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Abstract
Cuckoo search (CS) is an excellent population-based algorithm and has shown promising performance in dealing with

single- and multi-objective optimization problems. However, for many-objective optimization problems (MaOPs), CS

cannot be directly employed. So far, few paper have been reported to use CS to solve MaOPs. In this paper, we try to

propose a hybrid many-objective cuckoo search (HMaOCS) for MaOPs. In HMaOCS, the standard CS is firstly modified to

effectively deal with MaOPs. Then, non-dominated sorting and the strategy of reference points are employed to ensure the

convergence and diversity. In order to verify the performance of HMaOCS, DTLZ and WFG benchmark sets are utilized in

the experiments. Experimental results show that HMaOCS can achieve promising performance compared with five other

well-known many-objective optimization algorithms.
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1 Introduction

In the real world, there are many complex optimization

problems (Abdel-Baset et al. 2018; Cortés et al. 2018; Cui

et al. 2017a, b; Wang et al. 2018). Many researchers have

contributed great efforts to solve them (Pandey et al. 2018;

Shan et al. 2018; Sun et al. 2014; Zhao et al. 2018) in the

past decades. In theory, although many efficient methods

(Cai et al. 2016, 2018; Cui et al. 2019b; Fan et al. 2018)

have been proposed, there are still some intractable prob-

lems (Cui et al. 2018; Pooja et al. 2018; Wang et al. 2017;

Yigit et al. 2018) whose complexity is beyond current

available methods. Multi-objective optimization problems

(MOPs) are the problems which have two or three objec-

tives, and they arise in many areas, such as engineering,

economics and biology (Coelho et al. 2013; Cui et al.

2019a; Niu et al. 2018). Such optimization problems often

have multiple conflicting objectives, which cannot be

optimized simultaneously. Thus, no single best solution

can be obtained. Instead, a set of trade-off solutions are

needed to approximate the true Pareto front. Over the past

several years, many efficient and effective algorithms have

been proposed to tackle MOPs, such as NSGA-II (Deb et al.

2002b), MOEA/D (Zhang and Li 2007) and SPEA2 (Zitzler

et al. 2001). However, in practical applications, there are

still many problems with more than three objectives, and

these problems are called many-objective optimization

problems (MaOPs) (Cui et al. 2019c). MaOPs pose various

challenges to the existing multi-objective optimization

algorithms. The first one is high proportion of the non-

dominated solutions. With increase in objectives, more and

more solutions become non-dominated and sometimes the

number of solutions is more than the population slots, thus

resulting in slowing down the search process. The second
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challenge is diversity maintenance. Crowding distance and

clustering operator are two common operators, and they

will become computationally expensive when dealing with

MaOPs. Visualization of the approximated front is the third

difficulty which makes decision-makers more confused in

evaluating one algorithm.

In recent years, many researchers have paid attention to

the above challenges. Although the third difficulty cannot

be avoided effectively, some algorithmic changes to the

existing methods may be possible for the first two chal-

lenges. According to the characteristics of some recently

proposed many-objective optimization algorithm, they can

be divided into the following three categories.

1. The first category is to modify the classical Pareto

dominance to enhance the selection pressure toward

the true front. This idea has been widely used in many

papers, and many variants of dominance have been

proposed. Laumanns et al. (2002) proposed e-domi-

nance. Deb et al. (2005) designed a steady-state

algorithm (e-MOEA) which was based on the concep-

tion of e-dominance and achieved a well-distributed

and well-converged set of solutions. Yang et al. (2013)

presented grid dominance to strengthen the selection

pressure toward the optimal direction and then applied

it to multi-objective evolutionary algorithm. The above

modifications aim to enlarge the dominating area, and

thus, more solutions are dominated. Zou et al. (2008)

proposed another variant of Pareto dominance called L-

dominance, which not only takes into account the

number of improved objective values, but also consid-

ers the values of improved objective functions if all

objectives have the same importance. Experimental

results demonstrated that the new algorithm based on

L-dominance obtained good performance.

2. The second type is to reduce the impact of diversity

maintenance. Adra and Fleming (Adra and Fleming

2011) proposed a diversity management mechanism,

namely DMI, to determine whether or not activate

diversity promotion which is deactivated when popu-

lation is excessively diverse. In terms of both conver-

gence and diversity, evolutionary multi-objective

optimization algorithm-based DMI shows excellent

performance. Li et al. (2010) employed grid dominance

to define an adaptive neighborhood for each individual,

whose size varies with the number of objectives.

Moreover, adaptive neighborhood and average ranking

are integrated to pick out well-converged individuals

and prohibit or postpone the archive of adjacent

individuals. Similar to (Li et al. 2010), Yang et al.

(2013) modified grid dominance and further proposed

grid ranking, grid crowding distance and grid coordi-

nate point distance to maintain an extensive and

uniform distribution among solutions. Li et al. (2014)

developed a general modification of density estimation

(SDE) to make Pareto-based algorithms suitable for

MaOPs. Different from the traditional density estima-

tion that only concerns the distribution of individuals in

the population, SDE shifted the position of other

solutions according to convergence comparison with

the current solution. Thus, both the distribution and the

convergence information of the solutions were

considered.

3. The third category is intuitive, that is to say, it employs

aggregation functions to differentiate many-objective

solutions. One of the representative algorithms is the

multi-objective evolutionary algorithm based on

decomposition (MOEA/D) (Zhang and Li 2007). The

main idea of MOEA/D is to decompose a complex

many-objective optimization problem into a number of

scalar optimization subproblems using aggregation

functions, and each subproblem is then optimized

simultaneously. Different from MOEA/D, Hughes

(Huband et al. 2006) employed vector angle distance

scaling and weighted Tchebycheff methods to rank

individuals and then proposed multiple single-objec-

tive Pareto sampling (MSOPS) which can perform a

parallel search of multiple conventional target vector-

based optimization. Based on NSGA-II (Deb et al.

2002b), Deb and Jain suggested a reference point-

based many-objective evolutionary algorithm frame-

work (NSGA-III) (Deb and Jain 2014) which empha-

sized population members that were non-dominated,

yet close to a set of supplied reference points. These

discussed ideas are effective, and they can avoid

dominance relationship which is a great challenge for

MaOPs.

There are also a lot of other many-objective optimiza-

tion algorithms, which employ new ideas different from the

above three categories. For example, to tackle the problem

of high computational effort required for hyper volume

calculation, Bader and Zitzler (2011) used Monte Carlo

simulation to approximate the exact hyper volume values.

The actual indicator values are not important, but rather the

rankings of solutions induced by hyper volume indicator.

Zitzler and Kunzli (2004) analyzed how preference infor-

mation of decision-maker can be integrated into searching

process and further proposed to use predefined optimiza-

tion goal to measure the contribution of each solution.

Cuckoo search (CS) (Yang and Deb 2010b) is an

effective swarm intelligence-based algorithm. Since the

introduction of CS, it has attracted much attention due to its

simplicity and efficiency in dealing with nonlinear opti-

mization problems and real-world engineering applica-

tions. In recent years, many researchers have tried to
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propose new modified CS for MOPs and practical appli-

cations (Zhang et al. 2018). However, to the best of our

knowledge, no modified CS for MaOPs has been reported

in the literature. In this paper, we try to modify CS for

MaOPs. First, we remove the global best solution in global

search because there is no best solution in MaOPs and then

add a new factor to global search. Second, we employ non-

dominated sorting and the strategy of reference points in

NSGA-III to update the population which is combination of

the parent and offspring individuals. To verify the perfor-

mance of the proposed algorithm, two well-known bench-

mark sets DTLZ and WFG are utilized in the experiments.

The organization of this paper is as follows. In Sect. 2,

the standard CS is briefly introduced. The literature of CS

for MOPs is given in Sect. 3. The proposed approach is

described in Sect. 4. In Sect. 5, experimental results and

analysis are presented. Finally, the work is concluded and

summarized in Sect. 6.

2 Standard Cuckoo search

Cuckoo search (CS) (Yang and Deb 2010a, b) was firstly

proposed by Yang in 2009, which was inspired by breeding

behavior of cuckoo. Cuckoos are very interesting birds.

They do not engage the obligate brood parasitism directly,

but lay their eggs in other species’ nests. Although these

eggs may be very similar to the eggs of the host birds in

appearance, there is still a fraction of some eggs being

discovered by host birds. Under this situation, these host

birds can either throw these alien eggs away, or abandon

the nests. To describe the phenomenon, Yang and Deb

idealized the following three rules (Yang and Deb 2010b):

1. Each cuckoo lays one egg at a time and dumps it in a

randomly selected nest.

2. The nests with quality egg are carried over to the next

generation.

3. Once the alien eggs (solutions) are discovered by host

birds, the nests will be abandoned with a probability

pa 2 ½0; 1�.

In fact, the standard CS not only mimics the behavior of

cuckoos, but also employs Lévy flight to enhance search

ability. Lévy flight is a random walk process. Some studies

showed that flight behavior of various birds demonstrates

typical characteristic of Lévy flight (Barthelemy et al.

2008; Reynolds and Frye 2007).

In CS, a solution Xi is for cuckoo i, and it can be gen-

erated with the following Lévy flight:

Xiðt
0 Þ ¼ XiðtÞ þ a� LevyðkÞ ð1Þ

where a[ 0 is the step size, which should be related to the

scale of specified problems. The product � is entry-wise

multiplications. The step size a can be defined as follows:

a ¼ a0 � ðXiðtÞ � XbestÞ ð2Þ

where a = 0.01 and Xbest is the optimal position in the

population.LevyðkÞ satisfies the following Lévy

distribution.

LevyðkÞ� u ¼ t�k ð3Þ

where 1\k\3. Essentially, Eq. (3) has an infinite vari-

ance with an infinite mean. Thus, the steps follow a random

walk process with a power-law step-length distribution

with a heavy tail.

However, once the alien eggs are discovered by host

birds, they may be abandoned with a probability pa. Under

this situation, new eggs can be regenerated with the fol-

lowing way:

Xiðt þ 1Þ ¼ Xiðt
0 Þ þ r � ðXkðt

0 Þ � Xjðt
0 ÞÞ; ð4Þ

where Xkðt
0 Þ and Xjðt

0 Þ are two randomly selected positions

from the whole population. r is a random value ranging

from 0 to 1. To have a clear description of the standard CS,

we present its pseudo-code in Algorithm 1.

3 Related work

Cuckoo search (CS) (Yang and Deb 2010a, b) algorithm

was firstly proposed by Yang in 2009, which was initially

designed for single-objective optimization problems. Since

then, CS has got a lot of recognitions for its excellent

performance in handling complex problems. In fact, many

practical engineering problems are MOPs, and some of
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them have more than three objectives. In the past decades,

many efforts have been made to modify CS for MOPs. In

this section, a brief review of CS for MOPs is presented.

According to the No-Free-Lunch theorem (Wolpert and

Macready 1997), no one algorithm can deal with all kinds

of problems effectively. Thus, hybridization of multiple

strategies may improve the performance of cuckoo search.

Chandrasekaran and Simon (2012) employed fuzzy set

theory to create the fuzzy membership search domain and

proposed a hybrid cuckoo search algorithm for solving

multi-objective unit commitment problem. Rani et al.

(2013) combined a modified cuckoo search (MCS) with

particle swarm optimization (PSO) and genetic algorithm

(GA) in weighted-sum multi-objective optimization.

Coelho et al. (2013) presented an improved multi-objective

cuckoo search (IMCS), which employs a nearest neighbor

density estimation method to obtain the density value for

selecting the global best nest. Zhang et al. (2018) proposed

a hybrid multi-objective cuckoo search with dynamical

local search (HMOCS), in which non-dominated sorting is

employed to generate the Pareto front and a dynamical

local search is used to enhance the local search.

To solve multi-objective job shop scheduling problem,

Hanoun et al. (2012) developed a Pareto archived multi-

objective cuckoo search (PAMOCS) to find the set of non-

dominated Pareto-optimal solutions. Wang et al. (2012)

combined cuckoo search with non-dominated sorting pro-

cedure of NSGA-II to solve the optimal design problems of

water distribution systems. Zhou et al. (2016, proposed a

multi-objective discrete cuckoo search algorithm with local

search (MDCL) for community detection problem. In

MDCL, the nest location updating strategy and abandon

operator of cuckoo are redefined in discrete form, while a

local search strategy and a clone operator are proposed to

obtain the optimal initial population. To minimize heat

transfer and fluid friction irreversibility degrees in plate-fin

heat exchangers (PFHEs), Wang and Li (2015) proposed an

improved multi-objective cuckoo search algorithm

(IMOCS), in which a non-uniform mutation operator is

used to create a perfect balance between exploration and

exploitation. Moreover, a differential evolution operator is

employed to boost cooperation and information exchange

among the groups and enhance the quality of convergence.

The above CS variants have shown good performance in

dealing with MOPs. With development of society, many

MOPs become more and more complex and some of them

are MaOPs (Raja et al. 2017; Tozer et al. 2017), which

have more than three objectives. For MaOPs, the above-

mentioned CS variants are not effective. Moreover, to the

best of our knowledge, CS and its modifications have not

been applied to MaOPs so far. In this paper, we try to

design a hybrid many-objective CS to challenge MaOPs.

4 Proposed approach

To solve MaOPs, this paper proposes a hybrid many-ob-

jective CS (HMaOCS), which is a combination of modified

CS, non-dominated sorting and the strategy of reference

points. The standard CS is modified to adapt for MaOPs.

Non-dominated sorting is an effective method, which is

used to ensure the convergence. The strategy of reference

points used in NSGA-III is employed to obtain a uniform

distribution of solutions.

In single-objective optimization algorithm, any two

solutions can be compared directly and the global best

solution can also be easily identified. However, in many-

objective optimization algorithms, there exist two rela-

tionships: dominated and non-dominated. That is to say,

there does not exist the global best solution and the com-

parison between two solutions is more complex. Therefore,

based on the above analysis, two problems should be

addressed before modifying CS for MaOPs. The first

problem is how to modify the single-objective CS for

MaOPs, since there exists the global best solution in Lévy

flight, and the second problem is how to update the pop-

ulation for ensuring convergence and diversity in each

iteration. The following two parts will address the above

two problems, respectively.

4.1 Modified CS

In Eq. (2), there exists a global best solution. To incorpo-

rate Lévy flight into MaOPs, the new updating equation is

redefined as follows:

Xiðt0Þ ¼ XiðtÞ þ 0:01� a� L� r � ½ðXupper � XlowerÞ � r1
� r2�

ð5Þ

where a[ 0 is the scale of the movement controlling the

moving step and generally equal to 1.0. L is a random

number based on Lévy distribution, and r is a random

number sampling with standard Gaussian distribution

N(0,1). Xupper is the upper bound of variable and Xlower is

the lower bound of variable.r1 is a controlling factor, which

can be defined as follows:

r1 ¼ 1� Cevaluated

Cevaluation

ð6Þ

where Cevaluation is the total number of evaluations and

Cevaluated is the current number of evaluations. By employing

ðXupper � XlowerÞ � r1, individual XiðtÞ not only can con-

verge with the evolvement of algorithm, but also can avoid

being affected by other individuals. However, in practical

problems, each dimension of ðXupper � XlowerÞ � r1 is not
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equally important for improving individual XiðtÞ. Hence, we
assume XiðtÞ ¼ ðx1i ; x2i ; . . .; xD�1

i ; xDi Þ and the corresponding
objectives FðXiðtÞÞ ¼ ðf1ðXiðtÞÞ; f2ðXiðtÞÞ; . . .; fMðXiðtÞÞÞ,
where D is the number of variables and M is the number of

objectives. As shown in Fig. 1, each dimension of XiðtÞmay

be involved in f1ðXiðtÞÞ, and meanwhile only xD�2
i ;xD�1

i and

xDi may be involved in fM�1ðXiðtÞÞ. In this case, we introduce
a parameter r2 ¼ ðr1; r2; . . .; ri. . .; rDÞ, where ri can be

randomly set to - 1, 0, or 1. ri¼0 means that the ith

dimension will not be changed, and ri¼ 1 or -1 means that

the ith dimension will be updated accordingly.

The probability pa plays an important role in updating

individuals. In the standard CS and its most modifications,

pa is set to 0.25 (Yang and Deb 2010a, b; Zhang et al.

2018). However, for MaOPs, pa = 0.25 may be not the best

choice. Thus, to have a suitable pa for HMaOCS, we will

systematically investigate it in later experiments.

For Eq. (4), we further modify it as follows:

Xiðt þ 1Þ ¼ Xiðt0Þ þ r � r3 � ðXkðt0Þ � Xjðt0ÞÞ ð7Þ

where both Xkðt0Þ and Xjðt0Þ are two individuals randomly

selected from the current population, and r ranges from 0 to

1. r3 ¼ ðr1; r2; . . .; ri. . .; rDÞ is defined as follows:

ri ¼
0; 0\rand� 1

M

1;
1

M
\rand� 1

8
><

>:
ð8Þ

where rand is a random value from 0 to 1 and M is the

number of objectives.ri ¼ 0 means ith dimension Xiðt0Þ
will not be updated, and ri ¼ 1 means it will be changed

accordingly. Thus, by introducing the parameter M, Eq. (8)

can not only dynamically adjust the probability, but also

handle MaOPs with various numbers of objectives.

4.2 Population updating

In many-objective optimization algorithms, there are two

important goals which must be considered. One is to make

the final solutions as close to the true front as possible, and

the other is to get an even distribution of solutions. Con-

vergence and diversity are two main factors for many-ob-

jective optimization algorithms. Thus, to ensure good

convergence and diversity, we employ non-dominated

sorting and the strategy of reference points in NSGA-III

(Deb and Jain 2014; Jain and Deb 2014) to update the

population.

Assume that Pt and Qt are the parent and offspring

population at the tth generation, respectively. Both of them

have N individuals. Then, the next step is to select the best

N individuals from the combined population Rt ¼ Pt [ Qt:

To implement this task, the procedure of non-dominated

sorting is employed. First, the combined population is

sorted into multiple non-dominated levels (F1;F2 and so

on). Individuals from non-dominated level 1 to level l are

included in the new population St until jStj ¼ N or jStj[N

for the first time. If jStj[N, the level l will be included

partially. Assume the last included non-dominated level is

level l, and the number of the accepted individual in level l

is K ¼ N � jF1 [ F2 [ � � � [ Fl�1j. As for how to select the

K individuals from level l, we employ the strategy of ref-

erence points used in NSGA-III (Deb and Jain 2014; Jain

and Deb 2014).

To make reference points [which can be predefined in

a structured manner (Das and Dennis 2006)] and objective

values have an identical range, they are firstly normalized.

Then, the ideal point of the set becomes the zero vector.

Each individual in St is associated with a reference point

according to the proximity of the member with a refer-

ence line obtained by joining the ideal point with the

reference point. This operation can determine the number

of the population members associated with each supplied

reference point in StnFl. A niching procedure is con-

ducted to select population members from Fl which are

not included in StnFl. The reference points with least

number of association in StnFl are looked for an associ-

ated point in Fl. Thus, individuals in Fl are then selected

one at a time until jPtþ1j ¼ N. Although the strategy of

reference points has a computational complexity of

OðN2 logNÞ where N is population size, it helps to deal

with MaOPs. The pseudo-code of population updating is

presented in Algorithm 2.

Fig. 1 Illustration of each dimension
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4.3 Framework of HMaOCS

Based on modified CS and population updating method, we

give the pseudo-code of our proposed HMaOCS in Algo-

rithm 3.

From Algorithm 3, it can be seen that there is no

guidance information (the global best individual) in

Eq. (5), and each individual in the population is not

affected by any other individuals. When conducting the

population updating method, the new population is gener-

ated from the combined parent and offspring populations to

ensure better convergence and diversity. A fraction (pa) of

the population is updated according to Eq. (7). In fact,

Eq. (7) performs a local search to focus on the potential

individuals around the current individuals. The newly

generated population is then combined together with the

former population. Obviously, the population is updated

twice. The first update is after the Lévy flight, and the

second update is after Eq. (7). The reason for the two

updates is that they can prevent the loss of individuals with

better convergence, as well as keep an even distribution of

population.

5 Experimental results and analysis

In order to verify the performance of our approach

HMaOCS, two well-known benchmark sets are utilized,

including DTLZ (Deb et al. 2002a) and WFG (Hughes

2003) with 2, 3, 4, 6, 8 and 10 objectives. The whole

experiments consist of two parts:

1. Investigation of the effects of pa on the performance of

HMaOCS;

2. Comparison of HMaOCS with five other famous many-

objective optimization algorithms.

In these experiments, inverted generational distance

(IGD) (Zou et al. 2008) is used as a performance indicator.

The involved algorithms are listed as follows.

• MOEA/D (Zhang et al. 2018);

• NSGA-III (Deb and Jain 2014);

• KnEA (Zhang and Li 2007);

• GrEA (Jain and Deb 2014);
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• HypE (Bader and Zitzler 2011);

• Proposed HMaOCS.

5.1 Parameter settings

To have a fair comparison, the same parameter settings for

all compared algorithms are used according to their origi-

nal papers. Authors can also refer to paper (Zhang et al.

2015) which has listed most of the parameters used in this

paper.

1. Population size (N) and parameters (p1, p2) in the

algorithms: Table 1 presents the parameters p1, p2, and

N under different objectives. The parameters p1 and p2
are used to control the numbers of references points in

NSGA-III and MOEA/D (Deb and Jain 2014; Zhang

and Li 2007). Note that the strategy of two-layered

references points is used as developers suggested in

original papers to generate uniformly distributed

weighted vectors (Deb and Jain 2014).

2. Test instances: To validate the performance of

HMaOCS, two benchmark sets DTLZ and WFG are

employed. Table 2 shows some parameter settings on

the DTLZ benchmark set with seven test instances

DTLZ1 to DTLZ7, where M is the number of

objectives, D is the number of variables, and MaxIter

is the maximum number of iterations. Table 3 presents

some parameter settings on the WFG benchmark set

with nine test instances WFG1 to WFG9.

3. Stopping condition and number of runs: For each test

instance, each algorithm is run 20 independent times

on the same machine with Intel Core i5-2400 3.10 GHz

CPU, 6.00 GB memory, and Windows 7 operating

system with Matlab 7.9. In this paper, the maximum

number of iterations (MaxIter) is used as the stopping

criterion. For the DTLZ test suit, the MaxIter is listed

in Table 2. For WFG1 and WFG2, the MaxIter is set to

1000 and 700, respectively. For WFG3 to WFG9, the

MaxIter is set to 250.

4. Performance assessment: Inversed Generational Dis-

tance (IGD) (Li and Zheng 2009; Zou et al. 2008) is a

widely used indicator for evaluating many-objective

optimization algorithms. IGD can not only evaluate the

convergence (closeness to the true Pareto-optimal

fronts), but also the distribution of obtained final

solutions. Let P* be a set of uniformly distributed

points in the objective space along the true Pareto front

(PF). Let P be a set of obtained solutions. Then, the

IGD can be defined by

IGDðP;P	Þ ¼
P

v2P	 distðv;PÞ
jP	j ; ð9Þ

where dist(v,P) is the minimum Euclidean distances

between v and point in P. Note that P* is a set of

sampling points. In general, the number of P*is pre-

defined. For all test problems, the number (the closest

integer to 500 among the possible values) of reference

points is used for the IGD calculation.

5. Compared algorithms: Table 4 shows parameter set-

tings for NSGA-III and MOEA/D (Deb and Jain 2014;

Zhang et al. 2018), where D is the number of decision

variables. The parameter div in Table 5 is the number

of divisions in each dimension in GrEA. To get the bestTable 1 Parameter settings of population size

Number of objectives (M) Parameters (p1, p2) Population size (N)

2 (99, 0) 100

3 (12, 0) 91

4 (7, 0) 120

6 (4, 1) 132

8 (3, 2) 156

10 (3, 2) 275

Table 2 Parameter settings on DTLZ1 to DTLZ7

Test instances M k D MaxIter

DTLZ1 2, 3, 4, 6, 8, 10 5 M - 1 ? k 700

DTLZ2 2, 3, 4, 6, 8, 10 10 M - 1 ? k 250

DTLZ3 2, 3, 4, 6, 8, 10 10 M - 1 ? k 1000

DTLZ4 2, 3, 4, 6, 8, 10 10 M - 1 ? k 250

DTLZ5 2, 3, 4, 6, 8, 10 10 M - 1 ? k 250

DTLZ6 2, 3, 4, 6, 8, 10 10 M - 1 ? k 250

DTLZ7 2, 3, 4, 6, 8, 10 20 M - 1 ? k 250

Table 3 Parameter settings on

WFG1 to WFG9
M K L D

2 4 10 K ? L

3 4 10 K ? L

4 6 10 K ? L

6 5 10 K ? L

8 7 10 K ? L

10 9 10 K ? L

Table 4 Parameter settings in NSGA-III and MOEA/D

Parameters NSGA-III MOEA/D

SBX probability, pc 1 1

Polynomial mutation probability, pm 1/D 1/D

gc 30 20

gm 20 20
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setting of div, we tested many values by the suggestion

of (Zitzler et al. 2001), and the values that gain the best

performance are listed in Table 5. Table 6 shows the

settings of T in KnEA, which is used to control the

ratio of knee points to the non-dominated solutions.

5.2 Investigation of the effect of pa
on the performance of HMaOCS

As discussed in Sect. 5.2, the parameter pa plays an

important role in selecting the fraction of the current

population. In single-objective optimization algorithms,

many references (Yang and Deb 2010a, b; Zhang et al.

2018) have suggested some proper settings of pa. However,

few papers have been reported in many-objective opti-

mization. Hence, to investigate the effect of the parameter

pa, HMaOCS is tested on the DTLZ test suit with different

pa values. In the experiments, pa is set to 0, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively. pa = 0 means

that all individuals are selected. When pa = 1, all individ-

uals will not be updated according to Eq. (7). Therefore,

pa = 1 will not be investigated.

Table 7 presents the mean IGD results of HMaOCS with

different pa on DTLZ1-DTLZ7, where the best results are

shown in boldface. From the results, we can roughly draw

the conclusion that pa = 0.6, 0.7 and 0.8 have similar

performance, and they obtain better IGD values than other

pa settings.

To have a clear comparison, we use Friedman test to

calculate the mean ranks of HMaOCS with different pa
values. Friedman test is commonly used in intelligent

optimization field for comparing different algorithms and

showing their performance. The resulted values, namely

the ranks, indicate the compared results. The smallest rank

corresponds to the best algorithm. Detailed basic expla-

nations for Friedman test can be found in paper (Sun et al.

2014). The Friedman test procedure can be explained as

follows. Firstly, the average IGD results of HMaOCS with

different pa settings on test problems with various numbers

of objectives are computed (As presented in Table 7).

Then, the rank values of different pa settings are computed

using the function Friedman test in IBM SPSS Statistics.

(IBM SPSS Statistics is a widely used statistical software.)

The resulted rank values are then presented and listed in

Table 8. Table 8 tabulates the corresponding rank results

of HMaOCS with different pa, where the best rank is

shown in boldface. As shown in Table 8, pa = 0.7 obtains

the smallest rank, which demonstrates that pa = 0.7 is the

relatively best setting for the test suite.

5.3 Comparison of HMaOCS with other
algorithms on the DTLZ test suit

As mentioned before, the second experiment focuses on the

comparison of HMaOCS with five other well-known many-

objective optimization algorithms. Table 9 presents the

mean IGD results of MOEA/D, NSGA-III, KnEA, GrEA,

HypE and HMaOCS on the DTLZ test suite, where the best

results are shown in boldface. The comparison results

among HMaOCS and other algorithms are summarized as

‘‘w/l/t’’, which means that HMaOCS wins in w functions,

loses in l functions, and ties in t functions.

From the last line of Table 9, it is obvious that

HMaOCS outperforms KnEA, GrEA and HypE. However,

HMaOCS is slightly worse than MOEA/D, which is

famous for its high computational efficiency. The same

results also appear between HMaOCS and NSGA-III. In

terms of each instance, HMaOCS is superior over MOEA/

D on DTLZ2 and DTLZ4 with 2 and 4 objectives. The

possible reason is that DTLZ4 is a series of non-uniform

Table 5 Parameter settings of div in GrEA on DTLZ and WFG test

suits

Test instance M = 2 M = 3 M = 4 M = 6 M = 8 M = 10

DTLZ1 55 10 10 10 10 11

DTLZ2 45 16 10 10 8 12

DTLZ3 45 11 11 11 10 11

DTLZ4 55 10 10 8 8 12

DTLZ5 55 35 35 14 11 11

DTLZ6 55 36 36 20 20 20

DTLZ7 16 8 9 6 6 4

WFG1 45 8 8 9 7 10

WFG2 55 11 11 11 11 11

WFG3 55 16 18 18 16 22

WFG4-9 45 10 10 9 8 12

Table 6 Parameter settings of T in KnEA on DTLZ and WFG test

suits

Test instance M = 2 M = 3 M = 4 M = 6 M = 8 M = 10

DTLZ1 0.6 0.6 0.6 0.2 0.1 0.1

DTLZ2 0.6 0.6 0.5 0.5 0.5 0.5

DTLZ3 0.6 0.5 0.5 0.2 0.1 0.1

DTLZ4 0.6 0.6 0.5 0.5 0.5 0.5

DTLZ5 0.6 0.5 0.5 0.5 0.3 0.3

DTLZ6 0.6 0.5 0.5 0.4 0.3 0.3

DTLZ7 0.6 0.6 0.5 0.5 0.5 0.4

WFG4 0.6 0.5 0.5 0.5 0.3 0.3

WFG9 0.6 0.6 0.5 0.5 0.3 0.3

Others 0.6 0.5 0.5 0.5 0.5 0.5
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many-objective optimization problems, and evenly dis-

tributed weights used in MOEA/D are unable to effectively

deal with them. Both NSGA-III and HMaOCS employ non-

dominated sorting and the strategy of reference points, and

their differences are the selection and crossover operations.

Comparison results illustrate that the selection and cross-

over operations play a similar role as the modified Lévy

flight and Eq. (7). On DTLZ2, DTLZ4 and DTLZ6 with 2,

4 and 6 objectives, HMaOCS performs better than KnEA.

Compared with GrEA, HMaOCS works better on DTLZ1,

DTLZ3 and DTLZ6 with 4, 6, 8 and 10 objectives. It is

obvious that HMaOCS outperforms HypEon DTLZ2,

DTLZ4 and DTLZ7. On DTLZ1 with 4, 6, 8 and 10

objectives, HMaOCS also shows better performance than

HypE. The above analysis of comparison results demon-

strates that HMaOCS is promising in dealing with most

many-objective optimization problems.

To have a clear comparison, Fig. 2 presents the obtained

solutions of six algorithms on DTLZ4 with 3 objectives. As

exhibited in Fig. 2, HMaOCS, MOEA/D and NSGA-III

Table 7 IGD results of HMaOCS with different pa on DTLZ1 to DTLZ7

Test

instance

M Parameter pa

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DTLZ1 2 3.69E-02 1.79E203 3.69E-02 1.78E-01 2.84E-01 1.07E-01 1.07E-01 1.78E-01 2.48E-01 1.03E?00

4 4.25E-02 4.20E-02 4.17E-02 6.37E-02 4.13E-02 4.13E-02 4.12E-02 8.57E-02 1.08E-01 1.09E-01

6 9.35E-02 8.90E-02 8.63E-02 8.43E-02 8.29E-02 8.22E-02 8.21E-02 8.21E-02 8.22E-02 1.47E-01

8 1.88E-01 1.37E-01 1.14E-01 1.07E-01 1.04E-01 1.01E-01 9.96E-02 9.88E-02 1.15E-01 9.95E-02

10 2.36E-01 1.58E-01 1.37E-01 1.27E-01 1.17E-01 1.15E-01 1.13E-01 1.12E-01 1.11E-01 1.11E-01

DTLZ2 2 4.36E-03 4.27E-03 4.14E-03 4.09E-03 4.08E-03 4.05E-03 4.06E-03 4.02E-03 4.03E-03 4.17E-03

4 2.06E-01 1.81E-01 1.68E-01 1.53E-01 1.41E-01 1.33E-01 1.28E-01 1.24E-01 1.24E-01 1.25E-01

6 6.21E-01 5.73E-01 5.29E-01 4.71E-01 4.10E-01 3.59E-01 3.13E-01 2.88E-01 2.75E201 2.75E-01

8 8.09E-01 7.66E-01 6.81E-01 6.84E-01 5.80E-01 5.63E-01 4.68E-01 4.16E-01 3.87E201 3.94E-01

10 8.76E-01 9.06E-01 7.97E-01 7.51E-01 6.92E-01 6.66E-01 6.13E-01 5.15E-01 5.18E-01 4.85E201

DTLZ3 2 2.30E?00 1.20E?00 8.02E-01 1.10E100 1.30E?00 1.70E?00 2.40E?00 5.50E?00 4.10E?00 8.20E?00

4 8.39E-01 4.87E-01 3.52E-01 4.26E-01 3.16E-01 4.96E-01 8.77E-01 3.98E-01 1.06E?00 1.95E?00

6 1.09E?01 6.94E?00 4.50E?00 2.72E?00 7.73E-01 2.97E-01 3.53E-01 3.52E-01 4.28E-01 5.36E-01

8 1.94E?01 1.53E?01 1.08E?01 7.24E?00 4.36E?00 1.98E?00 8.43E-01 3.77E-01 7.42E-01 4.21E-01

10 3.63E?01 2.51E?01 1.43E?01 1.18E?01 7.66E?00 3.46E?00 1.32E?00 6.14E-01 4.50E-01 5.23E-01

DTLZ4 2 4.04E-03 4.04E-03 4.03E-03 4.01E-03 3.99E-03 3.98E-03 3.98E203 3.98E-03 7.78E-02 4.02E-03

4 1.54E-01 1.50E-01 1.43E-01 1.36E-01 1.31E-01 1.29E-01 1.25E-01 1.23E201 1.23E-01 1.24E-01

6 5.47E-01 5.29E-01 4.82E-01 4.26E-01 3.96E-01 3.53E-01 3.18E-01 2.89E-01 2.75E201 2.76E-01

8 6.74E-01 6.61E-01 6.13E-01 6.08E-01 5.40E-01 5.04E-01 4.58E-01 4.00E-01 3.72E-01 3.69E201

10 7.42E-01 7.16E-01 7.28E-01 6.97E-01 6.71E-01 6.06E-01 4.55E201 5.15E-01 4.83E-01 4.75E-01

DTLZ5 2 4.34E-03 4.26E-03 4.18E-03 4.10E-03 4.09E-03 4.06E-03 4.04E-03 4.03E203 4.03E-03 4.14E-03

4 2.99E-01 3.15E-01 1.82E-01 1.96E-01 1.22E-01 1.39E-01 1.28E-01 1.13E-01 1.15E-01 1.03E201

6 6.82E-01 7.27E-01 6.82E-01 7.29E-01 7.00E-01 6.50E-01 6.06E-01 5.45E-01 4.89E201 5.10E-01

8 9.83E-01 8.32E-01 8.98E-01 8.56E-01 7.74E-01 7.66E-01 7.52E-01 6.95E-01 7.04E-01 6.12E201

10 9.77E-01 1.01E?00 1.00E?00 9.27E-01 9.19E-01 9.08E-01 8.64E-01 7.56E-01 7.04E-01 6.52E201

DTLZ6 2 3.97E203 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.98E-03 3.99E-03 4.01E-03 4.32E-03

4 6.96E-02 7.51E-02 7.85E-02 9.67E-02 9.52E-02 8.45E-02 1.05E201 1.38E-01 1.28E-01 1.48E-01

6 1.93E-01 2.17E-01 2.60E-01 1.97E201 2.78E-01 2.61E-01 2.77E-01 2.87E-01 2.47E-01 6.14E-01

8 7.79E-01 4.70E201 5.14E-01 1.08E?00 5.93E-01 5.66E-01 6.45E-01 7.99E-01 1.12E?00 1.12E?00

10 2.45E-01 3.52E201 8.08E-01 9.02E-01 1.10E?00 6.28E-01 1.05E?00 1.50E?00 1.34E?00 2.03E?00

DTLZ7 2 1.16E-02 9.96E-03 9.47E-03 8.68E-03 8.26E-03 8.29E-03 8.05E203 8.24E-03 8.72E-03 1.09E-02

4 3.98E-01 2.94E-01 2.43E-01 2.37E-01 2.19E-01 2.10E-01 2.03E-01 2.03E201 2.07E-01 2.30E-01

6 1.70E?00 1.32E?00 8.88E-01 8.44E-01 7.82E-01 7.72E-01 7.22E-01 7.34E-01 7.10E201 7.56E-01

8 5.09E?00 4.50E?00 3.27E?00 2.94E?00 2.40E?00 2.18E?00 1.77E?00 1.42E100 1.47E?00 1.84E?00

10 5.51E?00 4.74E?00 4.98E?00 5.01E?00 3.92E?00 4.09E?00 3.32E?00 2.86E?00 2.60E?00 2.52E100
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Table 8 Rank achieved by the

Friedman test
pa 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mean rank 8.04 7.26 6.53 6.46 5.46 4.49 3.97 3.71 4.06 5.03

Table 9 IGD results of the six algorithms on DTLZ1 to DTLZ7

Problem Obj. HMaOCS MOEA/D NSGA-III KnEA GrEA HypE

DTLZ1 2 1.7769e-1

(1.85e-1)

1.7970e-3

(1.07e-5)

1.7898e23
(8.59e26)

3.8334e-3

(1.47e-3)

1.3013e-1

(1.26e-1)

1.8563e-3

(3.47e-5)

4 6.3437e-2

(7.01e-2)

4.1244e22
(5.62e25)

4.1271e-2

(7.76e-5)

1.3379e-1

(5.36e-2)

1.1206e-1

(8.17e-2)

1.8322e-1

(5.73e-2)

6 8.1825e22
(2.53e24)

8.1930e-2

(2.43e-4)

8.1375e-2

(2.55e-4)

2.9840e-1

(4.38e-2)

2.2882e-1

(1.18e-1)

2.9788e-1

(3.99e-2)

8 9.8813e22
(3.46e24)

9.9135e-2

(2.86e-4)

1.0721e-1

(1.47e-2)

3.2239e-1

(1.28e-1)

2.9043e-1

(7.36e-2)

3.2690e-1

(3.06e-2)

10 1.1170e21
(1.22e23)

1.1890e-1

(7.96e-5)

1.1751e-1

(1.45e-2)

2.1355e?0

(8.76e-1)

3.6630e-1

(3.02e-2)

3.4449e-1

(5.03e-2)

DTLZ2 2 4.0434e23
(6.03e25)

4.1718e-3

(1.66e-5)

4.1700e-3

(5.15e-6)

6.9615e-2

(1.55e-2)

1.0540e-2

(7.69e-5)

5.6788e-3

(2.98e-4)

4 1.2451e21
(4.33e24)

1.2523e-1

(8.78e-6)

1.3125e-1

(2.79e-5)

1.4069e-1

(5.28e-3)

1.3059e-1

(1.32e-3)

2.6328e-1

(1.31e-2)

6 2.8912e-1

(8.03e-3)

2.5603e-1

(1.58e-4)

2.5813e-1

(9.41e-4)

2.8951e-1

(5.13e-3)

2.5946e-1

(1.49e-3)

4.2913e-1

(1.91e-2)

8 4.5212e-1

(8.75e-2)

3.1578e21
(2.47e24)

3.2103e-1

(1.02e-3)

3.8575e-1

(7.41e-3)

3.5005e-1

(1.23e-3)

5.9295e-1

(4.61e-2)

10 5.3850e-1

(2.01e-2)

4.2090e-1

(6.67e-4)

5.4485e-1

(1.15e-1)

4.3390e-1

(2.14e-3)

4.0657e21
(1.36e23)

7.2874e-1

(5.68e-2)

DTLZ3 2 3.2994e?0

(3.37e?0)

4.3398e23
(4.76e24)

4.4918e-3

(7.82e-4)

1.6118e-1

(2.34e-2)

1.0309e-2

(4.96e-4)

5.8365e-3

(4.29e-4)

4 5.9884e-1

(4.58e-1)

1.2145e21
(4.97e24)

1.2164e-1

(4.50e-4)

3.1687e-1

(1.82e-1)

6.9809e-1

(3.43e-1)

5.0194e-1

(9.91e-2)

6 2.7625e21
(2.52e22)

2.8653e-1

(5.82e-4)

2.7912e-1

(1.75e-3)

7.1353e-1

(1.45e-1)

9.5058e-1

(1.76e-1)

7.2584e-1

(6.27e-2)

8 4.4354e-1

(2.62e-1)

3.1649e21
(9.11e24)

1.1111e?0

(1.62e?0)

4.9112e?1

(2.43e?1)

1.0987e?0

(1.30e-1)

9.4646e-1

(6.94e-2)

10 6.0150e-1

(3.06e-2)

4.2238e21
(3.10e23)

4.2815e-1

(3.43e-3)

2.8503e?2

(8.26e?1)

2.3113e?0

(4.74e-1)

1.0239e?0

(6.97e-2)

DTLZ4 2 3.9772e23
(5.08e26)

2.2541e-1

(3.57e-1)

7.7781e-2

(2.33e-1)

8.6208e-2

(2.30e-1)

2.2991e-1

(3.53e-1)

1.3036e-1

(2.30e-1)

4 1.2348e21
(7.00e24)

5.0119e-1

(3.20e-1)

1.8790e-1

(1.40e-1)

1.3807e-1

(2.56e-3)

2.6401e-1

(1.67e-1)

4.6027e-1

(2.24e-1)

6 2.8969e-1

(4.61e-3)

6.6120e-1

(2.05e-1)

2.961e-1

(7.28e-2)

2.8974e-1

(5.57e-3)

2.6000e21
(1.47e23)

5.6025e-1

(1.35e-1)

8 4.0701e-1

(9.57e-3)

6.4731e-1

(8.47e-2)

3.6434e-1

(8.49e-2)

3.7364e-1

(2.22e-3)

3.5162e21
(2.68e23)

6.3753e-1

(4.09e-2)

10 5.1337e-1

(7.13e-3)

6.2212e-1

(2.48e-3)

4.3374e-1

(3.73e-4)

4.3369e-1

(3.23e-3)

4.0836e21
(8.91e24)

7.0431e-1

(2.78e-2)

DTLZ5 2 4.0233e-3

(3.33e-5)

3.9771e23
(2.18e25)

4.0282e-3

(7.27e-7)

6.4147e-2

(1.75e-2)

1.0487e-2

(2.37e-4)

5.5337e-3

(2.10e-4)

4 9.0828e-2

(2.18e-2)

2.7608e22
(2.89e24)

5.3010e-2

(1.58e-2)

1.6426e-1

(6.59e-2)

8.6268e-2

(1.86e-2)

2.9551e-2

(2.71e-3)

6 5.8432e-1

(7.13e-2)

2.0996e22
(3.06e25)

2.6719e-1

(7.88e-2)

2.6329e-1

(4.74e-2)

1.9453e-1

(3.47e-2)

3.7427e-2

(4.27e-3)

8 7.2090e-1

(6.99e-2)

2.4825e22
(6.84e24)

3.2512e-1

(1.10e-1)

3.0040e-1

(5.24e-2)

2.8614e-1

(5.27e-2)

4.8291e-2

(7.25e-3)
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perform similar performance regarding the diversity,

whereas GrEA, KnEA and HypE fail to keep an even

distribution of obtained solutions. The reason may be that

the knee points in KnEA are used to enhance the conver-

gence. HypE is also poor because the HV (Deb and

Kalyanmoy 2001) used in HypE has a bias toward typical

knee points (Jain and Deb 2014). It is easy to understand

that HMaOCS performs similar performance as NSGA-III

does because both of them employ the same strategy of

reference points.

5.4 Comparison of HMaOCS with other
algorithms on the WFG test suit

Table 10 presents the mean IGD results of MOEA/D,

NSGA-III, KnEA, GrEA, HypE and HMaOCS on the WFG

test suite, where the best results are shown in boldface.

From the last line of Table 10, HMaOCS outperforms

MOEA/D on 39 functions, while MOEA/D is better than

HMaOCS on 6 functions. We can easily get similar con-

clusions from comparison results of HMaOCS, KnEA and

HypE.

Although HMaOCS is based on the careful modifica-

tions of CS and is further incorporated with the strategy of

reference points used in NSGA-III, HMaOCS does not

show obvious advantage over NSGA-III and wins in only

23 functions. On WFG4 to WFG8, HMaOCS obviously

outperforms KnEA and obtains better results on WFG2

with 2, 4, 6 and 8 objectives. Compared to GrEA,

HMaOCS performs better on all WFG test instances except

for WFG1, WFG8 and WFG9. HypE is better than

HMaOCS on WFG3 and other instances with 2 objectives.

The above analysis demonstrates that HMaOCS shows

excellent performance.

Figure 3 presents the obtained solutions of six algo-

rithms on WFG6 with 3 objectives. In terms of diversity,

NSGA-III shows the best performance. HMaOCS has no

obvious advantage over MOEA/D, but both of them are

slightly worse than NSGA-III. KnEA, GrEA and HypE

show the worst performance regarding the distribution of

obtained solutions.

Table 11 summarizes the comparison results between

HMaOCS and five other many-objective optimization

algorithms on the DTLZ and WFG benchmark sets, where

‘‘w/l/t’’ means that HMaOCS wins in w functions, loses in

l functions and ties in t functions. From the results, though

HMaOCS is slightly worse than MOEA/D on the DTLZ

benchmark set, it performs much better than MOEA/D on

the WFG benchmark set. The total results show that

HMaOCS outperforms MOEA/D. However, both NSGA-

III and HMaOCS obtain similar performance. NSGA-III is

slightly better than HMaOCS on the DTLZ benchmark set,

while HMaOCS outperforms NSGA-III on the WFG

Table 9 continued

Problem Obj. HMaOCS MOEA/D NSGA-III KnEA GrEA HypE

10 9.1912e-1

(2.63e-1)

1.8784e22
(4.66e27)

8.6915e-1

(2.04e-1)

4.0559e-1

(1.48e-1)

3.4053e-1

(8.68e-2)

5.2957e-2

(3.38e-5)

DTLZ6 2 3.9897e23
(1.53e25)

3.9962e-3

(1.25e-7)

3.9966e-3

(1.97e-7)

8.8903e-2

(1.66e-2)

1.0685e-2

(8.40e-5)

5.9566e-3

(3.82e-4)

4 1.0822e-1

(4.62e-2)

2.7266e22
(2.89e24)

7.4748e-2

(2.06e-2)

2.0163e-1

(7.31e-2)

1.8335e-1

(5.62e-2)

2.0046e-1

(3.15e-2)

6 2.4310e-1

(8.83e-2)

1.8931e22
(1.36e23)

6.4673e-1

(3.58e-1)

5.9790e-1

(3.20e-1)

2.9522e-1

(4.67e-2)

1.7257e-1

(5.26e-2)

8 8.6442e-1

(7.40e-1)

2.5117e22
(9.92e24)

2.2485e?0

(1.28e?0)

1.4258e?0

(4.70e-1)

6.8766e-1

(2.31e-1)

1.7202e-1

(6.35e-2)

10 1.2304e?0

(1.10e?0)

1.8686e22
(1.18e25)

2.6116e?0

(1.64e?0)

1.5325e?0

(2.65e-1)

1.2884e?0

(1.29e-1)

1.1735e-1

(1.37e-2)

DTLZ7 2 8.0007e-3

(4.49e-4)

1.4379e-1

(2.09e-1)

6.9478e23
(1.51e24)

3.4778e-2

(1.21e-2)

2.8488e-2

(5.35e-3)

2.6755e-1

(2.27e-1)

4 2.0174e-1

(7.58e-3)

3.7499e-1

(1.63e-2)

2.1859e-1

(6.92e-3)

1.8639e-1

(8.72e-2)

1.8325e21
(7.47e22)

1.1795e?0

(3.33e-2)

6 7.1015e-1

(4.78e-2)

1.1889e?0

(1.15e-1)

6.1682e-1

(2.88e-2)

3.9537e-1

(3.72e-2)

4.3411e21
(2.82e22)

2.4490e?0

(1.88e-1)

8 1.6054e?0

(4.24e-1)

1.5648e?0

(2.51e-1)

8.9065e-1

(9.63e-2)

7.9986e-1

(4.09e-1)

7.9983e21
(5.60e22)

4.0327e?0

(1.13e-1)

10 2.9988e?0

(5.07e-1)

2.4437e?0

(5.83e-1)

1.2999e?0

(4.41e-2)

8.5226e21
(1.09e22)

2.6085e?0

(6.47e-2)

5.2127e?0

(1.40e-1)

w/l/t 15/20/0 16/19/0 21/14/0 19/16/0 25/10/0

A hybrid many-objective cuckoo search algorithm 10691

123



benchmark set. The total results show that NSGA-III is

slightly better than HMaOCS. Compared to KnEA, GrEA

and HypE, HMaOCS achieves better results on two

benchmark sets. Although HMaOCS is slightly worse than

NSGA-III, it outperforms MOEA/D, KnEA, CrEA and

HypE.

6 Conclusion and future work

In this paper, we propose a hybrid many-objective cuckoo

search (HMaOCS) for MaOPs. The standard CS is only

suitable for single-objective optimization problems. To

deal with MaOPs, the standard CS is modified. Moreover,

(a) Solutions obtained Solutions obtained by MOEA/D on DTLZ4

(c) Solutions obtained by NSGA- Solutions obtained by KnEA on DTLZ4

(e) Solutions obtained

by HMaOCS on DTLZ4  (b) 

III on DTLZ4 (d) 

by GrEA on DTLZ4 (f) Solutions obtained HyPE on DTLZ4

Fig. 2 Solutions obtained on DTLZ4
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non-dominated sorting and the strategy of references points

in NSGA-III are employed to ensure the convergence and

diversity. In order to evaluate the performance of

HMaOCS, two well-known benchmark sets DTLZ and

WFG are utilized in the experiments.

The parameter pa can affect the performance of

HMaOCS. Simulation results show that a fixed pa is not

(a) Solutions obtained by HMaOCS on WFG6 (b) Solutions obtained by MOEA/D on WFG6

(c) Solutions obtained by NSGA-III on WFG6 (d) Solutions obtained by KnEA on WFG6

(e) Solutions obtained by GrEA on WFG6 (f) Solutions obtained by HypE on WFG6

Fig. 3 Solutions obtained on WFG6
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Table 10 IGD results of the six algorithms on WFG1-WFG9

Problem M HMaOCS MOEA/D NSGA-III KnEA GrEA HypE

WFG1 2 1.0240e?0

(1.95e-1)

8.4498e-2

(4.46e-2)

8.0642e-2

(3.40e-2)

1.6949e-1

(3.02e-2)

4.8162e22
(3.04e22)

7.0584e-1

(1.93e-1)

4 1.2355e?0

(1.59e-1)

7.6176e-1

(1.35e-2)

2.8539e21
(7.82e23)

3.4097e-1

(2.03e-2)

3.9578e-1

(2.31e-2)

1.2939e?0

(2.82e-1)

6 1.9982e?0

(1.43e-1)

1.5461e?0

(4.72e-2)

6.5858e-1

(3.26e-2)

6.5830e21
(2.40e22)

7.5168e-1

(3.22e-2)

1.9982e?0

(2.52e-1)

8 2.3338e?0

(6.72e-2)

2.1863e?0

(1.08e-1)

8.5520e21
(3.22e22)

9.6958e-1

(1.38e-1)

1.3971e?0

(1.68e-1)

2.4548e?0

(2.86e-1)

10 2.7429e?0

(7.71e-2)

2.4782e?0

(2.03e-1)

1.0385e10
(4.81e22)

1.1764e?0

(1.41e-1)

1.2580e?0

(4.97e-2)

2.5956e?0

(2.26e-1)

WFG2 2 1.6478e-2

(7.47e-4)

6.0580e-2

(2.07e-3)

1.6629e-2

(7.90e-4)

1.0901e?0

(2.25e-1)

3.3742e-2

(2.62e-3)

1.0212e22
(2.51e24)

4 3.8363e21
(1.94e22)

2.4835e?0

(5.20e-2)

3.8930e-1

(2.49e-2)

4.4246e-1

(5.93e-2)

6.6525e-1

(7.69e-2)

6.4223e-1

(1.90e-1)

6 7.4040e21
(2.09e22)

5.6806e?0

(5.82e-2)

9.8052e-1

(1.75e-1)

7.6260e-1

(7.48e-2)

1.5644e?0

(3.05e-1)

1.3906e?0

(2.83e-1)

8 1.2712e10
(1.44e21)

8.7708e?0

(5.72e-2)

2.6043e?0

(1.41e?0)

1.4411e?0

(1.47e-1)

2.5494e?0

(6.23e-1)

2.6895e?0

(4.35e-1)

10 2.3567e?0

(2.99e-1)

1.6679e?1

(1.07e-1)

4.3476e?0

(1.81e?0)

2.3285e10
(4.98e21)

2.9514e?0

(2.75e-1)

5.8419e?0

(7.29e-1)

WFG3 2 1.9722e-2

(4.57e-3)

2.6386e-2

(5.77e-3)

1.3891e-2

(9.74e-4)

1.8005e-2

(8.51e-4)

2.3433e-2

(5.57e-4)

1.2256e22
(4.55e24)

4 5.0105e-1

(5.78e-2)

5.2869e-1

(1.47e-1)

2.7844e-1

(3.50e-2)

3.4010e-1

(5.35e-2)

2.2282e-1

(1.85e-2)

4.7390e22
(3.14e23)

6 1.2453e?0

(1.13e-1)

1.6849e?0

(4.61e-1)

9.5047e-1

(1.19e-1)

8.4309e-1

(1.15e-1)

6.0824e-1

(1.02e-1)

7.0825e22
(6.60e23)

8 2.0352e?0

(2.42e-1)

3.8407e?0

(1.56e-1)

1.0677e?0

(3.25e-1)

1.5551e?0

(4.19e-1)

1.0070e?0

(1.75e-1)

8.3688e22
(9.67e23)

10 2.1031e?0

(4.40e-1)

5.9602e?0

(4.56e-1)

1.1013e?0

(3.46e-1)

2.1324e?0

(5.23e-1)

1.7794e?0

(2.87e-1)

9.3512e22
(9.13e23)

WFG4 2 2.2582e-2

(1.90e-3)

3.4822e-2

(2.11e-3)

1.3905e22
(5.93e24)

2.3676e-2

(3.07e-3)

2.5929e-2

(1.55e-3)

1.8478e-2

(1.32e-3)

4 6.1477e-1

(2.97e-3)

6.5147e-1

(2.92e-3)

6.0778e21
(1.39e23)

6.5857e-1

(1.28e-2)

6.3331e-1

(9.45e-3)

8.4653e-1

(3.79e-2)

6 1.7354e10
(9.43e23)

3.7931e?0

(1.28e-1)

1.7672e?0

(8.74e-2)

1.9127e?0

(3.14e-2)

1.6866e10
(8.56e23)

2.6639e?0

(4.82e-1)

8 2.9781e10
(1.29e22)

7.0973e?0

(9.90e-2)

2.9793e?0

(1.16e-2)

3.3672e?0

(2.32e-2)

2.9889e?0

(1.32e-2)

5.2701e?0

(6.49e-1)

10 4.5081e?0

(2.11e-2)

9.4233e?0

(6.31e-2)

4.5199e?0

(2.54e-2)

4.4883e?0

(3.59e-2)

4.1190e10
(4.50e22)

8.1356e?0

(9.09e-1)

WFG5 2 6.4390e22
(3.30e23)

7.2468e-2

(3.19e-3)

6.5113e-2

(2.33e-3)

7.4018e-2

(4.62e-3)

7.4621e-2

(2.38e-3)

6.7454e-2

(2.08e-3)

4 5.9717e21
(2.50e23)

6.6728e-1

(3.56e-2)

6.0261e-1

(7.25e-4)

6.6513e-1

(1.91e-2)

6.2887e-1

(1.16e-2)

8.7554e-1

(2.04e-2)

6 1.6989e10
(4.50e23)

3.4495e?0

(2.26e-1)

1.7071e?0

(5.14e-3)

1.8641e?0

(2.96e-2)

1.7144e?0

(1.33e-2)

2.1262e?0

(3.69e-2)

8 2.9844e10
(1.12e21)

6.6753e?0

(1.64e-1)

2.9896e?0

(4.16e-3)

3.3332e?0

(3.53e-2)

2.9921e?0

(1.46e-2)

3.4982e?0

(7.56e-2)

10 4.3307e?0

(1.03e-1)

9.0123e?0

(1.87e-1)

4.4769e?0

(1.20e-2)

4.4566e?0

(3.61e-2)

4.0576e?0

(2.55e-2)

5.4168e?0

(4.71e-1)

WFG6 2 5.6757e22
(2.03e22)

1.2780e-1

(2.44e-2)

7.3999e-2

(1.81e-2)

2.8496e-1

(5.34e-2)

8.8129e-2

(2.43e-2)

7.5416e-2

(2.08e-2)

4 6.5997e-1

(1.08e-2)

7.6857e-1

(6.61e-2)

6.1379e21
(3.89e23)

6.8780e-1

(1.68e-2)

6.6048e-1

(1.23e-2)

8.9655e-1

(2.40e-2)
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suitable for all test instances. pa = 0.7 is the relative best

choice for the test suite. Compared to other famous many-

objective optimization algorithms, HMaOCS can achieve

promising performance. MOEA/D performs better than

HMaOCS on the DTLZ benchmark set, while HMaOCS is

much better than MOEA/D on the WFG benchmark set.

For two benchmark sets, both NSGA-III and HMaOCS

Table 10 (continued)

Problem M HMaOCS MOEA/D NSGA-III KnEA GrEA HypE

6 1.7499e10
(1.06e22)

3.9283e?0

(5.14e-2)

1.7545e?0

(8.22e-3)

1.9476e?0

(3.86e-2)

1.7543e?0

(1.34e-2)

2.1800e?0

(7.77e-2)

8 2.9788e10
(1.02e22)

7.2267e?0

(2.02e-1)

2.9789e?0

(4.59e-3)

3.4512e?0

(6.98e-2)

2.9850e?0

(2.90e-2)

3.6572e?0

(1.29e-1)

10 4.5703e?0

(1.47e-2)

9.5154e?0

(1.70e-1)

4.5878e?0

(1.84e-2)

4.6514e?0

(5.60e-2)

4.0782e10
(2.51e22)

5.4771e?0

(5.19e-1)

WFG7 2 1.7696e-2

(7.12e-4)

3.6122e-2

(6.70e-3)

1.2688e22
(1.69e24)

1.2479e-1

(4.78e-2)

3.0082e-2

(1.19e-3)

1.7207e-2

(9.71e-4)

4 6.4787e-1

(5.85e-3)

7.5605e-1

(5.03e-2)

6.0798e21
(1.09e23)

6.5618e-1

(1.31e-2)

6.4884e-1

(1.50e-2)

9.2472e-1

(2.49e-2)

6 1.7601e10
(1.22e22)

3.9485e?0

(6.28e-2)

1.7681e?0

(8.51e-3)

1.9411e?0

(3.83e-2)

1.7767e?0

(1.56e-2)

2.1925e?0

(7.64e-2)

8 3.0408e?0

(1.80e-2)

7.1663e?0

(8.02e-2)

2.9819e10
(9.17e23)

3.3322e?0

(3.72e-2)

2.9045e?0

(1.35e-2)

4.2741e?0

(5.15e-1)

10 4.5159e?0

(2.97e-2)

9.3989e?0

(9.44e-2)

4.5458e?0

(3.15e-2)

4.3935e?0

(5.33e-2)

4.1022e10
(4.77e22)

6.3865e?0

(5.48e-1)

WFG8 2 1.1910e-1

(8.06e-3)

1.3063e-1

(5.83e-3)

1.1998e-1

(2.35e-3)

4.5644e-1

(4.21e-2)

1.1244e-1

(9.32e-4)

1.1012e21
(2.96e23)

4 6.8859e-1

(1.21e-2)

6.8082e-1

(1.28e-2)

6.4928e21
(8.68e23)

7.2370e-1

(1.07e-2)

6.5783e-1

(8.86e-3)

8.4682e-1

(1.67e-2)

6 1.7891e?0

(4.67e-3)

3.4531e?0

(2.28e-1)

1.7363e10
(8.56e23)

1.9084e?0

(2.15e-2)

1.7560e?0

(1.39e-2)

2.2225e?0

(1.89e-1)

8 3.2093e?0

(4.01e-2)

6.3694e?0

(1.57e-1)

3.3757e?0

(2.83e-1)

3.4992e?0

(7.31e-2)

3.0963e10
(4.99e22)

4.3643e?0

(3.46e-1)

10 4.3695e10
(5.53e22)

8.6377e?0

(1.96e-1)

5.0225e?0

(5.36e-1)

4.6158e?0

(3.29e-2)

5.2085e?0

(4.75e-2)

6.3041e?0

(4.52e-1)

WFG9 2 6.5196e-2

(8.50e-2)

1.0088e-1

(7.54e-2)

2.2760e-2

(2.09e-3)

2.8516e-2

(3.99e-3)

3.1099e-2

(3.41e-3)

2.0809e22
(1.78e23)

4 6.5663e-1

(1.15e-2)

6.9411e-1

(4.37e-2)

5.9412e21
(1.54e22)

6.0993e-1

(9.05e-3)

6.1150e-1

(9.24e-3)

8.8423e-1

(3.03e-2)

6 1.7055e?0

(2.14e-2)

3.6584e?0

(1.62e-1)

1.7174e?0

(2.00e-2)

1.7821e?0

(2.87e-2)

1.6542e10
(9.41e23)

2.0632e?0

(6.05e-2)

8 3.1495e?0

(1.55e-1)

6.7568e?0

(1.78e-1)

2.9515e?0

(2.39e-2)

3.2253e?0

(1.71e-2)

2.9098e10
(1.83e22)

3.5928e?0

(2.62e-1)

10 4.6578e?0

(1.73e-1)

8.9979e?0

(2.12e-1)

4.3430e?0

(8.27e-2)

4.2614e?0

(5.33e-2)

4.1410e10
(2.71e22)

6.0198e?0

(5.80e-1)

w/l/t 39/6/0 23/22/0 30/15/0 23/22/0 32/12/1

Table 11 Comparison results between HMaOCS and five other algorithms on the DTLZ and WFG benchmark sets

HMaOCS vs. MOEA/D NSGA-III KnEA GrEA HypE

w/l/t w/l/t w/l/t w/l/t w/l/t

DTLZ 15/20/0 16/19/0 21/14/0 19/16/0 25/10/0

WFG 39/6/0 23/22/0 30/15/0 23/22/0 32/12/1

Total 54/26/0 39/41/0 51/29/0 42/38/0 57/22/1
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obtain similar performance. HMaOCS outperforms KnEA,

GrEA and HypE on the DTLZ and WFG benchmark sets.
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Nature 453(7194):495

Cai X, Gao X, Xue Y (2016) Improved bat algorithm with optimal

forage strategy and random disturbance strategy. Int J Bio-

inspired Comput 8(4):205–214

Cai X, Wang H, Cui Z, Cai J, Xue Y, Wang L (2018) Bat algorithm

with triangle-flipping strategy for numerical optimization. Int J

Mach Learn Cybernet 9(2):199–215

Chandrasekaran K, Simon S (2012) Multi-objective scheduling

problem: hybrid approach using fuzzy assisted cuckoo search

algorithm. Swarm Evol Comput 5:1–16

Coelho L, Guerra F, Batistela N (2013) Multiobjective cuckoo search

algorithm based on duffing’s oscillator applied to jiles-atherton

vector hysteresis parameters estimation. IEEE Trans Magn

49(5):1745–1748
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