CIS 9TIS ¢ 0S T0SA™D
00'T 9% 99'€sSS €SSS 001 €CTLI $9°99¢S €8SS 001 9891 9v'196S €SSS 00°L CE8PIVIBSI9 90LS 00°T 9¢€'8c 8SG09S €SS T 0S T0SAAD
L3IV ds DAV 1829 J1HIV AS DAV 1899 I1dIV dS DAV 1599 I1HIV as DAV 1599 1dLV dS DAV 1599

VOSSH AATHVISS) AATHVISS) vav VA-SAH P |Al 9douejsug

saouRIsUL TYHS PUB ULS NAS ‘@D U} 10§ VOSSH, PUe (Z10T T2 10 g) VAV (€007 Wwons[nf pue [prey) VA-STH JO SINsay z 3|qel

pringer

As

K. Singh, S. Sundar

2180

00T 000 00POST POST 00T 000 00FOSI POSI 001 8TO +OHOSI $OST 00T 9¥'1 0T90SI $OST 00T ##0 9THOSI HOSI S 0€ O0EAUHS
00T 000 00061 SO6L 001 000 00S06T SO6L 00T 000 00S06L SO6I 00T 091 THLO6I SO6I 00T +L0 8I'SO6I SO6L + 0 O0EAUHS
00T 000 00T6ST T6ST 001 000 00T6ST T6ST 001 OO 0TTOEST T6ST 001 9T PEV6ST T6ST 001 140 TTTOST T6ST € 0 OOEAUHS
00T 000 007T66E Z66E 001 000 00T66E T66E 001 000 00T66E T66E 001 8I'C ¥8TOOF 966€ 001 LTY 86°S66€ T66E T 0 O0EAUHS
00T 000 00°9T0T 9T0L 00T 000 00'9I0L 9101 00l 000 009I0L 910 00T 000 009I0L 910 00T #I'0 TO9I0I 9I0I S ST 6STAUHS
00T 000 00T6ZL Z6ZL 001 000 00T6ZI T6ZL 001 000 00T6ZL T6CL 001 €20 90T6II T6TL 00T 000 00Z6ZL T6II + ST 6STAUHS
00T 000 009SLT 9SLL 00T 000 00°9SLI 9SLI 00l 000 009SLL 9SLT 00T 9TT TY9SLI 9SLT 00T THO 909SLI 9SLI € ST 6STAUHS
00T 000 00PILZ ¥ILZ 001 000 O00FILZ PILT 00T 000 00FILZ PILZ 001 11T TOLILZ ¥ILZ 001 066 O$LILC VILZ T ST 6STAMHS
00T 000 00LZ9 L29 00T 000 00LZ9 LT9 00T 000 00LZ9 LZ9 00T 000 00429 LZ9 001 0TO $0LT9 LZ9 S 0T O0TAUHS
00T 000 00708 08 001 000 00T0$ TO8 00l 000 00Z08 TO$ 00T 000 00Z08 T0O$ 00T 000 00Z08 T0$ + 0T OOTAUHS
00T 000 00'880T 880L 00T 000 00'880I 8801 00'L 000 00'8S0L 88T 00T 000 00°8S0L 80T 00T 000 00'880L 880I € 0T O0TAUHS
00T 000 006L9T 69T 00T 000 006L9T 6L91 00T 000 00691 6L9T 00T 0€0 OI'691 6L9T 00T 000 0069 691 T 0T O00TAUHS
00T 000 00T€E € 001 000 00TEE TEE 001 000 00ZEE TEE 00T 000 00ZEE TE 001 000 00ZEE TEE S S 6SIAUHS
00T 000 000€F O 001 000 000EF OEr 001 000 0006k OEF 00T 000 0006 O€F 00T 000 000€r Ok + SI 6SIAYUHS
00T 000 00L6S L6S 001 000 00L6S L6S 001 000 00L6S L6S 00T 000 00L6S L6S 00T 000 O00L6S L6S € SI 6SIAUHS
00T 000 00706 P06 00T 000 00P06 P06 001 S$TO +OH06 P06 00T LISOT 06H06 H06 00l 000 00H06 ¥06 T SI G6SIAMHS
0001 86°S THTIPTL TOKTI 0001 €€°9 ¥LPIPTI TOPTL 0001 OF'IT 98'LSYTI OTYTI 0001 SI'6T 9S'08YTI O¥PTI 0001 €06 ¥I'IELTI TIPTI T 001 600TALS
0001 8SS TSEEPTL LTHTI 0001 10°7TI 08°6HPTI 8THTI 0001 89°61 96'SLYTI 6EFTI 0001 TIYO'LT TE'HESTI S8YTI 0001 +TTI 06'PLYTI 9PPTI T 001 SO0THLS
0001 91't 9LPESOL 6TSOT 0001 9¥'S 96°'6ESOI 6TSOT 0001 08'ST YE'69SOI 9€S0I 0001 89997 0I'8SSOI 9501 0001 6+'8 0TSSSOI TESOI T 001 LOOTHLS
0001 LI OS'SESOL 6TSOT 0001 TES P86ESOI 6ZSOL 0001 09°TI 8S'OLSOI L¥SOI 0001 EOE'9T 8I'6SSOI TESOI 0001 6S'8 96'SSSOI €SO T 001 900THLS
0001 99°% P9'€OL8 6698 0001 Try 9090L8 6698 0001 19°LI +POPL8 TOLS 0001 09'YT 96'19L8 LZL8 0001 ISOI OETEL8 €0L8 T 001 SOOTHLS
0001 66T 00°€0L8 6698 0001 I€Y TESOLS 6698 0001 ¥TOT 80PPL8 10L8 0001 LI9I'TT +T09L8 TEL8 0001 EI'IT $6'0€L8 SOL8 T 001 POOTHLS
0001 SLT 86T60L 680L 0001 €0°S 90°S60L 680L 0001 8TSI TE6IIL €60L 0001 vLIE 8I'6TIL SOIL 0001 S8 $THOIL €60L T 001 €00THLS
0001 8€€ 96T60L 680L 0001 OEF 8LYEOL 680L 0001 L6'9I 0TOTIL ¥60L 0001 €T89°0E THLTIL ¥60L 0001 9L OLEOIL ¥60L T 001 TOOTHLS
0001 TEL 08P00S 000S 0001 96°€C 0I'6Z0S 000 0001 61°IT TY'EOS 000 0001 S9'6T TE'LTOS 900S 0001 9L 9STTOS 0005 T 001 TOOTALS
0001 000 00°€0FF €0bF 0001 000 00'E0PF €0bF 0001 STOI 0S'99YF ¥EFF 0001 000 00°€OVF €0PF 0001 000 00°€0KF €0PF S 001 O000TALS
LAV dS OAV g JHIV dS DAV 99d LAV dS DAV 1og LAY dS DAV g LAY dS DAV 10g

VOSSH HATHVOSS) HATHVISS) vav VA-SEH P |Al @duersuy

penunuod go|qel

pringer

Qs

A hybrid genetic algorithm for the degree-constrained minimum spanning tree problem 2181

larly, comparing with ABA, (SSGA)+2ER, in terms of Best,
is better on 16, equals on 22 and is worse on 14 instances;
(SSGA)+2ER, in terms of Avg, is better on 23, equals on 6
and is worse on 23 instances.

Table 3 reports the results of 28 non-Euclidean instances.
Comparing with HES-EA, HSSGA, in terms of Best, is better
on 5 and equal on 23 instances; HSSGA, in terms of Avg,
is better on 12 and equals on 16 instances. Comparing with
HES-EA, (SSGA)+1ER, in terms of Best, is better on 4 and
equals on 24 instances; (SSGA)+1ER, in terms of Avg, is
better on 8, equals on 15 and worse on 5 instances. Similarly,
comparing with HES-EA, (SSGA)+2ER, in terms of Best, is
better on 3 and worse on 25 instances; (SSGA)+2ER, in terms
of Avg, is better on 3 and worse on 25 instances. Comparing
with ABA, HSSGA, in terms of Best, is better on 6 and
equals on 22 instances; HSSGA, in terms of Avg, is better on
16, equals on 11 and worse on 1 instances. Comparing with
ABA, (SSGA)+1ER, in terms of Best, is better on 3, equals
on 22 and worse on 3 instances; (SSGA)+1ER, in terms of
Avg, is better on 10, equals on 10 and worse on 8 instances.
Similarly, comparing with ABA, (SSGA)+2ER, in terms of
Best, is worse on all 28 instances; (SSGA)+2ER, in terms of
Avg, is worse on all 28 instances.

One can observe clearly from the results of Tables 1, 2
and 3 that HSSGA and (SSGA)+1ER are superior to both
HES-EA and ABA in terms of both Best and Avg.

4.2 Analyses on the two key components of {SGGA

In this subsection, we carry out analyses on the two key
components of HSGGA: (i) effectiveness of quality-and-
distance feature in the local search strategies (ii) effectiveness
of RS+ in the replacement strategy. In addition, we also carry
out statistical analyses about significant differences between
HSGGA vs HES-EA and HSGGA vs ABA.

4.2.1 Effectiveness of quality-and-distance feature in the
local search strategies

To analyze the effectiveness of quality-and-distance feature
in the local search strategies (LS), we have performed exper-
iments based on (i) HSSGA that uses quality-and-distance
feature in the LS and (ii) HSSGA that does not use guality-
and-distance feature (i.e., HSSGA - {quality-and-distance })
in the LS for the dc-MST problem. In these experiments, we
consider two instances (SYM702 and SYM704 for d = 2)
selected randomly. The stopping criterion of HSSGA and
‘HSSGA - {quality-and-distance} is set to 1s for SYM702
and SYM704 instances. Figure 5a, b depicts the evolution
of average solution quality (Avg) based on 50 runs) over
average total execution time (ATET). Y-axis represents the
Average Solution Quality, whereas X-axis represents the
Average Total Execution Time. The curves in Fig. 5a,

b clearly demonstrate that HSSGA that uses quality-and-
distance feature in the LS finds better solution qualities as
well as converges faster than that of HSSGA - {quality-and-
distance}. Hence, such experiments justify the usefulness of
quality-and-distance feature in the LS.

4.2.2 Effectiveness of RS+ in the replacement strategy

To analyze the effect of RS+, we have performed experiments
based on (i) HSSGA that uses RS+ and (ii) HSSGA with-
out RS+ (i.e., HSSGA - {RS+}) for the dc-MST problem.
In these experiments, we consider two instances (SYM702
and SYM704 for d = 2) selected randomly. Figure 6a,
b exhibit the average solution quality (Avg) over 50 runs
versus the number of generations on considered instances.
In these experiments, HSSGA and HSSGA - {RS+} are
allowed to execute over 50000 generations. X-axis represents
the Generation, while Y-axis represents Average Solution
Quality. The curves in Fig. 6a, b clearly demonstrate that
HSSGA that uses RS+ finds better solution qualities as well
as converges faster than that of HSSGA - {RS+}. Hence, such
experiments justify the usefulness of RS+ in the replacement
strategy.

4.2.3 Statistical analysis

For statistical analysis, we perform nonparametric Wilcoxon’s
signed-rank test (Garcia et al. 2009) on each group of
instances (Euclidean and non-Euclidean) in order to com-
pare HSSGA with HES-EA (Raidl and Julstrom 2003) and
ABA (Bui et al. 2012) in terms of the best (Best) and average
solution quality (Avg). We use Wilcoxon’s signed-rank test
calculator available at the link http://www.socscistatistics.
com/tests/signedranks/Default2.aspx. For this statistical test,
we first calculate the difference between the results obtained
by each two compared approaches (HES-EA vs. HSSGA
and ABA vs. HSSGA) on each group, and then, rank them
according to its absolute value. For each group, R™ is the
sum of ranks in which the second approach outperforms the
first, while R~ denotes the sum of ranks for the opposite
case. If min{R™; R™} is less than or equal to the critical
value, then this test detects significant difference between the
two compared approaches. The critical values are taken from
the statistical table available at the link http://users.stat.ufl.
edu/athienit/Tables/tables. Table 4 and 5 report the results
of Wilcoxon’s signed-rank test with a level of significance
a = 0.05 for the Best and Avg over 50 runs, respectively.

In Tables 4 and 5, column Group denotes the name of each
groups; column Comparison denotes the name of two com-
pared approaches; the next five columns Sample Size, Critical
Value, R*, R~ and Significant, respectively, denote the sam-
ple size, critical value, R*, R~ and significant difference
between the two compared approaches (“yes” if there exists

@ Springer

http://www.socscistatistics.com/tests/signedranks/Default2.aspx
http://www.socscistatistics.com/tests/signedranks/Default2.aspx
http://users.stat.ufl.edu/athienit/Tables/tables
http://users.stat.ufl.edu/athienit/Tables/tables

K. Singh, S. Sundar

2182

000001 LSO 0F'08 TI€6L 000001 S8I'T 8568 6FL8 000001 060 6L68 05€8 000001 191 SLT8 LS6L 000000 9¢T €000I L¥'ie S 005 TuQoS™
00009 €0 T0'SS ¥I9PS 00009 CI'T LEOY 6LLS 00009 990 CC6S 608S 00009 €8T 118 96%S 00009 0TI S80L 66,9 S 00y TUQOyw
00°00C 920 €80F 890y 0000C OLO €Sy 6C Iy 0000C 1€0 66ty 8ver 0000C 9¢0 S80y ILOF 0000C 180 vwOvr €Sy & 00€ TUQOEW
00°09 000 €191 €191 0009 0€'0 <¢E€9l €191 0009 0¥'0 L98I 68°LI 0009 600 vI'91 €191 0009 000 €191 €191 ¢ 00C €guooTw
00°09 vC0 €6l 9I'6L 0009 SL'0 LSO0C 8I'61 0009 9¢'0 0¢Ic 90T 0009 €€'0 Sv'el el'6l 0009 96'0 L80cC 8I'6l S 00C U
00°09 ¢e0 LSBT €€8T 0009 GS'0 6061 €€8L 0009 Iv'0 CT'IT 8¥°0C 0009 61°0 Tr8I €€81 0009 0¥'0 L98] €€8I S 00C Tupocw
0001 000 6I'0L 6L0L 000l SP'0 990l 6I'0L 000l [1°0 ¥L°01 S¥'0l 0001 9¢'0 ¢SO0l 00l 0001 LEO €¥0l 6I'0L S 001 guporux
0001 o SEIr €1 0001 0C0 Oov'Il €€1IL 000l cr'o ¢o’'Ir 9911 0001 0 6L 11 €€T1IL 00701 o¥'0o vL 11 €11 ¢ 001 cuoorux
0001 000 60°'IT S80'LL 00°0I ev’0 ¢STIT 80'IT 00°01 81'0 OLIT Lv'IT 0001 €0 <1l 80°'IT 0001 8C0 9C' Il 80IL ¢ 001 Tueorux
00°L 000 0ss 0SS 001 000 0ss 0SS 001 €00 69°¢ 8SC 001 000 0ss 0sSs 001 000 0s's 0ss ¢ 0s gupsou
00°L 000 8LS 8LS 001 61'0 <8¢ 8LS 001 600 T6 ¢ I8¢ 001 1000 6L¢ 8L'S 001 LT0 €8¢ 8L ¢ 0§ quosou
00°L 000 099 099 001 1000 199 099 001 L00 €89 899 001 1000 €99 099 001 100 099 099 ¢ 0¢ Tugsour
00°09 000 6S¥L 6S¥I 0009 000 6SvIL 6S¥I 0009 ¥1I'0 ¥¢91 S6°SI 0009 000 6SvL 6S¥L 0009 000 6SvI 6S¥L & 00C €U00Td
00°09 000 €9°ST T9ST 0009 000 €9°ST T9°ST 0009 ¥1°0 LTLT 9891 0009 100 v9°¢1 €9°¢1 0009 000 €9°ST €9l v 00C €uoocd
00°09 000 99vI S9¥L 0009 000 S9vL S9¥I 0009 61°0 0¢9l 68¢SL 0009 000 99vI S9¥L 0009 000 99vI S9¥L & 00C <TUOOTH
00°09 000 69'ST 69°ST 0009 000 69'ST 69°ST 0009 91°0 €€'Ll 90°LT 0009 000 0L ST 69°ST 0009 000 69°ST 69SL v 00C <TUOOTH
00°09 000 SO'ST SO'ST 0009 000 SO'ST SO'ST 0009 0C0 IL91 LTOT 0009 000 90°CI SO°'ST 0009 000 90°¢I SOST ¢ 00C TUooTd
00°09 000 609L 6091 0009 000 609L 6091 0009 91°0 OL°LT 8TLI 0009 000 0I'9T 6091 0009 000 6091 609I v 00C TUOOTH
0001 000 0L 0SL 000l 000 0L 0SL 000I L00 68L 8LL 0001 000 0s'L 0sL 0001l 000 0s'L 0L & 000 €uoorTd
0001 000 <¢0'8 <T0'8 000I 000 <T08 <T0'8 000I L00 s¥'8 98 0001 ¢00 S08 T08 0001 000 <08 08 v 000 €UooTd
0001 000 8SL 8SL 000I 000 8SL 8SL 000I 900 66'L L8L 000I 000 8S'L 8L 000I 000 8S'L 8L & 000 <QUOOTH
0001 000 908 908 000I 000 908 908 000I L00 0S8 vE8 0001 1000 LO08 908 000I 000 908 908 v 000 <TUOOTH
0001 000 TISL ISL 000l 000 ISL ISL 000I L00 T6'L T8L 0001 000 ISL ISL 0001 000 1ISL IS & 000 TUoOTd
00°01 000 908 908 000I 000 908 908 00°0I L00 8¥'8 9¢'8 00'1 000 908 908 000I 000 908 908 ¥ 000 TUOOTH
00°1 000 T6€ T6c 001 000 T6€ To6€ 001 Y00 €0v L6'C 00'1 000 T6€ T6E 001 000 ¢€6'¢ we S 05 €U0sy
00°1 000 v6€ tvec 001 000 v6€ Pvoe 001 €00 SO¥Y 66c 001 000 v6€ Pv6'€ 001 000 vé6'€ vee ¢ 05 sy
00°1 000 9Ty 9Tv 001 000 9Ty 9T+ 00'1 €00 LEY I€v 001 000 9y 9T¥ 001 000 9T 9Ty ¥ 05 uosy
00°1 000 ¥0vy +¥O¥ 001 000 v0vy #O¥ 001 €00 SI'v 60V 001 000 v0vy #O¥ 001 000 vO'v oy < 0S Tuosy
LIV dS DAV 1s9d 1LV dS DAV 1s9g LdIV dS DAV 1s°d L4V dS DAV 1s°d 141V ds DAV 189g
VOSSH YAT+HVISS) AATHVISS) vav VA-SAH P |Al o9ouejsug

soouelsul (JA]) prey-Surpedfsiut pue () pIey-wopuer 10y YOSSH, pue (Z10g [e 12 Ing) VAV Pue (¢00T Wons[nf pue [prey) VA-SHH JO sINsy € 3|qel

pringer

Qs

A hybrid genetic algorithm for the degree-constrained minimum spanning tree problem

2183

6,000

4,000

Average S olution Quality

2,000

—x— HSSGA - { quality-and-distance }
P HSSGA

0.2

0.4 0.6 0.8

Average Total Execution Time

(a) SYM702

Average S olution Quality

6,000 |

4,000

2,000

Fig.5 Improvement of average solution quality over average total execution time

2,800

2,600

2,400

2,200

Average S olution Quality

2,000

1,800

—— HSSGA - {RS+}
.-+ HSSGA

10,000 30,000

Generation

(a) SYM702

50,000

Average Solution Quality

Fig.6 Improvement of average solution quality over successive generations

2,800

2,600

2,400

2,200

2,000

0.2

0.4 0.6 0.8

Average Total Execution Time

(b) SYM704

10,000 30,000

Generation

(b) SYM704

50,000

@ Springer

2184

K. Singh, S. Sundar

Table 4 Results of statistical comparison for the best value (Best)

Group Comparison Best
Sample size Critical value RT R~ Significant
Euclidean HES-EA versus HSSGA 31 147 479 17 Yes
ABA versus HSSGA 41 279 861 0 Yes
Non-Euclidean HES-EA versus HSSGA 5 Unknown 15 Not applicable
ABA versus HSSGA 7 2 28 Yes
Table 5 Results of statistical comparison for the average solution (avg) over 50 runs
Group Comparison Avg
Sample size Critical value RT R~ Significant
Euclidean HES-EA versus HSSGA 46 361 925 156 Yes
ABA versus HSSGA 47 378 1128 0 Yes
Non-Euclidean HES-EA versus HSSGA 19 46 190 0 Yes
ABA versus HSSGA 26 98 337 14 Yes

Table 6 Overall comparison of HSSGA with HES-EA (Raidl and Jul-
strom 2003) and ABA (Bui et al. 2012)

Approaches Best Avg

HES-EA ABA HES-EA ABA
Better 35 48 56 73
Equal 70 59 41 33
Worse 2 0 10 1

a significant difference between two compared approaches,
otherwise “no”) for each Best and Avg on each group. On
comparison with HES-EA, HSSGA, in terms of Best, is bet-
ter on 3 out of 4 statistical tests, and HSSGA, in terms of
Avg is better on 4 out of 4 statistical tests. The result of test
HES-EA vs. HSSGA for the Best is unknown because the
sample size is not big enough to return a critical value at the
level of significance o« = 0.05. On comparison with ABA,
HSSGA, in terms of Best, is better on 4 out of 4 statistical
tests,and HSSGA, in terms of Avg is better on 4 out of 4 statis-
tical tests. This test discloses significant differences between
HES-EA vs. HSSGA and ABA vs. HSSGA. Tables 4
and 5 clearly show that HSSGA is superior to HES-EA
and ABA.

4.3 Collective picture

This subsection presents a collective picture that describes
an overall comparison of HSSGA with HES-EA (Raidl and
Julstrom 2003) and ABA (Bui et al. 2012) on 107 benchmark
instances.

@ Springer

Table 6 gives an overall comparison of HSSGA with HES-
EA (Raidl and Julstrom 2003) and ABA (Bui et al. 2012) on
both best value (Best) and average solution quality (Avg). One
can observe clearly from the results of Table 6 that HSSGA
is superior to HES-EA and ABA in terms of both Best and
Avg.

5 Conclusion

In this paper, we have presented a hybrid approach (HSSGA)
combining a steady-state genetic algorithm and local search
strategies for the degree-constrained minimum spanning
tree (dc-MST) problem. HSSGA is quite different from
the hybrid approach (HES-EA) (Raidl and Julstrom 2003)
which is the best one among all existing variants of
genetic algorithm for dc-MST problem, particularly on three
components—problem-specific crossover operator, local
search strategies and an additional step in the replace-
ment strategy. The way problem-specific crossover operator
(Xover) inherits good edges of parent individuals in the newly
generated child solution (say 7¢) as much as possible and
at the same time Xover maintains the degree constraint of
all non-leaf vertices of 7€ makes it quite different from the
existing crossover operators designed for this problem. The
role of local search strategies if applied on newly generated
child solution is used to intensify the search around the gen-
erated child solution, whereas the role of an additional step
(based on perturbation strategy at a regular interval of time)
in the replacement strategy is used to maintain diversity in the
current population throughout the search process. All compo-
nents of HSSGA effectively coordinate with each other and

A hybrid genetic algorithm for the degree-constrained minimum spanning tree problem 2185

help in making HSSGA more effective and robust in finding
high-quality solutions. On a set of 107 benchmark instances,
computational results show that HSSGA is overall superior
to state-of-the-art metaheuristic techniques (HES-EA Raidl
and Julstrom 2003 and ABA Bui et al. 2012). We have also
performed experimental analyses that justify the usefulness
of quality-and-distance feature in the local search strategies
and RS+ in the replacement strategy in HSSGA.

In future work, quality-and-distance feature in the local
search strategies as well as RS+ in the replacement strategy in
HSSGA can be applied to develop variants of hybrid genetic
algorithm for other NP-hard spanning tree problems as
well as other A"P-hard combinatorial optimization problems.
Even quality-and-distance feature in the local search strate-
gies in HSSGA can be applied to develop other metaheuristic
techniques for A/P-hard combinatorial optimization prob-
lems. The idea used in designing problem-specific crossover
operator for the dc-MST problem can be also applied to
develop variants of hybrid genetic algorithm for other N'P-
hard spanning tree problems.

Acknowledgements This work is supported in part by a grant (Grant
Number YSS/2015/000276) from the Science and Engineering Research
Board—Department of Science & Technology, Government of India.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Bau Y, Ho CK, Ewe HT (2005) An ant colony optimization approach
to the degree-constrained minimum spanning tree problem. In:
Proceedings of the computational intelligence and security, inter-
national conference (CIS 2005), Xi’an, China, December 15-19,
2005, Part I, pp 657-662

Beasley JE, PC C (1996) A genetic algorithm for the set covering prob-
lem. Eur J Oper Res 94:394-404

Binh HTT, Nguyen TB (2008) New particle swarm optimization algo-
rithm for solving degree constrained minimum spanning tree
problem. In: Proceedings of the PRICAI 2008: trends in artificial
intelligence, 10th Pacific rim international conference on artificial
intelligence, Hanoi, Vietnam, December 15-19, 2008, pp 1077—
1085

Boldon B, Deo N, Kumar N (1996) Minimum-weight degree-
constrained spanning tree problem: heuristics and implementation
on an SIMD parallel machine. Parallel Comput 22(3):369-382

Bui TN, Zrncic CM (2006) An ant-based algorithm for finding degree-
constrained minimum spanning tree. In: Proceedings of the genetic
and evolutionary computation conference, GECCO 2006, Seattle,
Washington, USA, July 8-12, 2006, pp 11-18

Bui TN, Deng X, Zrncic CM (2012) An improved ant-based algorithm
for the degree-constrained minimum spanning tree problem. IEEE
Trans Evol Comput 16(2):266-278

Cerrone C, Cerulli R, Raiconi A (2014) Relations, models and a
memetic approach for three degree-dependent spanning tree prob-
lems. Eur J Oper Res 232(3):442-453

Cerrone C, Cerulli R, Gaudioso M (2016) OMEGA one multi ethnic
genetic approach. Optim Lett 10(2):309-324

Davis L (1991) Handbook of genetic algorithms. Van Nostrand Rein-
hold, New York

Doan MN (2007) An effective ant-based algorithm for the degree-
constrained minimum spanning tree problem. In: Proceedings of
the IEEE congress on evolutionary computation (CEC 2007), 25—
28 September 2007, Singapore, pp 485491

Ernst AT (2010) A hybrid Lagrangian particle swarm optimization algo-
rithm for the degree-constrained minimum spanning tree problem.
In: Proceedings of the IEEE congress on evolutionary computa-
tion, CEC 2010, Barcelona, Spain, 18-23 July 2010, pp 1-8

Gao X, JiaL, Kar S (2017) Degree-constrained minimum spanning tree
problem of uncertain random network. J Ambient Intell Humaniz
Comput 8(5):747-757

Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use
of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the CEC 2005 special session on real
parameter optimization. J Heuristics 15(6):617-644

Garey MR, Johnson DS (1979) Computers and intractability: a guide
to the theory of NP-completeness. Freeman, San Francisco

Gargano L, Hell P, Stacho L, Vaccaro U (2002) Spanning trees with
bounded number of branch vertices. In: Proceedings of 29th inter-
national colloquium, ICALP 2002 Malaga, Spain, vol 2380, pp
355-365

Goldberg DE (1989) Genetic algorithms in search optimization and
machine learning. Addison-Wesley, Reading

Holland JH (1975) Adaptation in natural and artificial systems: an intro-
ductory analysis with applications in biology, control, and artificial
intelligence. University of Michigan Press, Ann Arbor

Iordache GV, Boboila MS, Pop F, Stratan C, Cristea V (2007) A
decentralized strategy for genetic scheduling in heterogeneous
environments. Multiagent Grid Syst 3(4):355-367

Knowles JD, Corne D (2000) A new evolutionary approach to the
degree-constrained minimum spanning tree problem. IEEE Trans
Evol Comput 4(2):125-134

Krishnamoorthy M, Ernst AT, Sharaiha YM (2001) Comparison of
algorithms for the degree constrained minimum spanning tree. J
Heuristics 7(6):587-611

Marin A (2015) Exact and heuristic solutions for the minimum num-
ber of branch vertices spanning tree problem. Eur J Oper Res
245(3):680-689

Moreno J, Frota Y, Martins S (2018) An exact and heuristic approach
for the d-minimum branch vertices problem. Comput Opt Appl
71(3):829-855

Narula SC, Ho CA (1980) Degree-constrained minimum spanning tree.
Comput OR 7(4):239-249

Pop F, Cristea V, Bessis N, Sotiriadis S (2013) Reputation guided
genetic scheduling algorithm for independent tasks in inter-clouds
environments. In: 27th International conference on advanced infor-
mation networking and applications workshops, WAINA 2013,
Barcelona, Spain, March 25-28, 2013, pp 772-776

Prim R (1957) Shortest connection networks and some generalizations.
Bell Syst Tech J 36:1389-1401

Raidl GR, Julstrom BA (2000) A weighted coding in a genetic algorithm
for the degree-constrained minimum spanning tree problem. In:
Proceedings of the 2000 ACM symposium on applied computing,
Villa Olmo, Via Cantoni 1,22100 Como, Italy, March 19-21, 2000,
vol 1, pp 440445

Raidl GR, Julstrom BA (2003) Edge sets: an effective evolutionary
coding of spanning trees. IEEE Trans Evol Comput 7:225-239

Ravi R, Marathe M, Ravi S, Rosenkrantz D, Hunt H III (1993) Many
birds with one stone: multi-objective approximation algorithms.
In: Proceedings of the 25th annual ACM STOCS, pp 438447

@ Springer

2186

K. Singh, S. Sundar

Savelsbergh MWP, Volgenant T (1985) Edge exchanges in the
degree-constrained minimum spanning tree problem. Comput OR
12(4):341-348

Silvestri S, Laporte G, Cerulli R (2017) A branch-and-cut algorithm
for the minimum branch vertices spanning tree problem. Comput
Oper Res 81:322-332

Sundar S (2014) A steady-state genetic algorithm for the dominat-
ing tree problem. In: Proceedings of the simulated evolution and
learning—10th international conference, SEAL 2014, Dunedin,
New Zealand, December 15-18, 2014, pp 48-57

Sundar S, Singh A (2012) New heuristics for two bounded-degree span-
ning tree problems. Inf Sci 195:226-240

Sundar S, Singh A (2015) Metaheuristic approaches for the blockmodel
problem. IEEE Syst J 9(4):1237-1247

@ Springer

Sundar S, Singh A (2017) Two grouping-based metaheuristics for clique
partitioning problem. Appl Intell 47(2):430-442

Zhou G, Gen M (1997) A note on genetic algorithms for degree-
constrained spanning tree problems. Networks 30(2):91-95

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

	A hybrid genetic algorithm for the degree-constrained minimum spanning tree problem
	Abstract
	1 Introduction
	2 Steady-state genetic algorithm
	3 Hybrid steady-state genetic algorithm for the dc-MST
	3.1 Encoding
	3.2 Generation of initial solutions of the population
	3.3 Fitness
	3.4 Selection
	3.5 Crossover operator
	3.6 Mutation operator
	3.7 Local search strategies (LS)
	3.8 Replacement strategy (RS)

	4 Computational results
	4.1 Comparison of mathcalHSSGA with HES-EA (Raidl) and ABA (BuiDZ12)
	4.2 Analyses on the two key components of mathcalHSGGA
	4.2.1 Effectiveness of quality-and-distance feature in the local search strategies
	4.2.2 Effectiveness of RS+ in the replacement strategy
	4.2.3 Statistical analysis

	4.3 Collective picture

	5 Conclusion
	Acknowledgements
	References

