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Abstract
Network traffic classification has becomemore important with the rapid growth of Internet and online applications. Numerous
studies have been done on this topic which have led to many different approaches. Most of these approaches use predefined
features extracted by an expert in order to classify network traffic. In contrast, in this study, we propose a deep learning-based
approach which integrates both feature extraction and classification phases into one system. Our proposed scheme, called
“Deep Packet,” can handle both traffic characterization in which the network traffic is categorized into major classes (e.g.,
FTP and P2P) and application identification in which identifying end-user applications (e.g., BitTorrent and Skype) is desired.
Contrary to most of the current methods, Deep Packet can identify encrypted traffic and also distinguishes between VPN
and non-VPN network traffic. The Deep Packet framework employs two deep neural network structures, namely stacked
autoencoder (SAE) and convolution neural network (CNN) in order to classify network traffic. Our experiments show that the
best result is achieved when Deep Packet uses CNN as its classification model where it achieves recall of 0.98 in application
identification task and 0.94 in traffic categorization task. To the best of our knowledge, Deep Packet outperforms all of the
proposed classification methods on UNB ISCX VPN-nonVPN dataset.

Keywords Network traffic classification · Application identification · Traffic characterization · Deep learning · Convolutional
neural networks · Stacked autoencoder · Deep Packet

1 Introduction

Traffic classification is an important task in modern com-
munication networks (Bagui et al. 2017). Due to the rapid
growth of high-throughput traffic demands, to properly man-
age network resources, it is vital to recognize different types
of applications utilizing network resources. Consequently,
accurate traffic classification has become one of the pre-
requisites for advanced network management tasks such as
providing appropriate Quality-of-Service (QoS), anomaly
detection, pricing, etc. Traffic classification has attracted a lot
of interests in both academia and industrial activities related
to network management (e.g., see Dainotti et al. 2012; Fin-
sterbusch et al. 2014; Velan et al. 2015) and the references
therein).
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As an example of the importance of network traffic clas-
sification, one can think of the asymmetric architecture of
today’s network access links, which has been designed based
on the assumption that clients downloadmore than what they
upload. However, the pervasiveness of symmetric-demand
applications [such as peer-to-peer (P2P) applications, voice
over IP (VoIP) and video call] has changed the clients’
demands to deviate from the assumption mentioned earlier.
Thus, to provide a satisfactory experience for the clients, an
application-level knowledge is required to allocate adequate
resources to such applications.

The emergence of new applications as well as interactions
between various components on the Internet has dramatically
increased the complexity and diversity of this network which
makes the traffic classification a difficult problem per se. In
the following, we discuss in details some of the most critical
challenges of network traffic classification.

First, the increasing demand for user’s privacy and data
encryption has tremendously raised the amount of encrypted
traffic in today’s Internet (Velan et al. 2015). Encryption
procedure turns the original data into a pseudo-random-like
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format with the aim to make it hard to decrypt. As a result,
it causes the encrypted data scarcely contain any discrimina-
tive patterns to identify network traffic. Therefore, accurate
classification of encrypted traffic has become a real challenge
in modern networks (Dainotti et al. 2012).

It is also worth mentioning that many of the proposed
network traffic classification approaches, such as payload
inspection as well as machine learning-based and statistical-
based methods, require patterns or features to be extracted
by experts. This process is prone to error, time-consuming
and costly.

Finally, many of the Internet service providers (ISPs)
block P2P file sharing applications because of their high
bandwidth consumption and copyright issues (Lv et al. 2014).
Hence, to circumvent this problem, these applications use
protocol embedding and obfuscation techniques to bypass
traffic control systems (Alshammari and Zincir-Heywood
2011). The identification of this kind of applications is one of
the most challenging tasks in network traffic classification.

There have been abundant studies on the network traffic
classification subject, e.g., Kohout and Pevný (2018), Perera
et al. (2017), Gil et al. (2016) and Moore and Papagiannaki
(2005). However, most of them have focused on classify-
ing a protocol family, also known as traffic characterization
(e.g., streaming, chat, P2P, etc.), instead of identifying a
single application, which is known as application identifica-
tion (e.g., Spotify, Hangouts, BitTorrent, etc.) (Khalife et al.
2014). In contrast, this work proposes a method, i.e., Deep
Packet, based on the ideas recently developed in the machine
learning community, namely deep learning (Bengio 2009;
LeCun et al. 2015), to both characterize and identify the net-
work traffic. The benefits of our proposed method, which
make it superior to other classification schemes, are stated as
follows:

– In Deep Packet, there is no need for an expert to
extract features related to network traffic. In light of this
approach, the cumbersome step of finding and extracting
distinguishing features has been omitted.

– Deep Packet can identify traffic at both granular lev-
els (application identification and traffic characteriza-
tion) with state-of-the-art results compared to the other
works conducted on similar dataset (Gil et al. 2016;
Yamansavascilar et al. 2017).

– Deep Packet can accurately classify one of the hardest
class of applications, known to be P2P (Khalife et al.
2014). This kind of applications routinely uses advanced
port obfuscation techniques, embedding their informa-
tion in well-known protocols’ packets and using random
ports to circumvent ISPs’ controlling processes.

The rest of paper is organized as follows. In Sect. 2, we
review some of the most important and recent studies on net-

work traffic classification. In Sect. 3, we present the essential
background on deep learning which is necessary to our work.
Section 4 presents our proposed method, i.e., Deep Packet.
The results of the proposed scheme on network application
identification and traffic characterization tasks are described
in Sect. 5. In Sect. 6, we provide further discussion on exper-
imental results. Section 7 discusses future work and possible
direction for further inspection. Finally, we conclude the
paper in Sect. 8.

2 Related works

In this section, we provide an overview of the most impor-
tant network traffic classification methods. In particular, we
can categorize these approaches into threemain categories as
follows: (I) port-basedmethods, (II) payload inspection tech-
niques and (III) statistical and machine learning approaches.
Here is a brief reviewof themost important and recent studies
regarding each of the approaches mentioned above.

Port-based approach Traffic classification via port num-
ber is the oldest and themostwell-knownmethod for this task
(Dainotti et al. 2012). Port-based classifiers use the infor-
mation in the TCP/UDP headers of the packets to extract
the port number which is assumed to be associated with a
particular application. After the extraction of the port num-
ber, it is compared with the assigned IANA TCP/UDP port
numbers for traffic classification. The extraction is an easy
procedure, and port numbers will not be affected by encryp-
tion schemes. Because of the fast extraction process, this
method is often used in firewalls and access control lists
(ACL) (Qi et al. 2009). Port-based classification is known to
be among the simplest and fastest method for network traffic
identification. However, the pervasiveness of port obfusca-
tion, network address translation (NAT), port forwarding,
protocol embedding and random ports assignments have
significantly reduced the accuracy of this approach. Accord-
ing to Moore and Papagiannaki (2005) and Madhukar and
Williamson (2006), only 30% to 70% of the current Internet
traffic can be classified using port-based classification meth-
ods. For these reasons, more complex traffic classification
methods are needed to classify modern network traffic.

Payload inspection techniques These techniques are
based on the analysis of information available in the applica-
tion layer payload of packets (Khalife et al. 2014). Most of
the payload inspection methods, also known as deep packet
inspection (DPI), use predefined patterns like regular expres-
sions as signatures for each protocol (e.g., see Yeganeh et al.
2012; Sen et al. 2004). The derived patterns are then used to
distinguish protocols form each other. The need for updating
patterns whenever a new protocol is released, and user pri-
vacy issues are among the most important drawbacks of this
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approach. Sherry et al. proposed a new DPI system that can
inspect encrypted payload without decryption, thus solved
the user privacy issue, but it can only process HTTP Secure
(HTTPS) traffic (Sherry et al. 2015).

Statistical and machine learning approach Some of
these methods, mainly known as statistical methods, have a
biased assumption that the underlying traffic for each applica-
tion has some statistical features which are almost unique to
each application. Each statistical method uses its own func-
tions and statistics. Crotti et al. (2007) proposed protocol
fingerprints based on the probability density function (PDF)
of packets inter-arrival time and normalized thresholds. They
achieved up to 91% accuracy for a group of protocols such as
HTTP, PostOffice Protocol 3 (POP3) and SimpleMail Trans-
fer Protocol (SMTP). In a similar work, Wang and Parish
(2010) have considered PDF of the packet size. Their scheme
was able to identify a broader range of protocols includ-
ing file transfer protocol (FTP), Internet Message Access
Protocol (IMAP), SSH, and TELNET with accuracy up
to 87%.

A vast number of machine learning approaches have been
published to classify traffic. Auld et al. proposed a Bayesian
neural network that was trained to classify most well-known
P2P protocols including Kazaa, BitTorrent, GnuTella, and
achieved 99% accuracy (Auld et al. 2007). Moore et al.
achieved 96% of accuracy on the same set of applications
using a Naive Bayes classifier and a kernel density estima-
tor (Moore and Zuev 2005). Artificial neural network (ANN)
approaches were proposed for traffic identification (e.g., see
Sun et al. 2010; Ting et al. 2010). Moreover, it was shown
in Ting et al. (2010) that the ANN approach can outperform
Naive Bayes methods. Two of the most important papers
that have been published on “ISCX VPN-nonVPN” traffic
dataset are based on machine learning methods. Gil et al.
(2016) used time-related features such as the duration of the
flow, flow bytes per second, forward and backward inter-
arrival time, etc. to characterize the network traffic using
k-nearest neighbor (k-NN) andC4.5 decision tree algorithms.
They achieved approximately 92% recall, characterizing six
major classes of traffic includingWeb browsing, email, chat,
streaming, file transfer and VoIP using the C4.5 algorithm.
They also achieved approximately 88% recall using the C4.5
algorithm on the same dataset which is tunneled through
VPN. Yamansavascilar et al. manually selected 111 flow fea-
tures described in Moore et al. (2013) and achieved 94% of
accuracy for 14 class of applications using k-NN algorithm
(Yamansavascilar et al. 2017). Themain drawbackof all these
approaches is that the feature extraction and feature selection
phases are essentially done with the assistance of an expert.
Hence, it makes these approaches time-consuming, expen-
sive and prone to humanmistakes.Moreover, note that for the
case of using k-NN classifiers, as suggested by Yamansavas-

cilar et al. (2017), it is known that, when used for prediction,
the execution time of this algorithm is a major concern.

To the best of our knowledge, prior to our work, only
one study based on deep learning ideas has been reported
by Wangc Wang (2015). They used stacked autoencoders
(SAE) to classify some network traffic for a large family
of protocols like HTTP, SMTP, etc. However, in their tech-
nical report, they did not mention the dataset they used.
Moreover, the methodology of their scheme, the details of
their implementation, and the proper report of their result is
missing.

3 Background on deep neural networks

Neural networks (NNs) are computing systems made up
of some simple, highly interconnected processing elements,
which process information by their dynamic state response to
external inputs (Caudill 1987). In practice, these networks are
typically constructed from a vast number of building blocks
called neuron where they are connected via some links to
each other. These links are called connections, and to each of
them, a weight value is associated. During the training pro-
cedure, the NN is fed with a large number of data samples.
The widely used learning algorithm to train such networks
(called backpropagation) adjusts the weights to achieve the
desired output from the NN. The deep learning framework
can be considered as a particular kind of NNs with many
(hidden) layers. Nowadays, with the rapid growth of com-
putational power and the availability of graphical processing
units (GPUs), training deep NNs have become more plausi-
ble. Therefore, the researchers from different scientific fields
consider using deep learning framework in their respective
area of research, e.g., see Hinton et al. (2012), Lotfollahi
et al. (2018) and Socher et al. (2013). In the following, we
will briefly review two of the most important deep neural
networks that have been used in our proposed scheme for
network traffic classification, namely autoencoders and con-
volutional neural networks.

3.1 Autoencoder

An autoencoder NN is an unsupervised learning framework
that aims to reconstruct the input at the outputwhileminimiz-
ing the reconstruction error (i.e., according to some criteria).
Consider a training set {x1, x2, . . . , xn}where for each train-
ing data we have xi ∈ R

n . The autoencoder’s objective is
defined to be yi = xi for i ∈ {1, 2, . . . , n}, i.e., the out-
put of the network will be equal to its input. Considering
this objective function, the autoencoder tries to learn a com-
pressed representation of the dataset, i.e., it approximately
learns the identity function FW ,b(x) � x , where W and b
are the whole network weights and biases vectors. General
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Fig. 1 The general structure of an autoencoder

form of an autoencoder’s loss function is shown in (1), as
follows

L(W , b) = ∥
∥x − FW ,b(x)

∥
∥
2
. (1)

Figure 1 shows a typical autoencoder with n inputs and out-
puts. The autoencoder is mainly used as an unsupervised
technique for automatic feature extraction. More precisely,
the output of the encoder part is considered as a high-level
set of discriminative features for the classification task.

In practice, to obtain a better performance, amore complex
architecture and training procedure, called stacked autoen-
coder (SAE), is proposed (Vincent et al. 2008). This scheme
suggests to stack up several autoencoders in a manner that
output of each one is the input of the successive layer which
itself is an autoencoder. The training procedure of a stacked
autoencoder is done in a greedy layer-wise fashion (Ben-
gio et al. 2007). First, this method trains each layer of the
network while freezing the weights of other layers. After
training all the layers, to have more accurate results, fine-
tuning is applied to the whole NN. At the fine-tuning phase,
the backpropagation algorithm is used to adjust all layers’
weights. Moreover, for the classification task, an extra soft-
max layer can be applied to the final layer. Figure 2 depicts
the training procedure of a stacked autoencoder.

3.2 Convolutional neural network

The convolutional neural networks (CNN) are another types
of deep learning models in which feature extraction from the
input data is done using layers comprised of convolutional
operations (i.e., convolutional filters). The construction of
convolutional networks is inspired by the visual structure of
living organisms (Hubel and Wiesel 1968). Basic building
block underneath a CNN is a convolutional layer described

Fig. 2 Greedy layer-wise approach for training an stacked autoend-
coder

as follows. Consider a convolutional layer with N×N square
neuron layer as input and a filter ω of sizem×m. The output
of this layer zl is of size (N −m + 1) × (N −m + 1) and is
computed as follows

z�i j = f

(
m−1
∑

a=0

m−1
∑

b=0

ωabz
�−1
(i+a)( j+b)

)

. (2)

As it is demonstrated in (2), a nonlinear function f such
as rectified linear unit (ReLU) is applied to the convolu-
tion output to learn more complex features from the data.
In some applications, a pooling layer (e.g., max pooling) is
also applied. The main motivation of employing a pooling
layer is to aggregate multiple low-level features in a neigh-
borhood to obtain local invariance. Moreover, by reducing
the output size, it helps to reduce the computation cost of the
network in train and test phase.

CNNs have been successfully applied to different fields
including natural language processing (dos Santos and Gatti
2014), computational biology (Alipanahi et al. 2015), and
machine vision (Simonyan and Zisserman 2014). One of the
most interesting applications of CNNs is in face recognition
(Lee et al. 2009), where consecutive convolutional layers are
used to extract features from each image. It is observed that
the extracted features in shallower layers are simple concepts
like edges and curves. On the contrary, features in deeper lay-
ers of networks are more abstract than the ones in shallower
layers (Yosinski et al. 2015). However, it is worthmentioning
that visualizing the extracted features in the middle layers
of a network does not always lead to meaningful concepts
like what has been observed in the face recognition task. For
example in one-dimensional CNN (1D-CNN) which we use
to classify network traffic, the feature vectors extracted in
shallow layers are just some real numbers which make no
sense at all for a human observer.
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Fig. 3 General illustration of Deep Packet toolkit

We believe 1D-CNNs are an ideal choice for the network
traffic classification task. This is true since 1D-CNNs can
capture spatial dependencies between adjacent bytes in net-
work packets that leads to find discriminative patterns for
every class of protocols/applications, and consequently, an
accurate classification of the traffic. Our classification results
confirm this claim and prove that CNNs performs very well
in feature extraction of network traffic data.

4 Methodology

In this work, we develop a framework, called Deep Packet,
that comprises two deep learning methods, namely convolu-
tional NN and stacked autoencoderNN, for both “application
identification” and “traffic characterization” tasks. Before
training the NNs, we have to prepare the network traffic
data so that it can be fed into NNs properly. To this end,
we perform a pre-processing phase on the dataset. Figure 3
demonstrates the general structure of Deep Packet. At the test
phase, a pre-trained neural network corresponding to the type
of classification, application identification or traffic charac-
terization, is used to predict the class of traffic the packet
belongs to. The dataset, implementation and design details
of the pre-processing phase and the architecture of proposed
NNs will be explained in the following.

4.1 Dataset

For this work, we use “ISCX VPN-nonVPN” traffic dataset,
that consists of captured traffic of different applications in
pcap format files (Gil et al. 2016). In this dataset, the captured
packets are separated into different pcap files labeled accord-
ing to the application produced the packets (e.g., Skype, and
Hangouts, etc.) and the particular activity the applicationwas
engaged during the capture session (e.g., voice call, chat, file
transfer, or video call). Formore details on the captured traffic
and the traffic generation process, refer to Gil et al. (2016).

The dataset also contains packets captured over Virtual
Private Network (VPN) sessions. A VPN is a private overlay

network among distributed sites which operates by tunnel-
ing traffic over public communication networks (e.g., the
Internet). Tunneling IP packets, guaranteeing secure remote
access to servers and services, is the most prominent aspect
of VPNs (Chowdhury and Boutaba 2010). Similar to regular
(non-VPN) traffic, VPN traffic is captured for different appli-
cations, such as Skype, while performing different activities,
like voice call, video call, and chat.

Furthermore, this dataset contains captured traffic of Tor
software. This traffic is presumably generated while using
Tor browser, and it has labels such as Twitter, Google, Face-
book, etc. Tor is a free, open source software developed
for anonymous communications. Tor forwards users’ traf-
fic through its own free, worldwide, overlay network which
consists of volunteer-operated servers. Tor was proposed to
protect users against Internet surveillance known as “traffic
analysis.” To create a private network pathway, Tor builds
a circuit of encrypted connections through relays on the
network in a way that no individual relay ever knows the
complete path that a data packet has taken (Dingledine et al.
2004). Finally, Tor uses complex port obfuscation algorithm
to improve privacy and anonymity.

4.2 Pre-processing

The “ISCX VPN-nonVPN” dataset is captured at the data-
link layer. Thus, it includes the Ethernet header. The data-link
header contains information regarding the physical link, such
as Media Access Control (MAC) address, which is essential
for forwarding the frames in the network, but it is unin-
formative for either the application identification or traffic
characterization tasks. Hence, in the pre-processing phase,
the Ethernet header is removed first. Transport layer seg-
ments, specifically Transmission Control Protocol (TCP) or
User Datagram Protocol (UDP), vary in header length. The
former typically bears a header of 20 bytes length, while the
latter has an 8 bytes header. To make the transport layer seg-
ments uniform, we inject zeros to the end of UDP segment’s
headers to make them equal length with TCP headers. The
packets are then transformed from bits to bytes which helps
to reduce the input size of the NNs.

Since the dataset is captured in a real-world emulation, it
contains some irrelevant packets which are not of our interest
and should be discarded. In particular, the dataset includes
some TCP segments with either SYN, ACK, or FIN flags set
to one and containing no payload. These segments are needed
for three-way handshaking procedure while establishing a
connection or finishing one, but they carry no information
regarding the application generated them, thus can be safely
discarded. Furthermore, there are some Domain Name Ser-
vice (DNS) segments in the dataset. These segments are
used for hostname resolution, namely translating URLs to
IP addresses. These segments are not relevant to either appli-
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Fig. 4 Empirical probabilitymass function of the packet length in ISCX
VPN-nonVPN traffic dataset

cation identification or traffic characterization, hence can be
omitted from the dataset.

Figure 4 illustrates the histogram (empirical distribution)
of packet length for the dataset. As the histogram shows,
packet length varies a lot through the dataset, while employ-
ing NNs necessitates using a fixed-size input. Hence, trunca-
tion at a fixed length or zero-padding is required inevitably.
To find the fixed length for truncation, we inspected the
packets length’s statistics. Our investigation revealed that
approximately 96% of packets have a payload length of less
than 1480 bytes. This observation is not far from our expec-
tation, as most of the computer networks are constrained
by Maximum Transmission Unit (MTU) size of 1500 bytes.
Hence, we keep the IP header and the first 1480 bytes of each
IP packet which results in a 1500 bytes vector as the input for
our proposed NNs. Packets with IP payload less than 1480
bytes are zero-padded at the end. To obtain a better perfor-
mance, all the packet bytes are divided by 255, the maximum
value for a byte, so that all the input values are in the range
[0, 1].

Furthermore, since there is the possibility that the NN
attempts to learn classifying the packets using their IP
addresses, as the dataset is captured using a limited number
of hosts and servers, we decided to prevent this over-fitting
by masking the IP addresses in the IP header. In this mat-
ter, we assure that the NN is not using irrelevant features to
perform classification. All of the pre-processing steps men-
tioned above take place when the user loads a pcap file into
Deep Packet toolkit.

4.2.1 Labeling dataset

As mentioned before in Sect. 4.1, the dataset’s pcap files are
labeled according to the applications and activities they were
engaged in.However, for application identification and traffic
characterization tasks, we need to redefine the labels, con-
cerning each task. For application identification, all pcap files
labeled as a particular application which were collected dur-
ing a non-VPN session are aggregated into a single file. This
leads to 17 distinct labels shown in Table 1a. Also for traffic

Table 1 Number of samples (packets) in each class for (a) application
identification, and (b) traffic characterization

Application Size (K)

(a)

AIM chat 5

Email 28

Facebook 2502

FTPS 7872

Gmail 12

Hangouts 3766

ICQ 7

Netflix 299

SCP 448

SFTP 418

Skype 2872

Spotify 40

Torrent 70

Tor 202

Voipbuster 842

Vimeo 146

YouTube 251

Class name Size (K)

(b)

Chat 82

Email 28

File transfer 210

Streaming 1139

Torrent 70

VoIP 5120

VPN: Chat 50

VPN: File transfer 251

VPN: Email 13

VPN: Streaming 479

VPN: Torrent 269

VPN: VoIP 753

characterization, we aggregated the captured traffic of dif-
ferent applications involved in the same activity, taking into
account the VPN or non-VPN condition, into a single pcap
file. This leads to a 12-class dataset, as shown in Table 1b. By
observing Table 1, one would instantly notice that the dataset
is significantly imbalanced and the number of samples varies
remarkably among different classes. It is known that such
an imbalance in the training data leads to a reduced clas-
sification performance. Sampling is a simple yet powerful
technique to overcome this problem (Longadge and Dongre
2013). Hence, to train the proposed NNs, using the under-
sampling method, we randomly remove the major classes’
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Fig. 5 A minimal illustration of the proposed one-dimensional CNN
architecture

samples (classes having more samples) until the classes are
relatively balanced.

4.3 Architectures

In the following, we explain our two proposed architectures
used in the Deep Packet toolkit.

The proposed SAE architecture consists of five fully con-
nected layers, stacked on top of each other which made up of
400, 300, 200, 100 and 50 neurons, respectively. To prevent
the over-fitting problem, after each layer the dropout tech-
nique with 0.05 dropout rate is employed. In this technique,
during the training phase, some of the neurons are set to zero
randomly. Hence, at each iteration, there is a random set of
active neurons. For the application identification and traf-
fic characterization tasks, at the final layer of the proposed
SAE, a softmax classifier with 17 and 12 neurons is added,
respectively.

A minimal illustration of the second proposed scheme,
based on one-dimensional (1D) CNN, is depicted in Fig. 5.
We used a grid search on a subspace of the hyper-parameters
space to select the ones which results in the best perfor-
mance. This procedure is discussed in detail in Sect. 5.
Our final proposed model consists of two consecutive con-
volutional layers, followed by a pooling layer. Then, the
two-dimensional tensor is squashed into a one-dimensional
vector and fed into a three-layered network of fully con-
nectedneuronswhich also employdropout technique to avoid
over-fitting. Finally, a softmax classifier is applied for the
classification task, similar to the SAE architecture. The best
values found for the hyper-parameters are shown in Table 2.
The detailed architecture of all the proposedmodels for appli-
cation identification and traffic characterization tasks can be
found in “Appendix A”.

5 Experimental results

To implement our proposed NNs, we have used Keras library
(Chollet et al 2017), with Tensorflow (Abadi et al. 2015) as

Table 2 Selected hyper-parameters for the CNNs

Task C1 filter C2 filter

Size Number Stride Size Number Stride

App. idn. 4 200 3 5 200 1

Traffic char. 5 200 3 4 200 3

its backend. Each of the proposed models was trained and
evaluated against the independent test set that was extracted
from the dataset. We randomly split the dataset into three
separate sets. The first one which includes 64% of samples
is used for training and adjusting weights and biases. The
second part containing 16% of samples is used for validation
during the training phase, and finally the third set made up of
20%of data points is used for testing themodel. Additionally,
to avoid the over-fitting problem,wehave used early stopping
technique (Prechelt 1998). This technique stops the training
procedure, once the value of loss function on the validation
set remains almost unchanged for several epochs, and thus
prevents the network to over-fit on the training data. To speed
up the learning phase, we also used Batch Normalization
technique in our models (Ioffe and Szegedy 2015).

For training SAE, first each layer was trained in a greedy
layer-wise fashion using Adam optimizer (Kingma and Ba
2014) and mean squared error as the loss function for 200
epochs, as described in Sect. 3.1. Next, in the fine-tuning
phase, the whole network was trained for another 200 epochs
using the categorical cross entropy loss function. Also, for
implementing the proposed one-dimensional CNN, the cat-
egorical cross entropy and Adam were used as loss function
and optimizer, respectively, and in this case, the network was
trained for 300 epochs. Finally, it is worth mentioning that in
both NNs, all layers employ Rectified Linear Unit (ReLU) as
the activation function, except for the final softmax classifier
layer.

To evaluate the performance ofDeep Packet, we have used
Recall (Rc), Precision (Pr) and F1 Score (i.e., F1) metrics.
The above metrics are described mathematically as follows

Rc = TP

TP + FN
, Pr = TP

TP + FP
, F1 = 2 · Rc · Pr

Rc + Pr
, (3)

where TP, FP and FN stand for true positive, false positive
and false negative, respectively.

As mentioned in Sect. 4, we used grid search hyper-
parameters tuning scheme to find the best 1D-CNN structure
in our work. Due to our computation hardware limitations,
we only searched a restricted subspace of hyper-parameters
to find the ones which maximize the weighted average F1
score on the test set for each task. To be more specific, we
changed filter size, the number of filters and stride for both
convolutional layers. In total, 116modelswith their weighted
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Fig. 6 Grid search on the hyper-parameters of the proposed 1D-CNN
for a application identification, and b traffic characterization

average F1 score for both application identification and traf-
fic characterization tasks were evaluated. The result for all
trained models can be seen in Fig. 6. We believe one cannot
select an optimal model for traffic classification tasks since
the definition of “optimal model” is not well defined and
there exists a trade-off between the model accuracy and its
complexity (i.e., training and test speed). In Fig. 6, the color
of each point is associated with the model’s trainable param-
eters; the darker the color, the higher the number of trainable
parameters.

As seen in Fig. 6, increasing the complexity of the neural
network does not necessarily result in a better performance.
Many reasons can cause this phenomenon which among
them one can mention to the vanishing gradient and over-
fitting problems. A complex model is more likely to face
the vanishing gradient problem which leads to under-fitting
in the training phase. On the other hand, if a learning
model becomes more complex while the size of training data
remains the same, the over-fitting problem can be occurred.
Both of these problems lead to a poor performance of NNs
in the evaluation phase.

Table 3 shows the achieved performance of both SAE and
1D-CNN for the application identification task on the test
set. The weighted average F1 score of 0.98 and 0.95 for

Table 3 DeepPacket performance for the application identification task

Application CNN SAE

Rc Pr F1 Rc Pr F1

AIM chat 0.76 0.87 0.81 0.64 0.76 0.70

Email 0.82 0.97 0.89 0.99 0.94 0.97

Facebook 0.95 0.96 0.96 0.95 0.94 0.95

FTPS 1.00 1.00 1.00 0.77 0.97 0.86

Gmail 0.95 0.97 0.96 0.94 0.93 0.94

Hangouts 0.98 0.96 0.97 0.99 0.94 0.97

ICQ 0.80 0.72 0.76 0.69 0.69 0.69

Netflix 1.00 1.00 1.00 1.00 0.98 0.99

SCP 0.99 0.97 0.98 1.00 1.00 1.00

SFTP 1.00 1.00 1.00 0.96 0.70 0.81

Skype 0.99 0.94 0.97 0.93 0.95 0.94

Spotify 0.98 0.98 0.98 0.98 0.98 0.98

Torrent 1.00 1.00 1.00 0.99 0.99 0.99

Tor 1.00 1.00 1.00 1.00 1.00 1.00

VoipBuster 1.00 0.99 0.99 0.99 0.99 0.99

Vimeo 0.99 0.99 0.99 0.98 0.99 0.98

YouTube 0.99 0.99 0.99 0.98 0.99 0.99

Wtd. average 0.98 0.98 0.98 0.96 0.95 0.95

Table 4 Deep Packet performance for the traffic characterization task

Class name CNN SAE

Rc Pr F1 Rc Pr F1

Chat 0.71 0.84 0.77 0.68 0.82 0.74

Email 0.87 0.96 0.91 0.93 0.97 0.95

File transfer 1.00 0.98 0.99 0.99 0.98 0.99

Streaming 0.87 0.92 0.90 0.84 0.82 0.83

Torrent 1.00 1.00 1.00 0.99 0.97 0.98

VoIP 0.88 0.63 0.74 0.90 0.64 0.75

VPN: Chat 0.98 0.98 0.98 0.94 0.95 0.94

VPN: File transfer 0.99 0.99 0.99 0.95 0.98 0.97

VPN: Email 0.98 0.99 0.99 0.93 0.97 0.95

VPN: Streaming 1.00 1.00 1.00 0.99 0.99 0.99

VPN: Torrent 1.00 1.00 1.00 0.97 0.99 0.98

VPN: VoIP 1.00 0.99 1.00 1.00 0.99 0.99

Wtd. average 0.94 0.93 0.93 0.92 0.92 0.92

1D-CNN and SAE, respectively, shows that our networks
have entirely extracted and learned the discriminating fea-
tures from the training set and can successfully distinguish
each application. For the traffic characterization task, our
proposed CNN and SAE have achieved F1 score of 0.93 and
0.92, respectively, implying that both networks are capable of
accurately classify packets. Table 4 summaries the achieved
performance of the proposed methods on the test set.
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Table 5 A comparison between
Deep Packet and other proposed
methods on “ISCX
VPN-nonVPN” dataset

Paper Task Metric Results Alg.

Deep Packet Application Accuracy 0.98 CNN

Yamansavascilar et al. (2017) Identification 0.94 k-NN

Deep Packet Traffic Precision 0.93 CNN

Gil et al. (2016) Characterization 0.90 C4.5

5.1 Comparison

In the following, we compare the results of Deep Packet with
previous results using the “ISCX VPN-nonVPN” dataset.
Moreover, the Deep Packet is compared against some of the
other machine learning methods in Sect. 5.1.2.

5.1.1 Comparison with previous results

As mentioned in Sect. 2, authors in Gil et al. (2016) tried to
characterize network traffic using time-related features hand-
crafted from traffic flows such as the duration of the flow
and flow bytes per second. Yamansavascilar et al. also used
such time-related features to identify the end-user application
(Yamansavascilar et al. 2017). Both of these studies evaluated
their models on the “ISCX VPN-nonVPN traffic dataset,”
and their best results can be found in Table 5. The results
suggest that Deep Packet has outperformed other proposed
approaches mentioned above, in both application identifica-
tion and traffic characterization tasks.

We would like to emphasize that the above-mentioned
work have used handcrafted features based on the network
traffic flow. On the other hand, Deep Packet considers the
network traffic in the packet level and can classify eachpacket
of network traffic flow which is a harder task, since there is
more information in a flow compared to a single packet. This
feature allows Deep Packet to be more applicable in real-
world situations.

Finally, it worth mentioning that independently and paral-
lel to our work (Lotfollahi et al. 2017), Wang et al. proposed
a similar approach to Deep Packet for traffic characterization
on “ISCX VPN-nonVPN” traffic dataset (Wang et al. 2017).
Their best-reported result achieves 100% precision on the
traffic characterization task. However, we believe that their
result is seriously questionable. The proving reason for our
allegation is that their best result has been obtained by using
packets containing all the headers from every five layers of
the Internet protocol stack. However, based on our experi-
ments and also a direct inquiry from the dataset providers
(Gil et al. 2016), in “ISCX VPN-nonVPN” traffic dataset,
the source and destination IP addresses (that are appeared
in the header of network layer) are unique for each applica-
tion. Therefore, their model presumably just uses this feature
to classify the traffic (in that case a much simpler classifier

Table 6 The comparison between Deep Packet and other machine
learning methods in application identification

Classifier Pc Pr F1

Decision tree 0.90 0.90 0.90

Random forests 0.91 0.90 0.90

Logistic regression 0.91 0.91 0.91

Naive Bayes 0.40 0.34 0.26

Table 7 The comparison between Deep Packet and other machine
learning methods in traffic characterization

Classifier Pc Pr F1

Decision tree 0.75 0.75 0.74

Random forests 0.80 0.80 0.79

Logistic regression 0.79 0.79 0.78

Naive Bayes 0.48 0.32 0.27

would be sufficient to handle the classification task). Asmen-
tioned before, to avoid this phenomenon, wemask IP address
fields in the pre-processing phase before feeding the packets
into our NNs for training or testing.

5.1.2 Comparison with previous methods

In this section, we compare Deep Packet with four machine
learning algorithms. The comparisonwas performed by feed-
ing pre-possessed packets similar to what we feed to Deep
packet. We used scikit-learn (Pedregosa et al. 2011) imple-
mentation of the decision tree with depth two, random forests
with depth four, logistic regression (with c = 0.1) and naive
Bayes with default parameters. Table 6 indicates our method
outperforms four alternative algorithms in application iden-
tification task for the test data. Similarly, Table 7 illustrates
Deep Packet performs better in traffic characterization task.

These comparisons confirm the power of deep neural
network for the network traffic classification where a huge
amount of data have to be analyzed.

6 Discussion

Evaluating the SAE on the test set for the application
identification and the traffic characterization tasks result in
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Fig. 7 Row-normalized confusionmatrices using SAE on a application
identification, and b traffic characterization
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(b) Traffic characterization
using SAE.

Fig. 8 Hierarchical clustering, performed on row-normalized confu-
sion matrices of the proposed SAE network. Note that the height
of fusion, provided on the vertical axis, indicates the (dis)similarity
between two observations. The higher the height of the fusion, the less
similar the observations are

row-normalized confusion matrices shown in Fig. 7. The
rows of the confusion matrices correspond to the actual class
of the samples, and the columns present the predicted label;
thus, the matrices are row-normalized. The dark color of the
elements on themain diagonal suggests that SAE can classify
each application with minor confusion.

By carefully observing the confusion matrices in Fig. 7,
one would notice some interesting confusion between differ-
ent classes (e.g., ICQ and AIM).Hierarchical clustering fur-
ther demonstrates the similarities captured by Deep Packet.
Clustering on row-normalized confusion matrices for appli-
cation identification with SAE (Fig. 7a), using Euclidean
distance as the distance metric and Ward.D as the agglom-
eration method uncovers similarities among applications
regarding their propensities to be assigned to the 17 applica-
tion classes. As illustrated in Fig. 8a, application groupings
revealed by Deep Packet generally agree with the applica-
tions’ similarities in the real world. Hierarchical clustering
divided the applications into 7 groups. Interestingly, these

groups are to some extent similar to groups in the traffic
characterization task. One would notice that Vimeo, Net-
flix, YouTube and Spotify which are bundled together are
all streaming applications. There is also a cluster including
ICQ,AIM, andGmail. AIMand ICQare used for online chat-
ting, and Gmail in addition to email services offers a service
for online chatting. Another interesting observation is that
Skype, Facebook, and Hangouts are all grouped in a clus-
ter together. Though these applications do not seem much
relevant, this grouping can be justified. The dataset contains
traffic for these applications in three forms: voice call, video
call, and chat. Thus, the network has found these applications
similar regarding their usage. FTPS (File Transfer Protocol
over SSL) andSFTP (File Transfer Protocol over SSH)which
are both used for transferring files between two remote sys-
tems securely are clustered together as well. Interestingly,
SCP (Secure Copy) has formed its cluster although it is also
used for remote file transfer. SCP uses SSH protocol for
transferring file, while SFTP and FTPS use FTP. Presumably,
our network has learned this subtle difference and separated
them. Tor and Torrent have their clusters which are sensible
due to their apparent differenceswith other applications. This
clustering is not flawless. Clustering Skype, Facebook, and
Hangouts along with Email and VoipBuster are not correct.
VoipBuster is an application which offers voice communica-
tions over Internet infrastructure. Thus, applications in this
cluster do not seem much similar regarding their usage, and
this grouping is not precise.

The same procedure was performed on the confusion
matrices of traffic characterization as illustrated in Fig. 8b.
Interestingly, groupings separate the traffic into VPN and
non-VPN clusters. All the VPN traffics are bundled together
in one cluster, while all of non-VPNs are grouped together.

As mentioned in Sect. 2, many of the applications employ
encryption to maintain clients’ privacy. As a result, the
majority of “ISCX VPN-nonVPN” dataset traffics are also
encrypted. One might wonder how it is possible for Deep
Packet to classify such encrypted traffics. Unlike DPI meth-
ods, Deep Packet does not inspect the packets for keywords.
In contrast, it attempts to learn features in traffic generated by
each application. Consequently, it does not need to decrypt
the packets to classify them.

An ideal encryption scheme causes the output message
to bear the maximum possible entropy (Cover and Thomas
2006). In other words, it produces patternless data that theo-
retically cannot be distinguished from one another. However,
due to the fact that all practical encryption schemes use
pseudo-random generators, this hypothesis is not valid in
practice. Moreover, each application employs different (non-
ideal) ciphering scheme for data encryption. These schemes
utilize different pseudo-random generator algorithms which
leads to distinguishable patterns. Such variations in the pat-
tern can be used to separate applications from one another.
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Table 8 Tor traffic classification results

Class name CNN SAE

Rc Pr F1 Rc Pr F1

Tor: Google 0.00 0.00 0.00 0.44 0.03 0.06

Tor: Facebook 0.24 0.10 0.14 0.28 0.06 0.09

Tor: YouTube 0.44 0.55 0.49 0.44 0.99 0.61

Tor: Twitter 0.17 0.01 0.01 0.37 0.00 0.00

Tor: Vimeo 0.36 0.44 0.40 0.91 0.05 0.09

Wtd. average 0.35 0.40 0.36 0.57 0.44 0.30

Deep Packet attempts to extract those discriminative patterns
and learns them. Hence, it can classify encrypted traffic accu-
rately.

It is noticeable fromTable 3 that Tor traffic is also success-
fully classified. To further investigate this kind of traffic, we
conducted another experiment inwhichwe trained and tested
Deep Packet with a dataset containing only Tor traffic. To
achieve the best possible result, we performed a grid search
on the hyper-parameters of the NN, as discussed before. The
detailed results can be found in Table 8, which shows that
Deep Packet was unable to classify the underlying Tor’s traf-
fic accurately. This phenomenon is not far from what we
expected. Tor encrypts its traffic, before transmission. As
mentioned earlier, Deep Packet presumably learns different
pseudo-random patterns used in various encryption schemes
used by applications. At this experiment, traffic was tunneled
through Tor. Hence, they all experience the same encryption
scheme. Consequently, our neural network was not able to
separate them apart well.

7 Future work

The reasons why deep neural networks perform so well
in practice are yet to be understood. In addition, there is
no rigorous theoretical framework to design and analyze
such networks. If there is some progress in these matters,
it will have direct impact on proposing better deep neural
network structures specialized for network traffic classifica-
tion. Along the same line, one of the other important future
directionwould be investigating the interpretability (Du et al.
2018; Montavon et al. 2018; Samek et al. 2018) of our pro-
posed model. This will include analyzing the features that
the model has learned and the process of learning them.

Another important direction to be studied would be the
robustness analysis of proposed schemes against noisy and
maliciously generated inputs using adversarial attack algo-
rithms (Yuan et al. 2017). Adversarial attacks on machine
learning methods have been widely studied in some other

fields (e.g., Akhtar andMian 2018; Huang et al. 2017; Carlini
and Wagner 2018) but not in network traffic classification.

Designing multi-level classification algorithms is also an
interesting possible direction for future research. This means
that the system should be able to detect whether a traffic is
from one of the known previous classes or a new “unknown”
class. If the packet is labeled as unknown, then it will be
added to a database of unknown classes. Further, by receiv-
ing more unknown packets, one can use an unsupervised
clustering algorithm to label them as discrete classes. Next,
human experts will be able to map these unknown classes
to well-known real-world applications. Thus, re-training the
first level classifier would become possible with these new
labeled classes. Re-training can be done with an online learn-
ing algorithm or using previously learned weights of the
neural network as initialization for the newer network.

Finally, implementing the proposed schemes to be able
to handle the real-world high-speed network traffic will be
an important real challenge. This can be done for example
by taking advantage of hardware implementation (e.g., see
Vanhoucke et al. 2011; Zhang et al. 2015) and applying neu-
ral network simplification techniques (e.g., see Hubara et al.
2017; Lin et al. 2016).

8 Conclusion

In this paper, we presented Deep Packet, a framework that
automatically extracts features from computer networks traf-
fic using deep learning algorithms to classify traffic. To the
best of our knowledge, Deep Packet is the first traffic classi-
fication system using deep learning algorithms, namely SAE
and 1D-CNN that can handle both application identifica-
tion and traffic characterization tasks. Our results showed
that Deep Packet outperforms all of the similar works on
the “ISCX VPN-nonVPN” traffic dataset, in both applica-
tion identification and traffic characterization tasks, to the
date. Moreover, with state-of-the-art results achieved by
Deep Packet, we envisage that Deep Packet is the first step
toward a general trend of using deep learning algorithms
in traffic classification and more generally network analysis
tasks. Furthermore, Deep Packet can be modified to handle
more complex tasks like multi-channel (e.g., distinguishing
between different types of Skype traffic including chat, voice
call, and video call) classification, accurate classification of
Tor’s traffic, etc. Finally, the automatic feature extraction pro-
cedure from network traffic can save the cost of employing
experts to identify and extract handcrafted features from the
traffic which eventually leads to more accurate traffic classi-
fication.
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A Hyper-parameters

Here, in this section, we present all of the hyper-parameters
of the proposed SAE and CNN for the traffic characteriza-
tion and application identification tasks. These parameters
are stated in Tables 9, 10, 11 and 12.

In the following, to have more compact tables, we have
used some abbreviations, namely FC stands for “Fully con-
nected,” NoF stands for “Number of Features,” DO stands for
“Dropout,” BN stands for “Batch Normalization,” NL stands
for “Nonlinearity,” Str stands for “Strides,” and Kl stands for
“Kernel.”

Table 9 SAEdetailed architecture for the application identification task

Operation NoF DO BN NL

Input packet – – – –

FC 400 0.05 No ReLU

FC 300 0.05 No ReLU

FC 200 0.05 No ReLU

FC 100 0.05 No ReLU

FC 50 0.05 No ReLU

FC 17 – – Softmax

Table 10 SAE detailed architecture for the traffic characterization task

Operation NoF DO BN NL

Input packet – – – –

FC 400 0.05 No ReLU

FC 300 0.05 No ReLU

FC 200 0.05 No ReLU

FC 100 0.05 No ReLU

FC 50 0.05 No ReLU

FC 12 – – Softmax

Table 11 CNN detailed architecture for the application identification
task

Operation Kl Str NoF DO BN NL

Input packet – – – – – –

Convolution 4 3 200 0.05 Yes ReLU

Convolution 5 1 200 0.05 Yes ReLU

Max pooling – 2 – 0.05 No –

Flattening – – – – – –

FC – – 200 0.05 No ReLU

FC – – 100 0.05 No ReLU

FC – – 50 0.05 No ReLU

FC – – 17 – – Softmax

Table 12 CNN detailed architecture for the traffic characterization task

Operation Kl Str NoF DO BN NL

Input packet – – – – – –

Convolution 5 3 200 0.05 Yes ReLU

Convolution 4 3 200 0.05 Yes ReLU

Max pooling – 2 – 0.05 No –

Flattening – – – – – –

FC – – 200 0.05 No ReLU

FC – – 100 0.05 No ReLU

FC – – 50 0.05 No ReLU

FC – – 12 – – Softmax
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