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Abstract
Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in med-
ical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details
which are exclusively necessary for workings in these domains. To address this less explored problem, a novel enhancement
algorithm involving estimation of the fuzzy histogram with thresholding based on the computed effect of exposure value has
been proposed. The algorithm operates on the lightness (L∗) component of the input image in L∗a∗b∗ colour space, while
preserving the colour-opponent dimensions (a∗ and b∗) to maintain the natural outlook of the image. This technique has
been experimentally demonstrated over a dataset consisting of images generated at different exposure levels. Quantitative
and qualitative analysis of the relative performance of the proposed algorithm has been shown with respect to state-of-the-art
enhancement algorithms over the L∗a∗b∗ space.

Keywords Image enhancement · Histogram equalization · Structural similarity index · Feature similarity index · Low-
exposure colour image · Fuzzy histogram

1 Introduction

Depending on the perception of the human visual system
(HVS) (Gonzalez and Woods 2008), contrast can be defined
as the luminance difference between the brightest and the
darkest regions in the image. Contrast is one of the most sig-
nificant factors for providing better perception of the image
details. In general, the contrast of an image gets influenced
by the exposure of the photosensitive sensors of the captur-
ing devices to the available light. Physically, the exposure
is decided by the ISO, shutter speed and the aperture of
the camera. This is actually the proportion of light per unit
area gained by the sensors of the camera. It can easily be
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implied that these three deciding factors about exposure val-
ues of an image remain unchanged over any postprocessing.
Nevertheless, a colour image with inherently poor exposure
value is hardly useful for any postprocessing operations,
such as segmentation. Therefore, over the years, different
approaches have been developed and applied to handle the
challenge (Bhandari and Muarya 2019; Azetsu and Suetake
2019; Bianco et al. 2019; Bora 2018; Cai et al. 2018; Cepeda-
Negrete et al. 2018; Chiang et al. 2018; Gupta and Tiwari
2019; Jia et al. 2018; Kumar et al. 2018; Lecca 2018; Ma
et al. 2018;Mahapatra et al. 2015; Sinha et al. 2018; Tao et al.
2018;Tian andCohen2018;Tseng andLee 2018;Veluchamy
and Subramani 2019; Yu et al. 2018; Zhang et al. 2017)

Different enhancement techniques have been developed to
deal with images having poor contrast. As these algorithms
were mainly designed for greyscale images, they can be
employed over only a particular component of colour space at
a time. Therefore, to complete the enhancement task, first all
the three components of the RGB space need to be enhanced
separately and then integrated together to get the enhanced
image.But performing the enhancement in thismannermight
make the pixel values to exceed bounds after the enhanced
R, G, B components get integrated together to obtain the
enhanced image. To avoid this scenario in this work, all the
considered techniques will therefore be restricted to oper-
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ate only over the lightness (L∗) component of the L∗a∗b∗
space. Because unlike RGB space, only lightness (L∗) com-
ponent of the L∗a∗b∗ space contributes towards the contrast
of the image. Also this will maintain uniformity for com-
parison of performances of different algorithms. Moreover,
L∗a∗b∗ space ismore perceptually linear than other available
separable colour spaces. Here, perceptually linear means the
change of visual perception is being linear with respect to
the change of colour value. In other words, this colour space
is more perceptually sensitive with respect to the change of
colour values. Therefore, it portrays human visual system
better than the rest. Thus, for all the discussed algorithms, the
input low-exposed RGB image will first be converted to the
L∗a∗b∗ space, enhanced and then reconverted to the RGB
space for subsequent quantitative and qualitative assessment.

The most basic enhancement technique is histogram
equalization (HE) (Gonzalez and Woods 2008). It reassigns
the intensity levels of the image in accordance with its prob-
ability distribution. But it has also the trait of changing the
mean brightness of the input image. Due to this particular
reason, images with low-exposure values suffer from over-
enhancement in patches.

A plethora of histogram separation algorithms have
been developed for handling the problem of mean bright-
ness modification. The brightness-preserving bi-histogram
equalization (BBHE) (Kim 1997), dualistic sub-image his-
togram equalization (DSIHE) (Wan et al. 1999), recursive
mean separate histogram equalization (RMSHE) (Chen and
Ramli 2003a), recursive sub-image histogram equalization
(RSIHE) (Simet al. 2007), etc. are a few from this family.One
of the most prominent and successful methods among these
is minimummean brightness error bi-histogram equalization
(MMBEBHE) (Chen and Ramli 2003b). Here, the separation
intensity is computed to return the minimum brightness error
(MBE) between the input and the enhanced image. Using
this threshold, the input histogram is divided into two sub-
histograms and HE is used to equalize them separately in
order to generate the enhanced image.

The brightness-preserving dynamic fuzzy histogram
equalization (BPDFHE) (Sheet et al. 2010) is another promis-
ing enhancement algorithm, involving a fuzzy mechanism
for histogram computation from its crisp version. It sepa-
rates the smoothed histogram depending on the localmaxima
intensities and uses brightness normalization mechanism for
preserving brightness. Yet this technique fails to generate
significant results for low- exposure images.

Another family of methods emerged to solve the existing
problems, in the concerned field, by means of controlling
the rate of enhancement. These algorithms use clipping of
the histogram values based upon some definite plateau limit.
Few notable algorithms from this class are bi-histogram
equalization plateau limit (BHEPL) (Ooi et al. 2009), self-
adaptive plateau histogram equalization (SAPHE) (Wang

et al. 2006), quadrants dynamic histogram equalization
(QDHE) (Ooi and Isa 2010), etc. Median-mean-based sub-
image-clipped histogram equalization (MMSICHE) (Singh
and Kapoor 2014) is a recently developed technique from
this family. It takes the median value of the brightness of
the histogram as the plateau limit for the clipping operation.
However, the clipping scheme leads to unnecessary informa-
tion loss, which also results in significant loss of structural
and feature similarities.

Taking into account all shortcomings of the presently
available algorithms in the domain, here a novel method
involving Fuzzy histogram estimation and exposure thresh-
olding for low-exposure color image enhancement (Fuzzy-
CIE) is proposed. Quantitative and qualitative analysis of
the methodology is also discussed with reference to a novel
dataset. Section 2 gives a detailed account of the design of
the proposed algorithm. The dataset considered, along with
all experimental results, is elaborately described in Sect. 3.
Finally, Sect. 4 draws a conclusion of the work.

2 Methodology of FuzzyCIE

FuzzyCIE, the proposed algorithm, is fundamentally consti-
tuted of five steps, viz (i) at first converted the input RGB
(colour) image into L∗a∗b∗, (ii) estimated the fuzzy his-
togram over the L∗ component of the L∗a∗b∗ image, (iii)
computed the effect of exposure for choosing proper thresh-
old and divided the histogram into two parts (here, lower part
is assumed to be underexposed and high part is overexposed),
(iv) performed equalization over the two sub-histograms to
generate the final enhanced image and (v) in the final stage of
the process, the enhanced L∗ component is combined with
a∗ and b∗ components and converted into the enhanced RGB
image. A graphical representation of the stages in the process
is depicted in Fig. 1. This proposed novel scheme of com-
bining these tasks effectively tackles all the problems in the
concerned domain as explained in the previous section.

The contribution of proposed algorithm can be attributed
to the quality of the enhanced images obtained after the
processing. This is shown more appropriately through the
quantitative indices given in Sect. 3. The main advantages of
the proposed algorithm are in its preservation quality of the
structural (Wang et al. 2004) and feature (Zhang et al. 2011)
information to the highest degree in comparison with state-
of-the-art algorithms. Although entropy does not reflect the
visual quality completely, but in this case the entropy also
supported the higher quality of the output images enhanced
by the proposed algorithm. These findings are also supported
by the visual analysis. Due to the use of the fuzzy histogram
(Jawahar andRay1996), the ambiguities in the lightness level
are properly taken care of and as a result the output image
showed very high quality. Exposure-based threshed selec-
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Input
Color Image (RGB)

Output
Enhanced Color Image (RGB)

Convert input RGB to L*a*b* image

Es�mate fuzzy histogram over L* 
Component

Compute the effect of exposure for the 
threshold selec�on, and divide the 
histogram into underexposed and 

overexposed components

Equalize the two sub-histograms

Convert the enhanced L*a*b* image into 
RGB image

Fig. 1 The processing chart of FuzzyCIE

tion helped in focusing the enhancement on the low-exposed
region. Ultimately, the equalization on two sub-histograms
enhances the image suitably while maintaining the balance
between high and low regions of the lightness levels. In the
proposed algorithm, the L∗ component of the L∗a∗b∗ space
is exploited to enhance the intensity of the image, while
preserving the colour-opponent dimensions to retain their
natural appearances.

2.1 Estimating fuzzy histogram of the L∗ component

Changing the lightness level l to l ± 1 (where the scaled ver-
sion of l is in the range 0–255) would hardly invoke any kind
of significant change in visual details in an image. But these
types of impressions (Sheet et al. 2010) of lightness values
have not been considered inmost of the existing enhancement
techniques. In order to deal with such inexactness (Jawahar
and Ray 1996), the fuzzy histogram of the L∗ component
is computed instead of its crisp counterpart. This allows the
development of a smooth histogram. Importance of this step
becomes all the more evident due to the existence of fre-
quent fluctuations of lightness level around the compressed
portion on the left side of the histogram. A symmetric fuzzy
membership function, which appropriately conveys the idea

of fuzzy lightness level “around l”, is employed to calculate
the fuzzy histogram.

Let μ(L∗(x, y), l) be the Gaussian fuzzy membership
function defined on l and expressed as

μ(L∗(x, y), l) = e
−(L∗(x,y)−l)2

2σ2 , (1)

where σ is the standard deviation estimated based on L∗
of the image. Here, L∗(x, y) is the lightness value at pixel
(x, y). Considering every lightness level and its fuzzy repre-
sentation, the fuzzy histogram is calculated as:

h f (l) ← h f (l)

+
∑

x

∑

y

μ(L∗(x, y), l), l ∈ {0, 1, . . . , M − 1}, (2)

where M is the highest lightness level available in the con-
sidered image.

2.2 Thresholding based on the effect of exposure
index

The effect of the exposure (Hanmandlu et al. 2009) is themost
vital point of consideration in the design of the FuzzyCIE.
This is because the value of exposure allows the lightness
histogram to be appropriately divided into ‘underexposed’
and ‘overexposed’ portions. Since the problem domain con-
sists of low-exposure colour images, the thresholding with
Texposure aids in concentrating the degree of equalization
more towards the underexposed section. Here, exposure and
Texposure are defined as

exposure = 1

M

[∑M−1
l=0 l · h f (l)∑M−1
l=0 h f (l)

]
, (3)

Texposure = M · [1 − exposure]

=
[
M · ∑M−1

l=0 h f (l) − ∑M−1
l=0 l · h f (l)∑M−1

l=0 h f (l)

]
(4)

It can be easily deduced that 0 ≤ exposure ≤ 1. As the
considered domain consists of low-exposure colour images
only, always here exposure ≤ 0.5. Thresholding the image
with Texposure would generate two separate parts, viz under-
exposed lightness component L∗

u and overexposed lightness
component L∗

o.

2.3 Equalizing sub-histograms

The underexposed component L∗
u is represented as {h f (0),

h f (1), · · · , h f (Texposure)}, while the overexposed compo-
nent L∗

o is rendered as {h f (Texposure + 1), h f (Texposure +
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Fig. 2 Original image and
corresponding histogram of a
hat, b raft, c lighthouse, d
motorcross and e woman

(b)(a)

(c) (d)

(e)
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Table 1 Entropy values of test
images at four different
exposure levels and their
corresponding enhanced
versions, as produced by the
four algorithms along with
FuzzyCIE. (Here, the columns
of the table represent : (A):
exposure level, (B): test, (C):
HE (Gonzalez and Woods
2008), (D): MMBEBHE (Chen
and Ramli 2003b), (E):
BPDFHE (Sheet et al. 2010), (F)
MMSICHE (Singh and Kapoor
2014)

Image (A) (B) (C) (D) (E) (F) FuzzyCIE

Hat 2 6.572 6.949 6.904 6.760 7.049 7.292

3 6.125 6.861 6.419 6.305 6.656 7.243

4 5.696 6.754 5.999 5.855 6.263 7.200

5 5.236 6.517 5.562 5.334 5.951 7.047

Raft 2 6.557 7.811 6.911 6.712 7.140 8.226

3 6.088 7.761 6.437 6.271 6.818 7.898

4 5.621 7.574 5.974 5.864 6.459 7.678

5 5.121 7.218 5.382 5.035 6.022 7.366

Lighthouse 2 6.516 7.780 7.006 6.800 6.997 7.836

3 6.038 7.725 6.514 6.387 6.645 7.794

4 5.571 7.586 6.048 5.869 6.216 7.644

5 5.117 7.225 5.582 5.309 5.814 7.472

Motorcross 2 6.438 7.902 6.917 6.671 6.921 8.249

3 5.956 7.842 6.482 6.207 6.554 7.931

4 5.476 7.678 6.013 5.732 6.158 7.746

5 4.964 7.164 5.411 5.199 5.684 7.388

Woman 2 6.479 7.851 6.672 6.857 7.197 7.924

3 6.027 7.839 6.289 6.357 6.876 7.877

4 5.540 7.770 5.929 5.931 6.522 7.792

5 5.065 7.514 5.503 5.343 6.110 7.631

Table 2 MSSIM values of test
images at four different
exposure levels and their
corresponding enhanced
versions, as produced by the
four algorithms along with
FuzzyCIE. (Here, the columns
of the table represent: (A):
exposure level, (B): test, (C):
HE (Gonzalez and Woods
2008), (D): MMBEBHE (Chen
and Ramli 2003b), (E):
BPDFHE (Sheet et al. 2010),
(F): MMSICHE (Singh and
Kapoor 2014)

Image (A) (B) (C) (D) (E) (F) FuzzyCIE

Hat 2 0.785 0.762 0.682 0.726 0.746 0.905

3 0.609 0.744 0.577 0.589 0.641 0.841

4 0.447 0.734 0.454 0.431 0.512 0.809

5 0.313 0.698 0.360 0.291 0.398 0.779

Raft 2 0.732 0.872 0.759 0.727 0.743 0.981

3 0.525 0.863 0.606 0.526 0.590 0.973

4 0.351 0.859 0.441 0.355 0.448 0.958

5 0.223 0.850 0.328 0.203 0.336 0.929

Lighthouse 2 0.756 0.821 0.699 0.739 0.770 0.955

3 0.565 0.818 0.591 0.547 0.626 0.943

4 0.402 0.807 0.455 0.387 0.501 0.937

5 0.279 0.795 0.340 0.262 0.394 0.926

Motorcross 2 0.722 0.773 0.808 0.705 0.775 0.983

3 0.509 0.768 0.661 0.510 0.622 0.977

4 0.332 0.767 0.512 0.333 0.478 0.946

5 0.205 0.757 0.383 0.203 0.355 0.900

Woman 2 0.768 0.757 0.702 0.729 0.743 0.856

3 0.584 0.754 0.566 0.564 0.606 0.837

4 0.418 0.751 0.441 0.411 0.477 0.820

5 0.286 0.747 0.353 0.281 0.358 0.808
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Table 3 FSIM values of test
images at four different
exposure levels and their
corresponding enhanced
versions, as produced by the
four algorithms along with
FuzzyCIE. (here the columns of
the table represent: (A):
exposure level, (B): test, (C):
HE (Gonzalez and Woods
2008), (D): MMBEBHE (Chen
and Ramli 2003b), (E):
BPDFHE (Sheet et al. 2010),
(F): MMSICHE (Singh and
Kapoor 2014)

Image (A) (B) (C) (D) (E) (F) FuzzyCIE

Hat 2 0.931 0.859 0.939 0.934 0.912 0.979

3 0.873 0.857 0.898 0.907 0.888 0.972

4 0.820 0.850 0.847 0.856 0.861 0.963

5 0.775 0.841 0.799 0.805 0.840 0.961

Raft 2 0.893 0.919 0.889 0.895 0.866 0.993

3 0.803 0.919 0.827 0.825 0.810 0.991

4 0.719 0.918 0.740 0.750 0.762 0.983

5 0.646 0.918 0.660 0.724 0.728 0.971

Lighthouse 2 0.905 0.898 0.926 0.899 0.925 0.997

3 0.824 0.893 0.870 0.834 0.874 0.994

4 0.748 0.891 0.805 0.771 0.825 0.992

5 0.686 0.888 0.738 0.724 0.792 0.985

Motorcross 2 0.879 0.852 0.931 0.872 0.919 0.995

3 0.775 0.852 0.861 0.791 0.872 0.983

4 0.674 0.852 0.775 0.690 0.825 0.974

5 0.583 0.851 0.691 0.596 0.775 0.968

Woman 2 0.918 0.873 0.921 0.923 0.867 0.924

3 0.852 0.868 0.868 0.882 0.832 0.897

4 0.792 0.845 0.809 0.824 0.801 0.886

5 0.739 0.822 0.761 0.760 0.774 0.879

2), . . . , h f (M − 1)}. The corresponding probability density
functions (pdf) of those two components are defined as

Pu(l) = h f (l)
∑Texposure

k=0 h f (k)
, 0 ≤ l ≤ Texposure, (5)

Po(l) = h f (l)∑M−1
k=Texposure+1 h f (k)

, (Texposure + 1) ≤ l ≤ M − 1.

(6)

Analogously, the cumulative density functions (cdf) of
components L∗

u and L∗
o can be interpreted as

Cu(l) =
Texposure∑

l=0

Pu(l), (7)

Co(l) =
M−1∑

l=Texposure+1

Po(l). (8)

In order to equalize (Gonzalez andWoods 2008) the light-
ness components L∗

u and L∗
o separately, two transformation

functions fu(l) and fo(l) are established as

fu(l) = 0 + (Texposure − 0) · Cu(l)

= Texposure · Cu(l), (9)

fo(l) = (Texposure + 1) + {(M − 1)

−(Texposure + 1)} · Co(l). (10)

Integrating the two equalized lightness components, the
resultant enhanced image is obtained.

3 Experimental results and analysis

A novel dataset has been formulated from scratch, by taking
images fromKodak lossless true colour image suite and gen-
erating colour images at different exposure levels for these
images. Experimentation is carried out on a variety of images.
The results were more or less similar in nature. However,
to demonstrate the performance, five typical images from
different categories are taken and the results are evaluated
under the same settings and indices. These original images
are named as ‘hat’, ‘raft’, ‘lighthouse’, ‘motorcross’ and
‘woman’, and displayed in Fig. 2. Consecutive exposure lev-
els were generated from these images by condensing their
lightness component histograms towards zero, so that the
effect of exposure index value decreases by 30% (approx-
imately) from the input. Mathematically, if the effect of
exposure index at level i is exposurei , then

exposurei+1

exposurei
≈ 0.7 . (11)

Here, exposure0 is the effect of exposure on the lightness
of the original image. For the sake of convenience and uni-
formity, the test images with low-exposure values have been
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(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

(a3) (b3) (c3) (d3) (e3) (f3)

(a4) (b4) (c4) (d4) (e4) (f4)

Fig. 3 ‘Hat’ image and corresponding histograms at exposure levels 2,3,4,5 in consecutive rows. a Test image and its enhanced versions using
algorithms, b HE, c MMBEBHE, d BPDFHE, e MMSICHE, f FuzzyCIE

generated by Adobe Photoshop Elements 11. With subse-
quent level i , (i = 1, 2, 3, . . .), the quality of an image would
be poorer and it would steadily lose its natural appearance.
This mechanism allows testing the capability of the algo-
rithms in enhancing from different degrees of low exposures.

Using the generated dataset, the relative performance of
FuzzyCIEhas been analysedwith respect toHE,MMBEBHE,
BPDFHE andMMSICHE. Care has been taken so that every
compared algorithm represents a different family of tech-
niques. Keeping in mind the principal aim of FuzzyCIE, a
novel testing strategy has also been devised with quantitative
indices.

3.1 Quantitative analysis

Three different indices have been utilized for the quantita-
tive assessment of FuzzyCIE. Entropy (Wang and Ye 2005),
structural similarity (Wang et al. 2004) and feature similar-
ity (Zhang et al. 2011) produce thorough evaluation of the
enhanced images, as demonstrated in Tables 1, 2 and 3. The
formulations of these quantitative indices are briefly stated
in Appendix. Using the quantitative indices, the results are
given for test(input) images (i.e., images at different levels of
exposure) and their enhanced versions using different algo-
rithms along with proposed technique.

123



2158 S. Mandal et al.

(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

(a3) (b3) (c3) (d3) (e3) (f3)

(a4) (b4) (c4) (d4) (e4) (f4)

Fig. 4 ‘Raft’ image and corresponding histograms at exposure levels 2, 3, 4, 5 in consecutive rows. a Test image and its enhanced versions using
algorithms, b HE, c MMBEBHE, d BPDFHE, e MMSICHE, f FuzzyCIE

In case of MSSIM and FSIM computation, the origi-
nal image (i.e., the image at normal exposure) is taken
as the reference image. Therefore, MSSIM and FSIM are
always computed between the images enhanced from the
low-exposed test images and the original images with nor-
mal exposure values (instead of the input test images). This
allows us to evaluate howwell each algorithm could enhance
an image starting from its low-exposed version and howwell
these enhanced images could be able to emulate from the
viewpoint of structural similarity and feature similarity that
of the original image.

Table 1 displays the entropy values of the input images and
their enhanced versions. It is evident that FuzzyCIE retains

highest amount of image detail in every instance. MSSIM
(0 ≤ MSSIM ≤ 1) being closer to 1 denotes higher struc-
tural similarity between the two compared images. Table
2 represents the MSSIM values of the low-exposure test
images, along with those for their enhanced versions (com-
puted w.r.t. their original versions). As before, the MSSIM
values of FuzzyCIE are found to be higher than the rest of
the algorithms compared, thereby establishing its superior-
ity. As before, FSIM (0 ≤ FSIM ≤ 1) closer to 1 indicates
a higher feature similarity between the compared images.
Table 3 exhibits the FSIM values of the input low-exposure
images and their enhanced versions (computed w.r.t. the nor-
mal exposure instances). Again the corresponding values of
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(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

(a3) (b3) (c3) (d3) (e3) (f3)

(a4) (b4) (c4) (d4) (e4) (f4)

Fig. 5 ‘Lighthouse’ image and corresponding histograms at exposure levels 2, 3, 4, 5 in consecutive rows. a Test image and its enhanced versions
using algorithms, b HE, c MMBEBHE, d BPDFHE, e MMSICHE, f FuzzyCIE
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(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

(a3) (b3) (c3) (d3) (e3) (f3)

(a4) (b4) (c4) (d4) (e4) (f4)

Fig. 6 ‘Motorcross’ image and corresponding histograms at exposure levels 2, 3, 4, 5 in consecutive rows. a Test image and its enhanced versions
using algorithms, b HE, c MMBEBHE, d BPDFHE, e MMSICHE, f FuzzyCIE

FuzzyCIE are found to be better than those for the compared
algorithms.

It is evident from the quantitative results that FuzzyCIE
generates predominantly better quality images than the other
compared techniques. It can also be observed from Tables
2 and 3 that FuzzyCIE produces MSSIM and FSIM values
very close to 1. Therefore, its superiority in generating out-
put image (almost similar to the original image) from its
low-exposure versions can be stressed. Moreover, FuzzyCIE
also produces better results even when the exposure levels
decrease. In other words, even when the degree of degrada-
tion in the test images becomes higher as observed from the
column (B) of Tables 1, 2 and 3, the FuzzyCIE-enhanced
results demonstrate negligible changes as observed from the
last columns of Tables 1, 2 and 3, unlike those of the other

compared algorithms. This further establishes the consis-
tency of FuzzyCIE.

3.2 Qualitative analysis

For visual evaluation, the test images with the computed
enhanced results along with their individual histograms are
depicted in Figs. 3, 4, 5, 6 and 7. These test images portray
exposure levels 2, 3, 4 and 5 for all the five images. Here,
exposure level is defined as exposure index at level i . It is
determined using equation 11.

The results produced by HE in Figs. 3b, 4b, 5b, 6b and 7b
columns suffer from excessive enhancement, thereby dam-
aging the natural appearance of the images. For example,
the colour of the hats in Fig. 3b column displays intensity
saturation. It can be noticed from Figs. 3c, 4c, 5c, 6c and 7c
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(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

(a3) (b3) (c3) (d3) (e3) (f3)

(a4) (b4) (c4) (d4) (e4) (f4)

Fig. 7 ‘Woman’ image and corresponding histograms at exposure levels 2, 3, 4, 5 in consecutive rows. a Test image and its enhanced versions
using algorithms, b HE, c MMBEBHE, d BPDFHE, e MMSICHE, f FuzzyCIE
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Fig. 8 ‘Sea’ image and
corresponding histograms. a
Low-exposure test image and its
enhanced versions using
algorithms, b HE, c
MMBEBHE, d BPDFHE, e
MMSICHE, f FuzzyCIE

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Fig. 9 ‘Garden’ image and corresponding histograms. a Low- exposure test image and its enhanced versions using algorithms, bHE, cMMBEBHE,
d BPDFHE, e MMSICHE, f FuzzyCIE
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(a) (b) (c)

(d) (e) (f)

Fig. 10 ‘Retina’ image and corresponding histograms. a Low- exposure test image and its enhanced versions using algorithms, bHE, cMMBEBHE,
d BPDFHE, e MMSICHE, f FuzzyCIE

columns thatMMBEBHEnot only fails to enhance the image
but it also introduces abnormal artefacts in all cases.Different
spots in the waterbody and the raft in Fig. 4c column are just
a few of such instances. BPDFHE is hardly able to produce
any enhancement in the generated images in Figs. 3d, 4d,
5d, 6d and 7d columns. Moreover, it exhibits unnatural noise
artefacts, as in the walls of the lighthouse and houses in Fig.
5d column. Analogously, MMSICHE produces unsatisfac-
tory results throughout Figs. 3e, 4e, 5e, 6e and 7e columns,
with abnormal artefacts as well as excessive enhancement in
patches (such as in the metal frames of Fig. 6e column, in
the cheeks and the necklace of Fig. 7e column, etc.).

On the other hand, the results generated by FuzzyCIE are
better in every aspect. The images in Figs. 3f, 4f, 5f, 6f and 7f
columns are visual proofs of the more effective enhancement
by this novel algorithm over the rest. The greatest challenge
for any enhancement algorithm is to maintain the natural
appearance of the images while enhancing from low-quality
versions. The proposed algorithm could successfully do so,
even with input images under very low-exposure conditions,
as compared with several state-of-the-art algorithms. The
corresponding histograms also demonstrate that FuzzyCIE

successfully emulates the histograms of the original images
of Fig. 2. Again, as the considered exposure levels decrease
in the test images, the results computed by FuzzyCIE remains
free from any unwanted visual artefacts or intensity satura-
tion. But in the compared algorithms, the occurrence of such
deformities increases with subsequent exposure levels. This
highlights the claim that even with extremely low-exposure
value, FuzzyCIE would still be able to create satisfactory
enhancements which are very close to the original.

To show the superior performance of FuzzyCIE, two
naturally camera-captured low-exposure images and their
enhanced versions are displayed in Figs. 8 and 9. In Fig.
8, the ‘sea’ image and in Fig. 9 the ‘garden’ image can easily
be visually interpreted as two images captured in low expo-
sure. It can be observed that the enhanced images produced
by the other algorithms contain considerable visual artefacts
and unnatural brightness in patches. But Figs. 8f and 9f gen-
erated by the proposed FuzzyCIE algorithm are free from
those effects.Also quantitatively, the generated entropyof the
‘sea’ and ‘garden’ images enhanced by FuzzyCIE has values
of 6.922 and 7.442, respectively. The generated entropies
of the enhanced images produced by the other algorithms
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(a) (b) (c)

(d) (e) (f)

Fig. 11 ‘Kolkata’ image andcorrespondinghistograms.aLow- exposure test image and its enhancedversions using algorithms,bHE, cMMBEBHE,
d BPDFHE, e MMSICHE, f FuzzyCIE

(6.896 by HE, 5.878 by MMBEBHE, 6.025 by BPDFHE,
6.584 byMMSICHE for ‘sea’ image and 7.405 by HE, 5.806
by MMBEBHE, 5.062 by BPDFHE, 5.106 for MMSICHE
for ‘garden’ image) are significantly lower than FuzzyCIE-
enhanced images. As the normal-exposure version of these
considered images (ground truths) are not available for com-
parison, it was not possible to compute theMSSIMandFSIM
in these cases.

FuzzyCIE produces superior results for medical images
with low exposure and remotely sensed images with low
exposure as well. One example from both of these categories
is shown in Figs. 10 and 11, respectively. The FuzzyCIE-
enhanced retinal fundus image in Fig. 10f is completely free
from visual artefacts, while the enhanced images generated
by the other algorithms are filled upwith unnatural brightness
in patches. It can be easily observed that the important fea-
tures of the retina image (such as the blood vessels) have been

properly enhanced by FuzzyCIE only. In the similar way,
the FuzzyCIE-enhanced ‘Kolkata’ image in Fig. 11f displays
higher visual quality over the enhanced images by the other
algorithms.Moreover, unlike the other compared algorithms,
FuzzyCIE has managed to perform remarkable enhancement
of the major features of the considered image. For example,
the road next to the river in the top-left corner of the image
is clearly visible and free from any unnatural brightness in
the FuzzyCIE-enhanced image only. These results further
corroborate the fact that FuzzyCIE can be ideally used in
preprocessing tasks for medical images and remotely sensed
images with low-exposure values.

In Fig. 12, results generated by three different instances of
FuzzyCIE are displayed, where three different membership
functions (Gaussian, triangular and trapezoidal) have been
used to estimate the fuzzy histogram. It has been observed
that the choice of the type of the membership function has no
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(a) (b) (c)

Fig. 12 FuzzyCIE-enhanced ‘raft’ images and corresponding histograms at exposure level 2 using fuzzy membership type a Gaussian, b triangle
and c trapezoidal

significant effect on the resultant enhanced images. Also the
computedvalues of entropy,MSSIMandFSIMforFuzzyCIE
with different membership functions are found to be almost
the same. Therefore, one can choose any of these member-
ships to compute the fuzzy histogram. In the present work,
Gaussian membership function has been used.

4 Conclusion

A novel enhancement algorithm FuzzyCIE has been devel-
oped for low-exposed colour images. A fusion strategy has
been imbibed during design, to prevent all previous short-
comings in the working domain. The input colour images
were considered in L∗a∗b∗ space and their L∗ compo-
nents enhanced to preserve the colour-opponent dimensions.
Therefore, the enhanced images could maintain their natu-
ral appearances. FuzzyCIE was found to be inherently free
from gamut problem due to the low-exposure values of the
images. The estimation of fuzzy histograms of the L∗ com-
ponents made FuzzyCIE free from the innate vagueness of
the lightness values to aid in preserving higher structural and
feature information. Therefore, the thresholding based on the
effect of the exposure index channelled the focus of equaliza-
tion more towards the condensed portion of the histogram.
Finally, the equalization of the sub-histograms performed the
desired enhancement. Detailed quantitative as well as qual-
itative analyses endorse the dominance of FuzzyCIE over
other state-of-the-art algorithms in the literature.

Though the principal aim of developing this algorithm
is to solve low-light photography issues in consumer elec-
tronics, the application of the proposed technique can also
be extended to medical imaging, remotely sensed imaging,
etc. Further research on this platform includes extension of
this novel concept to the realm of high-exposure images, by
taking care of the probable gamut problems in such scenario.
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Appendix

Entropy

The expected value (average) of the information content in
an image is estimated by its entropy. It is defined as

H = −
N−1∑

i=0

p(i) log2 p(i), (12)

where p(i) denotes the probability of intensity i and N is the
number of grey levels of the considered image. The higher the
entropy, the more information content (Wang and Ye 2005)
is preserved in the output image.

Mean structural similarity index (MSSIM)

MSSIM assesses the structural similarity (Wang et al. 2004)
criterion of an image, with respect to another, by simulating
traits of the human visual system (HVS).

MSSIM(Ir , Ie) = 1

K

K∑

i=1

SSIM(ri , ei ). (13)

Here, Ir and Ie are the reference and the enhanced images,
respectively, K is the total count of the image windows used
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for measurement and ri and ei are the sub-images contained
in the i th windows of Ir and Ie, respectively. The structural
similarity index (SSIM) evaluates the luminance, contrast
and correlation factors (Wang et al. 2004) of the image. It is
represented as

SSIM(ri , ei ) = [L(ri , ei )]α · [C(ri , ei )]β · [S(ri , ei )]γ , (14)

where L(ri , ei ), C(ri , ei ) and S(ri , ei ) are the luminance,
contrast and correlation factors of the image, respectively,
and α, β, γ are the three parameters employed to tune the
relative importance of these three factors (here, for experi-
ments, α = β = γ = 1 is chosen).

Feature similarity index (FSIM)

Based upon the intuition that HVS appraises an image by
means of its low-level features (Zhang et al. 2011), the feature
similarity index (FSIM) blends phase congruency (PC) and
image gradient magnitude to compare the two images. It is
defined as

FSIM =
∑

i∈(Ir ,Ie) S(i) · PCmax(i)∑
i∈(Ir ,Ie) PCmax(i)

. (15)

Here, S(i) is the similarity between the reference (Ir ) and
the enhanced (Ie) images, and PCmax(i) represents the max-
imum value of PC maps between Ir and Ie.
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