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Abstract
Degradation of RC structures due to corrosion induced mechanism in the reinforcing steel is a serious durability problem

worldwide. It occurs essentially when the reinforcement within the concrete is subjected to marine or aggressive envi-

ronment. The aim of the present work is to predict the reliable service life of the RC structures by taking into consideration

of various prominent models of corrosion and comparing the output with the predicted output of ANN model. Parametric

studies have been conducted on four different models to study the effect of various parameters such as corrosion rate, cover

thickness, bar diameter, and perimeter of bar which actively participates in the time dependent degradation of RC

structures. The outcomes of the parametric inspection of the four chosen degradation models are shown in the present

study. The acceptability of the prediction models in forecasting the service life of RC structures are shown through

circumstantial illustrative analysis and the best suited model sorted out. However, with the application of soft computing

such as ANN, a prediction has been made to determine the service life of RC structures, and the predicted outputs validated

with the intended outputs thereby yielding good outcomes for envisaging service life of RC structure.
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1 Introduction

The deterioration of RC structures due to reinforcement

corrosion is one of the serious durability problems world-

wide, particularly, when the structure is subjected to mar-

ine or chemically aggressive environment (Cusson et al.

2010). The corrosion phenomenon causing degradation of

reinforcing material becomes mainly due to two consider-

ations such as: (i) Corrosion induced by chloride ingress

(ii) Corrosion induced by carbonation. Carbonation gen-

erally occurs in a relatively humid environment where

adequate amount of carbon dioxide is available for

spreading over the concrete (Liang et al. 1999a, b). How-

ever, in case of corrosion induced by chloride ingress, the

ingress of chloride is generally quicker than the process of

carbonation and it causes premature deterioration by

degrading the structural resistance leading to the early

ending of service life/period of the structure (Liang et al.

2002; Ming-Te et al. 2009). At the later stage of deterio-

ration, when the damage of the structure caused by rein-

forcement corrosion is noticeable, it becomes generally too

late to carry out any preventive measures in order to

safeguard the structure. Henceforth, estimation of service

life become of outmost importance for damage induced in

the structure due to reinforcement corrosion. When rein-

forcement corrosion starts, it propagates at a constant rate

and cut shorts the usable life of the structure by developing

stresses due to expansion of steel which result in surface

cracking and concrete spalling (Beeby 1978). The corro-

sion rate directly effects the residual service life of a cor-

roding RC structure (Vu and Stewart 2005). At the initial

stage of damage when the reinforcement just starts cor-

roding, it shows noteworthy degradation. In most of the

cases, either regular maintenance of the structure has been

neglected or the structure is not adequately strong and

durable enough to maintain the structural stability. With

respect to the cover cracking issues, various hypothetical
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models have been proposed for predicting the time of

cracking of cover (Bhargava et al. 2005, 2006; Bazant

1979; IRC SP 60 2002; Morinaga 1988; Saad and Fu 2015;

Weyers 1998). The results and models generated from the

previous studies vary primarily due to variation in param-

eters, methods of experiments as well as presumptions

made during modeling by various researchers.

In the present work, an ANN based approach used for

predicting the service life of RC structures subjected to

chloride-induced corrosion. In the recent years, ANN

successfully applied to various civil engineering problems

which are difficult to solve through conventional mathe-

matical approaches. This includes prediction/forecasting of

natural hazards (Zarola and Sil 2017) such as earthquake,

flood, landslide, and tsunami which adversely affects the

usable life or design service period of the structure by

initiating a process of premature deterioration. The pre-

diction of these natural hazards represents as well as

involves a complex process depending on various physical

and environmental parameters which are stochastic in

nature. However, degradation of RC structures due to

chloride-induced corrosion could be considered as one of

these natural hazards which depend upon various envi-

ronmental and physical parameters. Although reliable

predictive models are available for estimating the service

life of RC structures, yet, they do not have the ability to

reduce the computational time to a significant extent

thereby demanding a long and tedious completion process

(Cardoso et al. 2008; Papadrakakis and Lagaros 2002). In

order to overcome this, ANN has been implemented as a

part of soft computing for avoiding complex mathematical

formulations such that reliable results of the structural

service life subjected to chloride-induced corrosion could

be obtained. Indeed, the ANN being a highly nonlinear

network exhibits the capability to generalize and learn from

predefined examples without having any prior knowledge

of the complex mathematical system. Therefore, in order to

model a physical system for predicting service life of RC

structures with reasonable accuracy and rapid computa-

tional process, a trained neural network model have been

used (Imam et al. 2015). Network with respect to four

selected models have been generated and the predicted

outputs of the neural network model validated with the

calculated outputs such that the adequacy of the network in

estimating the service life of RC structures could be figured

out. Parametric investigations on four different models

conducted and the best possible model (Bazant’s model)

for service life prediction identified and used. Consecu-

tively, for evaluating the performance of the trained net-

work, statistical measures such as sensitivity and specificity

of the neural network model have been checked. From the

statistical measures, it has been identified that the neural

network model exhibits highly efficient in accurately

predicting the structural service life with sensitivity and

specificity equal to 94.05% and 95.44% respectively, for

two different occurrences of cracking. Thus, with the

application of soft computing, a reliable predictive system

generated which provides conventional results of structural

degradation with reasonable accuracy considering elimi-

nation of complex computational process.

2 Service life of structure and prediction
models

The concept of service life prediction for RC structures

turned out to be an area of extensive interest for many

researchers. Considering this, the durability of concrete

becomes responsible for playing a crucial role in the ser-

vice life prediction of the structure. The structural service

life designated as a time dependent process till a time after

which expensive rehabilitation becomes important (Mangat

and Elgarf 1999; Morinaga 1988). However, for RC

structures exposed to marine environment, the resistance of

the concrete to chloride-induced damage controls, its pro-

longed strength execution becomes to a great extent.

Weakening of concrete due to chloride ingress could be

illustrated by a simple model of service life consisting of

two stages such as Initiation stage or stage of depassivation

and the propagation stage or stage of spreading as shown in

Fig. 1.

The time from starting of corrosion initiation which

causes depassivation of steel is regarded as initiation stage

(Ahmad 2003). Consecutively, the time at the onset of steel

corrosion to a visible spalling of concrete is referred to as

propagation stage. The critical time of cracking (tcr), is the

time required for spalling of concrete due to reinforcement

corrosion, indeed, it considered as the sum of depassivation

time (tp) and corrosion propagation period (tcorr) (Maad-

dawy and Soudki 2007; Tuutti 1982). Alternatively,

degradation of RC structures due to chloride ingress is one

of the most critical components of damage which gradually

triggers the loss of structural mechanical properties.

2.1 Prediction models

2.1.1 Bazant’s model

Bazant (1979) presented a mathematical model for the

prediction of service life of RC structures subjected to

reinforcement corrosion in concrete. The corrosion damage

takes into consideration the expansion volume due to the

arrangement of hydrated rust over rebar periphery. Due to

expansive nature of hydrated rust, the rust expands four

times the volume of parent steel. Eventually, due to the

formation of hydrated rust an outward radial stress is
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generated on the surrounding concrete. The radial stress

exerted is similar to the increase in rebar diameter DD due

to increase in its volume until concrete cover splits.

According to Bazant’s model, the corrosion propagation

could be expressed as:

tcorr ¼ qcor
DDD
pjr

ð1Þ

where

tcorr: Corrosion propagation period (years).

qcor: Combined factor of density for rust as well as

steel = 3600 kg/m3.

D: Reinforcement diameter (mm).

DD: Increase in diameter of rebar due to formation of

rust (mm).

p: Perimeter of rebar (mm).

jr: Instantaneous rate of corrosion due to rust (g/m2s).

The instantaneous rate of corrosion due to rust is

expressed as:

jr ¼
W

F
icorr ð2Þ

where

W: Equivalent weight of steel = 27.925.

F: Faradays constant = 96,847 C.

icorr: Corrosion current density (lA/cm2).

The critical time of cracking tcr could be developed due

to corrosion throughout the whole cover and is calculated

as:

tcr ¼ tp þ tcorr ð3Þ

where

tp: Depassivation time (years).

tcorr: Corrosion propagation period (years).

According to Bazant et al. the depassivation time, tp
may be calculated as:

tp ¼
1

12Dapp
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ð4Þ

where

Cv: Cover thickness (mm).

Cth: Threshold value of chloride concentration (kg/m3 of

concrete).

Cs: Surface concentration of chloride ions in pores of

concrete (kg/m3 of concrete).

Dapp: Apparent chloride diffusion coefficient (cm2/s).

2.1.2 Morinaga’s model

An elementary model proposed by Morinaga (1988)

essentially for measuring the corrosion of reinforcing steel

in concrete at which the concrete cover breaks due to

augmentation of steel caused due to rusting. The corrosion

damage considers volume expansion caused due to gener-

ation of red rust. One of the most significant parameters

used for deciding the cracking time is the rate of corrosion.

The period of time from the initiation of corrosion to

splitting of cover forms an element of the rate of corrosion,

clear cover of concrete and distance of the reinforcing bar.

Therefore, the amount of corrosion required for cracking of

concrete is given by:

Qcr ¼ 0:602D 1þ 2Cv

D

� �0:85

ð5Þ

where

Qcr: amount of corrosion when concrete cracks

(9 10�4 g/cm2).

Fig. 1 Service life model of

corrosion effected structure
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Cv: concrete cover thickness (mm).

D: diameter of rebar (mm).

The corrosion propagation period, tcorr corresponding to

Qcr is expressed as:

tcorr ¼
Qcr

jr
ð6Þ

where

jr: Instantaneous rate of corrosion (g/m2s).

2.1.3 Wang and Zhao’s model

Wang and Zhao (1993) suggested a method for focusing on

the corrosion product thickness D and comparing with the

time at which the concrete at the surface cracks. Moreover,

with the help of large scale of information gathered from

various research facilities, an exact expression for focusing

the ratio of corrosion product thickness D to the depth of

penetration H of the rebar has been established. The ratio

D=H is an element of cube strength of concrete fcu and is

expressed as:

D
H

¼ 0:33
D

Cv

� �0:565

f 1:436cu ð7Þ

where

D: Diameter of reinforcing bar (mm).

Cv: Cover thickness (mm).

fcu: Cube strength of concrete (kN/cm2).

D: Thickness of corrosion product (cm).

H: Cracks in concrete cover.

The cracks in concrete cover, H could be evaluated

taking into consideration the value of D. Subsequently,

with the estimation of H, the corrosion propagation period

tcorr is also obtained by the given expression as:

tcorr ¼
H

pr
ð8Þ

where

pr: rate of penetration of corrosion in rebar.

The rate of penetration of corrosion in rebar is obtained

as:

pr ¼
W

Fqst
icorr ð9Þ

where

W: Equivalent weight of steel = 27.925.

F: Faradays constant = 96,847 C.

icorr: Corrosion current density (lA/cm2).

qst: Density of steel (kg/m3).

2.1.4 Indian Road Congress (IRC) model

The time period of corrosion propagation in IRC model

estimated based on falling pH (IRC SP 60 2002). The fact

behind this is the ongoing carbonation process or chloride

ingress in the steel reinforcement. In order to determine the

propagation time, some governing expressions are avail-

able in IRC-SP60. If generalized corrosion occurs then the

primary loss of the span of the bar is in view of cracking of

cover. The corrosion propagation period, tr as per IRC-

SP60 could be expressed as:

tr ¼
80Cv

Dr
ð10Þ

where

Cv: Cover thickness (mm).

D: Diameter of rebar (mm).

r: Corrosion rate (lm/year).

tr: Corrosion propagation period (years).

The corrosion rate can be obtained from the following

expression:

r ¼ cTro ð11Þ

where

cT: Coefficient of temperature.

ro: Corrosion rate at ? 20 �C.

3 Parametric investigation of corrosion
models

3.1 Depassivation time

In context of depassivation time tp, the thickness of the

concrete cover, Cv has a considerable influence in the

corrosion propagation mechanism. The service life of the

structure decreases with the decrease in thickness of the

concrete cover. In this study, the thickness of the concrete

cover varies from 10 to 60 mm. Factors such as humidity

and temperature, effects the apparent diffusion coefficient

of chloride ions which varies in the range of 0.45–6 cm2/

year. However, the threshold chloride ion concentration,

Cth and surface chloride ion concentration, Cs varies from 2

to 8 kg/m3 and 12 to 25 kg/m3 respectively (Sadiqual Islam

2009). In Fig. 2, it has been observed that with the gradual

increase in the apparent diffusion coefficient the depassi-

vation time decreases, the fact behind of this issue is that,

when adequate amount of chlorides outreaches the rein-

forcing steel, it penetrates the passivating layer (protection

layer provided by concrete) and increases the risk of
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corrosion thereby causing depassivation of steel

reinforcement.

3.2 Parametric study of various deterioration
models

In Bazant’s model the formation of the hydrated rust

increases the original diameter of the bar from D to

Dþ DD, however, DD varies in the range of 0.01–

0.25 mm. During the preliminary phase of rust formation,

the volume of the hydrated rust occupies four times the

volume of the reinforcing steel, however with the gradual

progress of corrosion; there is uniform increment in the rust

formation over the residual bar. Thus, with the increase in

the corrosion process the critical time of cracking, tcr
decreases and DD increases. However, Morinaga considers

the concrete cover thickness, Cv as an important parameter.

For a particular rebar, as the thickness of the cover is

constant, the corrosion amount at which cracking of con-

crete occurs also becomes constant. In Wang and Zhao’s

model, in order to calculate the cracking of the concrete

cover, H, the compressive strength of concrete is taken as

2.5 kN/cm2 and the thickness of the corrosion product, D
varies from 0.003 to 0.007 cm respectively. It has been

observed that cracks in cover, increases with the increase in

thickness of the corrosion product. The penetration rate in

this model measured in terms of corrosion current density,

icorr. The corrosion current density, icorr for the aforemen-

tioned models varies in the range of 0.05–6 lA/cm2.

Consecutively, IRC model also considers thickness of

cover as one of those factors that influences the spalling

and cracking of concrete due to corrosion of reinforcing

steel. The rate of corrosion in this model assumed to be

5–100 lm/year. The increase in the corrosion current

density or the rate of corrosion magnifies the formation of

rust on the reinforcing material thereby decreasing the

critical time of cracking, tcr as shown in Figs. 3, 4, 5 and 6.

4 Artificial neural network

Due to rapid growth, ANN becomes gaining interest for its

application to engineering problems. ANN performs dif-

ferent recognition tasks such as learning and optimization

at a very small amount of time as compared to today’s very

high-performance computers (Haykin 2005). Being a part

of machine learning, neural networks have the capability to

generalize and learn from predefined samples without

having any prior understanding of the complex formula-

tions (D’Angelo et al. 2016, 2018). The application of

ANN in service life prediction for corrosion induced

deterioration has come out to be a new method with less

computational requirements and more practical signifi-

cance than traditional methods (Chojaczyk et al. 2015).

From computational perspective, ANN has a large number

of interconnected nodes. Each node is represented as a

neuron which receives input from the other connected units

and performing computational process thereby transmitting

the output to other processing units. Each individual node

in an ANN executes a single task autonomously. Thus, a

parallel structure developed in a neural network which

permits them to take the benefits of parallel processing.

The connection between nodes could get transmission

values known as weights, the weights could be considered

as memory of the neural network. The weight of the con-

nection or synaptic weight could be renewed when new

input data provided to the system. Indeed, ANN has the

capability to cut-short computational time to a great extent

and control the calculation error to a reasonable range.

Elimination of tedious modeling process is achieved with

the application of neural networks in service life prediction

problem.

4.1 Network development in ANN

McCulloch and Pitts (1943) developed the first neural

network model. Since then, it has been applied to various
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research areas and particularly to civil engineering prob-

lems which becomes hard to solve using existing mathe-

matical models. Figure 7 shows the schematic diagram of

an artificial neuron modeled artificially by taking into

consideration the functions of a similar biological neuron.

Let us consider that there are n inputs (I1, I2,…, In) to a

neuron j. The synaptic weights connecting n number of

inputs to jth neuron are given by:

W ¼ W1j; W2j; . . .;Wnj ð12Þ

The summing junction in an artificial neuron collects the

weighted inputs and finally sum it up. Thus, it resembles to

the functions of combined dendrites and cell body. The
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transfer or activation function performs the tasks of axon

and synapses. The summing junction may sometimes pro-

vide an output equal to zero, thus, in order to avoid such

situation, an external input or bias of fixed value bj is added

to the summing junction. Therefore, the input to transfer

function f could be expressed as:

uj ¼
X

n

k¼1

IkWkj þ bj ð13Þ

The output of the jth neuron Oj can be expressed as:

Oj ¼ f ðujÞ ¼ f
X

n

k¼1

IkWkj þ bj

 !

ð14Þ

In a neural network, the output of a neuron largely depends

on its activation function. Different types of activation

functions such as log-sigmoid, tan-sigmoid, and hard limit

exists in a neural network. The activation function adopted

in this work is log-sigmoid (LOGSIG). The reason behind

choosing this activation function over the other available

functions is that, it takes input which may have values

between þ1 to �1 and it squashes the output in the

range of 0–1. The log-sigmoid function is generally used in

multilayered networks trained using back propagation

algorithm; this is due to the fact that log-sigmoid function

is differentiable. The function is given by:

f ðxÞ ¼ 1

1þ e�x
ð15Þ

4.1.1 Feed forward backpropagation algorithm

Among the several available algorithms, the feed forward

backpropagation (FFBPN) algorithm have been used in this

work. In a Feed forward network (FFN), each layer of

neurons is associated with neurons in the other layer. The

synaptic links consisting of weights connects each neuron

in a layer to other neurons in another layer. In order to

obtain the best configuration, the neurons are trained based

on considering the number of trials.

The backpropagation technique is a process of iteration

in order to modify the weights from output layer to input

layer until no further correction is required. The back-

propagation technique helps in determining the error and

the error is distributed in backward direction from output

node to input node such that minimum error becomes

achieved. The backpropagation algorithm is predominantly

based on a generalized delta rule and accelerated by a

momentum term. To improve the training rate, changes in

the weight factor are accelerated by introducing momen-

tum term. The weight factors and bias are adjusted using

the following equations:

wkþ1
ij

� �

¼ wk
ij

� �

þ D wk
ij

� �

ð16Þ

D wk
ij

� �

¼ g dkj

� �

Oi þ aD wk�1
ij

� �

ð17Þ

bkþ1
j

� �

¼ bkj

� �

þ D bkj

� �

ð18Þ

D bkj

� �

¼ g dkj

� �

þ aD bk�1
j

� �

ð19Þ

where

g: Learning rate.

a: Coefficient of momentum.

wij: Weight factor associated between two neurons.
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bj: Weight of bias.

O: Output of the network.

d: Gradient descent correction.
k: Number of patterns.

The performance of the trained network is checked by

estimating the mean squared error (MSE). The basic

equation for evaluating MSE is:

MSE ¼
Pn

i¼1 ðT � OÞ2

n
ð20Þ

where

T: Target value of the output variables.

O: Predicted value of the output variables.

n: Number of datasets.

5 Results and discussion

In this work, the ANN model generated using MATLAB

tool presented in Fig. 8. However, a total of 200 random

data samples obtained and the same were used for ANN

prediction. The 200 random data samples refers to the

range of random values for each training parameter such

as, if we consider the training parameter corrosion current

density, icorr which varies in the range of 0.05–6 lA/cm2, a

set of 200 random values within the given range of icorr
would be generated. Similarly, for the other training

parameters the same procedure has been followed. The

ranges of the training parameters were obtained from the

cited models i.e. Bazant’s, Morinaga’s, Wang and Zhao’s

and IRC models in order to validate the numerical output of

each individual model with that of ANN predicted output

of the respective models. Out of 200 data samples, 70% of

the samples were employed for network training, 15% of

the samples were employed for network testing and the

remaining 15% of the samples were employed for

authentication or validation. The network is trained to an

extent such that minimum error obtained for a given set of

inputs and targets. The correlation, R of the training, testing

and validation data is above 99% as shown in the regres-

sion plot of Fig. 9. Based on these high correlation values,

it has been observed that the accuracy of the prediction is

readily acceptable and the ANN model becomes successful

in learning the problem. Considering the overfitting issue,

although number of techniques are available in order to

overcome the overfitting issue in a neural network, the

current study resolves the overfitting issue using classical

method. The classical method is based on dividing the data

sets into three groups i.e. training set, testing set and val-

idation set. Training set is the dataset of examples used by

the network to learn. During the learning process the net-

work tends to over fit the data. In order to avoid this, it is

necessary to have a validation set which would adjust the

architecture (i.e. weights) of the classifier by initiating a

process of early stopping where the network training stops

when the error in the validation set increases. Figure 10

shows the early stopping of network training due to

increase in error in the validation set. The testing set on the

other hand is an independent dataset which follows the

same probability distribution as that of training set. For

minimum overfitting to take place, the fit of the training set

should also fit well with the testing set. However, Fig. 11

shows the validation performance of the trained network.

Tables 1, 2, 3 and 4 summarizes the actual and ANN

predicted values of critical time, tcr for various service life

prediction models. From the tables, it has been observed

that errors with respect to ANN prediction are too small/

negligible, which in fact provides a proper validation of the

accuracy of the network. For structures affected by chloride

ingress, the mean initiation time of corrosion varies in the

range of 15–20 years indicating that the mean critical time

of cracking would take place at a later stage of the struc-

tural life which approximately varies in the range of

35–40 years (Choe et al. 2008; Hassan et al. 2010; Saad

and Fu 2015; Val and Melchers 1997). The approximation

holds good with the results obtained from Bazant’s model.

Moreover, as compared to other models, Bazant’s model

avoids underestimation and overestimation of the structural

service life. Therefore, Bazant’s model is considered to be

the best suited model for service life prediction of RC

structures subjected to chloride-induced corrosion.

Figures 12, 13, 14 and 15 shows the actual and ANN

predicted critical time of various bar sizes for different

service life prediction models.

Table 5 shows the comparative critical time of different

service life prediction models.

Figures 16, 17 and 18 are the comparative plots of the

four service life prediction models.Fig. 8 Typical neural network model with various inputs
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In order to evaluate the performance of the trained

network, sensitivity and specificity of two different

occurrences of cracking have been measured (D’Angelo

et al. 2016, 2018; Moaveni et al. 2009). The statistical

measures of sensitivity and specificity identifies efficiency

of the network in accurate prediction of the service life of

degrading RC structures. The sensitivity and specificity of

the neural network model measures the proportion of true

positive and true negative outputs that are accurately

identified. The true negative and the true positive outputs

refer to the occurrences of critical time of cracking that

would occur before and after 40 years of service life

Fig. 9 Regression plot of ANN

model

Fig. 10 Early stopping at epoch

25 due to increase in error in the

validation set
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period. The motivation behind using the 40 years of service

life period as a threshold period is the results obtained from

Bazant’s model. Usually, a reinforced concrete structure is

designed for a service life period of at least 50 years, the

protective or passivating layer of concrete cover resists

diffusion of chloride into the concrete. However, after a

certain period of time as the chloride-ion concentration

exceeds its threshold value, there is a gradual degradation

in the passivating layer of concrete due to generation of

radial stresses. The radial stresses at the later stage of the

life period causes cracking of concrete cover which takes

place within a period of 35–40 years based on studies

conducted by various researchers (Choe et al. 2008; Hassan

et al. 2010; Saad and Fu 2015; Val and Melchers 1997).

Therefore, it confirms that the cracking period obtained

from Bazant’s model (i.e. 40 years) is realistic and can be

used as a threshold period for accurate evaluation of the

performance of the neural network. Also, two estimates

such as negative prediction value (NPV) and positive

prediction value (PPV) have been considered which rep-

resents percentages of the accurate values that has been

predicted by the neural network model for cracking before

and after 40 years. Two estimates such as negative pre-

diction value (NPV) and positive prediction value (PPV)

Fig. 11 Validation performance of the trained network

Table 1 Summary of actual and ANN predicted critical time for service life estimation (Bazant’s model)

Bazant’s model

Diameter

(mm)

Mean corrosion current density, icorr
(lA/cm2)

Actual ANN predicted Mean error,

e

MSE

Target, T Output, O e = T - O

Mean critical time, tcr
(years)

Mean critical time, tcr
(years)

8 1.55 16.38179075 16.37661972 0.005171024 0.005299387

10 1.55 32.80026066 32.78939875 0.010861909 0.113310918

12 1.55 37.80739611 37.79238232 0.015013794 0.058928675

16 1.55 43.76818993 43.69990044 0.068289497 0.626399206

20 1.55 49.69230459 49.65682825 0.035476338 0.289070614

25 1.55 56.75347345 56.69250948 0.060963974 3.504070446

Table 2 Summary of actual and ANN predicted critical time for service life estimation (Morinaga’s model)

Morinaga’s model

Diameter

(mm)

Mean corrosion current density, icorr
(lA/cm2)

Actual ANN predicted Mean error, e MSE

Target, T Output, O e = T - O

Mean critical time, tcr
(years)

Mean critical time, tcr
(years)

8 3.45 18.25339747 18.25020603 0.003191445 0.001120548

10 3.45 25.68385141 25.68795106 - 0.004099642 0.004916604

12 3.45 33.15336395 33.15180749 0.001556463 0.003345785

16 3.45 53.94468427 53.94390736 0.00077691 0.016432459

20 3.45 69.44156727 69.4303087 0.011258564 0.304427344

25 3.45 92.20682519 92.07882744 0.127997745 2.27715939
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represents percentages of the accurate values that has been

predicted by the neural network model for cracking before

and after 40 years. The NPV and PPV of the predicted

outputs were found to be 97.12% and 90.77%, which

actually could be considered as a good performance of the

trained network. Further, it has also been identified that the

sensitivity and specificity of the trained network becomes

equal to 94.05% and 95.44% respectively. Therefore,

considering the statistical measures, it could be said that

the proposed neural network model exhibits highly effi-

cient in predicting service life of degrading RC structures

subjected to chloride-induced corrosion with legitimate

accuracy. Table 6 shows the sensitivity and specificity of

two different occurrences of cracking.

Table 3 Summary of Actual and ANN predicted critical time for service life estimation (Wang and Zhao’s model)

Wang and Zhao’s model

Diameter Mean corrosion current density, icorr
(lA/cm2)

Actual ANN predicted Mean error, e MSE

Target, T Output, O e = T - O

Mean critical time, tcr
(years)

Mean critical time, tcr
(years)

8 mm 0.55 0.661894136 0.661543543 0.000350593 2.44023E-05

10 mm 0.55 0.901188976 0.901690388 - 0.000501412 0.000313066

12 mm 0.55 1.19297082 1.192739851 0.000230969 9.08094E-05

16 mm 0.55 2.504041506 2.50206338 0.001978127 0.000523029

20 mm 0.55 3.689114103 3.6874021 0.001712004 0.000912889

25 mm 0.55 6.026570007 6.030977308 - 0.004407301 0.002212427

Table 4 Summary of actual and ANN predicted critical time for service life estimation (IRC model)

IRC model

Diameter Mean corrosion current density, icorr (lA/
cm2)

Actual ANN predicted Mean error, e MSE

Target, T Output, O e = T - O

Mean critical time, tcr
(years)

Mean critical time, tcr
(years)

8 mm 52.5 3.337454354 3.332535659 0.004918695 0.007831644

10 mm 52.5 4.158997731 4.159348994 - 0.000351263 0.003067159

12 mm 52.5 4.841183599 4.831005679 0.010177919 0.012083653

16 mm 52.5 7.381070183 7.320707312 0.060362871 0.352088181

20 mm 52.5 8.714340449 8.713505838 0.000834611 0.003084322

25 mm 52.5 11.40801657 11.40164936 0.006367204 0.007562413
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Fig. 12 Actual-ANN predicted

critical time of different bar

sizes (Bazant’s model)
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Table 5 Comparative critical

time of different service life

prediction models

Comparative results of various prediction models

Models Actual ANN predicted

Mean critical time, tcr (years) Mean critical time, tcr (years)

Bazant’s 39.53390258 39.50127316

Morinaga’s 48.78061493 48.75716801

Wang and Zhao’s 2.495963258 2.496069428

IRC 6.640177147 6.626458808
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6 Conclusions

Based on comparative studies of corrosion damage models,

it has been observed that the mean initiation time of cor-

rosion (i.e. the depassivation time of concrete cover) varies

in the range of 15–20 years, this also indicates that the

mean critical time of cracking would occur at a later stage

of the life period of the structure which approximately

varies between 35 and 40 years. The approximation has a

good agreement with the results obtained from Bazant’s

model. Also, as compared to other models Bazant’s model

avoids underestimation and overestimation of the service

life of degraded structure. Henceforth, Bazant’s model

becomes considered to be the best one for predicting reli-

able service life of RC structures subjected to chloride-

induced corrosion. Consecutively, the study also highlights
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that although reliable predictive models are available for

estimating service life of RC structures, yet, it doesn’t have

the ability to cut-short the computational time to a rea-

sonable extent and thus demands a long-term and tedious

computational process. In order to avoid this, a simple feed

forward back propagation neural network has been used in

which model problems involving with nonlinear variables.

Further, ANN being a highly nonlinear network has the

capability to generalize and learn from predefined exam-

ples without having any prior knowledge of the complex

mathematical background. The neural network model

trained for predicting the critical time of cracking yielded

very good results and are proximate to the actual calculated

outputs. This makes ANN a highly reliable network for

predicting time dependent structural degradation. Addi-

tionally, using ANN that becomes an optimized process

employed which computes robust problem at a very small

amount of time with high accuracy. For evaluating the

performance of the trained network, statistical measures

such as sensitivity and specificity of the ANN model

assessed which essentially identifies the efficiency of the

trained network in accurate prediction of the structural

service life. Thus, with the application of soft computing, a

physical system generated which would help in solving

complex problems associated with service life estimation

of degraded RC structures.
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