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Abstract

Ant colony optimization (ACO) is a well-applied technique to solve the real-time problem of discovering the energy-efficient
routes to transmit the sensing information to the base station (BS). Traditionally, ACO incorporated wireless sensor networks
used only one pheromone, i.e., minimum distance between the sensor nodes to discover the optimum route to the BS.
The authors illustrated a multiple pheromone-based ACO technique known as multiple pheromone ant colony optimization
(MPACO), for instance, distance between sensing nodes, their residual energy and number of neighbor nodes to ascertain an
efficient route. MPACO enables the sensing nodes to transmit the sensing data to BS over optimal routes with economical
energy consumption to achieve a prolonged network life span. The comprehensive evaluation reveals that MPACO proffers
20% more network lifetime than the current existing ACO technique, i.e., improved ACO. Moreover, MPACO shows a
significant improvement of 300% in network life span than another existing fuzzy-based strategy, i.e., multi-objective fuzzy

clustering algorithm.

Keywords Energy-aware routing - Wireless sensor networks - Swarm intelligence - Ant colony optimization

1 Introduction

Wireless sensor networks (WSNs) are being designed for a
number of monitoring applications, for instance, to detect
the water level in the dams, observing air quality to detect
dangerous gases, to control pollutant in water and many
other consumers/industrial areas (Qiu et al. 2017; Duan et al.
2017). Generally, WSN comprises of spatially dedicated sen-
sor nodes for monitoring, aggregating and forwarding the
collected data to a central location, i.e., BS. The sensor nodes
are randomly deployed, left unattended and are expected to
perform efficiently. Each sensor node consumes a certain
amount of energy to sense, process and to transmit the pro-
cessed data to the BS. These sensor nodes are battery operated
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and difficult to replace or recharge. Moreover, each sensor
node has a range of detection and estimates its distance from
the source node by accessing the intensity of the received
signal. This received signal is attenuated with an increase in
distance between the destination node and the source node.

In couple of decades, a number of issues including energy
consumption, clock synchronization techniques, secure data
aggregation and efficient routing techniques have been ana-
lyzed and investigated by the researchers for improving the
performance of such networks (Dehkordi and Schmaltz 2012;
Labraoui et al. 2013). However, an energy-efficient rout-
ing technique is a challenging issue till date. Generally,
energy-efficient routing reduces the power consumption by
distributing load uniformly among the sensor nodes and is
classified in two categories: flat and hierarchical routing pro-
tocols (Al-Karaki and Kamal 2004). In flat-based routing,
each sensor node has its unique global address and at the same
level. Alternatively, flat-based routing is further categorized
as proactive, reactive and hybrid routing strategies (Pan-
tazis et al. 2013). In proactive, each sensor node maintains
its own routing table to evaluate a route to the destination.
So, each sensor node transmits its own data to the desti-
nation node through the pre-defined route, for instance, the
Wireless Routing Protocol (WRP), and Topology Dissemi-
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Table 1 Comparison between

the proactive and reactive Parameters Proactive protocols Reactive protocols
protocols On demand No Yes

Route updation Continuously On demand

Route setup delay No Yes

Need to send update message when topology changes Yes No

Handle bursty traffic No Yes

Handle heavy load Yes No

Messaging overhead Yes No

Maintain routing information of all the nodes Yes No

nation based on Reverse Path Flooding (TBRPF) technique.
In reactive strategy, a sensor node reacts only if the sensed
value changes beyond a certain pre-defined threshold, e.g.,
Threshold-sensitive energy-efficient sensor network (TEEN)
and are used mainly for time-critical applications. Table 1
shows the comparison between the proactive and reactive
protocols. Further, hybrid protocols combine the advan-
tages of both proactive and reactive protocols, for instance,
Adaptive Periodic TEEN (APTEEN). This strategy, initially,
defines all the possible routes among the sensing nodes to the
BS and updates them periodically. Alternatively, in hierarchi-
cal routing protocols such as LEACH, C-LEACH and TBC
the sensing nodes compute the different routes in their clus-
ters for managing network energy consumption efficiently
to increase the network life span. However, for a specific
network topology, there is no deterministic polynomial algo-
rithm that can partition the network into uniform clusters
(Avril et al. 2014). Moreover, routing algorithm must pro-
duce a set of low-cost paths among a number of possibilities.

To combat with this situation, clustering and routing tech-
niques are developed by implementing swarm intelligence-
based algorithms (Saleem et al. 2011). Swarm intelligence
can be seen as analogies between computing methods and
biological behavior of swarms in which the collective intel-
ligence is emerged. The considered swarms are colonies of
social insects, bird flocking and fish schooling. Each swarmis
an autonomous individual, which cooperate with each other
to achieve some tasks necessary for the survival of the colony.
In the context of WSNSs, these simple and robust behaviors
have been successfully applied by identifying and model-
ing some analogies between the two systems. ACO, one of
the swarm intelligence-based optimization technique uses the
stimulus to discover the shortest path, becomes an attractive
alternative recently in WSN networks (Dorigo and Birattari
2011). During traversing, ants took the decision based on
trail information and attractiveness. Every ant secrets certain
amount of pheromone on the traversed path, and this sub-
stance is used by the future ants to discover the optimal path.
The authors have extended the work of Lee et al. (2011) to
discover an optimized path from the sensor nodes to the BS.
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1.1 Major contributions

Traditionally, ACO technique used only one pheromone
to discover the optimum route efficiently (Camilo et al.
2006; Liu 2016, 2015; Malik et al. 2017). The authors
have extended the work further by demonstrating a mul-
tiple pheromone, for instance, distance between sensing
nodes, their residual energy and number of neighbor nodes-
based ACO technique, termed as MPACO to ascertain an
optimized/energy-efficient route among the available routes
to arrive at BS with economical use of node energy. The
authors illustrate a contrast of the demonstrated MPACO
strategy with the traditional strategies like LEACH, TBC,
PEGASIS and the recently reported schemes, for instance,
TACO and MOFCA to demonstrate the robustness of MPACO
to realize a prolonged network lifetime. The first pheromone,
i.e., distance between sensing nodes, helps to discover the
available neighbors of every sensor node in the network
and stores their information in the one-dimension matrix.
The second pheromone stores the information about the
residual energy of the neighbor nodes, and third pheromone
determines an optimum number of required sensor nodes to
participate actively in transmission to BS in a tree-like struc-
ture using probability density distribution function. Unlike
earlier ACO-based techniques, MPACO is independent of
using the heuristic values, i.e., @ and 8 (Dorigo and Birattari
2011; Liu 2016) and makes the process quite simple.

Rest of the paper is organized as follows: Sect. 2 presents
an overview of earlier distributed and meta-heuristic routing
approaches to define the research gaps. The detail description
of the developed network model is well described in Sect. 3.
Section 4 defines the performance metrics used for evaluation
of the MPACO followed by its outcomes and conclusion in
Sects. 5 and 6, respectively.

2 Related works

Several cluster-based energy-efficient routing algorithms
have been proposed to reduce the energy consumption of
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WSN nodes in Heinzelman et al. (2000, 2002), Wu et al.
(2017), Sajwan et al. (2018), Li et al. (2018a) and Chang
and Ju (2014). LEACH, one of the traditional schemes, orga-
nized the whole network into clusters with the varied number
of sensor nodes (Heinzelman et al. 2000). Each cluster has
one elected node called cluster head (CH), selected either
by sensor nodes themselves or by a centralized device. CH
aggregates the sensed data of its cluster and forwards to the
BS via single hop. However, LEACH protocol does not offer
any guarantee about the location and number of CHs. Cen-
tralized LEACH (C-LEACH) uses a centralized algorithm
to form better clusters by dispersing CHs throughout the
network (Heinzelman et al. 2002). During setup phase of C-
LEACH, BS collects the information about all the position
and the remaining energy of sensor nodes in the network.
Based on collected information, BS determines the number
of CHs, discriminates their boundaries, organizes the net-
work into clusters and thus broadcasts this information to
the network. CHs wait for other nodes to join their respective
CHs, while member nodes discover their transmitting sched-
ule as per their allotted TDMA slot. A non-autonomous CH
selection is the main disadvantage of C-LEACH. Further,
LEACH with deterministic CH (LEACH-D) selection pro-
longs the network lifetime by considering the residual energy
of sensor nodes independent of their location (Handy et al.
2002). However, LEACH, C-LEACH and LEACH-D allow
nodes to communicate directly with the BS irrespective of
the distance between the sensor node and their respective
CH. Moreover, CH also transmits aggregated data directly to
the BS over a single-hop approach that leads to increase the
energy requirements. Power-Efficient Gathering in Sensor
Information System (PEGASIS) protocol is a chain-based
protocol in which each sensor node communicates with its
neighbor node only (Lindsey and Raghavendra 2002). Unlike
LEACH, PEGASIS avoids cluster formation and makes only
a single node in the chain to transmit data to the BS. PEGA-
SIS increases the lifetime of the network more than 200%
as compared to LEACH. To avoid this direct communica-
tion between a CH and the nodes, a Tree-based Efficient
Protocol for Sensor Information (TREEPSI) is proposed in
which a root node is selected before the transmission of data
(Satapathy and Sarma 2006). In TREEPS], either the BS con-
structs a route to the selected root node or each sensor node
implements their own algorithm to define their path to the
root node. This reduces the transmission distance among the
sensor nodes and hence decreases the energy consumption
by 30% in contrast to PEGASIS. Earlier routing protocols
fail to consider traffic and energy heterogeneity crucial for
application heterogeneity and event-driven scenarios. Traf-
fic and energy-aware routing (TEAR) considers sensor node
traffic requirements along with its energy levels to improve
CH selection criteria and performs better than LEACH, SEP
and DEEC in terms of network lifetime for heterogeneous

network (Sharma and Bhondekar 2018). Node deployment
is another challenging issue in WSNs. The main objective
of node placement is to achieve desired coverage, i.e., every
Point of Interest (Pol) is monitored by sufficient number of
sensor nodes and has sufficient routing paths. Node Deploy-
ment Scheme based on Path Creation (NDSPC) proposed
a novel node deployment scheme for mountain roads (Liu
2017). NDSPC avoids energy hole problem and reduces
transmission delay by achieving data diversion through con-
struction of extra paths.

Recently, tree-based cluster-based networks, also known
as multi-hop networks, become more popular due to their
adaptability, energy efficiency and fault-tolerant properties
like tree-based clustering (TBC) strategy. It divides every
cluster into different levels with CH at the center of the clus-
ter (Liu 2012; Kim et al. 2010; Wang et al. 2016). Each sensor
node looks for an intermediate node in the immediate next
level that reduces its distance to the root node to prolong the
network lifetime. However, it dissipates considerable amount
of energy for the isolated/distant CHs. Furthermore, Gen-
eral Self-Organized Tree-Based Energy-Balance (GSTEB)
extends TBC in which the BS has all information about the
residual energy and location of all sensor nodes (Han et al.
2014). BS alleviates the highest energy sensor node as a
root node. Each sensor node selects its parent node based
on the distance and energy level and results in the construc-
tion of a tree-like structure to the root node. GSTEB claims
100% improvement over HEED and 100-300% than PEGA-
SIS. Further, to minimize the delay and energy consumption,
an optimal value for the cluster radius has been computed
through theoretical analysis (Li et al. 2018b). To prolong the
network lifetime, the number of state transitions was reduced
by scheduling the sensor nodes in a consecutive time slots.

Optimization techniques sort out the efficient routing
issues and are well examined by several bio-inspired cluster-
ing approaches, for instance, ACO meta-heuristic multi-path
routing in Kuila and Jana (2014), Sun et al. (2017), Yang et al.
(2010) and Dong et al. (2014), particle swarm optimization
in Kennedy (2011), and artificial bee colony (ABC) in Mann
and Singh (2017) and Karaboga et al. (2012). ACO-based
clustering and routing algorithms perform the CH selection
periodically, models a sensor node as an ant and routes as
an ant foraging. Every sensor node dynamically computes
the probabilities to select an optimal path to prolong the
life of the network. In another ACO-based optimized rout-
ing strategy, the proposed fitness function enables an optimal
selection of CHs and clusters to uniformly dispense energy
amid sensor nodes (Ye and Mohamadian 2014). To solve the
problem of Efficient-Energy Coverage (EEC) during WSN
implementation, many algorithms have been proposed in the
past. One such algorithm uses one local pheromone and two
global pheromones to efficiently solve the problem of EEC.
Local pheromone reduces the number of sensor nodes, and
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Table2 Comparison of proposed scheme with existing energy-saving algorithms

Scheme Energy model Operation of network Routing structure Principle of CH selection Requirement of powerful
topology base station
LEACH First order Distributed Cluster Random No
C-LEACH First order Distributed Cluster Random Yes
PEGASIS First order Distributed Cluster Random and residual energy No
TBC First order Distributed Cluster-tree Random No
TEEN First order Distributed Cluster-tree Random No
GSTEB First order Centralized Self-organizing tree NA Yes
ABC First order Centralized Cluster Artificial bee colony Yes
MOFCA First order Distributed Cluster Fuzzy logic No
IACO First order Distributed Cluster Ant colony optimization No
MPACO First order Distributed Self-organizing tree Ant colony optimization No

global pheromones help to find the optimum number of sen-
sor nodes per Point of Interest (Pol) (Lee et al. 2011). Further,
another improved ACO (IACO) algorithm based on ACO
extended the traditional ACO to discover an optimal path
(Sun et al. 2017). IACO considers transmission distance,
transmission direction and residual energy to enhance the
network life span. Moreover, a multi-objective fuzzy clus-
tering algorithm (MOFCA) uses fuzzy logic approach that
uses a probabilistic model for selecting tentative CHs and
uses fuzzy logic to handle uncertainties in the WSN (Sert
et al. 2015). MOFCA outperforms the traditional schemes
in terms of first node dies, half of the nodes alive and total
remaining energy (TRE). A comparison of pre-reported per-
tinent energy-saving hierarchical- and tree-based strategies
has been summarized in Table 2.

3 Multiple pheromone ant colony
optimization (MPACO) model

For the proposed network, the following assumptions have
been adopted:

— There are ‘N’ numbers of sensor nodes that are randomly
deployed, and there is only one base station (BS).

— BS s at a certain distance from the network area.

— Sensor nodes are energy constrained, whereas BS has
unlimited energy.

— Sensor nodes and BS are immobile.

— All sensor nodes can communicate either directly or indi-
rectly (through intermediate sensor nodes) with the BS.

— All sensor nodes have an irreplaceable battery.

— Every sensor node has a unique id.

— Assume ‘C’ as a number of ants and ¢ is the minimum
probability for selection of a sensor node.
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— Radio channel used for transmitting and receiving a mes-
sage is symmetric.

Algorithm 1 Selection of parent node.

1. Set
n < number of nodes
e < energy of node
min_prob < ¢
i,h <1

2. whilei < n do

3. Compute the number of neighbor nodes, i.e., Apeign

4. while h < A.ig; do

5. Compute residual energy of every neighbor node, i.e., RES

6. Compute the minimum number of sensors required from
Apeign and their probability, i.e., prob

7. if prob > min_prob then

8. Set
parent <—h
min_prob < prob

9. end if

10. increment /2 and goto step 4.
11. end while

12. increment i and goto step 2.

13. end while

After assuming the above-mentioned basic model assump-
tions, the proposed scheme discovers the parent nodes as
per Algorithm 1 and described as follows: Step I: Initially, a
sensor node ‘a’ broadcasts a data-packet consisting of infor-
mation about its coordinates and residual energy within a
circle of radius r2 during its own time slot in its preamble.
Its neighbor node ‘b’ will receive this data with following
probabilities depending upon the distance between the sen-
sor node ‘a’ and ‘b’:

0, if dgp > 12
Py = e—k(dah—rl)m’ ifr) <dg <nr e))
1, ifdyy <y
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where k, m are decay parameters, and d, is the distance
between sensor nodes ‘a’ and ‘b’. The r{ and r, are the min-
imum and maximum distance detected by a sensor node,
respectively. The values of ry, 72, d, and k depend upon the
features of sensor and environment factors.

All events that lie within the range r; will be detected
by a current sensor node ‘a’ and beyond ry, the probability
of detection decreases exponentially. An event that occurs
beyond the distance r» will remain undetected. The neigh-
boring nodes that are within the range of a current sensor node
‘a’ as per equation 1 forms a set of sensor nodes. This set of
sensor nodes are referred as a covered set Apejgn. Generally,
each node similar to current sensor node ‘a’ will maintain its
covered set and is defined as:

RES;j(t) = Aneigh * residualEgy, (1) 2)

where residualEgy;, (1) = residual energy of the bth sensor
node of covered set A.

Step III: Further, every ant discovers the minimum number of
neighbor nodes required for sensor node ‘a’ from its covered
set Apeigh using third pheromone denoted as MinSN;,. The
objective of this step is to determine the minimum number
of sensor nodes required for each sensor nodes from their
covered set, to complete the process of transmission. This is
due to the fact that lesser the nodes involved in the transmis-
sion of the traffic data, the longer is the network lifetime. To
achieve this goal, pheromone MinSN,, is initiated as (Lee
et al. 2011):

—1<b—,ua

2
MinSN,, = jﬁe 2 o ) , ifb <n, 3)

S q

otherwise

where 7n; is the number of sensor nodes in the covered set of
‘A>and b = 1...n;. o is a constant, u; is initialized with
zero, and its value increases with the number of times that
the first ant of the first colony fails to organize the sensor set.
This is carried out by evaluating the probability of selecting
ith node as a neighbor node by ant ‘k’ at any time ‘¢’ as:

MinSN, 4 (1)
znl. . k
= e, if n; =n;
> 1 MinSN;,, (1)
0, otherwise

SelProb, « = 4)

where n{‘ is the number of nodes that have been identified
out of the minimum number of nodes of covered set ‘A’ by
an ant ‘k’. This probability is computed at the start of every
round for every node. Nodes having probability more than
the pre-defined minimum threshold €, becomes the neighbor

set for ‘a’ sensor node.

Step IV: Further, MPACO will identify the required number
of nodes defined in step III for current sensor node ‘a’ by
computing the probability of every sensor node of the neigh-
bor set by an ant k (Lee et al. 2011). This is carried out by
considering the residual energy (from step II) and the number
of times a neighboring node is selected as the member of the
neighboring set. Mathematically, it is computed as:

RES,; (N+V} (1)

, if aenk
ParSel(sen’;’ )= Zmenﬁi (RES jm ()4 V; (1) ! Q)
0, otherwise

where m is the identified neighboring nodes defined in step
v, V;‘ is another pheromone that computes the informa-
tion about the number of times the jth neighboring node is
selected to be acted as a parent node by an ant ‘k’. The node
having maximum probability ParSel(sen’;’ j) is selected as a
parent node for the current sensor node ‘a’. After the selec-
tion of node j as an eligible parent node by ant k, the value
of pheromone V}( for j sensor node is incremented as:

Vi +1) = Vi) + AV, (6)
where

k C,j, ifantk selects sensor j for node a
AV = 0

0, otherwise

where Cy; is a constant.

Like ant ‘., all other ants select their eligible parent node
in this way, as shown in Figs. 1 and 2. The eligible parent
node having the highest value of pheromone V;‘ is selected
as a final parent node.

The flowchart of MPACO scheme is shown in Fig. 2.

All sensor nodes are assumed to have the same features,
so the authors evaluate the complexity of the implementa-
tion of the proposed algorithm on one sensor node. During
parent node selection process, the algorithm complexity of a
sensor node is O(neigh), where neigh is number of neighbor
nodes for a sensor node and O(1) for sensor node that directly
communicate with BS. During the tree formation process, the
algorithm complexity of a sensor node is computed as O (m),
if the current sensor is a parent node, where m is the number of
child nodes associated with a sensor node. Otherwise, it will
be O(1) for a sensor node that does not have any associated
child node. Once the tree formation is completed, followed
by TDMA schedule, the data transmission phase begins.

4 Performance metrics

To evaluate the performance of the proposed MPACO, the
following performance metrics have been evaluated:
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Fig.1 Example of parent node
selection

Base station
Eligible parent node
Current sensor node

- Available data
transmssion route

1. First node dead (FND) This metric depicts the number
of rounds after which the first node dies. Usually, the
death of the first node does not affect the performance
of WSN; however, it becomes imperative in periodically
deployed WSN scenarios.

2. Half node dead (HND) This parameter is used to denote
the number of rounds in which half of the node dies and is
considered in application areas of such networks where
the coverage aspect is the primary area of interest.

3. Network lifetime (LND) Network lifetime is measured
by the number of rounds after which all nodes die. How-
ever, most of the WSNs are useless in most cases where
half of the node dies, but to measure the total network
lifetime, it is an important parameter (Handy et al. 2002).

4. Remaining energy Each sensor has to expend some
amount of energy to transmit its data that vary as per
the routing strategy used. This is computed by subtract-
ing energy spent by a sensor node from energy exhibit by
the node itself after every round.

5 Result and discussion

The performance of the reported MPACO is evaluated by
conducting a set of computer-based test bed with an itera-
tion of 100 seeds. The demonstration is carried out with the
varying number of stationary and randomly deployed sensor
nodes equipped with an initial energy of 0.25]. The sensing
nodes transmit the sensing information in the form of data
packets of 4000 bits in the network area of 100m x 100 m.
BS is located outside the network area with location coordi-
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nates of BS is (50m, 120m). The other working parameters
of the demonstrated test bed are depicted in Table 3.

Figure 3 shows the energy efficacy of the MPACO in terms
of END, HND, LND, and a contrast is drawn with the earlier
reported schemes. The observation illustrates that MPACO
outperforms the existing schemes, for instance, LEACH,
PEGASIS, TBC, MOFCA and TACO by implementing the
considered multiple pheromones to discover an optimized
route between the sensor node and BS. MPACO enhances
the network lifetime of the established network by more
than three times of MOFCA, while it proffers an improve-
ment of 20% in contrast with IACO. This is due to the fact
that MOFCA considers the residual energy and node den-
sity for the selection of CHs. Like IACO, each sensor node
in MPACO transmits its sensed data in a multi-hop man-
ner (through best intermediate nodes) without any cluster
formations. Alternatively, IACO selects its parent node by
considering the distance only, i.e., the nearest node acts as
the parent node to lead the shortest route-based transmis-
sion irrespective of the other pheromones like residual energy
and the neighboring nodes. Moreover, IACO optimized the
route using ACO technique to transmit the sensing data to
the BS and performs better than TBC along with other tradi-
tional schemes. Furthermore, with each sensor node of 0.5,
MPACO performs 25% better than IACO and 300% better
than MOFCA as shown in Table 4. The outcomes of both
the demonstrated scenarios, i.e., for initial energy of 0.25]
and 0.5], reveal here that MPACO ascertains the best avail-
able parent node among the deserving neighboring nodes
to provide an energy-efficient route to reach BS by offering
better load distribution among the current nodes. MPACO
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Fig.2 Flowchart of proposed
scheme
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|
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iteration

Select the elite ant into next

Reach the
max iteration

is further evaluated in terms of residual energy and num-
ber of alive nodes of a network of 100 x 100m? with 100
randomly deployed sensor nodes as shown in Figs. 4 and
5. It is observed that the first node of MPACO died after
1200 rounds, i.e., after 200 rounds of IACO that confirms
the enhancement of network life by 20% due to the capa-
bility of former strategy to select a parent node exhibiting
minimum power consumption.

Furthermore, the ability to adjust large number of nodes
that might not be predicted during the initial deployment
stage of the network, termed as scalability is computed. It

Table 3 MPACO test-bed parameters

549

Parameter Value
Electronics energy 50n]/bit

Initial energy 0.25J

Energy for data aggregation (Epa) 5nl/bit/signal
Communication energy (& 5) IOpJ/bit/m2
Communication energy (€amp) 0.0013 pJ/bit/m*
Sensing area (M x M) 100m x 100 m
Number of sensor nodes (N) 100

@ Springer



550

V.K. Arora et al.

Fig.3 Network life span versus
diverse energy-saving schemes
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Table 4 Stability period of various energy-saving schemes

Energy Protocol Number of nodes Number of nodes
after which first which last node
node

0.25] LEACH 118 243

PEGASIS 246 568
TREEPSI 267 611
TBC 328 329
MOFCA 389 677
TIACO 954 1079
MPACO 1171 1219
0.5] LEACH 208 435
PEGASIS 485 1067
TREEPSI 532 1123
TBC 589 1165
MOFCA 730 1330
IACO 1810 1952
MPACO 2375 2414

is a major design issue of such networks to identify the net-
work ability to accommodate additional sensing nodes up
to a certain acceptable threshold without reorganizing the
whole network. So, it is imperative that the routing protocols
designed for a WSN network must be capable enough to offer
the required network scalability to perform suitably. Conse-
quently, the proposed work is further extended to evaluate
the scalability of MPACO by varying the number of sensor
nodes from 100 to 300 nodes by keeping all other designing
metrics similar to the demonstrated test bed. The scalabil-
ity is computed by measuring the first node dead after the
number of rounds taken by each established scheme. The
outcomes as shown in Fig. 6, disclose that MPACO endows
with more scalability among the pre-reported algorithms due
to the selection of the best available parent node by consider-
ing the multiple pheromones discussed in Sect. 3 that utilizes
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IACO  MPACO

PEGASIS

TBC MOFCA

less node-energy consumption during transmission. Due to
high energy consumption for transmitting data to BS via
longer routes, IACO comes out as less-scalable approach than
MPACO. The tree-based TBC clustering has also claimed
low stability period because both the sensor nodes and CHs
transmit their sensed data in a single-hop manner over long
communication links. Similarly, the chain-based PEGASIS
scheme is observed to be less scalable due to the isolated
location of the elected leader from the BS which consumes
a lot of energy during its communication. Further, it is also
observed that while increasing the number of nodes from
100 to 300 (in the step-size of 50 nodes) in the terrain of size
100 x 100m?, the stability period among all of the reported
protocols increased by 5—-10%. It can be accredited to the fact
that with the increase in the number of nodes (keeping the
network area constant), the inter-node distance decreased.
Subsequently, it is worth to comment here that the demon-
strated work performs better with increase in node density
to be utilized for realizing an energy-efficient and scalable
network.

Further, the total remaining energy (TRE) of reported net-
work is computed over a varying number of sensor nodes
to reveal out the robustness of the proposed scheme and
depicted in Table 5. MPACO outperforms by asserting an
improved network lifetime and residual energy in contrast
with other demonstrated schemes. MPACO performs 11%
better than IACO, 100% better than MOFCA, and 250% bet-
ter than LEACH at node-density variation ranging from 100
to 300 nodes in terms of HND measurement.

Further, this work evaluates the performance for the net-
work scenario in which 1000 nodes are randomly deployed
in the network size of 1000 x 1000m?, equipped with 1J
initial energy, with the BS at a distance of (500 m, 500 m)
amid packet size of 4000 bits. It has been observed that
MPACO performs better for the tree-based routing topolo-
gies and Two-Tier Distributed Fuzzy Logic-Based Protocol
(TTDFP) outperforms for the cluster-based energy-efficient
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multi-hop routing schemes by considering relative node con- 6 Conclusion
nectivity, distance to the BS and the remaining node energy.
Additionally, it uses average link residual energy and relative

distance to select the most efficient routing path to prolong
the network life.

This work demonstrates an energy-efficient multiple phero-

mone-based ant colony optimization (MPACO) scheme.
MPACO considers the residual energy, node density and
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Table 5 Total remaining energy of various energy-saving schemes at various number of rounds

Number of nodes Number of rounds LEACH PEGASIS TBC MOFCA IACO MPACO
100 nodes 300 14.84 17.20 18.52 18.81 21.17 21.64
400 12.20 14.65 16.31 16.75 19.96 20.63
500 10.12 12.18 14.16 14.73 18.75 19.62
600 9.18 11.32 12.16 12.81 17.55 18.60
150 nodes 300 23.81 26.46 28.05 28.37 31.85 32.53
400 20.28 22.80 24.79 25.35 30.07 30.94
500 17.17 19.21 21.60 22.35 28.30 29.39
600 14.65 17.89 18.52 19.54 26.52 27.85
200 nodes 300 32.09 35.14 37.31 37.96 42.73 43.60
400 27.28 30.28 33.00 33.96 40.42 41.52
500 23.25 25.57 28.83 30.00 38.12 39.46
600 19.88 22.89 24.84 26.26 35.81 37.40
250 nodes 300 40.44 44.32 46.87 47.52 53.23 54.52
400 34.72 38.41 41.59 42.58 50.28 51.94
500 29.74 32.61 36.49 37.69 47.35 49.37
600 25.58 28.92 31.63 33.08 44.43 46.80
300 nodes 300 48.63 53.80 56.28 57.20 64.11 65.49
400 41.88 46.82 49.93 51.28 60.64 62.39
500 35.99 39.89 43.81 45.45 57.17 59.30
600 31.13 35.28 37.96 39.93 53.71 56.22

distance among the sensor nodes to discover the most
efficient route to the base station with less node-energy uti-
lization that leads to high network life span. The outcomes
reveal that for an initial node energy of 0.25J, MPACO per-
forms 20% better than IACO and ascertains a significant
improvement of 300% in contrast with MOFCA in terms of
network life span. Furthermore, MPACO is observed to have
potential to accommodate additional sensing nodes, required
in the later stage, without reorganizing the existing network
in contrast with the pre-reported significant energy-saving
hierarchical- and tree-based strategies.
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