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Abstract
In this paper, we present a novel approach for accurate vehicle speed estimation from video sequences. Common methods

usually track sets of distinguishing features; however, feature extraction is a difficult task in dynamic environments.

Herein, we propose a novel analysis method without feature extraction. Initially, a frame difference method is applied to a

region of interest, from which projection histograms are obtained and a group of key bins are selected to represent the

vehicle motion. Then, all the possible speeds are tested one by one, and the extreme value of the testing function is selected

for the corresponding speed. The proposed system was tested on three data sets containing 2054 vehicles, where the ground

truth of speed is obtained by a radar speed detector. The experiment results show that the proposed system has an average

error of 0.3 km/h, with 99.4% of the estimation speed within the error of range (- 2 km/h, 2 km/h). The system turns out

to be robust, accurate and real time for practical use.

Keywords Vehicle speed estimation � Camera calibration � Projection histogram � Speed enumeration

1 Introduction

As an important parameter, vehicle speed is widely used

for automatic analysis of urban traffic in recent years. This

case is due, in part, to the use of various sensing modalities,

including radar, lidar, loop detectors and visual surveil-

lance. As cameras are becoming cheaper, easier to install

and of higher quality than ever before, video-based system

has become the main means for vehicle speed estimation.

Over the few past decades, with the development of

video sensing and computational technologies, vehicle

speed estimation using computer vision has been an extre-

mely active research area. In the meantime, computing

power has greatly increased, and many advanced hardware

platforms have emerged, such as multicore processing and

graphical processing unit (GPU) (Banz et al. 2011; Homm

et al. 2010), which make it possible to carry out vehicle

speed measurement in real time. In addition, new analysis

techniques based on vehicle speed estimation have enabled

new applications such as vehicle behavior analysis, traffic

condition prediction and autonomous driving.

In recent years, several video-based methods have been

proposed for vehicle speed estimation. Many of such

methods tracked sets of distinguishing features extracted

from vehicle regions, and vehicle speed was estimated by

comparing the trajectories of the tracked features to known

real-world distances. A variety of features, such as blobs

(Madasu and Hanmandlu 2010; Maduro et al. 2008), corners

(Song et al. 2014; Dogan et al. 2010), edges (Zhiwei et al.

2007; Dailey et al. 2000), image patches (Gram-

matikopoulos et al. 2005), license plates (Luvizon et al.

2016; Llorca et al. 2016) or a combination of such features

(Palaio et al. 2009) are often used for vehicle tracking.

Unfortunately, due to a lack of vehicle height information,

these features on vehicles have a limited capability to

determine the lane, as shown in Fig. 1. The trajectory,

indicated by the red line, is not actually located on the sur-

face of the road but ‘‘floating’’ above the road. The length of

trajectory is obviously shorter than the lane determination

distance. For larger vehicles like the truck or motor bus, the

lane determination will surely fail. As a result, vehicle speed

estimation will be inaccurate using these trajectories.

In this paper, instead of obtaining motion vector by

tracking features on vehicles, we use the shadow beneath

the vehicle, which is considered very close to the ground
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truth speed. In order to estimate vehicle speed without

modeling 3D space, or requiring simple camera calibration,

a few assumptions are made about the scene in the

beginning:

1. The input video is captured by a single camera, fixed

and located overhead so that the shadow beneath the

vehicle is clearly visible, as shown in Fig. 2;

2. The movement of vehicles is in constant manner;

3. Each lane lies in a plane;

4. The lane line on the road is a straight line;

5. The shadow beneath the vehicle is at approximately the

same distance as the ground one.

In reality, vehicle feature extraction is prone to be

affected by the moving status of vehicle and dynamic

environment, such as rainy and snowy days, illumination

variations and shadow effects, which will render it be

difficult, resulting in low accuracy of speed estimation. In

this paper, we adopt a new analysis method without feature

extraction. The approach is based on enumeration, which

can avoid the above problems and improve the accuracy of

speed estimation.

Figure 3 illustrates the flowchart of the proposed

approach. First, a region of interest (ROI) containing the

moving vehicle is set. A frame difference method is applied

to this region, which contains the motion information of

vehicles. The projection histograms are then obtained from

the difference images, and a group of key bins are selected

to represent the vehicle movement tendency. Because the

vehicle speeds are discrete, all the possible speeds are

enumerated as a discrete set, and are tested one by one.

Finally, the extreme value of the testing function is selected

with the corresponding speed as final output. Actually, this

method is the inverse process of traditional one for vehicle

speed estimation. Instead of extracting features, we con-

sider the feature differences among the images with dif-

ferent speeds and construct the mapping relationship with

extreme value corresponding to the vehicle speed.

A preliminary version of the system (Lu et al. 2015)

described here was published at International Journal of

Smart Home. The system described here differs from that

version in several aspects, such as camera calibration from

one dimension to two dimension, which is more accurate

and efficient for speed computation. The new system was

also evaluated more thoroughly.

The rest of this paper is organized as follows. The

related work is discussed in Sect. 2. Both camera calibra-

tion and speed estimation are introduced in Sects. 3 and 4,

respectively. Finally, experimental results are presented in

Sects. 5 and the conclusions are given in Sects. 6.

2 Related work

2.1 Vehicle speed estimation and measurement

In the past few years, many video-based methods for

vehicle speed estimation were proposed. Many approaches

for this task include motion vehicle segmenting using

background subtraction (Jeyabharathi and Dejey 2016),

frame differences (Zhiwei et al. 2007), tracking the whole

vehicle or local features of vehicles, such as blobs (Madasu
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Fig. 1 Vehicle speed estimation scheme

Fig. 2 Sample image from our system
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and Hanmandlu 2010; Maduro et al. 2008), corners (Song

et al. 2014; Dogan et al. 2010), edges (Zhiwei et al. 2007;

Dailey et al. 2000), image patches (Grammatikopoulos

et al. 2005) and license plates (Luvizon et al. 2016; Llorca

et al. 2016). The speed is estimated from the displacement

of vehicle between two features using inverse perspective

mapping with a flat world assumption for the road. Then, a

scale factor is obtained by camera calibration (Llorca et al.

2016). Most of the approaches are applied to the traffic

scenes with a single fixed traffic camera covering two lanes

or more, with low focal lengths, detecting vehicles at a

large distance. However, some exceptions are found in

recent works (Dogan et al. 2010; Cinzburg et al. 2015; Lin

et al. 2008). Optical flow vectors are used to transform into

space magnitudes after camera calibration in Dogan et al.

(2010) and Lan et al. (2014), with side view images and

traffic images, respectively. The work in Cinzburg et al.

(2015) just relies on a laptop and a consumer web camera

for traffic video capturing. The situation with one blurred

image is considered in Lin et al. (2008) to estimate the

relative movement of the vehicle.

Accordingly, a successful vision-based vehicle speed

estimation system should meet the following requirements:

tracking vehicle stably under challenging conditions, with

accurate camera calibration, and with real-time operation

and low cost. Methods based on blobs, edges and image

patches are sensitive to conditions such as illumination

variation, shadow and perspective. Our previous work

(Song et al. 2014) developed a point tracking approach for

traffic jams and complex weather conditions. Luvizon et al.

(2016) proposed a blob tracking method based on a particle

filter, similar to the one proposed by Maduro et al. (2008).

Zhiwen et al. (2007) detected each blob feature such as

Laplacian and color after background subtraction. In

practice, tracking vehicle stably under complex traffic

environments is still a challenge in computer vision. In this

paper, we adopt a new analysis strategy without feature

extraction instead.

Moreover, there is an important issue that has been

overlooked. In practice, it is hard to track features on the

car when touching the road. As a result, the plane on which

the features of vehicle move is not the road plane, but a

false one parallel to the road plane. A common way to

solve this problem is to compute a correction factor that

depends on the height of vehicle features over the road.

The work from Luvizon et al. (2016) relies on vehicle

license plate as the features, and they set a constant factor

S for solving the problem of the actual license plate above

the road plane. However, the constant factor S will bring

larger errors when the vehicle license plate location is high.

A similar method was proposed by Ginzburg et al. (2015),

which is also based on vehicle license plate tracking, where

they computed the compensation factor using the

knowledge of the license plate such as the standard

dimensions. In our work, we will use the shadow beneath

the vehicle, which is considered to be very close to the

ground truth speed.

3 Camera calibration

Specifically, we assume that each road lane lies on an

approximately flat plane. We call the plane the reference

plane. This assumption makes it possible for us to map the

image plane to the reference plane, which will map every

point in the image plane to the location in the real world.

In our previous work, one-dimensional calibration was

proposed with the fixed points on lane markings in Song

et al. (2014). We relied on the fact that the locations of the

points on the lane markings are visible in the image and

known priori, as shown in Fig. 4a; a mapping from pixels

in the image to coordinates in the real world can be

established based on the known length of pavement

markings and lane width. Figure 4b shows the projective

model of one-dimensional calibration in Song et al. (2014).

However, this work assumed that the distance in the ref-

erence plane mapped from pixels in each row is approxi-

mately equal; unfortunately, this assumption cannot be

guaranteed when the lane is far away from the center line

of the camera in the horizontal direction. This is because

one-dimensional calibration just calculated projective

relation between the rows in the image plane and the dis-

tances in the reference plane. In order to improve the cal-

ibration accuracy, a two-dimensional method is proposed

with further details below.

3.1 2D calibration based on 1D calibration

Assume that we have obtained two mapping relationships

from one-dimensional calibration mentioned above: R–D

form (from the rows in the image plane to the distance in

the reference plane) and D–R form (from the distance in

the reference plane to the rows in the image plane). The

two-dimensional calibration method will provide the rela-

tions between the pixels in the image plane and the dis-

tance in the reference plane, which is based on the one-

dimensional calibration results.

Similar to one-dimensional calibration, some visible

calibration markings on the road are also needed in the

two-dimensional calibration. We manually select five pairs

of points on the road, as shown in Fig. 5a, where we

consider that the segments A1A2, B1B2, C1C2, D1D2 and

E1E2 are all equal and parallel in the real world. However,

they may not be equal and parallel in the image plane

because of an inclined visual angle. So, we need to assign

the same distance to every point on the same segment. Note
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that the middle lane line is just toward the camera in

Fig. 5a, and the distances of points on the middle lane line

in the reference plane are regarded as the real distance.

That is, the distance in the reference plane for A1A2 is

obtained from the coordinates of point A1 in the image

plane and the R–D form. With the same method, we can get

the distances of other segments B1B2, C1C2, D1D2 and E1E2

in the reference plane.

Then, how can we calculate the rest points in the image,

which is not on the calibration segments? As shown in

Fig. 5b, A1B1 is not equal to A2B2, and if we want to get the

point P2, which is not with point P1 in the same row, we

can make use of the proportions of segments. From the

proportions of B1P1/B1A1 = B2P2/B2A2, the point P2 in the

image plane can be obtained by

x ¼ x3 �
ðx1 � x5Þðx3 � x4Þ

ðx1 � x2Þ
y ¼ y3 �

ðy1 � y5Þðy3 � y4Þ
ðy1 � y2Þ

8
>><

>>:

ð1Þ

Then, all the points on the segment P1P2 will be

assigned the same distance in the reference plane.

According to the method above, we can obtain the dis-

tances of all the points which are just on the segment. Some

points may be omitted, so we need to scan every point in

the image. An adjacent value-filling method is adopted for

the point with no value. We scan every point line by line,

and the point with no value will be filled with the first

nonzero value on the right. Then, the relation between the

pixels in the image plane and the distance in the reference

plane is built, which is saved as P–D form. Meanwhile, a

D–P form is derived from the P–D form, which contains

the mapping relationships from the distance in the refer-

ence plane to the point in the image plane.

4 Speed estimation

4.1 Region of interest setting

In this paper, we will obtain motion information of vehicles

without feature extraction and tracking. The first step is to

set a region of interest, which is known as tracking zone in
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the following text, which will limit further processing to an

area of target vehicle. This process is done in a few steps:

First, select the initial tracking point manually at the rear

of the vehicle, and the best position is on the beneath

shadow of the moving vehicle, which is denoted as point

O(x, y) in Fig. 6a.

Second, set the tracking line and tracking zone. As

shown in Fig. 6b, the road region has been divided along

the traffic direction into 128 subregions by 127 detection

lines. Tracking line is determined by these pre-defined

detection lines, and the nearest one to the point O is

selected, shown as the red line in Fig. 6a. Then, a rectangle

region of m*2n pixels is generated dynamically, which

starts from point O, and centered along the determined

tracking line. The region is shown as tracking zone in

Fig. 6a.

We expect that the tracking zone will contain the

moving distance of vehicle in several consecutive frames,

so the value of m is mainly determined by the frame

numbers, and the value of 2n is less than the width of the

vehicle. Here, m = 90 and n = 8 are applied in detail

below.

4.2 Image motion detection

Image motion detection begins with a frame difference

method, and we extract consecutive 10 video frames in the

tracking zone, as shown in Fig. 7. Then, the difference

value of the tracking zone is obtained between frames at

time k ? n and k using the frame difference method. Here,

in order to obtain obvious moving features of the vehicle,

we perform an interval frame difference method, where

n = 2. Consequently, there will be 8 difference images

obtained from the 10 consecutive frames.

Second, we use a horizontal projection histogram

method on these 8 difference images. We accumulate the

16 pixel values in each row, generating a histogram with 90

bins (for 90 rows). This histogram is shown as Fig. 8,

which includes 8 projection histograms of 8 difference

images. It can be seen that there is a pattern in the pro-

jection histograms, which keeps shifting steadily with

vehicle movement along moving direction. We need to find

a key bin with almost fixed relative position and value in

this pattern, which will represent the vehicle movement

tendency. Here, we use a 2D array G[k][r] to represent the

projection value of the row r in the kth difference image.

In our previous work, the maximum of bins is selected

as the key bin, however, the maximum is susceptible to

noise, which will lead to unreliable location of the key bin.

To solve this problem, we present a novel method for the

key bin selection—Max ratio. Using a definite proportion

of the sum of 90 bin values in the first difference image as a

(a) Tracking line and tracking zone setting (b)Detection line

Fig. 6 ROI setting

Fig. 7 Ten video frames in tracking zone Fig. 8 Projection histograms of eight difference images
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threshold, the key bin is selected according to the accu-

mulation of every bin value one by one in the following

difference images. Once the accumulation value meets the

threshold, the current bin is selected as the key one. In our

test, we assign 0.05 to the definite proportion. The key bin

is selected as in Fig. 9. Then, the row of key bin in the

image can be obtained by the initial position of point O and

the line of the key bin in the tracking zone. Consequently,

we will get 8 rows and they are saved in an array RI[8].

4.3 Speed estimation

In the last step, we have obtained the rows of 8 key bins.

However, we cannot estimate vehicle speed just from each

displacement between key bins. The selection process of

the key bins is rough, which is hard to represent the

movement of vehicles accurately. In this section, we will

present a new algorithm for speed computation.

The main idea of this method is to enumerate all the

possible speeds as a discrete speed set {v(i)} = {1, …, 180},

considering the tolerance as 1 km/h. For each speed, we

track the pointO among 8 frames in the reference plane, and

then 8 new positions will be generated. According to these

positions, we will find 8 corresponding bins in Fig. 8.

Repeating the process above, 180 groups of bin values will

be obtained. Then, we need to find which group is the closest

one to the 8 key bins, and the corresponding speed will be the

real speed of target vehicle. Note that we select the point

O as the initial tracking point, which is on the beneath sha-

dow of the target vehicle. It can represent the real speed of

the moving vehicle. Our tests also show that the selection of

the tracking point is crucial to the result of speed estimation.

To reduce the processing time when repeating to test for

the best speed, the speed computation is divided into two

parts: coarse speed estimation and fine speed estimation.

The first step of coarse estimation enumerates speeds from

5 to 180 with an interval of 5. In accordance with the above

method, a best speed will be found. Then based on the

coarse speed, the fine estimation is performed around the

best speed, which will enumerate speed with an interval of

1. At last, a final speed will be determined.

The function of speed coarse estimation is to roughly

estimate the vehicle speed with a certain interval. The

routine is shown in Fig. 10. It receives parameters as the

rows of the key bins. It returns an enumerated speed. First,

we compute the rows of the key bins in the real world,

denoted by RW[8]. The displacement in meters is calcu-

lated according to the equation at step 7 of Fig. 10, where 5

is the speed interval, i is the number of enumerated speed,

s0 is the row of point O in the reference plane, Dt is the

frame interval, and n is the number of frames. From this

equation, we can get 8 positions along the tracking line,

and these positions are turned into the rows in the tracking

zone. Accordingly, the projection value of each row can be

obtained from G[k][r], as shown in step 9. Finally, com-

paring these 8 projection values [denoted as G[n][j]] with

the key bin values [denoted as G[n][k]] to find the closest

one, which is thought as the real vehicle speed. We use the

sum of squared differences to measure the distance

between G[n][j] and G[n][k], and the minimum value

corresponds to the real vehicle speed, which can be

obtained by 5*i, as shown in step 15.

Fig. 9 The key bin selection using Max-ratio method

Fig. 10 Routine to speed coarse estimation
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After the coarsely estimated speed is obtained, we per-

form the fine estimation around this speed v. The principle

of fine estimation is the same as coarse estimation men-

tioned above. The only difference is that the interval of

enumerated speed is 1. Based on the speed v, 30 enumer-

ated speeds from v - 15 to v ? 14 are tested one by one,

and a final speed will be determined. Here, we adopt a

compute strategy implementing different compute process

in different phase (coarse and fine estimation), which can

improve the efficiency and accuracy of calculation, and can

also guarantee the real time and precision of the system.

5 Experiments

A measurement system was built for evaluating the pro-

posed method. We used a Pentium 4 3.2-GHz central

processing unit (CPU) with 4-GB random access memory

(RAM) computer, and the system was developed using

Visual C?? on a raw video format. In the next sections,

our testing scenario and the performance of speed estima-

tion are described.

5.1 Testing scenarios

To demonstrate the robustness and validity of the proposed

method, we have devised a test scenario at the south of 2nd

ring road of Xi’an in China, using a radar speed detector at

the roadside, which is captured by a low-cost CMOS image

sensor with the resolution of 720 9 288, at 25 frames per

second. The speed ground truth is measured by the radar

speed detector. As shown in Table 1, the videos are clas-

sified as 3 sets with different weather conditions. The radar

speed detector is on the right side of the road, and the

ground truth speed sometimes failed to properly assign a

speed to a vehicle when several vehicles entering the speed

acquisition area at the same time. So we will ignore these

vehicles with overlap. The ‘‘No. valid’’ column in Table 1

indicates the number of vehicles which had a valid

assigned speed.

5.2 Speed estimation evaluation

The performance of the proposed approach is evaluated by

comparing the speed estimated by our system with the

ground truth speeds obtained by the radar speed detector.

According to the precision of the radar speed detector, the

tolerance is set to ± 2 km/h. If the difference between the

speed detected by the proposed method and the one

detected by radar is lower than or equal to the tolerance, the

speed can be thought to be correct. Speed error distribution

is given regarding the valid vehicles. They are divided into

3 parts, depending on whether the estimated speed is

below, inside or above the tolerance. Figure 11 shows the

distribution of speed estimation error. The maximum esti-

mation error is - 4 km/h and 3 km/h, with 99.4% of the

estimations being inside of the tolerance. The average error

is 0.31 km/h with a standard deviation 0.82 km/h.

In order to verify that the proposed method is better than

our previous version (Lu et al. 2015), we performed tests

on the same 3 data sets. The results are shown in Table 2.

The accuracy ratio for vehicle speed is calculated based on

the correct detection count for speed (DCV) and the total

target count (TTC). Within the error tolerance, all 2054

vehicles were tested and the speeds of 2042 were correctly

detected. The speed detection accuracy ratio can reach

99.4%, which indicates that two-dimensional calibration

has a higher precision than one-dimensional calibration.

In order to verify if feature extraction from the vehicle is

a good choice for speed estimation, we also compared our

system with a point-based tracker (Song et al. 2014), which

is our previous work for vehicle tracking. Obviously, the

accuracy ratio of the proposed system is much higher than

the method with a point-based tracker. That happens

because in this case the features have a larger variance in

their heights, which will make the same vehicle to have

different motion vectors. Besides, this feature is not sig-

nificant enough in complex traffic environment, leading to

tracking error.

Moreover, we compared our system with a method

mentioned in reference (Wu and Juang 2012) for vehicle

speed estimation as shown in Table 3. The two methods are

tested by the same speed detector with different error tol-

erance. It can be seen that the proposed method shows

excellent accuracy for vehicle speed estimation.

Table 1 Data set information

Data set Time No. vehicle No. valid

1 78 2091 1273

2 15 547 219

3 32 894 562

Fig. 11 Speed estimation error distribution
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6 Conclusion

Pervious approaches for speed estimation generally require

feature extraction, which is a difficult work for the moving

object in dynamic environment. In this paper, we abandon

the idea of feature tracking for speed estimation but adopt a

new analysis strategy without feature extraction instead.

Actually, this proposed method is the inverse process of the

traditional method for vehicle speed estimation. We con-

sider the feature differences among the images with dif-

ferent speeds and construct the mapping relation with the

extreme value corresponding to the vehicle speed. Besides,

we make use of the shadow beneath the vehicle as the

tracking point, which is considered as the ground truth

speed. In our experiment, we have shown that the proposed

system is compared with our previous version, our previous

work which uses point feature for vehicle tracking, and an

approach tracking the vehicle as a whole, our system per-

forms better than these methods. The estimated speed has

an average error of 0.3 km/h, with 99.4% of the estimation

speed within (- 2 km/h, 2 km/h) error range.

In the future work, we intend to optimize the location of

tracking point and study how to select the tracking point

automatically. We also aim to evaluate this system in a

variety of scenarios, including nighttime, rainy and cloudy

scenarios, and comparisons with other approaches. Another

topic for future work is to construct a more diverse and

comprehensive data set for speed estimation, with the

ground truth speed by a higher precision speed detector.

Funding This study was funded by National Natural Science Foun-

dation of China (Grant No. 61572083), funded by Scientific Research

Program Funded by Shaanxi Provincial Education Department (Pro-

gram No. 18JK0617). This study was also funded by the Doctoral

Scientific Research Foundation of Xi’an Shiyou University (0106-

134010003).

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of

interest.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

References

Banz C, Blume H, Pirsch P (2011) Real-time semi-global matching

disparity estimation on the GPU. In: Proceeding of the IEEE

ICCV workshops, November, pp 514–521

Cinzburg C, Raphael A, Weinshall D (2015) A cheapest system for

vehicle speed detection. Preprint. arXiv:1501.06751

Dailey D, Cathey F, Pumrin S (2000) An algorithm to estimate mean

traffic speed using uncalibrated cameras. IEEE Trans Intell

Transp Syst 1(2):98–107

Dogan S, Temiz MS, Kulur S (2010) Real time speed estimation of

moving vehicles from side view images from an uncalibrated

video camera. Sensors 10(5):4805–4824

Grammatikopoulos L, Karras G, Petsa E (2005) Automatic estimation

of vehicle speed from uncalibrated video sequences. In:

Proceeding of the modern technologies, education and profes-

sional practice in geodesy and related fields, pp 332–338

Homm F, Kaempchen N, Ota J, Burschka D (2010) Efficient

occupancy grid computation on the GPU with lidar and radar

for road boundary detection. In: Proceeding of the IEEE IV

symposium, June, pp 1006–1013

Jeyabharathi D, Dejey D (2016) Vehicle tracking and speed

measurement system (VTSM) based on novel feature descriptor:

diagonal hexadecimal pattern (DHP). J Vis Commun Image

Represent 40:816–830

Lan J, Li J, Hu G et al (2014) Vehicle speed measurement based on

gray constraint optical flow algorithm. Optik 125:289–295

Lin HY, Li KJ et al (2008) Vehicle speed detection from a single

motion blurred image. Image Vis Comput 26(10):1327–1337

Table 2 A comparison with

pervious version
Data set Proposed system Previous version

1 2 3 1 2 3

DCV/TTC (*) 1270/1273 217/219 555/562 1245/1273 213/219 542/562

Accuracy ratio (%) 99.8 99.3 98.8 97.8 97.4 96.5

(*) DCV is the correct detection count for speed; (*) TTC is the total target count

Table 3 A comparison with other approaches

Data set Proposed system A point-based tracker (Song et al. 2014) Wu and Juang (2012)

1 2 3 1 2 3

DCV/TTC 1270/1273 217/219 555/562 999/1273 181/219 418/562 471/491

Accuracy ratio (%) 99.8 99.3 98.8 78.5 82.6 74.3 95.5

Error tolerance (km/h) ± 2 ± 2 ± 5

1290 S. Lu et al.

123

http://arxiv.org/abs/1501.06751


Llorca DF, Salinas C, Jimenez M et al (2016) Two-camera based

accurate vehicle speed measurement using average speed at a

fixed point. In: Proceeding of the IEEE ITSC, pp 2533–2538

Lu S, Song H, Xu X (2015) An enumeration method applied in

intelligent transportation system. Int J Smart Home

9(2):143–150

Luvizon DC, Nassu BT, Minetto R (2016) A video-based system for

vehicle speed measurement in urban roadways. IEEE Trans

Intell Transp Syst 18:1393–1404

Madasu V, Hanmandlu M (2010) Estimation of vehicle speed by

motion tracking on image sequences. In: Proceeding of the IEEE

intelligent vehicles symposium, pp 185–190

Maduro C, Batista K, Peixoto P et al (2008) Estimation of vehicle

velocity and traffic intensity using rectified images. In: Proceed-

ing of the IEEE ICIP, pp 777–780

Palaio H, Maduro C, Batista K et al (2009) Ground plane velocity

estimation embedding rectification on a particle filter multi-

target tracking. In: Proceeding of the IEEE ICRA, pp 283–286

Song H, Lu S, Ma X et al (2014) Vehicle behavior analysis using

target motion trajectories. IEEE Trans Veh Technol

63(8):3580–3591

Wu BF, Juang JH (2012) Adaptive vehicle detector approach for

complex environments. IEEE Trans Intell Transp Syst

13(2):817–827

Zhiwei H, Yuanyuan L, Xueyi Y (2007) Models of vehicle speeds

measurement with a single camera. In: Proceeding of the

international conference on computational intelligence security

workshops, pp 283–286

Zhiwen H, Yuanyuan L, Xueyi Y (2007) Models of vehicle speeds

measurement with a single camera. In: Proceeding of the

international conference on computational intelligence security

workshops, pp 283–286

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

A high accurate vehicle speed estimation method 1291

123


	A high accurate vehicle speed estimation method
	Abstract
	Introduction
	Related work
	Vehicle speed estimation and measurement

	Camera calibration
	2D calibration based on 1D calibration

	Speed estimation
	Region of interest setting
	Image motion detection
	Speed estimation

	Experiments
	Testing scenarios
	Speed estimation evaluation

	Conclusion
	Funding
	References




