
FOCUS

A privacy-preserving multi-keyword search approach in cloud
computing

Ahmed M. Manasrah1,2 • Mahmoud Abu Nasir2 • Maher Salem1

Published online: 8 May 2019
� Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Cloud computing provides the users with the ability to outsource their data to a third-party cloud storage for cost-effective

management of resources and on-demand network access. However, outsourcing the data to a third-party location may

raise concerns about data privacy. To maintain the user’s privacy, users tend to encrypt their sensitive data before

outsourcing it. Encrypting the data will preserve its privacy, but at the same time, it makes the searching process for a

specific keyword a time-consuming and challenging process, mainly if the encryption key is not provided. On the other

hand, the data owner should be able to perform multiple keyword searches to retrieve specific documents that are relevant

to the search query. This paper proposes a new privacy-preserving multi-keyword search approach for the cloud outsourced

data. The objective of the proposed approach is to allow the data owners and the authorized users to retrieve the most

relevant data with minimum computation and communication overhead, and reduced false positives (irrelevant documents)

and searching time. To evaluate the proposed approach, the NSF research dataset is used. Results demonstrate that the

proposed method achieves better searching time and overall performance of the cloud environment regarding computation

and communication overhead as well as false positives in comparison with other approaches.

Keywords Privacy preserving � Data privacy � Cloud privacy � Data encryption � Multi-keyword search � Searchable

indexing schemes

1 Introduction

Cloud computing became the platform of choice for users

looking for storage infrastructure with minimal cost and

administration efforts. In such an environment, users (i.e.,

data owners) can easily increase their subscribed storage

space without the need to get extra local storage devices

(Plageras et al. 2018). Cloud environment, therefore,

provides a cost-effective resource utilization with on-de-

mand network access anytime anywhere. Despite the dif-

ferent advantageous benefits of the cloud, users still have

serious concerns regarding their outsourced data security in

the cloud (Stergiou et al. 2018). Such concerns include

exposing outsourced data to malicious attacks, the data

integrity of the outsourced data as well as the privacy of the

data itself (Li et al. 2017; Ranjan et al. 2017).

Privacy-preserving concerns are one of the main issues

that hinder cloud computing adoption by users and orga-

nizations because outsourcing the data to the cloud service

provider (CSP) deprives the data owners (DO) of directly

controlling their data and applications. Therefore, CSPs

provide their customers with various infrastructure capa-

bilities with a high degree of transparency into their

operations to ensure the preservation of their data privacy

and its security. However, CSPs usually provide different

mechanisms to suite the customers’ needs such as auditing

and history-based access control (Nedjah et al. 2017).

Likewise, some mechanisms are also offered by the CSPs

to control and optimize the use of the resources through
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resource allocation and load balancing mechanisms (Al-

jammal et al. 2017; Manasrah 2017). Nevertheless, bal-

ancing between these mechanisms and the preservation of

the cloud data privacy is still a significant challenge where

physical perimeters are virtual (Takabi 2014). However,

researchers are also convinced that data’s sensitivity and

privacy can be preserved by using strong encryption

mechanisms before outsourcing the data to the cloud.

While data encryption offers protection against malicious

attacks and illegal accesses, it increases the computation

and the communication overhead at the DOs side, espe-

cially with users having large data.

Consequently, increasing the overhead and the compu-

tation time will also increase the cost of the service being

used (Manasrah et al. 2016). On the other hand, the DO

will lose the ability to search his encrypted data for specific

keywords to retrieve the most related documents to the

search query. Encrypting the data before outsourcing them

to the cloud will raise a new key management concern, as

this key has to be managed by the DO or the CSP. Nev-

ertheless, if the key management is delegated to the CSP,

the problem will become even more complicated.

This paper contributes a privacy-preserving multi-key-

word search approach for the cloud outsourced data. The

computation of the encryption and decryption of the data

before outsourcing is reduced through adopting a proba-

bilistic public key encryption. Moreover, the proposed

approach also reduces the searching time and increases its

accuracy while maintaining the privacy of the retrieved

data through a document’s topic clustering summary using

a summarization technique. The multi-keyword search

capability is another feature to increase the search accuracy

and retrieve the most relevant files to the user that fulfills

the search criteria. To the best of our knowledge, this is the

first approach that attempts to address the problem of pri-

vacy preserving using a clustering technique based on

document topics and summary.

The paper is organized as follows. Section 2 describes

the related work. Section 3 gives the preliminaries and the

main notations. Section 4 presents the privacy-preserving

multi-keyword search approach. In Sect. 5, we analyze the

security of the schemes. Section 6 carries on the experi-

ment, compared with the existing schemes regarding the

search results accuracy and efficiency. Section 7 concludes

the work and presents future directions.

2 Related work

The research in the area of privacy preserving over cloud

environment is mainly classified into encryption-based

privacy-preserving approaches in which researchers try to

achieve the security of the encrypted files using various

encryption-based techniques. Other groups of researches

focus on indexing and searching algorithms because

encrypting the data before outsourcing is the only accept-

able way to secure the files while residing outside the data

owner’s premises. However, the question of how to search

these encrypted files at the cloud without decrypting them

with minimum computations is challenging. The DO first

encrypts his data before outsourcing it to CSP and later

applies the keyword search or a ranked keyword search to

retrieve them. These searchable encryption schemes can be

grouped as symmetric key encryption (Chang and

Mitzenmacher 2005; Chase and Kamara 2010; Curtmola

et al. 2006), fuzzy-searchable encryption (Adjedj et al.

2009; Wang et al. 2012) and public key encryption (Bellare

et al. 2007; Boneh et al. 2004; Manasrah and Al-Din 2016).

However, these techniques require a considerable number

of comparisons to retrieve the results. The required number

of comparisons increases the time and computation com-

plexity and hence the overall cost (Pasupuleti et al. 2016).

Clustering similar documents together based on standard

features will speed up the searching process over encrypted

documents set (Krishna and Handa 2016). In this regard,

Zhu et al. (2015) proposed a hierarchical clustering algo-

rithm using fuzzy logic and swarm intelligence (HCSF) to

solve the ciphertext search complexity issues. The gener-

ated clusters in this schema are created using swarm

intelligence to provide the proper choices for the initial

cluster centers. The fuzzy logic is used for addressing

ambiguous documents during the index establishment. The

authors also define the search process as the following

sequence: (1) index formation during which the clusters

and the sub-cluster are generated using the k-means algo-

rithm to provide proper initial cluster center values.

However, to improve the search efficiency, the hierarchy

algorithm is used with the clustering process. (2) Encryp-

tion of document and clusters center values. (3) Trapdoor

generation allows users to generate a query vector. (4) And

finally, the search process in which the cloud server

receives the trapdoor and chooses the cluster center and the

sub-cluster center and the documents based on the simi-

larity with the search query. This schema is efficient

because the cloud server does not need to scan all the

documents. However, it does not support dynamic updates

(i.e., insertion, modification and deletion of data). Simi-

larly, Handa and Challa (2015) proposed a cluster-based

searching schema. This schema reduces the number of

comparisons and the time required to perform the searching

and achieves the security requirements. This search schema

includes the following steps: (1) cluster generation to

generate multiple clusters depending on the similarity

between the documents; (2) document index generation to

generate the index for each document; (3) cluster index

generation to generate the clustered index using the bitwise

5610 A. M. Manasrah et al.

123



product of the indices of all the documents within the

cluster; (4) document encryption encrypts all documents;

(5) query index generation to calculate the HMAC for each

search term in the search query; (6) document searching in

which the CSP will select the appropriate cluster and select

the document in this cluster; (7) document decryption in

which the DO will send the secret key to the end user; then

the user decrypts the document. This schema is efficient,

but it doesn’t support the dynamic updates.

To overcome and solve the dynamic updates issues,

Krishna and Handa (2016) proposed a searching schema

based on dynamic clustering. This schema enables dynamic

updates by generating the index dynamically. This schema

is efficient and reduces the cost of the index generation.

Their work is an extension to work presented in Handa and

Challa (2015). This search schema includes the following

steps: (1) cluster generation to generate the clusters based

on the similarity between keywords; (2) cluster index

generation to generate the clustered index by calculating

the hash-based message authentication code (HMAC) for

each keyword in the cluster; (3) document index generation

which is similar to the cluster index generation; (4) docu-

ment encryption to encrypt the documents; (5) query index

generation in which the authorized users (AU) calculate the

HMAC value for all search query items and generate

search index using the bitwise product for each term index

and finally send this query index to the CSP; (6) document

searching, when the CSP receives the searching query,

compares it with the clustered index to select the matching

cluster and then compares it with document index to select

the matching documents and retrieve it; (7) document

decryption, when the user retrieves the documents, he will

request the credentials from DO to decrypt the documents.

However, the proposed schema never evaluated over big

data sets. Therefore, Chen et al. (2016) proposed a schema

to search over encrypted data using hierarchical clustering

for a big data environment. In this schema, the documents

are grouped into sub-clusters (i.e., like a tree and sub-

trees), and each document is represented as a point in the

vector space to reflect the relevance of the corresponding

documents to the normalized length of vectors. The pro-

posed schema delivers good efficiency in terms of

searching time. Nevertheless, it needs to store the high-

dimensional vectors at the cloud server to represent the

clusters and the documents, which will require a substantial

unnecessary storage volume in big data environments.

Similarly, Xiangyang et al. (2017) presented an efficient

multi-keyword text search over encrypted cloud data

(MUSE) based on hierarchical clustering. In this schema,

the authors introduce a novel index structure, a new tree

data structure and a depth-first search algorithm to improve

the efficiency of the text searching. This schema may leak

the privacy of keywords because the CSP may find some

high-frequency keyword usage and check whether a par-

ticular keyword exists in a document by comparing the

searching requests with the searching results. Therefore,

they further enhanced the MUSE by adding some phantom

terms into document vectors and query vectors, and then

the privacy will be protected. The performance of EMUSE

schema is less than the basic MUSE because of adding

some phantom terms, but they keep the privacy preserved

and does not leak certain frequency on the used keywords

neither the text itself.

Most of the proposed works in the field of clustering-

based privacy preserving are focusing on clustering the

data at the CSP. For instance, Yin et al. (2018) proposed a

privacy-preserving k-means clustering algorithm for a

multi-dimensional and encrypted data using the scalar-

product-preserving encryption primitive at the cloud ser-

ver. The primary goal of their proposed algorithm is to

perform data mining over the encrypted cloud data while

preserving the data privacy on behalf of users. Similarly,

Jiang et al. (2018) proposed a cloud server-based privacy-

preserving collaborative k-means clustering framework on

mining encrypted cloud data for useful knowledge while

keeping the privacy of both data and the mined results

enacted. Despite the number of methods in privacy pre-

serving, these methods are quite complex in terms of

computation and memory usage, thus leading to limited

usage of these methods especially in the case of paid cloud

services. Table 1 provides a comparison and summary for

some of the cluster-based privacy-preserving schemas.

3 Preliminaries and notations

In this paper, the following variables and notations are

used: D is the documents collection denoted as a set of n

data documents D = {d1, d2, …, dn}, where di [ D, Vi [
{1, 2, …, n}, W is all distinct words collection denoted as

a set of m words W = {w1, w2, …, wm}, where wj [ W,

Vj [ {1, 2, …, m}, C is the total cluster collection denoted

as a set of k-clusters C = {C1, C2, …, Ck}, where Ct [ C,

Vt [ {1, 2, …, k}, and Vt is the cluster center vector of Ct,

id(di) is the vector space model which represents the doc-

ument identifier (id) that can help to identify the actual

document di uniquely. It is the index tree, u is a node in the

index It, and ht is a multinomial topic distribution. The

multinomial distribution provides a formula for expanding

an expression such as (x1 ? x2 ? ��� ? xt)
n. Word_Index is

the index for each word in all documents. Cluster_Index is

the index for each cluster in C, and xi is a pseudorandom

binary which is a binary sequence that is generated with a

deterministic algorithm. The distance measure between two

vectors p and q, i.e., Eðp; qÞ, is the Euclidean distance.
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Vector space model based on term frequency-inverse

document frequency (TF-IDF) algorithm is very popular in

information retrieval (IR) as well as insecure multi-key-

word search (Ramos 2003; Salton et al. 1975). By using the

vector space model, each document in D will be repre-

sented as an n-dimensional vector. All elements in id(di)

will be normalized in the final score to increase the

retrieval performance.

Moreover, the following documents will be used for

illustrative purposes:

Document-1 (d1) has the following sentence {‘‘cloud

computing means accessing resources over the Internet

instead of your computer’s hard drive’’}

and Document-2 (d2) has the following sentence

{‘‘Cloud computing is a model for enabling ubiquitous

access to shared pools of configurable resources’’}.

4 The privacy-preserving multi-keyword
search approach

This section presents the new privacy-preserving schema

that is based on topic summary and clustering to reduce the

number of comparisons required for the searching and

retrieving of the outsourced encrypted data. The proposed

schema is based on public key encryption along with a new

ranked based multi-keyword searching approach in for

cloud environment. In this approach, a model of cloud

environment that consists of three entities as illustrated in

Fig. 1 is considered.

The DO who will handle most of the computation before

outsourcing the data to the cloud, such as creating

Cluster_Index, documents index and encrypting the user’s

documents and their index. The CSP is an entity that

provides different cloud services to the DO’s and AU’s

such as searching over the outsourced data on their behalf.

The CSP offers storage resources as a pay-per-use model.

The way and the time in which a resource is occupied is

used to determine the cost of the service (Manasrah and

Gupta 2017). The DO shares typically some information

with the AU that can be used for searching documents

using a set of keywords. The documents usually are

encrypted; hence, the AU is allowed to use the shared

information to perform the searching process over the

encrypted data before decrypting it to its original form. The

interactions between the three entities are as follows:

1. The DO outsources a set of documents to the CSP in an

encrypted format and still poses the ability to retrieve

them back. To achieve this, the DO handles the

document topics-based clustering process as well as

extracting the document summary to be used in the

index creation. The DO creates a Cluster_Index for

each cluster by generating a summary for each cluster

and sends the Cluster_Index to be used in a trapdoor

generation based on the similarity with the search

query. The DO also creates an index for each document

and encrypts all user’s documents and their indexes to

be kept at the CSP.

2. The AU retrieves some documents from the CSP by

communicating with the DO to request for specific

information for the trapdoor generation. The similarity

between the search query and the Cluster_Index

identifies the matched cluster. Finally, the AU sends

the search query to the CSP as a trapdoor. The CSP

uses the trapdoor to apply the ranked keyword search

Table 1 Summary for some of the known cluster-based privacy-preserving schemas

Schema Description Dataset Clusters

#

Drawbacks

Zhu et al.

(2015)

Proposed the HCSF to solve the efficiency issues

in ciphertext search

7505 documents and 61,188

keywords

20 The schema doesn’t support

the dynamic updates

Handa and

Challa

(2015)

Proposed a cluster based searching schema

reduces the number of comparisons and the time

required

Up to 6000 documents 5 The schema doesn’t support

the dynamic updates

Krishna

and

Handa

(2016)

Proposed a searching schema based on dynamic

clustering

Up to 6000 documents 5 The number of clusters is

static

Chen et al.

(2016)

Proposed an approach to searching over encrypted

data using hierarchical clustering to support a

big data environment

51,000 documents and 22,000

keywords

NA Need a huge unnecessary

storage volume in big data

environments

Xiangyang

et al.

(2017)

Proposed an efficient searching schema on cloud

computing based on hierarchical clustering

The real dataset includes about

20,000 abstracts and extracts

about 10,000 keywords

NA MUSE less efficient than

MRSE-HCI
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for the documents in the matched cluster and returns a

set of encrypted and relevant documents to the AU.

3. Finally, the AU browses through the returned docu-

ments to verify their integrity before decrypting them

using the private key.

The privacy-preserving multi-keyword search (PPMKS)

approach uses a ranked keyword search over encrypted

documents. To ensure efficiency, the CSP should return the

top-k most relevant documents based on a relevance score

rank to enhance the retrieval accuracy as well as mini-

mizing the communication cost. To reduce the time and the

number of comparisons that are required for the searching

process, the proposed approach clusters the documents

based on the document topic and summary. To ensure the

preservation of the privacy, the CSP should learn neither

the index nor the original plaintext. The index should not

contain any information that might be used to guess the

original keywords and break the encrypted data. The pro-

posed approach consists mainly of two phases: (1) setup

phase and the (2) retrieval phase.

4.1 Setup phase

Upon the DO selection of the documents to be outsourced

to the CSP, the DO generates a pair of public and private

keys for the encryption and decryption processes. During

this phase, a document index will be created from multiple

keywords that are extracted from the document collections

for each cluster. The relevance score is then calculated for

each keyword to be kept in the document index. The index

and the document collections are encrypted using the pri-

vate key to ensure its privacy. Finally, the DO outsources

the encrypted documents and the encrypted index to the

CSP. The setup phase consists of five steps: (1) key gen-

eration, (2) data preprocessing, (3) clustering and summa-

rization, (4) word index creation and (5) privacy

preserving, as illustrated in Fig. 2.

4.1.1 Key generation

The key generation phase generates one public (PK) and

one private (PR) keys using the key generation algorithm

proposed in Pasupuleti et al. (2016). The DO chooses two

large primes numbers (p, q) randomly of the same size to

compute N = pq. Then it calculates r and s using the

Documents

Preprocess

Clustering

LDA

Summarization

Encrypt 
Documents and 

their index

DO

Word_Index

Cluster_Index

CSP

Ranked 
Keyword Search

Select the 
Relevant 

Documents

Trapdoor

Encrypted Documents

Encrypted Index

Outsource

Search Query

Similarity 
with 

Cluster_Index

Trapdoor 
Generation

AUTrapdoor 

Information

Trapdoor

Fig. 1 The interactions between

DO, AU and CSP
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extended Euclidean algorithm (Katz et al. 2008) where

pr þ qs ¼ 1. Thus, the public key (PK) can now be defined

as PK = {N}, and the private key (PR) is PR = {p, q, r, s}.

However, the documents may contain punctuations, num-

bers, stop-words and various suffixes. Processing such

documents will increase the complexity and the computa-

tion in handling the different types of documents. There-

fore, a preprocessing that aims to remove the unnecessary

punctuations, numbers, stop-words, the different suffixes

and creating the document words matrix to be used with the

other setup steps is needed.

4.1.2 Data preprocessing

The data preprocessing phase aims to prepare or transform

the raw format of the documents into an understandable

format for outsourcing, using four steps; extraction, stop-

words removal, spell checking and stemming.

A. Extraction

In this step, a list of individual words is extracted based on

the (1) punctuation marks and (2) the white spaces. This

list of words is then used to generate an index after the

stop-words removal, spell checking and stemming. To

d1 d2 d3 d4 d5 d6 d7 d8 dn

Extract 
Summary

Extract Main 
Words

Extract 
Summary

Extract Main 
Words

Extract 
Summary

Extract Main 
Words

Create Cluster-Index
Find Position Score

d1 d2

d3

d4

d5
d6d7 d8

dn

LDA LDA LDA

Encrypt Documents and Word-Index 
Encrypt Cluster-Index

Send the Result to CSPStore the Result in DO

MapReduce

Clustering Using K-Means Algorithm 

P
re

pr
oc

es
si

ng Extraction
Stop-Words Removal

Spell Checking
Stemming

Create the id  for each documentCreate the id  for each document

C
re

at
e 
W
or

d-
In
de

x

Find Position Score

Find Position Score

Fig. 2 Setup phase framework
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further minimize the needed processing steps, the com-

monly used words such as over, the, instead, of, your

should be removed to focus on the important words instead.

B. Stop-words removal

To speed up the searching process, the most common

words in the English language that does not add any useful

meaning to the text, such as a, an, the, with, etc., should be

removed from the document. This means reducing the

number of the keywords in the index where the stop-words

may account for 20–30% of the total word count in a text

document (Witten et al. 2016). In this work, a stop list that

contains 571 words from Salton and Buckley (1988) is

adopted.

C. Spell checking

The spellchecker Hunspell is used to recognize misspelled

words in the documents and replaces them with the cor-

rectly spelled ones. Hunspell is a popular spellchecker tool

that is widely used in popular software packages including

Google Chrome, Mac operating system, Opera and InDe-

sign (Xu et al. 2015). Hunspell has a dictionary of correct

words which will be compared with all words in W.

D. Stemming

The words in W should, therefore, be stemmed to their

roots. For example, the words ‘‘material, materially,

materialize, materialization and materiality’’ can be stem-

med to the word ‘‘material’’ (Ramasubramanian and

Ramya 2013). By removing the various English suffixes,

the efficiency of the searching process could be enhanced

by minimizing the number of words for the matching

stems. The stemmer of Porter et al. (2002) which is a set of

rules to group words with similar roots will be adapted to

remove the suffixes.

For example, after applying the adopted Stemming

algorithm over W, the list of words W in ascending order

will be:

W ¼
access; cloud; comput; drive; hard; internet; mean; resourcf g:

After preprocessing all the documents, the identifier (id)

for each document must be built to represent the vector

space model for each document, using the following

equation:

idðdiÞ ¼ w1;i;w2;i; . . .wt;i

� �
ð1Þ

where wj;i is how many times the jth word in W appears in

di. t is the number of words in W.

For instance, if d1 content is ‘‘Cloud computing means

accessing resources over the Internet instead of your

computer’s hard drive’’, and d2 content is ‘‘Cloud

computing is a model for enabling ubiquitous access to

shared pools of configurable resources’’, then the result of

the preprocessing step will be as follows:

d1 = {cloud comput mean access resourc internet com-

put hard drive}.

d2 = {cloud comput model enabl ubiquitou access share

pool configur resourc}.

W = {access, cloud, comput, configur, drive, enabl,

hard, internet, mean, model, pool, resourc, share,

ubiquitou}.

id(d1) = {1,1,2,0,1,0,1,1,1,0,0,1,0,0}.

id(d2) = {1,1,1,1,0,1,0,0,0,1,1,1,1,1}.

However, if the DO has a huge number of documents,

then the searching process may require a longer time.

Therefore, to speed up the searching time, this paper pro-

poses to group the documents with similar topics or con-

cepts (i.e., semantic clustering) together as the following

section demonstrates.

4.1.3 Semantic clustering

Clustering is used to group the documents into different

clusters before creating the index. Classifying the docu-

ments should reduce the number of documents for each

cluster to increase the efficiency of the searching process.

In this regard, the proposed approach adopts the clustering

technique that is proposed by Nagwani (2015) due to its

superior performance, semantic similarity and main topics

extraction using latent Dirichlet allocation (LDA) for

summarizing the huge documents collection (Blei et al.

2003). To perform the clustering, the DO collects all

(n) documents into one data set D = {d1, d2 … dn}. The

DO then apply the K-means clustering algorithm on D, to

generate k-clusters, denoted by C = {C1, C2 … Ck} where

t = 1, 2 … K and Ct is a set of similar documents with the

same features based on documents similarities. That means

all documents within the same cluster should be as similar

as possible Ct = {[ (Di [ Ct)}, and the documents in dif-

ferent clusters should be as dissimilar as possible from

another document in all other clusters.

Definition 1 Assume that Ct = {id(d1), id(d2), …, id(di)}

is a cluster contains i documents where id(di) [ Ct is the

corresponding identifier vector of the document i, then if

the cluster center of Ct is denoted as Vt, then we have:

Vt½j� ¼
Pi

l¼1 Vl½j�
i

ð2Þ

where j: 1, 2, …, m is the words index in W, and i is the

number of documents in Ct. The steps for the K-means

clustering are illustrated in Algorithm 1 as follows:
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Unfortunately, the k-means algorithm distance compu-

tations require (nk) calculations in each iteration, where

n is the number of all documents and k is the number of

clusters. Therefore, to address the issue of the extensive

computations, especially with huge datasets, the parallel K-

means clustering (PKMeans) based on MapReduce is also

used (Zhao et al. 2009). The Map function is shown in

Algorithm 2.

The Combine function will perform the procedure of

combining the intermediate data of the same Map function.

The Combine algorithm is illustrated in Algorithm 3.

5616 A. M. Manasrah et al.
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The Reduce function, on the other hand, will perform

the procedure of updating the new centers. The Reduce

algorithm is illustrated in Algorithm 4.

After the clustering phase is done, the clusters topics

have to be extracted to represent the main information in

the documents collection to organize and summarize the

collection of documents in the same cluster.

4.1.4 Topic modeling

Topic modeling is the process of finding the main words

(i.e., keywords) from a collection of documents. Many

algorithms were used to create topic models such as the

LDA modeling which was proposed in Blei et al. (2003) to

extract the main words from a collection of documents.

The LDA modeling is adopted in this work to generate

topics and main terms for each cluster in C = {C1, C2 …
Ck}. These terms will be used for the summary extraction

of each cluster. The LDA operates as follows:

1. Select a multinomial ht as the topic distribution for

each topic t from a Dirichlet distribution with param-

eter b as the parameter of the Dirichlet prior on the per-

topic word distribution.

2. For each document d, a multinomial document distri-

bution hd is selected from a Dirichlet distribution with
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parameter a as the parameter of the Dirichlet prior on

the per-document topic distributions.

3. For each word wi in document di, a topic t from hd is

selected.

4. A word wi from ht is selected to represent the topic for

the document.

The probability of generating a corpus to be used is

given by the following equation (Blei et al. 2003):

Z Z Yk

t¼1

P hp bj
� �YN

b¼1

P hp aj
� � YNb

t¼1

XK

b¼1

P ti hjð ÞP wi t;j ;ð Þ
 !

dhd;

ð3Þ

where K is the number of topics, hp is the topic distribution

for document p, i.e., multi-dimension vector, b is the

parameter of the Dirichlet prior on the per-topic word

distribution, N is the total number of words in all docu-

ments, a is the parameter of the Dirichlet prior on the per-

document topic distributions, ti is the topic for the ith word

in a document, h is the topic distribution for a document, wi

is the ith word in a document, and ; is the word distribution

for a topic.

LDA is used to generate topics and to extract the main

terms for each cluster. The extracted sentences from each

document represent the summary for each cluster which

will be used to generate the index for each cluster. How-

ever, to deal with the possible huge amount of document

within each cluster, the MapReduce is used with the LDA

creation to reduce the expensive computations across

clusters and to ensure that all values associated with the

same key are brought together in the reducer as illustrated

in Algorithm 5.

The Reduce function, on the other hand, updates the

parameters that are associated with each topic. It requires

an aggregation over all intermediate ; vectors. The Reduce

algorithm is illustrated in Algorithm 6.

The result of the LDA process is the list of the main

words for each cluster which should represent the main

information in all documents within the same cluster.

Definition 2 Assumes that Wt = {w1, w2, …, wj} is a

distinct word in cluster Ct where wj [ W, if wj is a
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representative word of Ct, then wj will be added to the

Main_Words list of Ct which has the following structure:

Main Words ðCtÞ ¼ fwj;wj 2 W and wj is main wordg
ð4Þ

Then the Main_Words (Ct) are used to create the Clus-

ter_Index for the cluster (Ct). The process of creating the

Cluster_Index is to find all sentences in the cluster (Ct)

which contains any word in Main_Words (Ct).

Definition 3 Assumes that St = {S1, S2, …, Si} is all

sentences in Ct, if Si contains any wj [ Main_Words of Ct,

then Si will be added to the Cluster_Index for Ct in the

following form:

Cluster Index ðCtÞ ¼ fSq; Sq 2 di and Sq 2 wjg ð5Þ

where Sq is a sentence in di and wj is a representative word

of Ct.

The ranked keyword search proposed in Cao et al.

(2014) is adopted to enable the CSP to return the most

topmost relevant documents to reduce the network traffic

and to support multiple keywords search.

4.1.5 Word index creation

After generating the clusters, the DO creates an index for

each cluster using LDA and creates another index for the

documents collection within each cluster. The clustered

index acts as the summary for each cluster. As discussed in

Sect. 2.4 various indexing techniques are existed in the

literature. In this paper, the indexing technique proposed by

Pasupuleti et al. (2016) is adopted and enhanced with

different features such as the document length and the

keyword location and frequency. The proposed indexing

technique is executed using a ranking function to evaluate

the relevance score. The Word_Index consists of three

scores: position score, length score and the relevance score.

The details of the word index creation steps are illustrated

in Algorithm 7 and works as follows:

The DO scans cluster Ct and extracts its distinct words

Wt = {w1, w2, …, wm}. For each document di in cluster Ct

over each Word wj, the following scores are computed:

1. Position Score (PS) The location of the words

indicates there importance, as the most important word

appears first (i.e., the words in the title should have

higher weights than those in the abstract and the text),

the location score (Sarkar 2012) of word wj is

calculated using Eq. (6).

PSi ¼
1
ffiffiffi
k

p ð6Þ

where PSi is the location score of the word wj in a

document di. k is the location of the word from the top

of the document.

2. Length Score (LS) Long documents usually contain

more important information. The length score is

calculated using Eq. (7).

LSi ¼
Wsij j

PN
i¼1 Wsij j

ð7Þ
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where LSi is the length score of the document. Wsi is

the set of words in the document. N is the number of

documents in a cluster.

3. The Relevance Score (RS) the information retrieval

(IR) community uses the term frequency (TF) 9 in-

verse document frequency (IDF) to compute the RS.

TF is simply the number of times a given word appears

within a document. IDF is obtained for each cluster by

dividing the number of documents in this cluster by the

number of documents containing the word within the

same cluster. The relevance score (Wang et al. 2012) is

calculated using Eq. (8).

RSwj ¼
1

fdj j : 1 þ In fd:tð Þ ð8Þ

where RSwi is the relevance score for the word wj in the

document di. |Fd| is the length of the document, and fd,t

denotes the word frequency in document di.

Finally, to generate a Word_Index for wi, all previ-

ous scores are calculated as follows:

IðwjÞ ¼ PSi þ LSi þ RSwi ð9Þ

where I(wi) is an index for the word (wi) in the docu-

ment.

The result of the word index creation algorithm is an

index for each word wj in all documents (D). The

structure of the Word_Index is illustrated in Fig. 3.

The data usually have to be encrypted before out-

sourcing to the cloud to ensure its privacy. Therefore,

the Word_Index and all documents must be encrypted

before outsourcing to the CSP, and the Cluster_Index

must be encrypted before sharing with AUs.

4.1.6 Privacy preserving

The DO encrypts both the document index and the docu-

ment collection to preserve the privacy using the proba-

bilistic public key encryption technique that is based on the

Rabin cryptosystem (Gupta et al. 2016) and proposed in

Pasupuleti et al. (2016). This technique should support not

only keyword search over the encrypted data but also offer

high-security characteristics. The procedure of the

encryption process is illustrated in Algorithm 8.

1. Let the documents D = {d1, …, dn} with length n,

where each mi is a binary string of length h and index

I(wi).

2. Select the random seed r and generate

x ¼ r2 mod N ð10Þ

where r is the random seed and N is the public key.

3. Generate the pseudorandom binary bit xi

xi ¼ x2
i�1 mod N ð11Þ

pi ¼ x mod 2 ð12Þ

where pi is the least significant bits (LSB) of xi. LSB is

the rightmost bit position in a binary that determines

whether the number is even or odd.

4. The pseudorandom bit sequence pi XORed with the

binary representation of Word_Index to get I0ðWiÞ and

the plaintext of document di to get the ciphertext ci;
Cluster # Document # Word # I(wi)

Fig. 3 Word_Index structure
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I0ðWiÞ ¼ pi � IðWiÞ ð13Þ

and

ci ¼ pi � di ð14Þ

5. Finally, generate the next random

xnþ1 ¼ x2
n mod N ð15Þ

The DO sends the encrypted documents collection and

the encrypted Word_Index D0 = {d1
0, d2

0, …, dn
0, I0(wi)} to

the CSP. The resulting bit sequence xn?1 and the Clus-

ter_Index will be kept at the DO who will share it with the

AUs to retrieve the needed documents with certain key-

words search.

4.2 Retrieval phase

In this phase, if the DO or the AU wants to retrieve certain

documents with certain keywords, they should start by

generating a trapdoor for the set of keywords using the bit

sequence xn?1 and the Cluster_Index. The CSP searches for

the matched documents in the same cluster based on their

corresponding relevance scores using the trapdoor. If the

keywords match with the Word_Index, the CSP ranks the

matched documents based on the relevance score and sends

the top-k most relevant documents back to the DO or the

AU in a ranked descending ordered. Then DO or AU

decrypts the document using their private key. This phase

consists of three processes: (1) trapdoor generation (2)

ranked keyword search and (3) data decryption.

4.2.1 Trapdoor generation

If the DO or the AU wants to retrieve the documents with

certain keywords, they should compute the trapdoor for

keywords wi [ W using the bit sequence xn?1 and the

Cluster_Index to be sent to the CSP as a search request as

Algorithm 9 illustrates.

1. The AU will get the trapdoor information that contains

the bit sequence xn?1 and the Cluster_Index from the

DO. The bit sequence xn?1 will be used to encrypt

documents, where the Cluster_Index will be used to

determine to which cluster the search query belongs.

2. Using the cosine similarity proposed by Salton and

Buckley (1988), the AU computes the similarity between

the search query and Cluster_Index to determine which

cluster contains this search query (to determine an index-

for-the-specific-cluster) as in Eq. (16).

Simj;k ¼
Pt

i¼1 wi;j � wi;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt
i¼1 w2

i;j

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt
i¼1 w2

i;k

q ð16Þ

where Simj;k is the cosine similarity value between the

two sentences j and k. Wi,j is the weight of the term i in

the sentence j. t is the number of terms in the sentence.

3. The weight W of the term j in a search query i (i

represents a sentence in a single cluster) can be

computed using Eq. (17):

Wi;j ¼ tfi;j � log
n

dfj
ð17Þ

where tfi,j is the number of times that the term j appears

in cluster i summary in Cluster_Index. n is the number

of clusters in the collection. In a single cluster, n is the

number of all sentences in the cluster. dfj is the cluster
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frequency of term j. In a single cluster, it is the sen-

tence frequency of term j (Alguliev and Aliguliyev

2007).

4. For search query, the AU computes the trapdoor as

follows (Twi
, index-for-specific-cluster, k) where k is

the number of the retrieved documents and Twi
is an

encrypted form for each word in the search query w as

follows:

Twi
¼
Xm

i¼1

HðwiÞr ð18Þ

where H is a collision-resistant hash function (Secure

Hash Algorithm 1 (SHA-1)). The SHA-1 is a crypto-

graphic hash function; it produces a single output

message digest of 160-bit (20-byte) from an input

message. Multiple chunks of 512 bits each compose the

input message. Afterward, each chunk is further divi-

ded into sixteen 32-bit words (Wt = {W0, W1, W2, …
W15}), one 32-bit word for each round of the SHA-1

processing (Chaves et al. 2006). The Twi
generation is

illustrated in Algorithm 10.

4.2.2 Ranked keyword search

The CSP searches for the matching documents in a specific

cluster after receiving the trapdoor (Twi, index-for-specific-

cluster, k) from the AU or the DO. The CSP conducts a

ranked keyword-based search as illustrated in Algorithm 11.
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The CSP first compares the index-for-specific-cluster

with the clusters number in Words_Index to select the

matching cluster and then finds the matching entries of the

corresponding encrypted document in this cluster using

(Twi). The CSP gets the matched document identifiers by

checking whether the terms in the search query existed in

these documents and then finding the ranks for each mat-

ched terms to determine the matched documents according

to the relevance scores and send the top-k most relevant

documents in descending order back to the DO or the AU.

To obtain the rank of the corresponding documents, the B?

tree-based and the dictionary (key/value) data structure is

used per cluster. The B? tree-based is a balanced search

tree with O (log(n)) searching time for the worst-case

scenario. The data that represent the score for each word

are stored at the leaf nodes, where the other nodes only

store the keys. The B? tree-based and the dictionary

(key/value) data structure can be demonstrated as the fol-

lowing definition.

Definition 4 Assume u is a node of index tree It, then if a

node u is an internal (non-leaf) node, then it has the fol-

lowing four fields: (1) u.n is the router value currently stored

in node u, (2) the router values stored in node u in increasing

order (u.router1\ u.router2\ ���\ u.routeru.n), (3) u.leaf

is a Boolean field where a zero value indicates that u is

a non-leaf node and (4) u.n ? 1 pointers u.c1, u.c2, u.c3,

…, u.cu.n?1 to the children of u. If a node u is a leaf

node, then it has the following three fields (1) u.n is the

number of key values currently stored in u. (2) The key

values stored in node u in increasing order u.key1-

\ u.key2\ ���\ u.keyu.n and (3) u.leaf are a Boolean

field where one value means that u is a leaf node. The

searching process using B? tree-based is illustrated in

Algorithm 12.

The CSP first selects the matching cluster using the

index-for-specific-cluster and then selects the correspond-

ing tree for this cluster and starts comparing each term in

the trapdoor (Twi) against the selected tree to determine

which documents contain the search query. Then it com-

putes the score for each term in (Twi) to produce the final

score for each document. Finally, these documents must be

sorted in descending order based on their scores, and the

top-k most relevant documents will be retrieved and send

back to the AU or the DO, as portrayed in Fig. 4.

After the ranked keyword search is completed, the top-

k most relevant documents will be retrieved and send back

to the AU or the DO in an encrypted format.
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4.2.3 Data decryption

The AU and the DO need to decrypt the received docu-

ments from the CSP in response to his/her search query.

The plain text could be obtained using the shared private

key (Pasupuleti et al. 2016). The procedure of the

decryption process is illustrated in Algorithm 13.

To decrypt the document, the AU computes the four

modular square roots (r, c, a, b) and uses them to get the

plaintext di (Pasupuleti et al. 2016).

To ensure the integrity of the received documents, the

authorized user will check the documents by matching the

hash value from CSP with the hash value from the data

owner, so the authorized user can detect the modification of

the encrypted data in a cloud environment if there are

matches between these hash values. This could be achieved

using any collision-resistant hash function H (e.g., SHA-1).

As a result, if any hacker changes the document content,

the index content or the encrypted documents, then h1

! = h2 which means the data are changed or corrupted in

the cloud, so our approach can achieve the data integrity of

encrypted documents stored in the cloud. Therefore, pri-

vacy-preserving requirements are satisfied in our approach.

5 Security analysis

Privacy preserving of cloud computing data is considered

as one of the most important issues that stop users from

adopting cloud computing into their infrastructures.

Therefore, in this section, we analyze the security of

PPMKS against internal and external attacks. To analyze

the security of PPMKS, we adopt the following definitions

proposed by Pasupuleti et al. (2016).

Definition 1 (Semantic security) Semantic security indi-

cates that if one is given a ciphertext, the internal and

external adversary should learn nothing about the corre-

sponding encrypted plaintext. Thus, we can say that it is

semantically secure.

Definition 2 (Data privacy) If an adversary gets some of

the retrieved encrypted data and the corresponding secret

key, he can learn nothing about the plain data in polyno-

mial time.

Definition 3 (Index privacy) If an adversary gets hold of a

given I for a set of keywords, he should learn nothing from

the corresponding keywords in polynomial time.

Definition 4 (Data integrity) If an internal or external

attacker modified the data, the changes should be detected

by the users.

Definition 5 If for any polynomial-time probabilistic

algorithm A, i.e., Pr[(x, y) = A(1k, H) : x = y K H

(x) = H(y)] is negligible, then a hash function H is collision

resistant.

Theorem 1 The PPMKS is semantically secure against

internal and external attacks according to Definition 1.

Proof If we prove that internal and external adversary

cannot access or learn nothing from the ciphertext and

indexes then we can say PPMKS is semantically secure.

Consider our key generation and encryption process, the

Fig. 4 Ranked keyword search
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DO selects two large distinct and primes p, q then using an

extended Euclidean algorithm to generate PK = {N} and

PR = {p, q, r, s}, then the documents and indexes are

encrypted using PK, xi ¼ x2
i�1 mod N, pi ¼ x mod 2 and

ci ¼ pi � di: Observe that N is a large integer; an internal

and external adversary can see only the ciphertext ci. If

factoring N is difficult, then pi is LSB of the principal

square root xn of xnþ1 modulo N is simultaneously secure.

Thus, the internal and external adversary can do nothing

better than guessing the pseudorandom bits pi,

1 B i B t. More formally, if the integer factorization

problem is hard, then the PPMKS is semantically secure

against internal and external adversary attacks. h

Theorem 2 Based on Definitions 2 and 3, the PPMKS

approach satisfies privacy preserving for documents and

indexes.

Proof We have to prove that PPMKS satisfies privacy

preserving for documents and indexes against the internal

and external attack. In the chosen-ciphertext attack (CCA),

if the attacker has temporary access to ciphertext, then he

may try to decrypt it to get the plaintext. To prove that,

assume that the composite number N be the modules in the

RSA module N = pq where p and q are two large distinct

and primes with the same size. Assume that the document

of the DO contains such a composite number N that two

factors p and q only known to the DO. Define pi to be the

bit vector whose value is the least significant bits of xi,

where xi ¼ x2
i�1 mod N. To encrypt the di pick a random

pi, then DO computes ci ¼ pi � di and xnþ1 ¼ x2
n mod N.

To decrypt di, the AU computes xi ¼ x2
i�1 mod N and

di ¼ pi � ci. The given xi ¼ x2
i�1 mod N is very hard for

any attacker to compute such random seed x to access the

document. Based on the above, this approach is secure

against CCA. Based on our encryption approach and its

security strength against internal and external adversary

attacks as well as the CCA from Theorems 1 and 2,

PPMKS satisfies privacy preserving for documents and

indexes. h

Theorem 3 Based on Definition 4, PPMKS approach

satisfies the data integrity for the documents.

Proof We have to prove that the PPMKS approach has

data integrity for the documents against internal and

external attacks. If internal or external attacker corrupts

any retrieved data, the AU should check this attack by

matching hash value h2 from CSP with hash value h1 from

DO. Then the AU can detect if the data modification occurs

in the cloud. So, if h1 = h2 says that encrypted documents

and indexes are not modified in the cloud then the data

integrity is satisfied, otherwise encrypted documents and

indexes are modified in the cloud. That is, if an attacker

tries to add some data to the encrypted documents or

encrypted indexes, then the AU should be able to detect

this change. So, PPMKS approach satisfies the integrity of

documents stored in the cloud against internal and external

attacks. h

Theorem 4 Based on Definition 5, the H is collision

resistant, and it is very hard for an attacker to find two

distinct inputs x = y that have same hash value

H(x) = H(y).

Proof We have to prove that the attacker cannot guess the

same hash value H(x) = H(y) on two different inputs. The

two distinct inputs x, y are called collision for a hash

function H if x = y but have same hash values H(x) =

H(y). The H is collision resistance that satisfies the colli-

sion resistance requirement, for a probabilistic polynomial-

time algorithm A, if two distinct inputs x, y, are used to find

a collision for the function H with minimum probability.

Therefore, if H is collision resistant, it is impracticable to

guess two distinct inputs x, y that produce the same hash

value. Hence, it is very difficult for an attacker to guess a

hash value which makes h1 = h2 due to the security

strength of hash function. h

6 Performance evaluation

In this section, we present the performance analysis of the

PPMKS, in which the search precision and search time are

analyzed separately, and then compared with other

approaches MRSE-HCI (Chen et al. 2016) and MUSE

(Xiangyang et al. 2017). The search precision (D) and

search time (D) on a real data set of NSF Research (Bache

and Lichman 2013) is also evaluated.

6.1 Dataset and evaluating environment

The real dataset consists of 129,000 abstracts describing

NSF awards for basic research from 1990 to 2003, and we

randomly choose 20,000 abstracts for our experimental

data and extract about 1000 distinct keywords. The

experimental hardware environment is Intel Core i7-8550,

4 GHz, processor cache 8M, number of cores 4, 16 G

memory and SSD hard disk; and software environment is

Windows 10 Pro 64-bit operating system and Visual Studio

2017 development platform with C# Programming

Language.

6.2 Search precision and time evaluation

The search precision (D) is used to estimate how well the

search results satisfy the user’s satisfaction. In order to
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evaluate D, we adopt the definition of precision from

Xiangyang et al. (2017) as in Eq. (19).

Dp ¼ k0

k
ð19Þ

where k is the number of documents retrieved, and k0 is the

number of the real top- documents that are retrieved by

CSP. The average value of D for PPMKS is shown in

Fig. 5.

This figure illustrates that the D of PPMKS does not

change when k changes from 50 to 200.

Further, we evaluated and analyzed the average search

time (D) based on the number of queried keywords (q),

number of documents (m) and the number of retrieved

documents (k). The evaluation of D is based on q is illus-

trated in Fig. 6. This figure shows the time that is needed

by the CSP to search the documents based on a trapdoor

from the authorized user. The search time includes fetching

the Word_Index and computing the score for each keyword

in the queried keywords for each document in the same

cluster that have the highest similarity score with the

queried keywords.

The search time increases as q grows, because of the

computation needed for each keyword in the query and this

will consume more time. For example, PPMKS needs on

average (22 ms) to search for a query of 20 keywords and

(55 ms) to search for a query of 50 keywords. The D of

PPMKS based on m should be affected by the number of

documents for each cluster, so we will use PPMKS-100 to

represent a cluster with a maximum number of documents

to be 100 and PPMKS-300 to represent a cluster with a

maximum number of documents to be 300. The evaluation

of D based on m is illustrated in Fig. 7.

Figure 7 shows that the search time D of PPMKS-100 is

lower than PPMKS-300, because the D is affected by the

number of documents in each cluster, the D of PPMKS in

the second scenario does not change significantly because

the search time is based on the number of documents in

each cluster and not the number of all documents (m). The

search time of PPMKS does not change while grows

because the searching process is carried out for all docu-

ments in the same cluster regardless of the number of the
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retrieved documents (k). The evaluation of D based on k is

illustrated in Fig. 8.

Figure 8 illustrates that the search time D of PPMKS-

100 is lower than PPMKS-300 scenario and D does not

change while grows. For example, PPMKS-100 needs on

average 25 ms to search if the number of retrieved docu-

ments is 100 documents, and PPMKS-300 needs on aver-

age 75 ms to search if the number of retrieved documents

is 150 documents.

The search time of PPMKS changes based on the

maximum number of documents in the cluster; because the

searching process is carried out for all documents in the

same cluster, so the search time will increase while the

number of documents in the cluster increases. The evalu-

ation of D based on the maximum number of documents in

the cluster is illustrated in Fig. 9.

Figure 9 shows that the search time D of PPMKS

increased based on the maximum number of documents in

the cluster. The search time includes fetching the words

entry list from the Words_Index and computing the score

for all keywords in the query, for all documents in the same

cluster that have the highest similarity score with the query,

and find the highest documents score. For example,

PPMKS needs on average 0.1 s to search if the maximum

number of documents in the cluster is 400 documents, and

PPMKS needs on average 0.175 s to search if the maxi-

mum size of the cluster is 700 documents.

6.3 The search precision evaluation

In this section, we compare D with the results of other

approaches presented in (Chen et al. 2016) and (Xiangyang

et al. 2017) which are denoted as MRSE-HCI and MUSE,

respectively. The average value of D for MRSE-HCI,

MUSE and PPMKS is shown in Fig. 10.

This figure illustrates that the D for MRSE-HCI, MUSE

and PPMKS does not change significantly when k change

from 50 to 200, the PPMKS’s and MUSE’s D are signifi-

cantly larger than MRSE-HCI. The PPMKS’s and MUSE’s

D are approximately equivalent because the two approa-

ches perform the same calculation of vectors space model

and query vectors. The MRSE-HCI’s D is lower than the

other approaches because the MRSE-HCI clusters the very

most relevant documents into the same cluster by dynamic
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-means, which means the search result will contain only the

very most relevant documents and some relevant docu-

ments might be ignored.

6.4 The search time evaluation

In this section, we compare the average search time (D)

with the results of other approaches based on the number of

queried keywords (q), number of documents (m) and the

number of retrieved documents (k). In MRSE-HCI, the

maximum number of documents for clusters should be

initialized; thus, we will use MRSE-HCI-100 to represent

the maximum numbers of documents per clusters to be 100

and MRSE-HCI-300 to represent the maximum numbers of

documents per clusters to be 300 documents.

The evaluation of D based on q is illustrated in Fig. 11;

this figure shows the time that is needed by the CSP to

search the documents based on a trapdoor that sends from

the authorized user. The search time includes fetching the

Word_Index and computing the score for each keyword in

the queried keywords for each document in the same

cluster that have the highest similarity score with the

queried keywords.

By comparing all approaches, our approach uses the

advantages of clustering by separating data categories by

similar features; that means the server may not search for

all documents, but search only in a specific cluster based on

the query. This approach takes less time to search the

documents based on a trapdoor. For example, MRSE-HCI-

100 needs 38 ms, MRSE-HCI-300 needs 100 ms and

MUSE needs 85 ms to search if the number of queried

keywords is 30 keywords, while our model needs on

average 32 to search if the number of queried keywords is

30 keywords.

The evaluation of D based on m for PPMKS, MRSE and

MUSE approaches is illustrated in Fig. 12. This fig-

ure shows that the search time D of PPMKS is lower than

MRSE in both 100 and 300 documents. The D of PPMKS

0

0.05

0.1

0.15

0.2

0.25

0.3

100 200 300 400 500 600 700 800 900 1000

Δ
(S

)

Maximum Number of Documents in the Cluster

The Δ Based on the MaximamNumber of Documents in the
Cluster

PPMKS

Fig. 9 The D of the CSP to

search the documents based on

the maximum size of cluster

50

60

70

80

90

100

50 75 100 125 150 175 200

Δ
(%

)

k 

The Δ of search results based on k

PPMKS MRSE-HCI MUSE

Fig. 10 The search precision of

search results based on k

5628 A. M. Manasrah et al.

123



0

20

40

60

80

100

120

10 20 30 40 50

Δ
 (m

s)
 

q 

The Δ based on q

PPMKS MRSE-HCI-100 MRSE-HCI-300 MUSE

Fig. 11 The D of the CSP to

search the documents based on

q

0

20

40

60

80

100

120

140

160

5000 10000 15000 20000

Δ
 (m

s)
 

m 

The Δ based on m

PPMKS-100 PPMKS-300 MRSE-HCI-100 MRSE-HCI-300 MUSE

Fig. 12 The D of the CSP to

search the documents based on

m

0

20

40

60

80

100

120

140

50 100 150 200

Δ
 (m

s)
 

k 

The Δ based on k

PPMKS-100 PPMKS-300 MRSE-HCI-100 MRSE-HCI-300 MUSE

Fig. 13 The D of the CSP to

search the documents based on k

A privacy-preserving multi-keyword search approach in cloud computing 5629

123



and MRSE does not change significantly because the

search time in these two approaches was based on the

number of documents in each cluster and does not get

affected by the number of all documents (m), while MUSE

increase in increased.

The evaluation of D based on k is illustrated in Fig. 13,

and the search time of all other approaches increases as

grows, because if grows, this will consume more compu-

tation time, thus, increase the search time. The PPMKS

does not change while grows because the searching process

was done for all documents in the same cluster regardless

of the number of the retrieved documents (k).

Figure 13 shows that the search time D of PPMKS is

lower than MRSE and MUSE with 100 and 300 documents

per cluster. The D of MUSE and MRSE increases as grows

because these approaches need more computation time

while the number of retrieved documents is increases. For

example, MRSE-HCI-100 needs 40 ms, MRSE-HCI-300

needs 102 ms, and MUSE needs 116 ms to search if the

number of retrieved documents is 150 documents, while

PPMKS-100 needs on average 25 ms and PPMKS-300

needs on average 75 ms to search if the number of

retrieved documents is 150 documents.

7 Conclusion and future work

In this paper, we proposed a new privacy-preserving

approach based on topic summary and clustering to reduce

the time and the number of comparisons required for

searching and retrieving outsourced encrypted data.

Although there are many benefits for cloud computing,

privacy-preserving concerns are one of the main challenges

that still considered a barrier for users to adopt cloud

computing in their infrastructure, because outsourcing the

data to a third-party deprives the DO of direct control to

their data and applications. The best solution to preserve

the privacy of any sensitive and important data is to encrypt

data before outsourcing it. The encryption protects from

malicious attacks and illegal accesses, but it significantly

increases the computation and the communication over-

head on the data owners especially for clients with large

data size. It is very important to allow any DO or AU to

send multiple keywords in the search request and retrieve

the related documents in the order of their relevance to

these keywords. The ranked search system allows data

users to perform the searching process quickly by finding

the most relevant documents. Developing such an approach

will add a significant contribution to the domain of privacy-

preserving multi-keyword search over encrypted data.

However, the PPMKS approach yields good results in the

evaluation process which shows an enhancement on the

performance of the cloud environment.

The PPMKS approach was developed to retrieve the

most relevant document with the fastest searching time.

We achieved this objective by using the probabilistic

public key encryption approach to reduce the computation

overhead of the data owner device while encrypting the

data. Also, using the clustering and summarization tech-

nique reduces the time of the searching process. Also, the

ranked multi-keyword searching over the encrypted data

reduces the communication overhead during the files

retrieval phase, hence providing the most relevant files to

the users with minimum false positives.

We are verifying and validating the proposed approach

and comparing the results to those related to the filed from

the literature. We achieved this objective by developing

testing and evaluating environment to compare the search

precision and the search time of the proposed approach

against others. In comparison with these studies, it was

found that the proposed approach made a significant

enhancement on the search precision and the search time.

In the future, we will focus our efforts on achieving

more enhancements on the overall performance of the

cloud environment. As a future work in PPMKS approach,

we will enhance PPMKS to support more efficient dynamic

data operations and ranked multi-keyword search over the

big encrypted data in the cloud environment. We will

achieve this goal by applying a dynamic clustering algo-

rithm that may use artificial intelligence concepts to dis-

criminate the optimal number of clusters. We will also

enhance PPMKS to support more integrity check of rank

order in the multi-keyword search result and privacy-pre-

serving guarantees in the stronger threat model.
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