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Abstract
In this paper, we define a functor which is left adjoint to the forgetful functor from the category of frontal implicative
semilattices to that of frontal Hilbert algebras.
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1 Introduction

FrontalHeyting algebraswere introducedbyEsakia inEsakia
(2006) as the algebraic models of the modalized Heyting
calculus mHC . They are Heyting algebras expanded with a
unary modal box-like operation with the algebraic properties
of the co-derivative operator1 of a topological space when it
is applied to the Heyting algebra of its open sets.

In Castiglioni and SanMartín (2015), the notion of frontal
operator is generalized to Hilbert algebras, and hence to
implicative semilattices, as well as are the frontal operators
γ , S and G considered in the framework of Heyting alge-
bras by Caicedo and Cignoli (2001) (Examples 3.1, 5.2 and
5.3, respectively). The operators γ , S and G are particular
examples of implicitly definable compatible functions (see
also Kaarli and Pixley 2001 for information on compatible
functions).

1 The co-derivative operator of a topological space X maps any A ⊆ X
to X\δ(X\A), where δ is the derivative operator for X , which maps a
set to the set of its accumulation points.

Communicated by A. Di Nola.

B Hernán J. San Martín
hsanmartin@mate.unlp.edu.ar

Ramon Jansana
jansana@ub.edu

1 Departament de Filosofia, Universitat de Barcelona,
Montalegre, 6, 08001 Barcelona, Spain

2 Departamento de Matemática, Facultad de Ciencias Exactas
(UNLP), and CONICET, Casilla de correos 172, 1900 La
Plata, Argentina

The variety of Hilbert algebras is the class of the sub-
reducts to the language {→, 1} of the Heyting algebras as
well as of the implicative semilattices. Similarly, the variety
of frontal Hilbert algebras is the class of the subreducts to
the language {→, τ, 1} of the frontal Heyting algebras and of
the frontal implicative semilattices, as follows from Corol-
lary 24.

Mal’cev (1971) showed that if L′ is a sublanguage of the
language L of a quasivariety K, then the class M of the L′-
subreducts of the members of K is also a quasivariety. When
equipped with homomorphisms, the quasivarieties K and M
can be viewed as concrete categories. It is then immediate to
see that the obvious forgetful construction U from K to M is
a right adjoint functor. Then, if F : M → K is a left adjoint
functor to U, for every algebra A ∈ M, the algebra F(A) is
the most generic member B of K such that A is isomorphic to
a subalgebra C of the L′-reduct of B and B is generated (in
the full language L) by C . The algebra F(A) is sometimes
called the freeK-extension of A. A natural quest is then to find
concrete descriptions of a functor F : M → K which is left
adjoint to U that accordingly provides concrete descriptions
of the free K-extensions of the members of M.

In Celani and Jansana (2012), an explicit definition of
a left adjoint to the forgetful functor from the category of
implicative semilattices to the category of Hilbert algebras is
given. In Castiglioni and San Martín (2018), another explicit
description of such an adjoint functor was presented follow-
ing an alternative path. Themain goal of this paper is to obtain
an explicit definition of a left adjoint functor to the forgetful
functor from the category of frontal implicative semilattices
to the category of frontal Hilbert algebras, thus providing for
every frontal Hilbert algebra a specific construction of its free
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extension to a frontal implicative semilattice. Building on it,
we also obtain left adjoint functors to the forgetful functors
from the categories of bounded implicative semilattices with
a γ -function, implicative semilattices with a successor func-
tion, and bounded implicative semilattices with a Gabbay
function to the categories of bounded Hilbert algebras aug-
mented, respectively,with a γ -function, a successor function,
and a Gabbay function.

The paper is organized as follows. In Sect. 2, we introduce
the preliminaries we need; they include the main proper-
ties concerning frontal operators in Heyting algebras and in
Hilbert algebras we use. We also present the explicit descrip-
tion of a left adjoint to the forgetful functor from the category
of implicative semilattices to the category of Hilbert alge-
bras: we use it in Sect. 3 to obtain our left adjoint functor
to the forgetful functor from the category of frontal implica-
tive semilattices to the category of frontal Hilbert algebras. In
Sects. 4, 5 and6,weuse the adjunctions presented inSect. 3 in
order to obtain a similar result for some categories of frontal
implicative semilattices and frontal Hilbert algebras deter-
mined by the notions of γ -function, successor function, and
Gabbay function.

2 Preliminaries

We start with the basic notions on posets we need along the
paper. Let P = (P,≤) be a poset. A subsetU ⊆ P is said to
be an upset if for all x, y ∈ P such that x ∈ U and x ≤ y we
have y ∈ U . The notion of downset is defined dually. The
upset generated by a set Y ⊆ P is the set [Y ) := {x ∈ P :
(∃y ∈ Y ) y ≤ x} and the downset generated by Y is the set
(Y ] := {x ∈ P : (∃y ∈ Y ) x ≤ y}. If Y = {y}, then we
write [y) and (y] instead of [{y}) and ({y}], respectively. A
set I ⊆ P is an order-ideal if I is a nonempty downset that
is up-directed, namely that for every x, y ∈ I there is z ∈ I
such that x ≤ z and y ≤ z. Dually, we have the notion of
order-filter, but we will not use this notion in the paper.

Given a set X and a set Y ⊆ X , we denote the relative
complement of Y to X , i.e., X\Y , by Y c, that is Y c := {x ∈
X : x /∈ Y }. The context will always make it clear with
respect to which set we are taking the relative complement.

We assume the reader is familiar with the theory of
Heyting algebras (Balbes and Dwinger 1974; Esakia 2019;
Rasiowa 1974) and propositional intuitionistic calculus, of
which the variety of Heyting algebras is the algebraic coun-
terpart. We recall that the lattice of all open sets of a
topological space X is a Heyting algebra where the impli-
cation from an open set U to an open set V is defined as the
interior of Uc ∪ V . We denote that Heyting algebra of open
sets by O(X).

Let (P,≤) be a poset. We denote by P+ the set of all
upsets of (P,≤) as well as the poset we obtain by ordering

P+ by the inclusion relation. The set P+ is closed under
intersections and unions of arbitrary families and contains P
and ∅. Therefore, we have a complete distributive lattice. We
can define the binary operation⇒ on P+ by setting for every
U , V ∈ P+,

U ⇒ V = (U ∩ V c]c. (1)

Together with ⇒ and ∅, the complete distributive lattice P+
is a Heyting algebra. In fact, we can look at P+ as a topology
on P . In this topology, U ⇒ V is precisely the interior of
Uc ∪ V .

Hilbert algebras were introduced in the early 1950s by
Henkin for some investigations of the implication of intu-
itionistic and other non-classical logics (Rasiowa 1974, pp.
16). In the 1960s, they were studied especially by Horn
(1962) and Diego (1965).

Definition 1 AHilbert algebra is an algebra H = (H ,→, 1)
of type (2, 0) that satisfies the following conditions for every
a, b, c ∈ H :

(1) a → (b → a) = 1,
(2) (a → (b → c)) → ((a → b) → (a → c)) = 1,
(3) if a → b = b → a = 1, then a = b.

In every Hilbert algebra H , the relation ≤ defined by set-
ting for every a, b ∈ H

a ≤ b ⇐⇒ a → b = 1

is a partial order, which is called the natural order of H , and
with 1 as its greatest (or top) element.

In Diego (1965), it was proved that the class of Hilbert
algebras is a variety. We write Hil for the variety of Hilbert
algebras as well as for the category whose objects are Hilbert
algebras and whose morphisms are the homomorphisms
between them. Several properties of Hilbert algebras can be
found in Buşneag and Ghiţǎ (2010), Diego (1965).

A semilattice is an algebra (A,∧) of type (2) where ∧ is
associative, commutative and idempotent. Given a semilat-
tice (A,∧), the binary relation ≤ defined by

a ≤ b ⇐⇒ a ∧ b = a,

for every a, b ∈ A, is a partial order where any two elements
a, b ∈ A have a greatest lower bounda∧b (i.e., an infimumor
meet). We say that a semilattice (A,∧) is a meet-semilattice
when we consider the partial order just defined. Every poset
(P,≤)with the property that any two elements a, b ∈ P have
a greatest lower bound defines a meet-semilattice by taking
on P the operation ∧ defined by setting for every a, b ∈ P
that a ∧ b is the greatest lower bound of a, b. The partial
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order of the meet-semilattice (P,∧) is the partial order ≤
we start with. A meet-semilattice (A,∧) is (upper) bounded
if ≤ has a greatest element, that we denote by 1. In this case,
we extend the signature and consider the algebra (A,∧, 1).
Throughout this paper, we just write semilattice in place of
meet-semilattice.

Implicative semilatticeswere introduced inNemitz (1965).
They are also known as Brouwerian semilattices. For studies
of implicative semilattices,we refer toKöhler (1981),Nemitz
and Whaley (1971), Nemitz and Whaley (1973). Implicative
semilattices are the algebraic counterpart of the {∧,→, 1}-
fragment of intuitionistic logic. They are a combination of a
Hilbert algebra and a semilattice where a → b is the meet-
residual of b by a.

Definition 2 An implicative semilattice is an algebra
(H ,∧,→) of type (2, 2) such that (H ,∧) is a semilattice
and for every a, b, c ∈ H ,

a ∧ b ≤ c ⇐⇒ a ≤ b → c,

where ≤ is the semilattice order of (H ,∧).

Every implicative semilattice has a greatest element,
denoted by 1. In this paper, we take the signature for implica-
tive semilattices to be {∧,→, 1}, so that (H ,∧,→, 1) is
an implicative semilattice if (H ,∧,→) is one and 1 is its
greatest element in the natural order. The class of implicative
semilattices is a variety, as it was proved byMonteiro (1955).
We denote the category of implicative semilattices (i.e.,
of the implicative semilattices with their algebraic homo-
morphisms) by IS. Notice that if (H ,∧,→, 1) ∈ IS, then
(H ,→, 1) ∈ Hil. For more details about implicative semi-
lattices, see Curry (1963), Nemitz (1965).

It is known that implicative semilattices are the {∧,→, 1}-
subreducts of Heyting algebras and Hilbert algebras are the
{→, 1}-subreducts of implicative semilattices. Therefore, an
arbitrary quasi-equation in the language {→, 1} holds in
every Heyting algebra if and only if it holds in every implica-
tive semilattice, and this happens if and only if it holds in
every Hilbert algebra. In particular, the equations

(1) (x ∧ y) → z ≈ x → (y → z)
(2) x → (y ∧ z) ≈ (x → y) ∧ (x → z)

hold in every implicative semilattice. We highlight here the
properties of Hilbert algebras most relevant to the paper.

Lemma 3 Let H ∈ Hil and a, b, c ∈ H. The following con-
ditions are satisfied:

(a) a → a = 1,
(b) 1 → a = a,
(c) a → (b → c) = b → (a → c),

(d) a → (b → c) = (a → b) → (a → c),
(e) if a ≤ b, then c → a ≤ c → b and b → c ≤ a → c.

Esakia considered in Esakia (2006) the modalized Heyt-
ing calculus mHC , which consists of an expansion of the
Heyting propositional calculus for intuitionistic logic by a
very special modal operator. The algebraic models of this
calculus are the Heyting algebras augmented with a frontal
operator. Let (H ,∧,∨,→, 0, 1)be aHeyting algebra.Amap
τ : H → H is said to be a frontal operator if the following
conditions are satisfied for every a, b ∈ H :

(f1) τ(a ∧ b) = τ(a) ∧ τ(b),
(f2) a ≤ τ(a),
(f3) τ(a) ≤ b ∨ (b → a).

One of the main motivations to study frontal operators in
Heyting algebras stemmed from some topological semantics
where τ is interpreted as the co-derivative operator. In what
follows, we will explain this point.

Let X be a topological space. The derivative operator δ of
X is themap that sends every A ⊆ X to its set of accumulation
points. Its dual is the co-derivative operator τ defined by
setting for every A ⊆ X , τ(A) := δ(Ac)c. In Esakia (2006),
the elements of τ(A) are called the frontal points of A, that
is, x ∈ X is a frontal point of A if and only if there is a
neighborhood U of x such that U ⊆ A ∪ {x}. When τ is
applied to an open set, it provides an open set. Esakia (2006)
also showed that if X is a topological space, then the co-
derivative operator restricted toO(X) is a frontal operator of
the Heyting algebra O(X).

We present now an interesting characterization of the co-
derivative operator of the Heyting algebra of the open sets
of a topological space. Recall that a point x of a topological
space X is an isolated point of a set A ⊆ X if there exists a
neighborhood Ux of x such that Ux ∩ A = {x}. We denote
the set of isolated points of A by Aa .

Proposition 4 Let X be a topological space and τ its co-
derivative operator. Then, for every U ∈ O(X), τ(U ) =
U ∪ (Uc)a, that is, for every point x ∈ X, x is a frontal point
of U if and only if x ∈ U or x is an isolated point of Uc.

Proof Let x ∈ τ(U ). Suppose that x /∈ U . We will see that
x ∈ (Uc)a . Since x ∈ τ(U ), there exists a neighborhood Vx

of x such that Vx ⊆ U ∪ {x}. Thus, Vx ∩ Uc = {x}. Hence,
x ∈ (Uc)a . Conversely, let x ∈ U ∪ (Uc)a . If x ∈ U , since
U is open, x is a frontal point ofU . If x ∈ (Uc)a , there exists
a neighborhood Vx of x such that Vx ∩ Uc = {x}. Hence,
Vx = Vx ∩(U ∪Uc) = (Vx ∩U )∪{x} ⊆ U ∪{x}. Therefore,
x is a frontal point of U . ��

We can apply the proposition to the Heyting algebra of
the upsets of a poset. Let (P,≤) be a poset and U ⊆ P . We
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writeUM for the set of maximal elements ofU (note that this
set may be empty).

Corollary 5 Let (P,≤) be a poset and consider the topolog-
ical space P+ of the upsets of P. Then, (Uc)a = (Uc)M for
every U ∈ P+. Hence, the co-derivative frontal operator τ

satisfies that τ(U ) = U ∪ (Uc)M for every U ∈ P+.

Proof Straightforward computations show that if x ∈ P ,
then Ux is a neighborhood of x in the topology of the upsets
of P if and only if [x) ⊆ Ux . Using this fact, we prove
that (Uc)a = (Uc)M whenever U ∈ P+. In order to do it,
let U ∈ P+. Suppose that x ∈ (Uc)a . Thus, there exists a
neighborhood Ux of x such that Ux ∩ Uc = {x}. Let x ≤ y
with y ∈ Uc. Then, y ∈ [x) ∩ Uc ⊆ Ux ∩ Uc = {x}, i.e.,
y = x . Therefore, x ∈ (Uc)M . Conversely, let x ∈ (Uc)M .
Thus, [x)∩Uc = {x}, which implies that x ∈ (Uc)a . Hence,
(Uc)a = (Uc)M . Finally, it follows from Proposition 4 that
τ(U ) = U ∪ (Uc)M for every U ∈ P+. ��

The following definitionwas introduced inCastiglioni and
San Martín (2015) and generalizes to the Hilbert algebras
setting the definition of frontal operator given for Heyting
algebras.

Definition 6 Let H ∈ Hil. We say that a map τ : H → H is
a frontal operator if it satisfies the following conditions for
every a, b ∈ H :

(i1) τ(a → b) ≤ τ(a) → τ(b),
(i2) a ≤ τ(a),
(i3) τ(a) ≤ ((b → a) → b) → b.

An algebra (H , τ ) is a frontalHilbert algebra if H is aHilbert
algebra and τ a frontal operator on it.

We denote by FHil the algebraic category of frontal Hilbert
algebras (i.e., the morphisms are the algebra homomor-
phisms). In every Hilbert algebra, there exists at least one
frontal operator since the identity map meets the required
conditions.

It turns out that a unary map τ on a Heyting algebra is a
frontal operator if and only if it satisfies the conditions (i1),
(i2), and (i3). This explains why frontal Hilbert algebras are
a generalization of frontal Heyting algebras.2

Let A be an algebra. An n-ary function f : An → A is
said to be compatible with a congruence θ of A if (ai , bi ) ∈ θ

with i = 1, ..., n implies ( f (a1, ..., an), f (b1, ..., bn)) ∈ θ .
And it is said to be a compatible function of A provided it
is compatible with all the congruences of A. The simplest
examples of compatible functions in an algebra A are the

2 In fact, condition (i1) is equivalent to condition (f1) (assuming that
τ(1) = 1) and condition (i3) equivalent to condition (f3) (seeCastiglioni
and San Martín 2015; Esakia 2006).

polynomial functions.3 Frontal operators on Heyting alge-
bras and frontal operators on Hilbert algebras are necessarily
compatible functions, as it was proved in Castiglioni and San
Martín (2015).

Definition 7 An algebra (H , τ ) is a frontal implicative semi-
lattice if H is an implicative semilattice and τ is a frontal
operator of its Hilbert algebra reduct.

We denote by FIS the algebraic category of frontal implica-
tive semilattices. The following result holds as in the case of
Heyting algebras, and its proof is part of the folklore of the
subject.

Lemma 8 Let H ∈ IS and τ a unary operator on H. Then,
τ is a frontal operator if and only if τ satisfies (i2), (i3) and
τ(a ∧ b) = τ(a) ∧ τ(b) for every a, b ∈ H.

2.1 An adjunction between Hil and IS

The forgetful functor from the category of implicative semi-
lattices to the category of Hilbert algebras that forgets the
meet operation has a left adjoint. This amounts to the exis-
tence of the free implicative semilattice extension of any
Hilbert algebra. There are several ways to obtain such a left
adjoint. Explicit descriptions of such an adjoint functor and
of the free extension of a Hilbert algebra to an implicative
semilattice are obtained in Celani and Jansana (2012) and
Castiglioni and San Martín (2018).

For completeness of the exposition, we provide now a
description of a left adjoint functor to the forgetful func-
tor from IS to Hil, which will be used later to obtain our
results. We give complete proofs using only the minimum
tools needed to obtain the results, thus avoiding more gen-
eral approaches such that those in Celani and Jansana (2012),
Castiglioni and San Martín (2018).

We start with some preliminary definitions and results.
It is immediate that if (P,≤) is a poset and U , V ∈ P+,

then the following condition is satisfied for every x ∈ P:

x ∈ U ⇒ V ⇐⇒ (∀y ∈ P)(x ≤ y and y ∈ U �⇒ y ∈ V ).

In the general study of Hilbert algebras, the notion of
implicative filter plays an important role. Let H ∈ Hil. A
set F ⊆ H is said to be an implicative filter if 1 ∈ F and
for all a, b ∈ H we have b ∈ F whenever a ∈ F and
a → b ∈ F . If F is a proper subset of H , then we say that
the implicative filter F is proper. It is immediate that every
implicative filter of a Hilbert algebra is an upset w.r.t. the
natural order. We denote by Fil(H) the set of all implicative
filters of H .

3 The notion of polynomial used here is that from universal algebra (see
Kaarli and Pixley 2001).
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Note that the set of all implicative filters of H is closed
under intersections of arbitrary families; therefore, it is a
complete lattice under the inclusion order. Thus, we can
speak of the implicative filter generated by a set. Let H ∈ Hil
and X ⊆ H . We denote the implicative filter generated by
X , i.e., the least filter of H that contains the set X , by F(X).
There is a useful explicit description for F(X) (see Buşneag
1985, Lemma 2.3):

F(X) = {b ∈ H : b = 1 or a1 → (a2 → · · · (an → b) . . .) = 1

for some a1, . . . , an ∈ X}.

The lattice Fil(H) is known to be distributive (Diego 1965).
The next fact on implicative filters (Celani 2002, The-

orem 3.2) will be used several times along the paper. Let
f : H1 → H2 be a function between Hilbert algebras. Then,
the following two conditions are equivalent:

(1) f (1) = 1 and f (a → b) ≤ f (a) → f (b) for every
a, b ∈ H1.

(2) f −1[F] is an implicative filter of H1 whenever F is an
implicative filter of H2.

In particular, (2) holds when f is a homomorphism.
An implicative filter F of a Hilbert algebra H is irre-

ducible if it is an irreducible element of the lattice of the
implicative filters of H , i.e., if F is proper and for any
implicative filters F1, F2 of H such that F = F1 ∩ F2 we
have F = F1 or F = F2. We denote by Irr(H) the set of
irreducible implicative filters of H , as well as the poset we
obtain when we order it by the inclusion relation.

For a proof of the following lemma, see Diego (1965).

Lemma 9 Let H ∈ Hil and F ∈ Fil(H). Then, F ∈ Irr(H) if
and only if F is proper and for every a, b /∈ F there exists
c /∈ F such that a ≤ c and b ≤ c.

Let H ∈ Hil. A set I ⊆ H is an order-ideal if I is an order-
ideal of (H ,≤). We denote by Id(H) the set of order-ideals
of H . The following lemma is Celani (2002, Theorem 2.6).

Lemma 10 Let H ∈ Hil. Let F ∈ Fil(H) and I ∈ Id(H) be
such that F ∩ I = ∅. Then, there exists P ∈ Irr(H) such that
F ⊆ P and P ∩ I = ∅.

The following known results follow from Lemma 10.

Corollary 11 Let H ∈ Hil.

1. If F ∈ Fil(H) and a /∈ F, then there exists P ∈ Irr(H)

such that F ⊆ P and a /∈ P.
2. If a, b ∈ H are such that a � b, then there exists P ∈

Irr(H) such that a ∈ P and b /∈ P.
3. If F ∈ Fil(H) and a, b ∈ H, then a → b /∈ F if and

only if there exists P ∈ Irr(H) such that F ⊆ P, a ∈ P
and b /∈ P.

The next lemmawas proved in Castiglioni and SanMartín
(2015, Section 3, Lemma 16). We give the proof here for the
sake of completeness.

Lemma 12 Let (H , τ ) be a frontal Hilbert algebra and P ∈
Irr(H). For every a, b ∈ H, if τ(a) ∈ P and b /∈ P, then
b → a ∈ P.

Proof Let P ∈ Irr(H), τ(a) ∈ P , and b /∈ P . Suppose that
b → a /∈ P . Then, by Lemma 9 there exists c /∈ P such that
b ≤ c and b → a ≤ c. Thus, b → c = 1 and (b → a) →
c = 1. Since (b → c) → ((b → a) → c) → ((c → a) →
c)) = 1, we have (c → a) → c = 1. From the fact that τ is a
frontal operator, we have τ(a) ≤ ((c → a) → c) → c, i.e.,
τ(a) ≤ c. Taking into account that τ(a) ∈ P , we conclude
that c ∈ P , which is a contradiction. ��

Let H ∈ Hil. We consider the poset Irr(H) = (Irr(H),⊆)

and the complete lattice of its upsets Irr(H)+. We define the
map ϕH : H → Irr(H)+ by setting for every a ∈ H

ϕH (a) := {P ∈ Irr(H) : a ∈ P}. (2)

This map is well defined since ϕH (a) is an upset of Irr(H).
When the algebra H is clear from the context, we will use
ϕ instead of ϕH . Corollary 11 implies that ϕ is a one-to-one
map. Hence, ϕ is an order embedding from the poset (H ,≤),
where ≤ is the natural order of H , into the complete lattice
(Irr(H)+,⊆); therefore, ((Irr(H)+,⊆), ϕ) is a completion
of (H ,≤).

The operation ⇒ on Irr(H)+, defined by condition (1) in
Sect. 2, is such that for every a, b ∈ H

ϕ(a) ⇒ ϕ(b) = ϕ(a → b).

Indeed, if P ∈ ϕ(a → b), P ⊆ Q ∈ Irr(H) and
a ∈ Q, then, since Q is an implicative filter, we have
b ∈ Q. It follows that ϕ(a → b) ⊆ ϕ(a) ⇒ ϕ(b). Con-
versely, if P /∈ ϕ(a → b), using Corollary 11 there is
Q ∈ Irr(H) such that P ⊆ Q, a ∈ Q, and b /∈ Q. It
follows then that P /∈ ϕ(a) ⇒ ϕ(b). Hence, we obtain
the other inclusion. Moreover ϕ(1) = Irr(H) and therefore
the map ϕ is an embedding from H into the Hilbert alge-
bra (ϕ[H ],⇒, Irr(H)), which is a subalgebra of the {→, 1}-
reduct of the Heyting algebra of the upsets of Irr(H).

Remark 13 The completion ((Irr(H)+,⊆), ϕH ) of the poset
(H ,≤) is a �1-completion in the sense of Gehrke et al.
(2013). In González (2019), it is proved that it is indeed the
(Fil(H), Id(H))-completion of (H ,≤) and that the operation
⇒ is the π -extension of the operation → of H to Irr(H)+.

Using that Irr(H)+ is a Heyting algebra and the fact that
ϕ is an embedding from H to (ϕ[H ],⇒, Irr(H)), it is easy
to see that for every a1, . . . , an, b ∈ H ,
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ϕ(a1) ∩ · · · ∩ ϕ(an) ⇒ ϕ(b) = ϕ(a1 → (. . . (an → b) . . .)).

Let H ∈ Hil. We consider the bounded semilattice
(Irr(H)+,∩, Irr(H)) and the subalgebra generated by ϕ[H ],
which is, of course, a bounded semilattice. We denote it, as
well as its domain, by 〈ϕ[H ]〉. Since Irr(H) = ϕ(1) ∈ ϕ[H ],
the elements of 〈ϕ[H ]〉 are the sets of the form

U = ϕ(a1) ∩ · · · ∩ ϕ(an)

for some a1, . . . , an ∈ H .

Proposition 14 For every Hilbert algebra H, the set 〈ϕ[H ]〉
is closed under the operation ⇒ of Irr(H)+.

Proof Let U , V ∈ 〈ϕ[H ]〉. Assume that U = ϕ(a1) ∩
· · · ∩ ϕ(an) and V = ϕ(b1) ∩ · · · ∩ ϕ(bm), where
a1, . . . , an, b1, . . . , bm ∈ H . Then,

U ⇒ V = ϕ(a1) ∩ · · · ∩ ϕ(an) ⇒ ϕ(b1) ∩ · · · ∩ ϕ(bm).

Using that Irr(H)+ is a Heyting algebra, we have

U ⇒ V =
⋂

1≤i≤m

ϕ(a1) ∩ · · · ∩ ϕ(an) ⇒ ϕ(bi ).

Now, for every 1 ≤ i ≤ m we have

ϕ(a1) ∩ · · · ∩ ϕ(an) ⇒ ϕ(bi ) = ϕ(a1 → (. . . (an → bi ) . . .)).

It follows that U ⇒ V ∈ 〈ϕ[H ]〉. ��
The proposition implies that the algebra

L(H) := (〈ϕ[H ]〉,∩,⇒, Irr(H))

is an implicative semilattice.

Lemma 15 Let h : H1 → H2 be a homomorphism of Hilbert
algebras. If a1, . . . , an, b1, . . . , bm ∈ H are such that

ϕH1(a1) ∩ · · · ∩ ϕH1(an) ⊆ ϕH1(b1) ∩ · · · ∩ ϕH1(bm),

then

ϕH2 (h(a1)) ∩ · · · ∩ ϕH2 (h(an)) ⊆ ϕH2 (h(b1)) ∩ · · · ∩ ϕH2 (h(bm)).

Proof Let a1, . . . , an, b1, . . . , bm ∈ H with ϕH1(a1) ∩
· · · ∩ ϕH1(an) ⊆ ϕH1(b1) ∩ · · · ∩ ϕH1(bm). Suppose that
P ∈ ϕH2(h(a1)) ∩ · · · ∩ ϕH2(h(an)). Then, a1, . . . , an ∈
h−1[P]. Suppose that there is bi with 1 ≤ i ≤ m such
that h(bi ) /∈ P . Then, bi /∈ h−1[P]. Thus, there exists
Q ∈ Irr(H) such that bi /∈ Q and h−1[P] ⊆ Q. It fol-
lows that Q ∈ ϕH1(a1) ∩ · · · ∩ ϕH1(an), and the assumption
implies that bi ∈ Q, which is a contradiction. Therefore,
P ∈ ϕH2(h(b1)) ∩ · · · ∩ ϕH2(h(bm)). This concludes the
proof. ��

Proposition 16 Let h : H1 → H2 be a homomorphism of
Hilbert algebras. Then, there exists a unique homomorphism
ĥ : L(H1) → L(H2) such that ϕH2 ◦ h = ĥ ◦ ϕH1 , i.e., that
makes the following diagram to commute:

H1
ϕH1

h

L(H1)

ĥ

H2
ϕH2

L(H2).

Proof First we show that if such a homomorphism exists, it
is unique. Suppose that f : L(H1) → L(H2) is a homomor-
phism such that ϕH2 ◦ h = f ◦ ϕH1 . Let U = ϕH1(a1) ∩
· · · ∩ ϕH1(an) ∈ 〈ϕH1 [H1]〉 with a1, . . . , an ∈ H1. Then,
f (U ) = f (ϕH1(a1))∩· · ·∩ f (ϕH1(an)) = ϕH2(h(a1))∩· · ·∩
ϕH2(h(an)). This implies that if f1, f2 : L(H1) → L(H2)

are homomorphism such that ϕH2 ◦ h = f1 ◦ ϕH1 and
ϕH2 ◦ h = f2 ◦ ϕH1 , then for every U ∈ 〈ϕH1 [H1]〉,
f1(U ) = f2(U ).
Now we prove the existence. We define ĥ : L(H1) →

L(H2) by setting for every U ∈ 〈ϕH1 [H1]〉:

ĥ(U ) = ϕH2(h(a1)) ∩ · · · ∩ ϕH2(h(an)),

where a1 . . . , an ∈ H1 are such that U = ϕH1(a1) ∩
· · · ∩ ϕH1(an). Lemma 15 implies that the map ĥ is well
defined. Note that in particular ĥ(ϕH1(a)) = ϕH2(h(a)). It
is immediate to see that ϕH2 ◦ h = ĥ ◦ ϕH1 , that for all
U , V ∈ Irr(H) it holds that ĥ(U ∩ V ) = ĥ(U ) ∩ ĥ(V ),
and that ĥ(Irr(H1)) = Irr(H2). It remains to show that
ĥ(U ⇒ V ) = ĥ(U ) ⇒ ĥ(V ) for all U , V ∈ Irr(H).
Suppose that U = ϕH1(a1) ∩ · · · ∩ ϕH1(an) and V =
ϕH1(b1)∩· · ·∩ϕH1(bm). Reasoning as in the proof of Propo-
sition 14 we have

U ⇒ V =
⋂

1≤i≤m

ϕH1(a1 → (. . . (an → bi ) . . .)).

Hence, ĥ(U ⇒ V ) = ⋂
1≤i≤m ϕH2(h(a1 → (. . . (an →

bi ) . . .))). It easily follows that

ĥ(U ⇒ V ) =
⋂

1≤i≤m

ϕH2 (h(a1)) ∩ · · · ∩ ϕH2 (h(an)) ⇒ ϕH2 (h(bi )).

The last expression is equal to ĥ(U ) ⇒ ĥ(V ). We conclude
that ĥ is the desired homomorphism. ��

Using the results above, the next proposition easily fol-
lows.

Proposition 17 The assignments H �→ L(H) and h �→ ĥ
define a functor ( )IS : Hil → IS.

123



On the free frontal implicative semilattice extension of a frontal Hilbert algebra 10641

Recall that if H ∈ IS, a subset F ⊆ H is said to be a filter
if it is an upset, 1 ∈ F , and a∧b ∈ F whenever a, b ∈ F . It is
part of the folklore that if H ∈ IS, then the set of implicative
filters of H is equal to the set of filters of H .

Let U be the forgetful functor from IS to Hil; namely,
U sends every implicative semilattice to its Hilbert algebra
reduct and the homomorphisms accordingly.

Proposition 18 Let H be a Hilbert algebra and let A be an
implicative semilattice. Consider the {→, 1}-reduct U(A) of
A and a homomorphism h : H → U(A). Then, there exists a
unique homomorphism h : L(H) → A such that h = h◦ϕH .

Proof Straightforward computations show that the map
ϕU(A) : U(A) → L(U(A)), that we abbreviate in this proof
as ϕA, is in fact an isomorphism between A and L(U(A)),
because ϕA(a) ∩ ϕA(b) = ϕA(a ∧ b) for every a, b ∈ A. By
Proposition 16, we have that there exists a unique homomor-
phism ĥ : L(H) → L(U (A)) such that ĥ ◦ ϕH = ϕA ◦ h.
Let h : L(H) → A be the map ϕ−1

A ◦ ĥ. Then, it follows that
h = h ◦ϕH . This proves the existence. To prove uniqueness,
suppose that f1, f2 : L(H) → A are such that h = f1 ◦ ϕH

and h = f2 ◦ ϕH . Then, ϕA ◦ h = (ϕA ◦ f1) ◦ ϕH and
ϕA ◦ h = (ϕA ◦ f2) ◦ ϕH . Therefore, Proposition 16 also
implies that ϕA ◦ f1 = ϕA ◦ f2. Since ϕA is one-to-one, it
follows that f1 = f2. ��

Let IHil be the identity functor inHil. From Proposition 16,
it follows that the morphisms ϕH : H → L(H) establish a
natural transformation from IHil to the functor U◦ ( )IS. Then,
using Proposition 18 we obtain the following result.

Theorem 19 The functor ( )IS : Hil → IS is left adjoint to U.

An algebra (H ,→, 0, 1) of type (2, 0, 0) is a bounded
Hilbert algebra if (H ,→, 1) is a Hilbert algebra and 0 ≤ a
for every a ∈ A. We write Hil0 for the algebraic category
of bounded Hilbert algebras. An algebra (H ,∧,→, 0, 1)
of type (2, 2, 0, 0) is a bounded implicative semilattice if
(H ,∧,→, 1) is an implicative semilattice and 0 ≤ a for
every a ∈ H . We write IS0 for the algebraic category of
bounded implicative semilattices. Note that if H is a bounded
Hilbert algebra, then ϕH (0) = ∅ and therefore the bot-
tom element of the Heyting algebra Irr(H)+ belongs to the
implicative semilattice 〈ϕH [H ]〉 and hence it is a bounded
implicative semilattice. We define the functors ( )IS : Hil0 →
IS0 and U similarly to those of Theorem 19. Straightforward
modifications of propositions 16 and18 and their proofs show
the following result.

Corollary 20 The functor ( )IS : Hil0 → IS0 is left adjoint to
U.

3 An adjunction between FHil and FIS

A frontal operator in a Hilbert algebra resembles a modal
operator � in a Boolean algebra or in a distributive lattice in
many respects. Let (H , τ ) be a frontal Hilbert algebra. We
can extend τ to the algebra Irr(H)+ in a similar way as in a
normal modal algebra we extend � to the powerset algebra
of the ultrafilters or in a distributive lattice with a normal �
we extend it to the distributive lattice of the upsets of the
poset of its prime filters. We do it in the next definition.

Definition 21 Let (H , τ ) ∈ FHil. We define the map τπ :
Irr(H)+ → Irr(H)+ in the following way:4

P ∈ τπ (U )⇐⇒ (∀Q ∈ Irr(H))(τ−1[P] ⊆ Q�⇒Q ∈ U ).

Note that the map is well defined since from the definition it
follows that τπ (U ) is an upset.

The restriction of τπ to ϕ[H ] is in fact (modulo isomor-
phism) τ as shown in the next lemma.

Lemma 22 Let (H , τ ) be a frontal Hilbert algebra. Then, for
every a ∈ H

ϕ(τ(a)) = τπ (ϕ(a)).

Proof Let P ∈ ϕ(τ(a)), i.e., τ(a) ∈ P . Let Q ∈ Irr(H)

such that τ−1[P] ⊆ Q. Then, a ∈ Q. Thus, it follows that
ϕ(τ(a)) ⊆ τπ (ϕ(a)). To prove the other inclusion, let P ∈
τπ (ϕ(a)) and assume that τ(a) /∈ P . Thus, a /∈ τ−1[P].
Since it holds that τ(1) = 1 and τ(a → b) ≤ τ(a) → τ(b)
for every a, b ∈ H , it follows that τ−1[P] is an implicative
filter. Therefore, there is Q ∈ Irr(H) such that τ−1[P] ⊆ Q
and a /∈ Q, which is a contradiction with the fact that P ∈
τπ (ϕ(a)). ��

In the sequel, we prove that if (H , τ ) ∈ FHil, then
(Irr(H)+, τπ ) is a frontal Heyting algebra. (In particular,
the appropriate reducts are a frontal implicative semilattice
and a frontal Hilbert algebra).

Proposition 23 For every frontal Hilbert algebra (H , τ ), the
algebra (Irr(H)+, τπ ) is a frontal Heyting algebra and ϕ

is an embedding of frontal Hilbert algebras from (H , τ ) to
(Irr(H)+, τπ ).

Proof First of all note that for every P ∈ Irr(H)+, P ⊆
τ−1[P]. This holds because a ≤ τ(a) for every a ∈ H .

Let U ∈ Irr(H)+. We show that U ⊆ τπ (U ). To this
end, let P /∈ τπ (U ). Thus, there exists Q ∈ Irr(H) such that

4 The use of the superscript π indicates that the definition produces the
π -extension of τ to Irr(H)+.
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τ−1[P] ⊆ Q and Q /∈ U . Since P ⊆ τ−1[P], P ⊆ Q. But
Q /∈ U , therefore P /∈ U .

Straightforward computations based on the definition of
τπ show that for allU , V ∈ Irr(H)+, τπ (U∩V ) = τπ (U )∩
τπ (V ).

Finally, we see that τπ (U ) ⊆ V ∪ (V ⇒ U ), for every
U , V ∈ Irr(H)+. Suppose that there exists P ∈ τπ (U ) such
that P /∈ V ∪ (V ⇒ U ). Hence, P /∈ V and there exists
Q ∈ Irr(H) such that P ⊆ Q, Q ∈ V and Q /∈ U . Since
P ∈ τπ (U ) and Q /∈ U , we have τ−1[P] � Q, which
implies that there exists a ∈ H such that τ(a) ∈ P and
a /∈ Q. Also notice that Q � P because P /∈ V , Q ∈ V
and P ⊆ Q. Hence, there exists b ∈ H such that b ∈ Q
and b /∈ P . Since τ(a) ∈ P and b /∈ P , it follows from
Lemma 12 that b → a ∈ P , so b → a ∈ Q. As b ∈ Q, it
follows that a ∈ Q, which is a contradiction. We conclude
that τπ (U ) ⊆ V ∪ (V ⇒ U ).

Therefore, we have shown that (Irr(H)+, τπ ) is a frontal
Heyting algebra. ��
Corollary 24 The variety FHil of the frontal Hilbert algebras
is the class of the frontalHilbert subreducts of frontalHeyting
algebras.

Proof Let V the class of the frontal Hilbert subreducts of
frontal Heyting algebras. It is immediate that V ⊆ FHil. Con-
versely, let (H , τ ) ∈ FHil. It follows from Proposition 23 that
ϕ is an embedding of frontal Hilbert algebras from (H , τ ) to
(Irr(H)+, τπ ). Since (Irr(H)+, τπ ) is also a frontal Heyting
algebra, it follows that (H , τ ) ∈ V . Thus, FHil ⊆ V . ��

Let (H , τ ) ∈ FHil and U ∈ L(H). Then, there exist
a1, . . . , an ∈ H such that U = ϕ(a1) ∩ · · · ∩ ϕ(an). Since
τπ is a frontal operator on the Heyting algebra Irr(H)+,
τπ (U ) = ϕ(τ(a1)) ∩ · · · ∩ ϕ(τ(an)) ∈ L(H). It follows
from Proposition 23 that the restriction of τπ to L(H) is a
function τπ : L(H) → L(H) which is a frontal operator
on L(H). Taking into account Proposition 17, we obtain the
following result.

Corollary 25 Let (H , τ ) ∈ FHil. Then, (L(H), τπ ) ∈ FIS.

If h : (H1, τ1) → (H2, τ2) is a morphism in FHil, then
h : H1 → H2 is amorphism inHil. Therefore, it follows from
Proposition 17 that hIS : L(H1) → L(H2) is a morphism
in IS. In the sequel, we prove that hIS : (L(H1), τ

π
1 ) →

(L(H2), τ
π
2 ) is also a morphism in FIS.

Lemma 26 Let h : (H1, τ1) → (H2, τ2) be a morphism in
FHil. Then, the function hIS : (L(H1), τ

π
1 ) → (L(H2), τ

π
2 ) is

a morphism in FIS.

Proof We only need to prove that hIS(τπ
1 (U )) = τπ

2 (hIS(U ))

for every U ∈ L(H1). Let U ∈ L(H1), so there exist
a1, . . . , an ∈ H1 such that U = ⋂n

i=1 ϕH1(ai ). Taking into

account that hIS is a morphism in IS and that hIS(ϕH1(a)) =
ϕH2(h(a)), we have

hIS(τπ
1 (U )) = hIS

(⋂n
i=1 ϕH1(τ1(ai ))

)

= ⋂n
i=1 h

IS(ϕH1(τ1(ai )))
= ⋂n

i=1 ϕH2(h(τ1(ai )))
= ⋂n

i=1 ϕH2(τ2(h(ai )))
= τπ

2

(⋂n
i=1 ϕH2(h(ai ))

)

= τπ
2

(⋂n
i=1 h

IS(ϕH1(ai ))
)

= τπ
2

(
hIS

(⋂n
i=1 ϕH1(ai )

))

= τπ
2 (hIS(U )).

Therefore, hIS(τπ
1 (U )) = τπ

2 (hIS(U )), which was our aim. ��
Then, we obtain the next proposition.

Proposition 27 The functor ( )IS : Hil → IS can be extended
to a functor ( )FIS : FHil → FIS.

The next theorem follows from Propositions 19, 27, and
the fact that if (H , τ ) ∈ FIS, then ϕ : (H , τ ) → (L(H), τπ )

is an embedding.

Theorem 28 The functor ( )FIS : FHil → FIS is left adjoint to
the forgetful functor U : FIS → FHil.

Let FHil0 be the algebraic category of frontal bounded
Hilbert algebras and FIS0 the algebraic category of frontal
bounded implicative semilattices.

The following corollary is a consequence of Corollary 20
together with similar ideas to those used to obtain Proposi-
tion 27 and Theorem 28.

Corollary 29 The functor ( )FIS : FHil → FIS can be extended
to a functor ( )FIS : FHil0 → FIS0 that is left adjoint to the
forgetful functor U : FIS0 → FHil0.

4 An adjunction between Hil� and IS�

A set E( f ) of equations in the signature of Heyting algebras
augmented with the unary function symbol f is said to define
an implicit operation of Heyting algebras if for any Heyting
algebra H there is at most one function fH : H → H that
satisfies the equations. When all these fH are compatible, it
is said that E( f ) defines an implicit compatible operation.
Implicit and compatible operationswere introduced and stud-
ied by Caicedo and Cignoli (2001). In particular, one of them
was called a γ -operator (Caicedo and Cignoli 2001, Exam-
ple 3.1). This operator can be alternatively defined as a frontal
operator that satisfies some extra conditions. More precisely,
a frontal operator τ on a Heyting algebra H is a γ -operator
if it satisfies :

(1) ¬τ(0) = 0
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(2) τ(a) ≤ a ∨ τ(0), for every a ∈ H .

In Castiglioni et al. (2010, Proposition 2.4), it is shown
that a unary map γ on a Heyting algebra H is a γ -operator
if and only if it satisfies the following conditions we find in
Caicedo and Cignoli (2001, Example 3.1):

(1) ¬γ (0) = 0
(2) γ (0) ≤ a ∨ ¬a,
(3) γ (a) = a ∨ γ (0).

for every a ∈ H .
Note that the condition γ (a) = a ∨ γ (0) can be replaced

by γ (a) ≤ a ∨ γ (0). If a γ -operator τ on H exists, it is
unique since it is characterized by the condition

τ(a) = min {b : ¬b ∨ a ≤ b},

for every a ∈ H , as it is proved in Castiglioni et al. (2010).
For this reason, when a γ -operator on H exists, it is denoted
by γ . The operator γ exists in every finite Heyting algebra
(see Caicedo and Cignoli 2001); however, there are Heyting
algebras (necessarily infinite) where there is no γ -operator.
For example, if we consider the real interval [0, 1] with the
usual order, then there is no γ -operator in its associatedHeyt-
ing algebra.

In Castiglioni and San Martín (2015), the notion of a
γ -operator was generalized to the framework of bounded
Hilbert algebras. As in Heyting algebras, if H ∈ Hil0 and
a ∈ H , we define ¬a := a → 0. Let us say that a frontal
operator τ on a bounded Hilbert algebra H is a γ -operator
if it satisfies for every a, b ∈ H the following conditions:

(g4) ¬τ(a) ≤ τ(a).
(g5) τ(a) ≤ (a → b) → ((¬b → b) → b)).

Let τ be a unary map on a bounded Hilbert algebra H . In
Castiglioni and San Martín (2015, Section 3, Proposition 7),
we find proved the following fact: the map τ is a γ -operator
if and only if for every a ∈ H the condition

τ(a) = min {b ∈ H : ¬b ≤ b and a ≤ b}

is satisfied. Thus, there is at most one γ -operator on a
bounded Hilbert algebra. But γ -operators may not exist. In
Castiglioni and San Martín (2015, Section 3, Example 14),
in contrast with the case of Heyting algebras, we find exam-
ples of finite bounded Hilbert algebras that lack a γ -operator.
When a γ -operator on H exists, it will be denoted by γ , as
we did already for Heyting algebras.

Note that if H ∈ Hil0 and b ∈ H , then ¬b ≤ b if and
only if ¬b = 0. Then, condition (g4) can be replaced by
¬γ (a) = 0.

Lemma 30 Let H ∈ Hil0 and f : H → H a function which
is monotone w.r.t. the natural order. Then, ¬ f (a) = 0 for
every a ∈ H if and only if ¬ f (0) = 0.

Proof Suppose that ¬ f (0) = 0 and let a ∈ H . Since 0 ≤
a, then f (0) ≤ f (a), so ¬ f (a) ≤ ¬ f (0) = 0. Hence,
¬ f (a) = 0. ��

The next corollary easily follows.

Corollary 31 Let H ∈ Hil0. A frontal operator τ on H is
a γ -operator if and only if ¬τ(0) = 0 and condition (g5)
holds.

WewriteHilγ for the algebraic category whose objects are
the algebras (H , γ ) where H ∈ Hil0 and γ is a γ -operator.
In a similar way, we define the category ISγ .

Let H ∈ Hil0. For every a ∈ H , we define the set

γa := {b ∈ H : ¬b ≤ b and a ≤ b}.

Proposition 32 Let H ∈ IS0. For every a ∈ H, the set γa is a
filter. Moreover, if H is finite, then there exists the minimum
of γa for every a ∈ H, i.e., H has a γ -operator.

Proof Let a ∈ H . It is immediate that 1 ∈ γa and that γa
is an upset. In what follows, we will show that if b, c ∈ γa ,
then b ∧ c ∈ γa . Let b, c ∈ γa , i.e., ¬b ≤ b, ¬c ≤ c, a ≤ b
and a ≤ c. Thus, ¬b = ¬c = 0 and a ≤ b ∧ c. Then,
(b ∧ c) → 0 = b → (c → 0) = b → 0 = 0. Hence,
b ∧ c ∈ γa . ��

The following is Castiglioni and San Martín (2015, Sec-
tion 4, Lemma 15).

Lemma 33 Let (H , γ ) ∈ Hilγ . Then, ϕ(γ (a)) = ϕ(a) ∪
(Irr(H))M for every a ∈ H.

Let (P,≤)be a poset.Note that ifU ∈ P+, thenU∪XM ∈
P+.

Lemma 34 Let (H , γ ) ∈ Hilγ . Then, (Irr(H)+, γ π ) ∈ ISγ .
Moreover, γ π takes the form γ π(U ) = U ∪ (Irr(H))M.

Proof Wealready know that γ π is a frontal operator. To prove
that it is a γ -operator, we first show that γ π(∅) = (Irr(H))M .
Let P ∈ (Irr(H))M . From Corollary 31, we know that
¬γ (0) /∈ P , so there exists Q ∈ Irr(H) such that P ⊆ Q
and γ (0) ∈ Q. Thus, P = Q. Since γ (0) ∈ Q, then
γ (0) ∈ P . Therefore, since γ is monotone, for every a ∈ H ,
γ (a) ∈ P , i.e., γ −1[P] = H . Then, P ∈ γ π(∅). Thus,
(Irr(H))M ⊆ γ π(∅). Conversely, assume that P ∈ γ π(∅)

and that P /∈ (Irr(H))M . It follows from Lemma 33 that
ϕ(γ (0)) = (Irr(H))M , so γ (0) /∈ P , i.e., 0 /∈ γ −1[P].
Hence, there exists Q ∈ Irr(H) such that γ −1[P] ⊆ Q,
which contradicts the fact that P ∈ γ π(∅). We conclude that
γ π(∅) ⊆ (Irr(H))M . Hence, γ π(∅) = (Irr(H))M .
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Next we see that ¬γ π(∅) = ∅. Since (Irr(H))M =
γ π(∅), ¬γ π(∅) = ¬(Irr(H))M . But ¬(Irr(H)M ) =
((Irr(H))M ]c. Since ϕ(0) = ∅, it follows from Lemma 33
that ((Irr(H))M ] = Irr(H). Then, ¬γ π(∅) = ∅.

Now we show that γ π(U ) ⊆ U ∪ γ π(∅) for every U ∈
Irr(H)+. Let U ∈ Irr(H)+ and P ∈ γ π(U ). Suppose that
P /∈ U and P /∈ γ π(∅). The fact that P ∈ γ π(U ) together
with P /∈ U implies that γ −1[P] � P . Thus, there exists
a ∈ H such that γ (a) ∈ P and a /∈ P . It follows from
Lemma 33 that ϕ(γ (a)) = ϕ(a) ∪ (Irr(H))M . Since γ (a) ∈
P and a /∈ P , we have P ∈ (Irr(H))M . At the beginning
of the proof, it was established that γ π(∅) = (Irr(H))M ,
so P ∈ γ π(∅), which is a contradiction. Hence, γ π(U ) ⊆
U ∪ γ π(∅). Then, γ π is the γ -operator on Irr(H)+, and
therefore (Irr(H)+, γ π ) ∈ ISγ .

Finally, we see that γ π(U ) = U ∪ (Irr(H))M for every
U ∈ Irr(H)+. LetU ∈ Irr(H)+. Since γ π(U ) ⊆ U ∪γ π(∅)

and γ π(∅) = (Irr(H))M , it follows that γ π(U ) ⊆ U ∪
(Irr(H))M . On the other hand,U ⊆ γ π(U ) and (Irr(H))M =
γ π(∅) ⊆ γ π(U ), because ∅ ⊆ U . Hence,U ∪ (Irr(H))M ⊆
γ π(U ). Therefore, we obtain that γ π(U ) = U ∪ (Irr(H))M .

��
In particular, we have that if (H , γ ) ∈ Hilγ , then

(L(H), γ π ) ∈ ISγ . This follows from the facts that, being
γ π a frontal operator, L(H) is closed under γ π and that in a
Heyting algebra the existence of γ is equivalent to the exis-
tence of a frontal operator τ that satisfies ¬τ(0) = 0 and
τ(a) ≤ a ∨ τ(0) for every a.

The following proposition follows from Corollary 29 and
Lemma 34.

Proposition 35 The functor ( )FIS : FHil0 → FIS0 can be
restricted to a functor ( )FIS : Hilγ → ISγ that is left adjoint
to the forgetful functor U : ISγ → Hilγ .

5 An adjunction between HilS and ISS

In Kuznetsov (1985), Kuznetsov introduced a new unary
operation on Heyting algebras as an attempt to build an intu-
itionistic versionof the provability logic ofGödel-Löb,which
formalizes the concept of provability in Peano Arithmetic.
This unary operation, which we shall call successor, was also
studied by Caicedo and Cignoli (2001) and by Esakia (2006).
A unary operation S on aHeyting algebra is a successor oper-
ation if it satisfies for very a ∈ H the following conditions:

(1) a ≤ S(a),
(2) S(a) ≤ b ∨ (b → a),
(3) S(a) → a = a.

The conditions a ≤ S(a) and S(a) → a = a can be replaced
by the single condition S(a) → a ≤ S(a), as it was shown in

Castiglioni et al. (2010). In Castiglioni et al. (2010, Propo-
sition 2.3), it was proved that in fact a unary map S on a
Heyting algebra H is a successor operation if and only if it
is a frontal operator that satisfies S(a) → a = a for every
a ∈ H .

Moreover, in Castiglioni et al. (2010) it was also proved
that a unary operation S on aHeyting algebra H is a successor
operation if and only if for every a ∈ H it holds that

S(a) = min{b : b → a ≤ b}.

Therefore, if a successor operation exists on a Heyting alge-
bra, then it is unique. The successor operation exists in all
finite Heyting algebras (see Caicedo and Cignoli 2001), but
there are examples of Heyting algebras where there is no
successor operation.

Let (P,≤) be a poset. We know that P+ is a complete
Heyting algebra. In what follows, we will see that the exis-
tence of a successor operation in P+ can be easily described
in terms of a certain condition on (P,≤). This result provides
examples of complete Heyting algebras without a successor
operation.

Recall that a poset (P,≤) satisfies the ascending chain
condition (ACC) if every strictly ascending sequence of
elements eventually terminates. Equivalently, given any
sequence x1 ≤ x2 ≤ x3 ≤ · · · there exists a natural num-
ber n such that xn = xm for every m ≥ n. It is known that
the (ACC) is equivalent to the following condition: every
nonempty subset of P has a maximal element. Notice that
straightforward computations show that the (ACC) is also
equivalent to the following condition, that will be called
(P): for every downset V of (P,≤), if x ∈ V , then there
exists y ∈ VM such that x ≤ y. Moreover, the condition (P)
is equivalent to the following one: for every downset V of
(P,≤), V = (VM ].

Let (P,≤) be a poset. Consider the co-derivative frontal
operator τ : P+ → P+, that, as we saw in Corollary 5, sat-
isfies that τ(U ) = U ∪ (Uc)M for every U ∈ P+. It follows
that for every U ∈ P+, τ(U ) ⇒ U = ((Uc)M ]c. There-
fore, τ is a successor operation on P+ if and only if (P,≤)

satisfies the (ACC). This property can also be obtained from
results in Kuznetsov (1979).

The following question arises then naturally: Is the (ACC)
satisfied when P+ has successor operation? The next theo-
rem answers it in the positive.

Theorem 36 Let (P,≤)beaposet. Then, P+ has a successor
operation if and only if (P,≤) satisfies (ACC).

Proof It follows from the discussion above that if (P,≤)

satisfies the (ACC), then P+ has a successor operation S that
takes the form S(U ) = U ∪ (Uc)M for every U ∈ P+.

Conversely, suppose that P+ has a successor operation S.
Let us consider the co-derivative frontal operator τ : P+ →
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P+. To see that (P,≤) has the (ACC), it is enough to see
that τ = S. To this end, we prove first the following claims.

Claim 1. If f is a frontal operator on P+, then f (U ) ⊆
S(U ) for every U ∈ P+. In order to prove it, let U ∈ P+.
Then, since f is a frontal operator we have f (U ) ⊆ S(U ) ∪
(S(U ) ⇒ U ) = S(U ) ∪U = S(U ).

Claim 2. If {Ui }i∈I ⊆ P+, then S(
⋂

i∈I Ui ) ⊆⋂
i∈I S(Ui ). This holds because S is a monotone map.
Claim 3. In P+, the operator τ preserves arbitrary meets.

In order to show it, let {Ui }i∈I ⊆ P+. The monotonicity of τ
implies that τ(

⋂
i∈I Ui ) ⊆ ⋂

i∈I τ(Ui ). Conversely, let x ∈⋂
i∈I τ(Ui ). If x ∈ ⋂

i∈I Ui , then x ∈ τ(
⋂

i∈I Ui ). On the
contrary, if x /∈ ⋂

i∈I Ui , let us see that x ∈ ((
⋂

i∈I Ui )
c)M .

To this end, suppose that x ≤ y with y /∈ ⋂
i∈I Ui . Thus,

there exists j ∈ I such that y /∈ Uj , and beingUj an upset we
have x /∈ Uj . Hence, since x ∈ τ(Uj ), x ∈ (Uc

j )M . There-
fore, x = y. We conclude that τ(

⋂
i∈I Ui ) = ⋂

i∈I τ(Ui ).
Claim 4: For every x ∈ P , S((x]c) = τ((x]c) = (x]c ∪

{x}. In order to prove it, first note that τ((x]c) ⇒ (x]c = (x]c.
On the other hand, by Claim 1 we know that τ((x]c) ⊆
S((x]c). Using that τ is a frontal operator on the Heyting
algebra P+ and the fact that τ((x]c) ⇒ (x]c = (x]c, we will
prove that S((x]c) ⊆ τ((x]c) as follows:

S((x]c) ⊆ τ((x]c) ∪ (τ ((x]c) ⇒ (x]c)
= τ((x]c) ∪ (x]c
= τ((x]c).

Thus, S((x]c) = τ((x]c).
Now we use the previous claims to show that for every

U ∈ P+ we have τ(U ) = S(U ). To this end, we first note
that for every downset V it clearly holds that V = ⋃

x∈V (x].
Thus, for very upset U we have U = ⋂

x∈Uc (x]c. Let U ∈
P+. Then,

τ(U ) ⊆ S(U )

= S
(⋂

x∈Uc (x]c)
⊆ ⋂

x∈Uc S((x]c)
= ⋂

x∈Uc τ((x]c)
= τ

(⋂
x∈Uc (x]c)

= τ(U ).

Therefore, τ(U ) = S(U ), which was our aim. ��
Theorem 36 implies that not every Heyting algebra has

a successor operation. Indeed, if (P,≤) is a poset that does
not satisfy the (ACC), then the Heyting algebra P+ has no
successor. This can be used to give an example of a Heyting
algebra with successor (H , S) such that the Heyting algebra
Irr(H)+ of the upsets of the partial order of the irreducible
implicative filters of H (which are the prime filters of H )
does not have a successor operation. For instance, if N0 is
the set of natural numbers with its inverse order, and ⊕ is
the ordinal sum of posets (see Balbes and Dwinger 1974,

p. 39), then N ⊕ N0 is a Heyting algebra with successor
operation. However, (Irr(N⊕N0))+ is not a Heyting algebra
with successor operation because the (ACC) is not satisfied
in the poset Irr(N⊕N0). The fact that (Irr(N⊕N0))+ is not a
Heyting algebrawith successor operationwas alsomentioned
in Castiglioni and San Martín (2012).

In Castiglioni and San Martín (2015), the successor oper-
ation defined on Heyting algebras was generalized to the
setting of Hilbert algebras.

Let H ∈ Hil. A unary function S : H → H is a successor
operation if for every a, b ∈ H the following conditions are
satisfied:

(S1) S(a) ≤ ((b → a) → b) → b,
(S2) S(a) → a ≤ S(a).

for every a, b ∈ H .
It follows from Castiglioni and San Martín (2015, Sec-

tion 3, Corollary 4) and Castiglioni and San Martín (2015,
Section 3, Proposition 5) that a unary function S on a Hilbert
algebra H is a successor operation if and only if it is a frontal
operator that satisfies the equality

S(a) → a = a

for every a ∈ H . Moreover, it was also proved in Castiglioni
andSanMartín (2015) that a unarymap S on aHilbert algebra
is a successor operation if and only if for every a ∈ H ,

S(a) = min {b ∈ H : b → a ≤ b}.

Thus, if there exists a successor operation on a Hilbert alge-
bra, then it is unique. There are examples of finite Hilbert
algebraswhere no successor operation exists, see for instance
Castiglioni and San Martín (2015, Section 3, Example 14).

Definition 37 We say that an algebra (H , S) is a Hilbert
algebra with successor if H is a Hilbert algebra and S is
a successor operation.

In a similar way, we define implicative semilattices with
successor. We write HilS for the algebraic category of Hilbert
algebras with successor and ISS for the algebraic category of
implicative semilattices with successor.

Let H ∈ IS. For every a ∈ H , we define the set

Sa = {b ∈ H : b → a ≤ b}.

Proposition 38 Let H ∈ IS. For every a ∈ H, the set Sa is a
filter. Moreover, if H is finite, then there exists the minimum
of Sa for every a ∈ H, i.e., there exists a successor operation.

Proof Suppose that a ∈ H . It is immediate that 1 ∈ Sa . We
will prove that Sa is an upset. Let b ≤ c and b ∈ Sa . Thus,

123



10646 R. Jansana, H. J. San Martín

b → a ≤ b and c → a ≤ b → a. Since b ≤ c, then
c → a ≤ c, i.e., c ∈ Sa . Thus, Sa is an upset.

We proceed to show that if b, c ∈ Sa , then b ∧ c ∈ Sa .
Let b, c ∈ Sa , i.e., b → a ≤ b and c → a ≤ c. Note that
b∧((b∧c) → a) ≤ c → a ≤ c, so b∧((b∧c) → a) ≤ b∧c.
Besides,we have that b∧((b∧c) → a) ≤ (b∧c) → a. Thus,
b ∧ ((b ∧ c) → a) ≤ a and hence (b ∧ c) → a ≤ b → a.
Since b → a ≤ b, we obtain that (b∧c) → a ≤ b. Using an
analogous argument, we also obtain that (b ∧ c) → a ≤ c.
Hence, (b ∧ c) → a ≤ b ∧ c and therefore b ∧ c ∈ Sa . ��

The following lemma is Castiglioni and SanMartín (2015,
Section 4, Lemma 8).

Lemma 39 If (H , S) ∈ HilS, then ϕ(S(a)) = ϕ(a) ∪
(ϕ(a)c)M for every a ∈ H.

The next lemma will be used later.

Lemma 40 Let (P,≤) be a poset and U1, . . . ,Un ∈ P+.
Then,

n⋂

i=1

(Ui ∪ (Uc
i )M ) =

(
n⋂

i=1

Ui

)
∪

(
n⋃

i=1

Uc
i

)

M

.

Proof Consider a poset (P,≤). It follows from Corollary 5
that the co-derivative frontal operator τ of the Heyting alge-
bra P+ is such that τ(U ) = U ∪ (Uc)M , for everyU ∈ P+.
Since τ is a frontal operator on the Heyting algebra P+, then
τ preserves finite meets. Therefore, we obtain the desired
result. ��

The following lemma is a generalization of Diego (1965,
Lemma 7). To prove it, we introduce the following definition.
Let H ∈ Hil and a ∈ H . We define the set

σ(a) := {F ∈ Fil(H) : a ∈ F}.

Lemma 41 Let H be a Hilbert algebra and a1, . . . , an ∈ H.
Then,

n⋃

i=1

ϕ(ai )
c =

[(
n⋃

i=1

ϕ(ai )
c

)

M

]
.

Proof Assume that P ∈ ⋃n
i=1 ϕ(ai )c. Consider the set


 =
{
Q ∈ Fil(H) : P ⊆ Q and Q ∈

n⋃

i=1

σ(ai )
c

}
.

Since P ∈ 
, 
 �= ∅. Straightforward computations show
that if {Qi }i∈I is a chain of elements in
, then

⋃
i∈I Qi ∈ 
,

so by Zorn’s lemma there exists a maximal element in 
,
which will be denoted by Q. In what follows, we see that

Q ∈ Irr(H) by using Lemma 9. Let a, b /∈ Q. We prove that
there exists c /∈ Q such that a ≤ c and b ≤ c. Assume the
contrary, i.e., that for every c ∈ H if a ≤ c and b ≤ c, then
c ∈ Q. Thus, [a)∩[b) ⊆ Q, and hence Q = Q∨ ([a)∩[b)).
Since the lattice of implicative filters of H is distributive
(Diego 1965, Theorem6), we have Q = (Q∨[a))∩(Q∨[b))
(note that Q∨[a) = F(Q∪{a}) and Q∨[b) = F(Q∪{b})).
Since P ⊆ Q ⊂ Q ∨ [a) and P ⊆ Q ⊂ Q ∨ [b), it follows
from themaximality of Q that Q∨[a), Q∨[b) /∈ 
. In partic-
ular, we obtain that a1, . . . , an ∈ (Q∨[a))∩(Q∨[b)) = Q,
which is a contradiction. Hence, Q ∈ Irr(H) and, moreover,
Q ∈ ⋃n

i=1 ϕ(ai )c. We prove that Q is maximal in this set.
To this end, assume that Q′ ∈ Irr(H) is such that Q ⊆ Q′
and Q′ ∈ ⋃n

i=1 ϕ(ai )c. In particular, Q′ ∈ ⋃n
i=1 σ(ai )c,

so Q′ ∈ 
. Thus, Q = Q′. Therefore, P ⊆ Q with
Q ∈ (

⋃n
i=1 ϕ(ai )c)M , and hence P ∈ ((

⋃n
i=1 ϕ(ai )c)M ].

We conclude that
⋃n

i=1 ϕ(ai )c ⊆ ((
⋃n

i=1 ϕ(ai )c)M ]. The
converse inclusion is immediate. ��

It is straightforward to see that for every poset (P,≤) and
U ∈ P+, U ∪ (Uc)M ∈ P+.

Lemma 42 Let (H , S) ∈ HilS. Then, (L(H),Sß) ∈ ISS.
Moreover, Sß takes the form Sß(U ) = U ∪ (Uc)M.

Proof Suppose that U ∈ L(H); so there exist a1, . . . , an ∈
H such that U = ⋂n

i=1 ϕ(ai ). The frontal operator Sß on
Irr(H)+ applied to U gives that

Sß(U ) =
n⋂

i=1

ϕ(S(ai )).

Then, Lemma 39 implies

Sß(U ) =
n⋂

i=1

(ϕ(ai ) ∪ (ϕ(ai )
c)M ).

Now using Lemma 40 we obtain that

Sß(U ) =
n⋂

i=1

ϕ(ai ) ∪
((

n⋂

i=1

ϕ(ai )

)c)

M

.

Therefore, Sß(U ) = U ∪ (Uc)M . Since Sß is a frontal oper-
ator, to show that it is a successor we only need to prove that
Sß(U ) ⇒ U = U . This holds if and only if (Uc

M ]c = U .
But it follows from Lemma 41 that (Uc

M ]c = U . There-
fore, the implicative semilattice L(H) has successor Sß and
Sß(U ) = U ∪ (Uc)M . ��

The following proposition follows from Proposition 27,
Lemma 42 and Theorem 28.

Proposition 43 The functor ( )IS : Hil → IS can be extended
to a functor ( )FIS : HilS → ISS that is left adjoint to the
forgetful functor U : ISS → HilS.
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6 An adjunction between HilG and ISG

In Caicedo and Cignoli (2001, Example 5.3), Caicedo and
Cignoli studied an example of implicit compatible operation
of Heyting algebras that was considered by Gabbay (1977).
When it exists, it is also a case of a frontal operator.

Let H be a Heyting algebra. A unary map G on H is
a Gabbay function (G-function for short) if the following
conditions are satisfied for every a, b ∈ H :

(1) G(a) ≤ b ∨ (b → a),
(2) a → b ≤ G(a) → G(b),
(3) a ≤ G(a),
(4) G(a) ≤ ¬¬a,
(5) G(a) → a ≤ ¬¬a → a.

In Castiglioni et al. (2010), it was proved that a unary map G
on a Heyting algebra is a G-function if and only if for every
a ∈ H ,

G(a) = min {b ∈ H : (b → a) ∧ ¬¬a ≤ b}.

Thus, if there is a G-function on a Heyting algebra, then
it is unique. In every finite Heyting algebra, the function
G exists (see Caicedo and Cignoli 2001). However, there
are examples of Heyting algebras where no Gabbay function
exists. In Castiglioni et al. (2010, Proposition 2.7), it was also
proved that a G-function of a Heyting algebra is a frontal
operator.

In Castiglioni and San Martín (2015), the notion of Gab-
bay function was generalized to the framework of bounded
Hilbert algebras. Let H ∈ Hil0. We say that function G :
H → H is a G-function if the inequalities (i2), (i3) hold as
well as the following additional ones:

(G4) G(a) ≤ ¬¬a,
(G5) G(a) → a ≤ ¬¬a → a.

Let H ∈ Hil0. It follows from Castiglioni and San Martín
(2015, Section 3, Corollary 19) that a unary map G is a G-
function if and only if it is a frontal operator that satisfies the
additional conditions (G4) and (G5). It is interesting to note
that in Castiglioni and SanMartín (2015, Section 3, Proposi-
tion 10) it was proved that a G-function is also characterized
by the fact that for every a ∈ H

G(a) = min {b ∈ H : b → a ≤ ¬¬a → b}.

There are examples of finite bounded Hilbert algebras where
no G-function exists, see for instance Castiglioni and San
Martín (2015, Section 3, Example 15).

WewriteHilG for the algebraic category whose objects are
the algebras (H ,G) where H ∈ Hil0 and G is a G-function.
In a similar way, we define ISG.

Let H ∈ Hil0. For every a ∈ H , we define Ga := {b ∈
H : b → a ≤ ¬¬a → b}. If H ∈ IS0, then Ga = {b ∈ H :
¬¬a ∧ (b → a) ≤ b}.
Proposition 44 Let H ∈ IS0. For every a ∈ H, the set Ga is
a filter. Moreover, if H is finite, then there exists the minimum
of Ga for every a ∈ H, i.e., there exists a G-function.

Proof Let a ∈ H . It is immediate that 1 ∈ Ga . We prove that
Ga is an upset. Let b ≤ c and b ∈ Ga . Then, ¬¬a ∧ (b →
a) ≤ b and c → a ≤ b → a. Taking into account that b ≤ c,
we deduce that ¬¬a ∧ (c → a) ≤ c, i.e., c ∈ Ga . Thus, Ga

is an upset.
We proceed to show that if b, c ∈ Ga , then b∧c ∈ Ga . Let

b, c ∈ Ga , i.e.,¬¬a∧(b → a) ≤ b and¬¬a∧(c → a) ≤ c.
Note that

¬¬a ∧ (b ∧ ((b ∧ c) → a)) ≤ ¬¬a ∧ (c → a) ≤ c,

so we get

¬¬a ∧ b ∧ ((b ∧ c) → a) ≤ b ∧ c.

Moreover, ¬¬a ∧ b ∧ ((b ∧ c) → a) ≤ (b ∧ c) → a. Thus,
¬¬a ∧ b ∧ ((b ∧ c) → a) ≤ a. It follows that ¬¬a ∧ ((b ∧
c) → a) ≤ b → a. Hence, using that b ∈ Ga ,

¬¬a ∧ ((b ∧ c) → a) ≤ ¬¬a ∧ (b → a) ≤ b,

Using an analogous argument, we obtain ¬¬a ∧ ((b∧ c) →
a) ≤ c. Therefore, ¬¬a ∧ ((b ∧ c) → a) ≤ b ∧ c, i.e.,
b ∧ c ∈ Ga . ��

The following is Castiglioni and San Martín (2015, Sec-
tion 3, Lemma 17).

Lemma 45 Let (H ,G) ∈ HilG. Then, ϕ(G(a)) = ϕ(a) ∪
(ϕ(¬¬a) ∩ (ϕ(a)c)M ) for every a ∈ H.

Let H be a bounded Hilbert algebra and a ∈ H . We have
that ϕ(¬a) = ϕ(a) ⇒ ϕ(0) = ϕ(a) ⇒ ∅. In what follows,
we write ¬ϕ(a) in place of ϕ(a) ⇒ ∅.

Let (P,≤) be a poset and let U ∈ P+. Note that U ∪
((¬¬U )∩(Uc)M ) ∈ P+, becauseU ∪((¬¬U )∩(Uc)M ) =
(U ∪ (Uc)M ) ∩ ¬¬U and U ∪ (Uc)M ∈ P+.

Lemma 46 If (H ,G) ∈ HilG, then (L(H),Gß) ∈ ISG. More-
over, Gß takes the form Gß(U ) = U ∪ ((¬¬U ) ∩ (Uc)M ).

Proof Assume thatU ∈ L(H), so there exist a1, . . . , an ∈ H
such that U = ϕ(a1) ∩ · · · ∩ ϕ(an). In what follows, we see
that Gß(U ) = U ∪ ((¬¬U ) ∩ (Uc)M ).
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It follows from Lemma 45 that ϕ(G(ai )) = ϕ(ai ) ∪
[ϕ(¬¬ai )∩(ϕ(ai )c)M ] for every i = 1, . . . , n. Hence, using
Lemma 40 we have

Gß(U ) = ⋂n
i=1 ϕ(G(ai ))

= ⋂n
i=1 ϕ(ai ) ∪ [ϕ(¬¬ai ) ∩ (ϕ(ai )c)M ]

= ⋂n
i=1(ϕ(ai ) ∪ (ϕ(ai )c)M ) ∩ ϕ(¬¬ai )

= (⋂n
i=1 ϕ(ai ) ∪ (ϕ(ai )c)M

) ∩ (⋂n
i=1 ¬¬ϕ(ai )

)

= (U ∪ (Uc)M ) ∩ ¬¬ (⋂n
i=1 ϕ(ai )

)

= (U ∪ (Uc)M ) ∩ ¬¬U .

Therefore, Gß(U ) = U ∪ ((Uc)M ∩ ¬¬U ).
Now we prove that Gß is a G-function. Let U ∈ L(H).

Then, Gß(U ) = U ∪ ((¬¬U ) ∩ (Uc)M ) ⊆ U ∪ ¬¬U =
¬¬U , so Gß(U ) ⊆ ¬¬U . Finally, we will need to prove
that Gß(U ) ⇒ U ⊆ ¬¬U ⇒ U , i.e., (¬¬U ∩ Uc] ⊆
(¬¬U ∩ (Uc)M ]. This inclusion follows from Lemma 41. ��

The following proposition follows from Corollary 29 and
Lemma 46.

Proposition 47 The functor ( )FIS : FHil0 → FIS0 can be
restricted to a functor ( )FIS : HilG → ISG that is left adjoint
to the forgetful functor U : ISG → HilG.

As in the case of Heyting algebras with successor, we have
that N ⊕ N0 is a Heyting algebra with a G-function. It can
also be proved that (Irr(N ⊕ N0))+ is not a Heyting algebra
with a G-function.
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