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Abstract
Hybrid algorithms with different features are an important trend in algorithm improvement. In this paper, an improved grey

wolf optimization based on the two-stage search of hybrid covariance matrix adaptation-evolution strategy (CMA-ES) is

proposed to overcome the shortcomings of the original grey wolf optimization that easily falls into the local minima when

solving complex optimization problems. First, the improved algorithm divides the whole search process into two stages. In

the first stage, the improved algorithm makes full use of the global search ability of grey wolf optimization on a large scale

and thoroughly explores the location of the optimal solution. In the second stage, due to CMA-ES having a strong local

search capability, the three CMA-ES instances use the a wolf, b wolf and d wolf as the starting points. In addition, these

instances have different step size for parallel local exploitations. Second, in order to make full use of the global search

ability of the grey wolf algorithm, the Beta distribution is used to generate as much of an initial population as possible in

the non-edge region of the solution space. Third, the new algorithm improves the hunting formula of the grey wolf

algorithm, which increases the diversity of the population through the interference of other individuals and reduces the use

of the head wolf’s guidance to the population. Finally, the new algorithm is quantitatively evaluated by fifteen standard

benchmark functions, five test functions of CEC 2014 suite and two engineering design cases. The results show that the

improved algorithm significantly improves the convergence, robustness and efficiency for solving complex optimization

problems compared with other six well-known optimization algorithms.
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1 Introduction

For many complex optimization problems, the traditional

methods based on calculus (such as the Newton method

and conjugate gradient method) have difficulty finding the

optimal solution because of the lack of differentiability.

Intelligent optimization methods, such as particle swarm

optimization (PSO) (Eberhart and Kennedy 2002), the

differential evolution algorithm (DE) (Storn and Price

1997), the fruit fly algorithm (FOA) (Pan 2012), the multi-

verse optimizer (MVO) (Mirjalili et al. 2015), the whale

optimization algorithm (WOA) (Mirjalili and Lewis 2016)

and other intelligent optimization methods, have significant

advantages in solving complex optimization problems.

These intelligent optimization algorithms are based on

natural heuristics and do not have any special requirements

for the differentiability, continuity or convexity of the

problem. Therefore, these intelligent optimization algo-

rithms have been widely used (Peng et al. 2013; Chen et al.

2018).

The common goal of these algorithms is to find the best

quality solutions and better convergence performance. To

do this, intelligent optimization algorithms should be

equipped with exploration and exploitation to ensure that

they find the global optimum (Mirjalili et al. 2012; Chakri
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et al. 2017). Intelligent optimization algorithms can be

broadly classified into three categories: constructive algo-

rithms, improvement algorithms and hybrid algorithms

(Nagano and Moccellin 2002). Although many research

achievements have been achieved for the intelligent opti-

mization algorithm, it still easily falls into the local optimal

and has low precision in solving complex problems.

Considering the restrictiveness of the constructive

algorithms and the improvement algorithms, recently, the

research concentration has expanded to hybrid algorithms

instead of a sole intelligent algorithm. The purpose of

hybrid algorithms is to synthesize the advantages of dif-

ferent algorithms (Aydilek 2018). The no free lunch the-

orem has shown that all optimization algorithms have the

same average performance in the mathematical sense

(Wolpert and Macready 1997). Therefore, each algorithm

has its scope of application. An important purpose of the

hybrid algorithm is to make use of the unique features and

advantages of each algorithm and to obtain the best solu-

tion in the largest problem domain. It has become evident

that the hybrid of two or more intelligent algorithms is the

most efficient approach and can have good application in

dealing with the real-world engineering problems (Qiu

et al. 2017; Chi et al. 2017; Anand and Suganthi 2018; Lin

and Chiu 2018). The evolutionary computing and hybrid

algorithm research expert, Raidl, believes that (Raidl 2006)

choosing an appropriate hybrid algorithm is necessary to

solve the most complex problems efficiently.

Grey wolf optimization (GWO), proposed by Mirjalili

et al. (2014) in 2014, is a new intelligent optimization

algorithm, which simulates the social hierarchy and hunt-

ing behaviors of grey wolves. In numerical optimization,

the GWO algorithm (Mirjalili et al. 2014) and its variants

(Saxena et al. 2018; Gupta and Deep 2018a, b, c; Gupta

and Deep 2019) have been proven to be superior to the

particle swarm optimization, the differential evolution

algorithm and the gravitational search algorithm, etc., and

has been successfully applied to solving economic dispatch

problems (Kamboj et al. 2016; Pradhan et al. 2016;

Venkatakrishnan et al. 2018), feature selection (Emary

et al. 2015; Yamany et al. 2016; Medjahed et al. 2016;

Daniel et al. 2017) and wireless sensor networks (Sujitha

and Baskaran 2017). However, similar to other intelligent

optimization algorithms, the GWO algorithm overempha-

sizes the global search. Therefore, it has lower search

precision when optimizing some complex functions.

The covariance matrix adaptation-evolution strategy

(CMA-ES) (Hansen 2006) is an excellent stochastic

method for the continuous domain of nonlinear, non-con-

vex functions. During the exploitation of the parameter

space, CMA-ES attempts to learn a second-order model of

the underlying objective function. However, the CMA-ES

algorithm is a local search algorithm in essence that has a

strong local search capability but is relatively weak in

global search capability (Preuss 2010; Melo and Iacca

2014; Xu et al. 2017).

Along with the developmental trend of the hybrid

algorithms discussed above, this paper proposes an

improved grey wolf optimization based on the two-stage

search of the hybrid CMA-ES (CMAGWO). The

CMAGWO algorithm is divided into two stages in order to

make up for the disadvantage of the slow convergence

speed of GWO and the weak global search ability of the

CMA-ES. In the first stage, the GWO algorithm, with a

strong global search capability, conducts a large-scale

search in as many possible locations of the region of

optimal solution. In the second stage, three CMA-ES

instances are generated for the local fine exploitation in

parallel. The a wolf, b wolf and d wolf, which are obtained

in the first stage, are used as the starting point of the CMA-

ES. In addition, each CMA-ES instance concurrently

explores different regions of the search space and

exchanges information about its status. Furthermore, in

order to use the global search ability of the grey wolf

algorithm, the population of GWO uses the Beta distribu-

tion in the initialization process. This allows the initial

solution to be thoroughly generated in the non-edge region

of the solution space. In the new algorithm, the process of

wolves hunting in the original GWO is improved. The

diversity of the population is increased by the interference

of other individuals, and the absolute guidance of the head

wolves to each individual is reduced.

The quantification evaluations of the algorithm are

performed with fifteen standard benchmark functions, five

test functions of CEC 2014 suite and two engineering

design cases. The results show that the convergence

accuracy, convergence speed and search robustness of

CMAGWO have been significantly improved in solving

complex problems over other approaches.

The rest of the paper is organized as follows. Section 2

briefly reviews the fundamentals of GWO and CMA-ES.

The proposed CMAGWO algorithm is explained in Sect. 3.

The experimental results are demonstrated in Sect. 4,

comparing the performance of CMAGWO with other

algorithms. Section 5 solves the two engineering opti-

mization cases. Finally, Sect. 6 concludes the paper.

2 The original GWO and original CMA-ES

In this section, the features of the original GWO and the

original CMA-ES are discussed.
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2.1 The original grey wolf optimization

Grey wolves are considered apex predators, meaning that

they are at the top of the food chain. They have a very strict

social hierarchy. Grey wolf optimization is inspired by the

grey wolf’s social hierarchy and hunting behavior. Com-

pared with other evolutionary algorithms, GWO improves

the optimization efficiency of the algorithm using swarm

intelligence, which is based on the behavior of grey wolves

within a social hierarchy when hunting prey. To mathe-

matically model the social hierarchy of wolves, we con-

sider the fittest solution as the a. Consequently, the second
and third best solutions are named b and d, respectively.
The rest of the candidate solutions are assumed to be f. In
the original GWO, the hunting is guided by a, b and d. The
f wolves follow these three wolves.

When grey wolf optimization is used to solve the con-

tinuous problem, it is assumed that the population of grey

wolves is m and the dimension of each grey wolf is n. The

position xi of wolf i in the n-dimensional space can be

expressed as follows:

xi ¼ ðxi1; xi2; . . .; xinÞ; i ¼ 1; . . .;m ð1Þ

The position xp of the prey is the global optimal solu-

tion. During the hunting process, grey wolves encircle the

prey according to the following formula:

D ¼ n � xpðgÞ � xðgÞ
�
�

�
� ð2Þ

In the formula, g is the current number of iterations.

xpðgÞ indicates the position of the prey when the algorithm

iterates to the g th iteration, and xðgÞ represents the position
of the wolf in the gth iteration. n is the coefficient:

n ¼ 2r1 ð3Þ

where r1 is a random number in the range [0, 1].

When the grey wolves chase the prey, the positions of

the grey wolves are updated according to Eq. (4).

xðgþ 1Þ ¼ xpðgÞ � A � D ð4Þ

A ¼ 2a � r2 � a ð5Þ

where A is the convergence factor and r2 is a random

number in the range [0, 1].

According to Eq. (6), a decreases linearly from 2 to 0

with the increase in the iterations. Max iter is the maxi-

mum number of iterations.

a ¼ 2� 2g

Max iter
ð6Þ

Grey wolves have the ability to recognize the location of

prey and encircle them, but in the optimization process, the

position xp of prey is unknown. To mathematically simu-

late the hunting behavior of grey wolves, we suppose that

the a wolf, b wolf and d wolf have better knowledge about

the potential location of prey. Therefore, we save the first

three best solutions obtained so far and oblige the other

search agents to update their positions according to the

position of the best search agents. The hunting formula

follows Eqs. (7)–(13):

Da ¼ n1 � xaðgÞ � xðgÞj j ð7Þ

Db ¼ n2 � xbðgÞ � xðgÞ
�
�

�
� ð8Þ

Dd ¼ n3 � xdðgÞ � xðgÞj j ð9Þ
x1ðgÞ ¼ xaðgÞ � A1 � Da ð10Þ
x2ðgÞ ¼ xbðgÞ � A2 � Db ð11Þ

x3ðgÞ ¼ xdðgÞ � A3 � Dd ð12Þ

xðgþ 1Þ ¼ x1ðgÞ þ x2ðgÞ þ x3ðgÞ
3

ð13Þ

According to Eqs. (7)–(12), we can calculate the dis-

tance between the grey wolf and the positions xa, xb and xd
of the a wolf, b wolf and d wolf, respectively. According to
Eq. (13), the direction of the individual moving toward the

prey can be determined.

2.2 The original CMA-ES

Here, we consider a standard CMA-ES with a weighted

intermediate recombination, step-size adaptation, and a

combination of rank-l update and rank-one update (Hansen

2006). At each iteration of the algorithm, the members of

the new population are sampled from a multivariate normal

distribution with the mean (mean 2 Rn) and covariance

(C 2 Rn�n). n is the dimension. The sampling radius is

controlled by the overall standard deviation (step size) h.
Let xðgÞ represent the individual at generation g.

The CMA-ES optimization algorithm is approaching the

optimal solution by repeatedly performing sampling,

selection and recombination, updating parameters and so

on. The algorithm stops and outputs the result when the

maximum number of iterations is reached or the precision

is met. The main operators of the CMA-ES algorithm are

as follows:

1. Sampling

In the CMA-ES, the population of the new search is

generated by a multivariate normal distribution. The

sampling formula is as follows:

xðgþ 1Þ ¼ meang þ hg � Nð0;CgÞ ð14Þ

where Nð0;CgÞ is a multivariate normal distribution

with zero mean and the covariance matrix (Cg). g is the

current number of iterations. meang is the center point

of the population, and hg is the step size.
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2. Selection and recombination The new mean (meangþ1)

of the search distribution is a weighted average of the

selected points l.

meangþ1 ¼
Xl

i¼1

xixi;mðgþ 1Þ ð15Þ

where xi is the weight value,
Pl

i¼1 xi ¼ 1, and

x1 �x2 � � � � �xl [ 0. The optimal individual

assigns a larger weight value. xi;mðgþ 1Þ is the indi-

vidual (i) after the sorting of the population (m) in the g

th iteration.

3. Updating parameters

1. Adapting the covariance matrix

Cgþ1 ¼ ð1� c1 � clÞCg þ c1p
gþ1
c ðpgþ1

c ÞT

þ cl
Xl

i¼1

xiyi;mðgþ 1Þðyi;mðgþ 1ÞÞT

ð16Þ

where pgþ1
c is the evolution path of covariance

matrix (Cgþ1) in the gþ 1th iteration. c1 is the

learning rate for the rank-one update. cl is the

learning rate for the rank-l update.

pgþ1
c ¼ ð1� ccÞpgc

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ccð2� ccÞleff
p meangþ1 �meang

hg

ð17Þ

yi;mðgþ 1Þ ¼
xi;mðgþ 1Þ �meang

hg
ð18Þ

where cc is decay rate for the evolution path (pgþ1
c ).

leff is the variance effective selection mass, and

1� leff � l.
2. Step-size adaptation

hgþ1 ¼ hg exp
ch

dh

p
gþ1
h

�
�
�

�
�
�

E Nð0; IÞk k � 1

0

@

1

A

0

@

1

A ð19Þ

where p
gþ1
h is the evolution path of step size (hgþ1)

in the gþ 1th iteration. E Nð0; IÞk k is the expec-

tation of the Euclidean norm of Nð0; IÞ. I is the unit
matrix. ch is the decay rate of the evolutionary path

p
gþ1
h . dh � 1 is the damping parameter.

p
gþ1
h ¼ ð1� ccÞpgh

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

chð2� chÞleff
p

C� ffiffi
g

p meangþ1 �meang

hg

ð20Þ

The CMA-ES algorithm completes the optimization

process through the above steps. The initial search point is

given or randomly generated and then randomly generates

the next-generation population centered on the initial point

of a certain probability density. Then, the evolutionary

strategy parameters are updated to adjust the evolutionary

direction, and finally, the optimal solution is achieved.

3 Improved GWO based on the two-stage
search of hybrid CMA-ES

3.1 Population initialization

The advantage of the intelligent optimization algorithm is

that the group members cooperate with each other and use

the guidance of a certain mechanism to approach the

optimal solution from the initial position. Therefore, the

initial distribution of the population affects the search

efficiency of the algorithm. The method of randomly

generating the initial individual based on uniform distri-

bution has the advantage of simplicity. However, in actual

cases, the optimal solution is less located on the edge of the

search space. It is more desirable to generate as many

individuals as possible in the non-edge region and generate

fewer individuals at the edge of the solution space. The

Beta distribution in the stochastic process reflects this

distributional characteristic very well (Klein et al. 2016).

BetaðxÞ ¼ xu�1ð1� xÞv�1

Bðu; vÞ ; 0\x\1 ð21Þ

where the denominator is the Beta function, which can be

defined as follows:

Bðu; vÞ ¼
Z 1

0

tu�1ð1� tÞv�1
dt ð22Þ

when u ¼ v ¼ 1:2, the graph of the Beta distribution is as

follows:

Fig. 1 The graph of the Beta distribution
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Figure 1 shows that the initial individuals generated by

the Beta distribution are mainly distributed in the non-edge

regions. The population generated by this distribution can

appear near the target area with a greater probability. Thus,

the search efficiency is improved. The Beta distribution

conforms to the desired initial distribution of the

population.

3.2 Global guidance of the GWO for hunting

Over the course of the iterations, the a wolf, the b wolf and

the d wolf of the original GWO estimate the probable

position of the prey. Each candidate solution updates its

distance from the prey.

In the improved algorithm of the hybrid CMA-ES with

the two-stage search, the GWO algorithm mainly plays the

role of global search ability. Therefore, during the execu-

tion of the algorithm, the hunting process of the original

grey wolf algorithm is improved. The overall guidance

ability is increased to improve the diversity of the popu-

lation by reducing the use of the head wolf’s guidance to

each individual.

Da ¼ n1 � xaðgÞ � xðgÞj j ð23Þ

Db ¼ n2 � xbðgÞ � xðgÞ
�
�

�
� ð24Þ

Dd ¼ n3 � xdðgÞ � xðgÞj j ð25Þ

In the hunting formula of the original GWO, the posi-

tions of wolves are guided by the positions xa, xb and xd of

the a wolf, b wolf and d wolf, respectively. In the new

algorithm, the hunting formula is improved to guide the

population optimization according to the distance between

the grey wolves and the head wolf, thus improving the

global generalization ability of the algorithm.

x1ðgÞ ¼ a � x01ðgÞ � A1 � n1 � xaðgÞ � xðgÞj j ð26Þ

x2ðgÞ ¼ a � x02ðgÞ � A2 � n2 � xbðgÞ � xðgÞ
�
�

�
� ð27Þ

x3ðgÞ ¼ a � x03ðgÞ � A3 � n3 � xdðgÞ � xðgÞj j ð28Þ

xðgþ 1Þ ¼ x1ðgÞ þ x2ðgÞ þ x3ðgÞ
3

ð29Þ

where x01ðgÞ, x02ðgÞ and x03ðgÞ are the grey wolf individuals,

which are different from xðgÞ in the population. As the

number of iterations increases, a decreases linearly from 2

to 0. In the early stage of searching, x01ðgÞ, x02ðgÞ and x03ðgÞ
play major roles in the generation of new individuals. a

gradually changes to 0 in the search process in Eq. (6).

Therefore, the weights of x01ðgÞ, x02ðgÞ and x03ðgÞ are grad-

ually reduced.

3.3 The hybrid CMAGWO procedure

CMA-ES is suitable for strong nonlinear and non-convex

problems in continuous domains and has a strong local

search capability (Wang et al. 2016). By improving the

initial distribution of the original grey wolf algorithm and

the global guidance of the hunting process, the improved

grey wolf optimization can better realize the global search.

Therefore, the CMAGWO algorithm obtained by the

hybrid design in the first stage uses the improved GWO

algorithm for global search, guides the entire population to

optimize it and detects as many new solutions as possible

within the global scope. With the algorithm running, the

search performance of the improved GWO algorithm is

reduced to a certain threshold value. The CMAGWO

algorithm transforms from the global detection as the main

target to the local refined mining search. In the local refined

search stage, the head wolf’s guidance ability is exploited.

The positions xa, xb and xd of the three head wolves a, b
and d obtained from the improved GWO algorithm are

used as the starting points of this stage. The CMAGWO

algorithm generates three CMA-ES instances by perform-

ing a parallel search (instance CMA-ES-a, instance CMA-

ES-b and instance CMA-ES-d) in this stage. The starting

points of the three instances of CMA-ES (instance CMA-

ES-a, instance CMA-ES-b and instance CMA-ES-d) can be
described as follows:

Instance CMA-ES-a:

mean a ¼ xa ð30Þ

Instance CMA-ES-b:

mean b ¼ xb ð31Þ

Instance CMA-ES-d:

mean d ¼ xd ð32Þ

The initial step size is the ratio of the Euclidean distance

between the instance center and the population center to

the Euclidean distance of all individual and population

center.

Instance CMA-ES-a:

h a ¼ d xa; �xj j
d x1; �xj j þ d x2; �xj j þ � � � þ d xi; �xj j þ � � � þ d xm; �xj j

ð33Þ

Instance CMA-ES-b:

h b ¼
d xb; �x
�
�

�
�

d x1; �xj j þ d x2; �xj j þ � � � þ d xi; �xj j þ � � � þ d xm; �xj j
ð34Þ

Instance CMA-ES-d:
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h d ¼ d xd; �xj j
d x1; �xj j þ d x2; �xj j þ � � � þ d xi; �xj j þ � � � þ d xm; �xj j

ð35Þ

where

d xi; �xj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

j¼1

xij � �xj
� �2

v
u
u
t ð36Þ

�x ¼ ð�x1; �x2; . . .; �xj; . . .; �xnÞ; 1� j� n ð37Þ

�xj ¼
1

m
x1j þ x2j þ � � � þ xij þ � � � þ xmj
� �

; 1� j� n

ð38Þ

The CMAGWO algorithm sorts the population of each

instance and generates the instances’ center points of the

next generation using the weighted average of the previous

l individuals. In the second stage, the search coverage of

instance CMA-ES-a, instance CMA-ES-b and instance

CMA-ES-d is as far as possible to avoid overlapping.

Therefore, different scaling factors are used on the three

instances: 1, 0.1 and 0.01. The CMAGWO algorithm

obtains the new generation in the second stage according to

Eqs. (39)–(41).

x aðgþ 1Þ ¼ mean ag þ 1:0 � h ag � Nð0;C agÞ ð39Þ
x bðgþ 1Þ ¼ mean bg þ 0:1 � h bg � Nð0;C bgÞ ð40Þ
x dðgþ 1Þ ¼ mean dg þ 0:01 � h dg � Nð0;C dgÞ ð41Þ

The value of the means

(mean agþ1; mean bgþ1; and mean dgþ1), the covariance

matrixes (C agþ1, C bgþ1, and C dgþ1) and the step sizes

(h agþ1, h bgþ1, and h dgþ1) are updated according to

Eqs. (15)–(20). Each instance independently searches the

solution space from the starting point in parallel. In the

CMAGWO, the population uses the data exchange mech-

anism to exchange information and shares the excellent

individuals. Individuals evolve in the different environ-

ments for the three instances and perform fine mining in

their respective local areas.

3.4 Pseudo-code of the proposed algorithm

The proposed CMAGWO can be given as follows:

• Step 1 Initializing the algorithm parameters.

The maximum number of iterations is Max iter. a,

A, n, ch, dh, cc, leff and other parameters are generated.

Let g = 1.

• Step 2 In the search space, the grey wolf’s m individuals

are generated using the Beta distribution to form the

initial population.

• Step 3 Calculate the objective function value of each

grey wolf and denote the positions as xa, xb, and xd for

the best three grey wolves.

• Step 4 Calculate the distance between the position of

the grey wolf and the positions xa, xb and xd according

to Eqs. (23)–(25).

• Step 5 Update the position of each grey wolf according

to Eqs. (26)–(29).

• Step 6 When the performance of the improved GWO is

reduced to a certain threshold, instance CMA-ES-a,
instance CMA-ES-b and instance CMA-ES-d are

generated centered on xa, xb and xd according to

Eqs. (30)–(32). The initial step size is generated by

Eqs. (33)–(35). Otherwise, go to Step 3.

• Step 7 The three CMA-ES instances are sampled

according to Eqs. (39)–(41).

• Step 8 Instance CMA-ES-a, instance CMA-ES-b and

instance CMA-ES-d perform the selection and recom-

bination operations.

• Step 9 Update the mean (meangþ1), covariance matrix

(Cgþ1) and step size (hgþ1) according to Eqs. (15)–(20).

• Step 10 If the accuracy is met or the maximum number

of iterations is reached, the algorithm ends and the

optimal solution is output; otherwise, Step 11 is

performed.

• Step 11 g = g ? 1, and return to Step 7.

3.5 Computational complexity

The computational complexity of an optimization algo-

rithm is a key metric for evaluating the run time of an

algorithm. The computational complexity of GWO and

CMAGWO depends on the number of wolves m in pack,

dimensions of the problem n and maximum number of

iterations Max iter. By analyzing the steps of algorithms,

the computational complexity of the CMAGWO and

original GWO is defined as follows according to Eqs. (42),

(43):

OðGWOÞ ¼ OðMax iter� m� nÞ ð42Þ

OðCMAGWOÞ ¼ Oðiter1� m� nþ 3

� ðMax iter� iter1Þ � nÞ
¼ Oðiter1� m� nÞ þ OððMax iter� iter1Þ � nÞ

ð43Þ

where iter1 represents the iteration numbers of CMAGWO

in the first stage. The computational complexity of CMA-

ES is OðnÞ of each iteration (Hansen 2006).
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4 Experimental verification and analysis

To verify the performance of the CMAGWO algorithm,

fifteen standard benchmark functions and five test functions

of CEC 2014 suite are used to test it. These functions are

typical complex test functions. Moreover, the traditional

methods based on calculus are difficult to obtain better

results. All computational experiences for the test functions

are implemented using MATLAB R2016b on a PC with an

Intel core i5-2410 4.0 GHz processor and 8.0 GB memory.

The mathematical definitions and other relevant details

of fifteen standard benchmark functions such as domains of

variable and dimensions of the function are given in

Table 1. Generally speaking, the standard benchmark

functions are minimization functions and include three

types: unimodal (F1, F7, F8, F9, F10), multimodal (F2, F3,

F5, F6, F15) and fixed-dimension multimodal (F4, F11, F12,

F13, F14).

4.1 The diversity measure of GWO and CMAGWO

The exploration and exploitation are the two important

diversity characteristics of population. A large value of

diversity implies more exploration while low implies more

exploitation. The average distance is defined as the average

of distances of all individuals from the population center.

This diversity measure is given in Olorunda and Engel-

brecht (2008). Three standard benchmark functions (uni-

modal function F1, multimodal function F2 and fixed-

dimension multimodal function F4) are taken into consid-

eration for the average distance to quantify the diversity

measure of individuals in the GWO and CMAGWO.

In all experiments, the values of the common parameters

used in each algorithm, such as the population size and the

total iteration number, are chosen to be the same. For all

algorithms, the population size is set as m = 50 and the total

number of iterations is set as Max iter ¼ 300. To reduce

the random error of the simulation, all experiments on each

test function are repeated 15 runs.

A low value of the average distance shows population

convergence around the population center, while a high

value shows large dispersion of individuals from the pop-

ulation center. Figure 2 shows that the average distance of

CMAGWO is large than GWO before 46th iteration. The

average distance of CMAGWO is less than GWO after

46th iteration due to hybrid three CMA-ES instances.

Figure 3 shows that the turning point of evolutionary

iterations is 22th iteration. The turning point is 17th iter-

ation in Fig. 4. The CMAGWO retains high diversity in

early stage of the search process and proportionally

decreases diversity as search progresses. It is observed that

the average distance is decreased gradually over the course

of iteration, two-stage search that guarantees transition

between exploration and exploitation. It is clear from the

results of average distance that the exploration ability and

exploitation ability of the CMAGWO based on the two-

stage search of hybrid CMA-ES are better than the GWO.

4.2 Performance on the standard benchmark
functions

In order to analyze the convergence speed and accuracy,

the CMAGWO algorithm is compared with GWO, CMA-

ES, MVO, WOA, PSOGWO (which is the hybrid of GWO

and PSO) (Singh and Singh 2017), and DEGWO (which is

the hybrid of GWO and DE) (Zhu et al. 2015). The algo-

rithms and other specific parameter settings are given as

follows: The GWO algorithm is the same as the parameter

setting in reference (Mirjalili et al. 2014), CMA-ES refers

to (Hansen 2006), MVO refers to (Mirjalili et al. 2015),

WOA refers to Mirjalili and Lewis (2016), PSOGWO

refers to Singh and Singh (2017), and DEGWO refers to

Zhu et al. (2015). The experimental environment and the

iteration numbers of algorithms are the same as above.

In practical applications, the efficiency of the algorithm

is given more attention while the convergence is ensured.

To compare the convergence efficiency of these algo-

rithms, Table 2 shows the convergence algebra of each

algorithm on the standard benchmark functions. (The

iteration number is recorded as the convergence algebra

when the MEAN value is less than 10E-3.)

The CMA-ES performs well on some functions. The

results show that the CMAGWO algorithm is excellent on

unimodal (F1, F7, F9, F10), multimodal (F2, F3, F5, F6, F15)

and fixed-dimension multimodal (F4, F11, F12, F14), con-

verges to the global optimal solution at a faster speed, and

has good optimization efficiency. Even for function F8 and

function F13, the CMAGWO algorithm is better than other

algorithms.

The detailed computational data of all test functions for

these algorithms will be presented. The best objective

function value (BEST), the worst objective function value

(WORST), the mean value (MEAN) and the standard

deviation (STD) of all algorithms are given. These indices

are used to evaluate the accuracy of the algorithm (the

ability to jump out of the local optimum) and the robust-

ness. Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and

17 show the BEST, the WORST, the MEAN and the STD

of seven algorithms on each standard benchmark function.

To maintain a fair competitive environment, the stopping

criterion for all the algorithms is maximum iteration.

Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17

and Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and

19 show the performance results of the algorithms.
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From the results (Tables 3, 9, 10, 11, 12) of unimodal

functions (F1, F7, F8, F9, F10), it can be concluded that the

CMAGWO algorithm has higher BEST values and MEAN

values than the other algorithms. It is worth mentioning

here that the values of the STD for unimodal functions are

also competitive for CMAGWO. These low values are

indicator of better solution quality obtained from inde-

pendent runs. Similarly, for multimodal functions (F2, F3,

F5, F6, F15), fixed-dimension multimodal functions (F4,

F11, F12, F13, F14), the results of CMAGWO are compet-

itive for these functions too. For unimodal function F8 and

fixed-dimension multimodal function F13, the MEAN value

of the CMAGWO algorithm is large than 10E-3, but also

better than other algorithms. Therefore, the CMAGWO

algorithm proposed in this paper has better robustness and

accuracy on these standard benchmark functions.

To give a visualized and detailed comparison, Figs. 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19 give the

convergence curves of the proposed CMAGWO algorithm,

GWO, MVO, WOA, CMA-ES, PSOGWO and DEGWO

on fifteen standard benchmark functions. In these figures,

convergence curves are plotted corresponding to the

MEAN value of the objective functions obtain in 15 runs.

In these graphs, the horizontal axis represents the number

of iterations and the vertical axis represents the objective

function value. The initialization points of each algorithm

are same.

According to the results of Figs. 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18 and 19, CMAGWO is able to provide

very competitive results. It is noted that the unimodal

functions (F1, F7, F8, F9 and F10) are suitable for bench-

marking exploitation. Therefore, these results (Figs. 5, 11,

12, 13 and 14) show the superior performance of

CMAGWO based on the two-stage search in terms of

exploiting the optimum. This is due to the proposed

exploitation operators previously discussed. Therefore,

these results evidence high exploitation capability of the

CMAGWO algorithm. In contrast to the unimodal func-

tions, multimodal functions (F2, F3, F5, F6 and F15) and

fixed-dimension multimodal functions (F4, F11, F12, F13,

and F14) have many local optima with the number

increasing exponentially with dimension. This makes them

suitable for benchmarking the exploration ability of an

Fig. 2 The average distance for the unimodal function F1

Fig. 3 The average distance for the multimodal function F2

Fig. 4 The average distance for the fixed-dimension multimodal

function F4

Table 2 The convergence algebra on the standard benchmark

functions

F1 F2 F3 F4 F5 F6 F7 F8

GWO 300 300 300 300 300 300 300 300

MVO 300 300 300 300 300 300 300 300

WOA 300 300 300 22 300 300 300 300

CMAES 300 220 195 42 300 196 213 300

DEGWO 198 300 300 36 300 300 300 300

PSOGWO 300 300 300 300 300 300 300 300

CMAGWO 52 72 125 18 71 96 119 300

F9 F10 F11 F12 F13 F14 F15

GWO 251 300 300 300 300 14 12

MVO 300 300 300 300 300 299 22

WOA 300 300 300 300 300 96 13

CMAES 300 300 300 300 300 27 11

DEGWO 243 294 300 300 300 15 18

PSOGWO 300 300 300 300 300 52 13

CMAGWO 77 49 44 53 300 15 10
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Table 3 Optimal results for the

function F1
F1 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 1.091E-03 1.966E-02 2.405E-04 2.518E-02 7.907E-05 3.275E-03 6.410E-05

WORST 4.036E-03 4.845E-02 8.885E-03 6.522E-02 2.019E-03 9.740E-03 1.787E-03

MEAN 2.493E-03 3.581E-02 2.294E-03 4.622E-02 7.055E-04 6.766E-03 6.281E-04

STD 1.172E-03 1.101E-02 2.819E-03 1.610E-02 6.843E-04 2.166E-03 5.225E-04

Table 4 Optimal results for the

function F2
F2 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00

WORST 1.984E-02 1.009E?00 5.510E-02 2.491E-06 1.478E-02 2.205E-02 0.000E?00

MEAN 1.113E-02 9.595E-01 6.888E-03 4.774E-07 1.478E-03 2.756E-03 0.000E?00

STD 9.471E-03 2.779E-02 9.321E-02 8.363E-07 4.675E-03 7.795E-03 0.000E?00

Table 5 Optimal results for the

function F3
F3 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 2.138E-01 1.300E-01 1.992E-01 1.146E-08 1.551E-01 4.702E-04 0.000E?00

WORST 1.002E?00 4.939E-01 6.438E-01 1.321E-07 8.308E-01 1.089E-01 0.000E?00

MEAN 5.226E-01 2.461E-01 3.630E-01 6.401E-08 4.663E-01 2.103E-02 0.000E?00

STD 2.682E-01 1.277E-01 1.431E-01 5.075E-08 2.520E-01 3.861E-02 0.000E?00

Table 6 Optimal results for the

function F4
F4 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 1.761E-05 4.053E-04 5.733E-05 7.486E-06 1.318E-04 8.300E-06 7.486E-06

WORST 2.006E-02 2.006E-02 4.440E-04 1.294E-03 9.237E-04 2.006E-02 7.486E-06

MEAN 2.625E-03 5.347E-03 2.663E-04 6.770E-04 3.944E-04 7.534E-03 7.486E-06

STD 7.047E-03 9.083E-03 1.291E-04 3.453E-04 3.367E-04 1.037E-02 0.000E?00

Table 7 Optimal results for the

function F5
F5 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 2.310E?00 7.589E?01 0.000E?00 1.275E?01 0.000E?00 1.990E?01 0.000E?00

WORST 1.565E?01 1.581E?02 8.565E?01 5.305E?01 1.039E?00 5.583E?01 0.000E?00

MEAN 6.707E?00 1.290E?02 1.071E?01 2.274E?01 2.570E-01 3.965E?01 0.000E?00

STD 4.766E?00 3.030E?01 3.028E?01 1.281E?01 4.759E-01 1.137E?01 0.000E?00

Table 8 Optimal results for the

function F6
F6 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 2.496E-02 5.549E-01 1.020E-02 9.635E-08 4.292E-02 1.073E-04 0.000E?00

WORST 1.025E-01 7.457E?00 9.389E-02 1.386E-06 1.972E-01 3.505E-02 0.000E?00

MEAN 7.097E-02 3.402E?00 4.198E-02 5.196E-07 9.076E-02 2.175E-02 0.000E?00

STD 2.350E-02 2.193E?00 3.023E-02 4.779E-07 5.203E-02 1.215E-02 0.000E?00

Table 9 Optimal results for the

function F7
F7 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 7.266E-01 3.231E?00 4.983E-01 1.400E-08 2.506E-01 3.699E-04 0.000E?00

WORST 1.476E?00 5.595E?00 1.504E?00 8.242E-07 1.513E?00 2.611E-01 0.000E?00

MEAN 1.027E?00 4.130E?00 1.033E?00 1.408E-07 1.026E?00 5.166E-02 0.000E?00

STD 2.766E-01 7.409E-01 3.371E-01 2.774E-07 4.891E-01 9.865E-02 0.000E?00
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Table 10 Optimal results for

the function F8
F8 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 2.700E?01 8.127E?01 2.792E?01 2.587E?01 2.610E?01 2.632E?01 2.384E?01

WORST 2.883E?01 3.134E?03 2.879E?01 2.823E?01 2.856E?01 2.713E?01 2.431E?01

MEAN 2.772E?01 9.790E?02 2.834E?01 2.694E?01 2.701E?01 2.672E?01 2.403E?01

STD 7.714E-01 1.200E?03 3.290E-01 9.236E-01 7.400E-01 3.311E-01 1.591E-01

Table 11 Optimal results for

the function F9
F9 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 4.063E-04 1.850E?00 1.552E?00 1.102E-02 1.453E-04 5.056E-03 7.681E-07

WORST 1.309E-03 6.899E?00 7.886E?01 4.390E-02 2.695E-03 5.800E-02 2.965E-06

MEAN 7.460E-04 3.939E?00 3.986E?01 2.631E-02 6.710E-04 2.510E-02 1.628E-06

STD 2.925E-04 1.621E?00 2.241E-01 1.321E-02 8.563E-04 1.978E-02 7.930E-07

Table 12 Optimal results for

the function F10
F10 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 6.806E-04 5.206E?02 3.876E?04 8.338E?00 1.401E-04 4.880E-03 5.479E-08

WORST 8.351E-02 1.103E?03 1.017E?05 4.632E?01 2.504E-03 1.026E?00 2.769E-06

MEAN 2.455E-02 7.876E?02 6.573E?04 2.165E?01 1.000E-03 2.138E-01 5.486E-07

STD 2.852E-02 2.488E?02 2.238E?04 1.411E?01 7.034E-04 3.642E-01 9.051E-07

Table 13 Optimal results for

the function F11
F11 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 2.993E-05 9.521E-06 1.225E-03 4.828E-06 2.182E-05 7.475E-05 4.828E-06

WORST 4.816E-01 1.205E-01 3.219E-01 1.189E-01 2.861E-01 2.355E-01 4.828E-06

MEAN 1.450E-01 4.482E-02 1.307E-01 1.487E-02 1.412E-01 1.636E-01 4.828E-06

STD 1.639E-01 6.184E-02 1.378E-01 4.204E-02 1.226E-01 1.304E-01 0.000E?00

Table 14 Optimal results for

the function F12
F12 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 2.015E-03 8.793E-04 3.556E-02 0.000E?00 5.301E-05 2.717E-03 0.000E?00

WORST 9.759E-03 8.677E?00 8.683E?00 5.408E?00 5.408E?00 3.371E-02 0.000E?00

MEAN 5.209E-03 2.775E?00 3.155E?00 2.016E?00 6.771E-01 1.822E-02 0.000E?00

STD 3.087E-03 3.940E?00 3.457E?00 2.783E?00 1.912E?00 1.183E-02 0.000E?00

Table 15 Optimal results for

the function F13
F13 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 2.570E-03 3.805E-04 7.249E-03 3.209E-07 5.140E-04 2.915E-03 3.209E-07

WORST 5.062E?00 7.523E?00 9.271E?00 7.470E?00 6.351E?00 7.523E?00 5.098E?00

MEAN 1.270E?00 3.144E?00 2.448E?00 4.669E?00 3.344E?00 1.883E?00 1.256E?00

STD 2.340E?00 3.488E?00 3.588E?00 3.866E?00 2.799E?00 3.467E?00 2.310E?00

Table 16 Optimal results for

the function F14
F14 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 0.000E?00 1.031E-04 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00

WORST 0.000E?00 1.882E-03 2.058E-06 0.000E?00 0.000E?00 0.000E?00 0.000E?00

MEAN 0.000E?00 6.267E-04 2.074E-07 0.000E?00 0.000E?00 0.000E?00 0.000E?00

STD 0.000E?00 5.244E-04 5.410E-07 0.000E?00 0.000E?00 0.000E?00 0.000E?00
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algorithm. Due to global search ability of CMAGWO with

the Beta distribution and the improved hunting formula, the

convergence graphs of fixed-dimension multimodal func-

tions (Figs. 8, 15, 16, 17, 18) show the higher diversity in

early stage of the search process and better concentration as

search progresses. According to Figs. 6, 7, 9, 10 and 19,

CMAGWO also provides very competitive results on the

multimodal functions (F2, F3, F5, F6, F15) as well. It can be

observed that the proposed algorithm CMAGWO narrates a

more efficient performance compared to GWO, MVO,

WOA, CMA-ES, PSOGWO and DEGWO with superior

convergence speed and higher precision.

Table 17 Optimal results for

the function F15
F15 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00

WORST 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00

MEAN 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00

STD 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00 0.000E?00

Fig. 5 The convergence curve on the function F1

Fig. 6 The convergence curve on the function F2

Fig. 7 The convergence curve on the function F3

Fig. 8 The convergence curve on the function F4

Fig. 9 The convergence curve on the function F5

Fig. 10 The convergence curve on the function F6
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Fig. 11 The convergence curve on the function F7

Fig. 12 The convergence curve on the function F8

Fig. 13 The convergence curve on the function F9

Fig. 14 The convergence curve on the function F10

Fig. 15 The convergence curve on the function F11

Fig. 16 The convergence curve on the function F12

Fig. 17 The convergence curve on the function F13

Fig. 18 The convergence curve on the function F14
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4.3 Performance on the five CEC 2014
benchmark functions

The next experimental study is designed on the five

numerical optimization problems considered from CEC

2014 special session and competition on single objective

real-parameter numerical optimization (Liang et al. 2013).

These five test functions of CEC 2014 suite are especially

equipped with various novel characteristics such as novel

basic problems and functions are shifted, rotated, expan-

ded, and combined variants of the most complicated

mathematical optimization problems presented in the lit-

erature. The details of these five test functions such as the

search domains and dimensions are described in Table 18.

For all algorithms (GWO, MVO, WOA, CMA-ES,

DEGWO, PSOGWO and CMAGWO), the population size

is set as m = 50 and the total number of iterations is set as

Max iter ¼ 2000. All experiments on each CEC 2014 suite

are iterated over 15 independent runs. The termination

criteria in all the algorithms are taken same for a fair

comparison between algorithms to avoid the biasedness in

performance.

From Table 18, the comparative analysis of the perfor-

mance of proposed algorithms is studied. The detailed

computational data of all test functions for these algorithms

are presented in Tables 19, 20, 21, 22 and 23 and Figs. 20,

21, 22, 23 and 24.

The BEST, the WORST, the MEAN and the STD of all

algorithms are given in Tables 19, 20, 21, 22 and 23.

Inspecting the MEAN values of these functions, it is

observed that MEAN values are optimal for CMAGWO as

compared with the other algorithms. It is worth mentioning

here that in some cases, especially for function F16 Rotated

High Conditioned Elliptic Function (CEC1) and F18 Shif-

ted and Rotated Katsuura Function (CEC12), the

CMAGWO finds the Minimum value. From the STD val-

ues obtained from experiments, it is also observed that the

performance of CMAGWO is competitive. These indices

evaluate the accuracy, and the robustness of the

CMAGWO is better than that of other six algorithms.

Convergence curves of this experiment are shown in

Fig. 20 for F16 Rotated High Conditioned Elliptic Function

(CEC1), in Fig. 21 for F17 Shifted and Rotated Rastrigin’s

Function (CEC9), in Fig. 22 for F18 Shifted and Rotated

Katsuura Function (CEC12), in Fig. 23 for F19 Hybrid

Function 5 (N = 5) (CEC21), and in Fig. 24 for F20

Composition Function 5 (N = 5) (CEC27). The results of

these CEC2014 functions strongly prove that high explo-

ration of the CMAGWO algorithm is fruitful for avoiding

local solutions. By inspecting the convergence curves of

these functions, it is empirical to state that a significant

improvement has been observed in convergence charac-

teristics by the proposed the two-stage search compared to

GWO, MVO, WOA, CMA-ES, PSOGWO and DEGWO.

Based on the observations reported in this section, it can

be concluded that the CMAGWO algorithm provides very

competitive results on these test functions. This superior

capability is due to the hybrid mechanism. As mentioned

above, some iterations are devoted to exploration (the first

stage) and the rest to exploitation (the second stage).

Moreover, by embedding Beta distribution in the initial-

ization process and the process of wolves hunting changed,

the exploration ability is accelerated. High local optima

avoidance of this algorithm is finding that is inferred from

above results. The five test functions of CEC 2014 suite

have very difficult search spaces, so the accurate approxi-

mation of their global optima needs high exploration and

exploitation combined. The results again evidence that the

CMAGWO algorithm properly balances these two con-

flicting milestones. In the following section, the applica-

tions of proposed algorithm on real engineering problems

are investigated.

Fig. 19 The convergence curve on the function F15

Table 18 The brief description

of CEC 2014 benchmark

functions

No Function Dimension Domain Minimum

F16 Rotated High Conditioned Elliptic Function (CEC1) 30 [- 100,100] 100

F17 Shifted And Rotated Rastrigin’s Function (CEC9) 30 [- 100,100] 900

F18 Shifted And Rotated Katsuura Function (CEC12) 30 [- 100,100] 1200

F19 Hybrid function 5 (N = 5) (CEC21) 30 [- 100,100] 2100

F20 Composition function 5 (N = 5) (CEC27) 30 [- 100,100] 2700
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Table 19 Optimal results for

the function F16
F16 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 2.706E?07 8.854E?06 1.404E?08 1.000E?02 1.516E?08 1.562E?07 1.000E?02

WORST 1.169E?08 1.240E?07 1.784E?08 1.000E?02 2.077E?08 1.696E?07 1.000E?02

MEAN 7.198E?07 1.062E?07 1.594E?08 1.000E?02 1.796E?08 1.629E?07 1.000E?02

STD 6.353E?07 2.504E?06 2.686E?07 0.000E?00 3.971E?07 9.495E?05 0.000E?00

Table 20 Optimal results for

the function F17
F17 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 9.813E?02 9.662E?02 1.156E?03 1.091E?03 1.106E?03 1.017E?03 9.159E?02

WORST 9.929E?02 9.777E?02 1.167E?03 1.100E?03 1.119E?03 1.023E?03 9.328E?02

MEAN 9.871E?02 9.719E?02 1.162E?03 1.096E?03 1.113E?03 1.020E?03 9.244E?02

STD 8.256E?00 8.182E?00 7.329E?00 6.332E?00 9.098E?00 4.106E?00 3.960E?00

Table 21 Optimal results for

the function F18
F18 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 1.202E?03 1.200E?03 1.201E?03 1.200E?03 1.200E?03 1.200E?03 1.200E?03

WORST 1.203E?03 1.201E?03 1.202E?03 1.200E?03 1.201E?03 1.201E?03 1.200E?03

MEAN 1.203E?03 1.201E?03 1.202E?03 1.200E?03 1.201E?03 1.201E?03 1.200E?03

STD 6.049E-01 1.378E-01 3.585E-01 0.000E?00 3.817E-01 3.233E-03 0.000E?00

Table 22 Optimal results for

the function F19
F19 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 4.916E?05 3.258E?04 2.751E?06 2.571E?03 2.180E?06 1.549E?05 2.461E?03

WORST 1.136E?06 4.960E?04 3.986E?06 2.588E?03 2.957E?06 2.363E?05 2.525E?03

MEAN 8.140E?05 4.109E?04 2.869E?06 2.580E?03 2.569E?06 1.956E?05 2.493E?03

STD 4.560E?05 1.204E?04 1.663E?05 1.189E?01 5.497E?05 5.753E?04 1.163E?01

Table 23 Optimal results for

the function F20
F20 GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 3.430E?03 3.223E?03 3.919E?03 3.034E?03 3.546E?03 3.109E?03 3.016E?03

WORST 3.434E?03 3.466E?03 4.086E?03 3.076E?03 3.565E?03 3.117E?03 3.020E?03

MEAN 3.432E?03 3.344E?03 4.002E?03 3.055E?03 3.554E?03 3.113E?03 3.018E?03

STD 2.767E?00 1.717E?02 1.181E?02 3.011E?01 1.848E?01 5.589E?00 1.876E?00

Fig. 20 The convergence curve on the function F16 Fig. 21 The convergence curve on the function F17
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5 Application studies on two engineering
cases

In this section, to validate the accuracy and effectiveness of

the proposed CMAGWO, we use two engineering cases as

applications.

5.1 Optimization design of linkage mechanism

The movement of the linkage mechanism (such as the

trajectory of a moving point) can be described as the

function derived from the relationship of the mechanism’s

geometric parameters. Suppose that Fhi is the desired

output angle and Sh is the actual output angle of the linkage
mechanism. Fh0 is the initial angle for the linkage

mechanism.

According to the mechanism’s kinematics, the actual

output angle of the linkage is obtained as follows:

Sh ¼
p� arccos

r2i � x22 þ x21
2r1x2

� arccos
ri þ 24

10r1
0\ui � p

p� arccos
r2i � x22 þ x21

2r1x2
þ arccos

ri þ 24

10r1
p\ui � 2p

8

>><

>>:

ð44Þ

where ri is the connection parameter,

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
26� 10 cosui

p
, i is the sequence number after angle

division, and i ¼ 0; 1; 2; . . .; 30, ui is the actual position

angle of the crank, ui ¼ u0 þ i
30
� p

2
, and u0 is the initial

angle for the crank.

The desired output angle of the linkage mechanism can

be described as follows:

Fhi ¼ Fh0 þ
2

3p
ðui � u0Þ

2 ð45Þ

Within the given range (in order to make the mechanism

have the best transfer performance, the transmission angle

of the mechanism required is the minimum value or the

maximum value), the optimal design of the linkage

mechanism should minimize the error between the actual

output angle and the desired output angle. Therefore, the

mathematical model for the optimization problem mini-

mizes the least square error between the expected value and

the actual value of the output angle of the linkage

mechanism.

f ðxÞ ¼
X30

i¼0

ðFhi � ShÞ2 ð46Þ

The given range of motion can be described as a con-

straint condition:

�x21 � x22 þ
ffiffiffi

2
p

x1x2 þ 16� 0 ð47Þ

x21 þ x22 þ
ffiffiffi

2
p

x1x2 � 36� 0 ð48Þ

where 0� x1 � 5:0 and 0� x2 � 5:0.
For the constraint conditions, this paper uses the penalty

function method to transform the constraint problem into

an unconstrained one by introducing a penalty factor.

In this work, the proposed CMAGWO algorithm and

other six referred algorithms: GWO, MVO, WOA, CMA-

ES, PSOGWO and DEGWO, are all employed to solve the

optimization problem of the linkage mechanism. The

parameters of these algorithms for this problem are set as

the same as in Sect. 4. To solve this optimization problem,

results are averaged over 15 independent runs. Figure 25

along with Table 24 shows the results of the CMAGWO

with other six algorithms.

Figure 25 shows that compared with GWO, MVO,

WOA, CMA-ES, PSOGWO and DEGWO, the CMAGWO

algorithm has a faster convergence speed, which is more

Fig. 22 The convergence curve on the function F18

Fig. 23 The convergence curve on the function F19

Fig. 24 The convergence curve on the function F20
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satisfactory with the requirements of the actual engineering

efficiency. The results of MEAN value and BEST value in

Table 24 show that the CMAGWO algorithm can approach

the expected value of the linkage mechanism with higher

precision. The CMAGWO has the smallest STD between

the seven algorithms. Therefore, the CMAGWO algorithm

has stronger robustness and adaptability.

5.2 Position optimization of the robotic arm

The robotic arm is composed of the rotating joints and the

moving joints. Thus, the robotic arm model can be sim-

plified to the joints that are connected end to end. The first

joint is connected to the base of the robotic arm, and the

ends are connected with an effector such as a manipulator,

welding gun or spray gun. The end effector position that we

want to achieve is finally realized by the movement of the

joints of the robotic arm.

Therefore, according to the forward kinematics equation

of the robotic arm, the relationship between the position of

the end effector and the angle of each joint is established.

To realize the end effector to complete the work task in the

operation space, the actual position PE ¼ ðPE1; PE2; PE3Þ
of the arm end can be calculated by the following:

PE1 ¼ l1 � l4 � cosðx1Þ � sin x2 � sin x3
� cos x1 cos x2 cos x3 � l2 � sin x1 � l � sin x1 � sin x4
þ cos x4 � cos x1 � sinx2 � sin x3 � cos x1

� cos x2 � cos x3 þ l3 � cos x1 � cos x2
ð49Þ

PE2 ¼ l2 cos x1 � l4 � sin x1 � sin x2 � sin x3
� cos x2 cos x3 sin x1 � l � cos x1 � sin x4
� cos x4 � sin x1 � sin x2 � sin x3
� cos x2 � cos x3 � sin x1 þ l3 � cos x2 � sin x1

ð50Þ

PE3 ¼ �l4 � cos x2 � sin x3 þ cos x3 sin x2

þ l3 � sin x2 � l � cos x4 � cos x2 � sin x3
þ cos x3 � sin x2

ð51Þ

where the D–H parameters of the arm are the length of the

end (l ¼ 0:085) and the lengths of the common vertical line

between one joint and the next joint (l1 ¼ 0:175,

l2 ¼ 0:082, l3 ¼ 0:38 and l4 ¼ 0:26).

The desired position of the arm end is known. Based on

the model that requires the highest accuracy to reach the

target point and moves the joint angle as small as possible,

the objective function is established as follows:

f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PF1 � PE1ð Þ2þ PF2 � PE2ð Þ2þ PF3 � PE3ð Þ2
q

þ 10�5 � ððx1 � q01Þ2 þ 0:5 � ðx2 � q02Þ2

þ 0:5 � ðx3 � q03Þ2 þ 0:1 � ðx4 � q04Þ2Þ
ð52Þ

where the initial angle of each joint of the robotic arm is

q0 ¼ ð� p
2
; p
2
;� p

2
; 0Þ, and the constraint condition of each

joint is � 2:62� x1 � � 0:52, 0:52� x2 � 2:62,

� 2:35� x3 � � 0:79 and � 1� x4 � 1.

Taking the desired target position PF ¼
ð� 0:0516;� 0:4006;� 0:4135Þ of the arm end as an

Fig. 25 The convergence curve on the optimization problem of

linkage mechanism

Table 24 Optimal results for

the problem of linkage

mechanism

GWO MVO WOA CMAES DEGWO PSOGWO CMAGWO

BEST 7.594E-03 7.610E-03 7.593E-03 7.671E-03 7.598E-03 7.593E-03 7.592E-03

WORST 7.605E-03 7.619E-03 7.728E-03 7.864E-03 7.614E-03 7.603E-03 7.600E-03

MEAN 7.598E-03 7.614E-03 7.669E-03 7.762E-03 7.602E-03 7.598E-03 7.596E-03

STD 4.118E-06 1.339E-06 6.926E-05 9.704E-05 3.159E-06 5.262E-06 1.266E-06

Fig. 26 The convergence curve on the position optimization of

robotic arm
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example, CMAGWO is used for position optimization and

compared with the other algorithms.

Figure 26 shows the convergence curves of the seven

algorithms for the position optimization of the robotic arm.

The parameters of these algorithms for this problem are set

as the same as in Sect. 4. Figure 26 shows that compared

with GWO, MVO, WOA, CMA-ES, PSOGWO and

DEGWO, the CMAGWO algorithm can approach the

desired target position at a faster convergence speed.

The results obtained by the proposed CMAGWO are

compared with those gained by other six algorithms, and

the comparisons are presented in Table 25. The experi-

mental results in Table 25 show that the CMAGWO

algorithm has a higher BEST value and MEAN value in the

optimization position of robotic arm. Moreover, the STD of

CMAGWO is also the smallest in these algorithms.

Table 25 shows that CMAGWO has stronger robustness

and accuracy of robotic arm position optimization and

verifies the effectiveness of the CMAGWO algorithm.

The results of the design optimization of linkage

mechanism and position optimization of the robotic arm

demonstrate the performance of the CMAGWO algorithm

in terms of exploration, exploitation, local optima avoid-

ance and convergence. This is again due to the two-stage

search of hybrid CMA-ES. Furthermore, in order to give

full global search ability of the grey wolf optimization, the

initial population is thoroughly generated in the non-edge

region of the solution space by the Beta distribution. The

new algorithm improves the hunting formula of the original

GWO, increases the diversity of the population through the

interference of other individuals and reduces the absolute

guidance of the head wolf to each individual. The results

show a good balance between exploration and exploitation.

This comprehensive study shows that the proposed

CMAGWO algorithm has merit among the GWO, MVO,

WOA, CMA-ES, PSOGWO and DEGWO.

6 Conclusion

To break through the limitations of the sole algorithm, this

paper proposes an improved grey wolf optimization based

on the two-stage search of hybrid CMA-ES, which is

combined with the global search ability of the GWO

algorithm and the strong local search ability of the CMA-

ES algorithm. In the first stage, the CMAGWO algorithm

mainly uses the global ability of the grey wolf algorithm to

explore the entire search space. At this stage, the approx-

imate location of the optimal solution is located as much as

possible. When a certain search threshold is reached, the

local parallel refinement search is switched. In the second

stage, three instances are used to exploit the key areas.

During the search process, data exchange and information

sharing between instances are carried out. The purposes of

the two stages are different, and the operators and opera-

tion strategies are different.

Finally, the improved algorithm is validated by fifteen

standard benchmark functions and five test functions of

CEC 2014 suite. The CMAGWO has been compared with

other six popular meta heuristic algorithms. The results

show that the CMAGWO algorithm proposed in this paper

effectively improves the performance and overcomes the

disadvantages of the GWO algorithm, which easily falls

into the local optimum in solving complex functions.

Moreover, the applicability of the CMAGWO has been

demonstrated on two engineering design cases. Through

the analysis of the optimal results and the convergence

curve, it is observed that the CMAGWO is more satisfac-

tory with the requirements of the actual engineering effi-

ciency. Application of the proposed CMAGWO on more

practical challenging problems will be investigated in

future.
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