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Abstract
In this paper, we consider a fuzzy multi-point boundary value problem-FMBVP [or a multi-point boundary value problem
(MBVP) for fuzzy second-order differential equations (FSDEs) under generalized Hukuhara differentiability]. We present
solving methods for a FMBVP in the space of fuzzy numbers E1, such that we have shown the ability to and methods to
find solution of the MBVP for FSDEs in the form of (F H gi − F H gj )-solutions. In addition, we provide with a new idea to
develop the real Green’s function method and give two examples being simple illustration of this FMBVP.

Keywords Fuzzy generalized derivatives · The fuzzy second-order differential equations · The multi-point boundary value
problems · The real Green’s function method

1 Introduction

Research of fuzzy boundary value problems (FBVPs) is
beneficial for many problems involving fuzzy systems, for
example, the mathematical modeling of the physical and
mechanical problems in which uncertainties or vagueness
pervade. In recent year, the fuzzy boundary value problems
have gained development in both theory and application.
FBVPs was first considered by Lakshmikantham et al.
(2001). Thereafter, O’Regan et al. (2002) presented that a
fuzzy two-point boundary value problem is equivalent to a
fuzzy integral equation written by using Green’s function.
However, Bede (2006) indicated a counterexample which
shows that the two-point boundary value problem for a fuzzy
differential equation is not equivalent to a fuzzy integral
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equation, because a fuzzy function may have two kinds of
derivatives. Also, he proved that a large class of fuzzy two-
point boundary value problems have not any solution under
Hukuhara differentiability concept. In the following years,
there are several research of FBVPs was published by the
authors, for example: Khastan and Nieto (2010) proposed a
new solution concept for a two-point boundary value problem
for a second-order fuzzy differential equation using gener-
alized differentiability, not only that, Khastan et al. (2013)
considered the existence of solutions for a class of FBVPs
under generalized differentiability, Chen et al. (2008) proved
the existence of the solution of a two-point boundary value
problem and showed equivalent between a two-point bound-
ary value problem and a fuzzy integral equation under a new
structure and certain conditions, Agarwal et al. (2005) stud-
ied the existence of fuzzy solutions for multi-point boundary
value problems, Gasilov et al. (2015) have presented to a new
approach to a non-homogeneous FBVPs by consider a linear
differential equation with real coefficients but with a fuzzy
forcing function and fuzzy boundary values, they also have
developed a method that finds this solution.

Most of the above research approaches to FBVPs depend
on the concept of the solution to the fuzzy differential equa-
tion. The researchers assume that the derivative in the fuzzy
differential equation is a fuzzy derivative. This derivative
can be the Hukuhara derivative (H-derivative), or general-
ized Hukuhara derivative (Chalco-Cano et al. 2016). Bede
and Gal (2005) developed the concept of the fuzzy gener-
alized H-derivative. Khastan and Nieto (2010) and Khastan
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et al. (2013) investigated FBVPs using this concept. Fur-
thermore, Bede (2006) proved that a large class of fuzzy
two-point boundary value problem have not solution when
using the fuzzy H-derivatives.

In this paper, we use the concept of the fuzzy generalized
H-derivatives to study a multi-point boundary value prob-
lem for fuzzy second-order differential equations (MBVP
for FSDEs) (or fuzzy multi-point boundary value problem-
FMBVP), we analyze solutions of this problem and present
some methods to find them.

This paper is organized as follows. In Sect. 2, we describe
some preliminaries of fuzzy analysis, as the first-order and
the second-order fuzzy generalized Hukuhara derivatives. In
Sect. 3, we formulate a multi-point boundary value prob-
lem for fuzzy second-order differential equations under fuzzy
generalized Hukuhara differentiability (MBVP for FSDEs)
with certain conditions on the space of fuzzy numbers E1

and its properties, describe some methods for solving of this
problem. In the last section, we give two examples being
simple to illustrate our method.

2 Preliminaries

Let us consider the collection KC (Rd) of all nonempty, com-
pact and convex subsets of Rd . Given A, B in KC (Rd), the
Hausdorff distance between A and B defined as

dH [A, B] = max

{
sup
a∈A

inf
b∈B

‖a − b‖Rd , sup
b∈B

inf
a∈A

‖a − b‖Rd

}
,

(1)

where ‖.‖Rd denotes the Euclidean norm in R
d . It is known

that (KC (Rd), dH ) is a completemetric space and if the space
KC (Rd) is equipped with the natural algebraic operations of
addition and nonnegative scalar multiplication, then KC (Rd)

becomes a semilinear metric space which can be embedded
as a complete cone into a corresponding Banach space. Set
Ed = {ω : R

d → [0, 1] such that ω(z) satisfies (i)–(iv)
stated below}

(i) ω is normal, that is, there exists an z0 ∈ R
d such that

ω(z0) = 1;
(ii) ω is fuzzy convex, that is, for 0 ≤ λ ≤ 1

ω(λz1 + (1 − λ)z2) ≥ min{ω(z1), ω(z2)};

(iii) ω is upper semicontinuous;
(iv) [ω]0 = cl{z ∈ R

d : ω(z) > 0} is compact, where cl
denotes the closure in (R, |.|).

The element ω ∈ Ed is called a fuzzy set. When d = 1,
elements of E1 are often called the fuzzy numbers and E1 is
called fuzzy numbers space.

The set [ω]α = {z ∈ R
d : ω(z) ≥ α, 0 < α ≤ 1} is

called the α-level set. For all 0 � α � β � 1 then we have
[ω]β ⊂ [ω]α ⊂ [ω]0.

For two fuzzy sets ω1, ω2,we denote ω1 � ω2 if and only
if [ω1]α ⊂ [ω2]α . Let us denote

D0[ω1, ω2] = sup
α∈[0,1]

{dH ([ω1]α, [ω2]α)} (2)

the distance between ω1 and ω2 in Ed , where

dH

[
[ω1]α, [ω2]α

]
is Hausdorff distance between two set

[ω1]α, [ω2]α of KC (Rd). Then (Ed , D0) is a complete space.
Some properties of metric D0 are as follows.

D0[ω1 + ω3, ω2 + ω3] = D0[ω1, ω2],
D0[λω1, λω2] = |λ|D0[ω1, ω2],

D0[ω1, ω2] ≤ D0[ω1, ω3] + D0[ω3, ω2],

for all ω1, ω2, ω3 ∈ Ed and λ ∈ R.
Given an interval [t0, T ] ⊆ R+.

Let us denote θd ∈ Ed the zero element of Ed as follows:

θd (z) =
{
1 if z = 0̂

0 if z 	= 0̂

where 0̂ is the zero element of Rd .

Definition 1 Let x, y ∈ E1. if there exists z ∈ E1 such that
x = y + z, then z is called the Hukuhara difference of x, y
and it is denoted z = x 
 y.

Definition 2 (see Bede and Gal 2005) Let x : (t0, T ) → E1

and t ∈ (t0, T ). We say that x is fuzzy generalized differen-
tiable at t , if there exists Dg

H x(t) ∈ E1, such that

(i) for all h > 0 sufficiently small,
∃x (t + h) 
 x(t), ∃x(t) 
 x(t − h) and

lim
h↘0

x (t + h) 
 x(t)

h
= lim

h↘0

x (t) 
 x(t − h)

h
= Dg

H x(t)

or
(ii) for all h > 0 sufficiently small,
∃x (t) 
 x(t + h), ∃x(t − h) 
 x(t) and

lim
h↘0

x (t) 
 x(t + h)

−h
= lim

h↘0

x (t − h) 
 x(t)

−h
= Dg

H x(t)

or
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(iii) for all h > 0 sufficiently small,
∃x (t + h) 
 x(t), ∃x(t − h) 
 x(t) and

lim
h↘0

x (t + h) 
 x(t)

h
= lim

h↘0

x (t − h) 
 x(t)

−h
= Dg

H x(t)

or
(iv) for all h > 0 sufficiently small,
∃x (t) 
 x(t + h), ∃x(t) 
 x(t − h) and the limits

lim
h↘0

x (t) 
 x(t + h)

−h
= lim

h↘0

x (t) 
 x(t − h)

h
= Dg

H x(t).

If the limits are taken in the metric space (E1, D0), and at
boundary points we consider only the one-side derivatives,
thenwe have the fuzzy generalized differentiables as follows:

Definition 3 Let x : (t0, T ) → E1 and t ∈ (t0, T ). We say
that x is fuzzy generalized differentiable at t , if there exists
Dg

H x(t) ∈ E1, such that
(F H g1) : for all h > 0 sufficiently small, the fuzzy general-
ized differences x (t + h) 
 x(t),

x(t) 
 x(t − h) exist and the limits (in the metric D0)

lim
h→0+ D0

[
x (t + h) 
 x(t)

h
, Dg

H x(t)

]

= lim
h→0+ D0

[
x (t) 
 x(t − h)

h
, Dg

H x(t)

]
= 0

or
(F H g2): for all h > 0 sufficiently small, the fuzzy general-
ized differences x (t) 
 x(t + h),

x(t − h) 
 x(t) exist and the limits (in the metric D0)

lim
h→0+ D0

[
x (t) 
 x(t + h)

−h
, Dg

H x(t)

]

= lim
h→0+ D0

[
x (t − h) 
 x(t)

−h
, Dg

H x(t)

]
= 0.

In this paper, we consider only the two first fuzzy gener-
alized differentiabilities of Definition 2 (or the cases (F H g1)
and (F H g2) of Definition 3) and assume that do not have any
switching point on (t0, T ).

Theorem 1 Let x : [t0, T ] → E1 be fuzzy function, where
[x(t)]α = [x(t, α), x(t, α)] for each α ∈ [0, 1].

(i) If x is (F H g1)-differentiable, then x(t, α) and x(t, α)

are differentiable functions and [Dg
H x(t)]α = [x ′

(t, α),

x
′
(t, α)].

(ii) If x is (F H g2)-differentiable, then x(t, α) and x(t, α)

are differentiable functions and [Dg
H x(t)]α = [x ′

(t, α),

x
′
(t, α)].

Proof Can see Kaleva (1987), Chalco-Cano and Roman-
Flore (2008). ��

Hoa and Phu (2014) given the second-order generalized
Hukuhara differentiability of fuzzy-valued functions x as fol-
lowings:

Definition 4 (Hoa and Phu 2014) Let x : (t0, T ) → E1 and
t ∈ (t0, T ). We say that x is strongly generalized differen-
tiable at t , if there exists Dg

H x(t) ∈ E1 and D2,g
H x(t) ∈ E1,

such that
(F H2,g1): for all h > 0 sufficiently small, the difference
Dg

H x (t + h) 
 Dg
H x(t), Dg

H x (t) 
 Dg
H x(t − h) exist and

the limits (in the metric D0)

lim
h↘0+ D0

[
Dg

H x (t + h) 
 Dg
H x(t)

h
, D2,g

H x(t)

]

= lim
h↘0+ D0

[
Dg

H x (t) 
 Dg
H x(t − h)

h
, D2,g

H x(t)

]
= 0

or
(F H2g2): for all h > 0 sufficiently small, the difference
Dg

H x (t) 
 Dg
H x(t + h), Dg

H x (t − h) 
 Dg
H x(t) exist and

the limits (in the metric D0)

lim
h↘0+ D0

[
Dg

H x (t) 
 Dg
H x(t + h)

−h
, D2,g

H x(t)

]

= lim
h↘0+ D0

[
Dg

H x (t − h) 
 Dg
H x(t)

−h
, D2,g

H x(t)

]
= 0

Theorem 2 Let x : [t0, T ] → E1 and Dg
H x(t) =

x ′ : [t0, T ] → E1 be fuzzy functions, where [x(t)]α =
[x(t, α), x(t, α)]. If x, x ′ are (F H g1) - differentiable (or
(F H g2)-differentiable), then by Zadeh’s extension principle,
we have x(t, α), x(t, α) and x

′
(t, α), x

′
(t, α) are differen-

tiable functions and

(i) [D2,g
H x(t)]α = [x ′′

(t, α), x
′′
(t, α)], where x(t) and

Dg
H x(t) are (F H g1) fuzzy differential functions;

(ii) [D2,g
H x(t)]α = [x ′′

(t, α), x
′′
(t, α)] where x(t) is

(F H g1) fuzzy differential function, and Dg
H x(t) is

(F H g2) fuzzy differential function;
(iii) [D2,g

H x(t)]α = [x ′′
(t, α), x

′′
(t, α)] where x(t) is

(F H g2) fuzzy differential function, and Dg
H x(t) is

(F H g1) fuzzy differential function;
(iv) [D2,g

H x(t)]α = [x ′′
(t, α), x

′′
(t, α)], where x(t) and

Dg
H x(t) are (F H g2) fuzzy differential functions.

Proof Can see Khastan et al. (2009), Hoa and Phu (2014). ��
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3 Main result

Let us consider a fuzzy second-order differential equations
under generalized Hukuhara differentiability (FSDEs):

D2,g
H x(t) = f (t, x(t), Dg

H x(t)), (3)

where f : [t0, T ] × E1 × E1 → E1 is continuous with the
solutions that satisfies the multi-point boundary conditions:

{
α11x(t0) = −α12Dg

H x(t0) + γ1

α21x(T ) = −α22Dg
H x(T ) + γ2,

(4)

where γ1, γ2 ∈ E1, α11, α12, α21, α22 ∈ R
+ with

α2
11 + α2

12 	= 0, α2
21 + α2

22 	= 0 and (3)–(4) is called a
multi-point boundary value problem for fuzzy second-order
differential equations under generalized Hukuhara differen-
tiability (MBVP for FSDEs) (or a fuzzymulti-point boundary
value problem-FMBVP).

Definition 5 A fuzzy function x ∈ C2([t0, T ], E1) is called
a solution of MBVP for FSDEs (3)–(4), if:

(i) x(t) and Dg
H x(t) are (F H gi )-differentiable functions

for i = 1, 2, that D2,g
H x(t) will be one of the terms in

Theorem 2;
(ii) x(t) and Dg

H x(t) satisfy MBVP for FSDEs (3)–(4).

Remark 1 Some type of the fuzzymulti-point boundary value
problem (FMBVP) depends on the change to value of αi j ,

(i, j = 1, 2) in (4), that we get different boundary condi-
tions. For example, when α12 = α22 = 0, α11 = α21 = 1 we
have boundary condition the form x(t0) = γ1, x(T ) = γ2,
from this boundary condition together with (3), so we get
two-point boundary value problems, there are several studies
published on this two-point boundary value problems (Bede
2006; Khastan andNieto 2010; Lakshmikantham et al. 2001)
. When α12 = α21 = 0, (or the same, when α11 = α22 = 0),
we have the initial valued problem for fuzzy second-order
differential equations under generalized Hukuhara differen-
tiability (IVP for FSDEs) (O’Regan et al. 2003), and when
one of the αi j equals 0 we have three point boundary value
problem (ThBVP) for fuzzy second-order differential equa-
tions under generalized Hukuhara differentiability.

3.1 Solving theMBVP for FSDEs by Hukuhara
integrals

Theorem 3 From Eq. (3) Assume that f : [t0, T ] × E1 ×
E1 → E1 is continuous. A mapping x : [t0, T ] → E1 is
a general solution to Eq. (3) if and only if exist x(t) and
Dg

H x(t) are continuous and satisfy:

(i) x(t) = C2+C1t+
∫ t

t0
(

∫ τ

t0
f (γ, x(γ ), Dg

H x(γ ))dγ )dτ

where x(t) and Dg
H x(t) are (F H g1)- differentiable, or

(ii) x(t) = C2 + C1t 
 (−1)
∫ t

t0

(∫ τ

t0
f (γ, x(γ ),

Dg
H x(γ ))dγ

)
dτ where x(t) is (F H g1)-differentiable,

and Dg
H x(t) is (F H g2)-differentiable.

(iii) x(t) = C2 
 (−1)(C1t +
∫ t

t0
(

∫ τ

t0
f (γ, x(γ ),

Dg
H x(γ ))dγ )dτ) where x(t) is (F H g2)-differentiable,

and Dg
H x(t) is (F H g1)-differentiable, or

(iv) x(t) = C2 
 (−1)(C1t 
 (−1)
∫ t

t0
(

∫ τ

t0
f (γ, x(γ ),

Dg
H x(γ ))dγ )dτ) where x(t) and Dg

H x(t) are (F H g2)-
differentiable. (where C1, C2 are constants any.)

Proof Since f is continuous, it must be integrable. So (3)
can be written in each case as follows:

(i) Let x(t) and Dg
H x(t) be (F H g1)- differentiable. Then,

from Eq. (3), we have equivalently

Dg
H x(t) = C1 +

∫ t

t0
f (γ, x(γ ), Dg

H x(γ ))dγ and thus

x(t) = C2 + C1t +
∫ t

t0

(∫ τ

t0
f (γ, x(γ ), Dg

H x(γ ))dγ

)
dτ

(ii) Let x(t) is (F H g1)-differentiable, and Dg
H x(t) is

(F H g2)-differentiable. Then, from Eq. (3), we have
equivalently

Dg
H x(t) = C1 
 (−1)

∫ t

t0
f (γ, x(γ ), Dg

H x(γ ))dγ

and thus

x(t) = C2 + C1t 
 (−1)
∫ t

t0

×
(∫ τ

t0
f (γ, x(γ ), Dg

H x(γ ))dγ

)
dτ .

(iii) Let x(t) is (F H g2)-differentiable, and Dg
H x(t) is

(F H g1)-differentiable. Then, from Eq. (3), we have
equivalently

Dg
H x(t) = C1 +

∫ t

t0
f (γ, x(γ ), Dg

H x(γ ))dγ and thus

x(t) = C2 
 (−1)

(
C1t +

∫ t

t0

×
(∫ τ

t0
f (γ, x(γ ), Dg

H x(γ ))dγ

)
dτ

)
.
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(iv) Let x(t) and Dg
H x(t) be (F H g2)- differentiable. Then,

from Eq. (3), we have equivalently

Dg
H x(t) = C1 
 (−1)

∫ t

t0
f (γ, x(γ ), Dg

H x(γ ))dγ

and thus

x(t) = C2 
 (−1)

(
C1t 
 (−1)

∫ t

t0

×
(∫ τ

t0
f (γ, x(γ ), Dg

H x(γ ))dγ

)
dτ

)
.

��
Remark 2 After getting the general solution fromTheorem3,
wewill apply boundary conditions (4) to determine the values
C1, C2.

3.2 Solving theMBVP for FSDEs by Zadeh’s
extension principle

We get themulti-point boundary value problem [with bound-
ary condition (4)] for fuzzy second-order inhomogeneous
linear differential equations under generalized Hukuhara dif-
ferentiability (MBVP for FSIDEs):

D2,g
H x(t) = (−1)[p(t)Dg

H x(t) + q(t)x(t)] + r(t), (5)

where r(t) ∈ E1 and p(t), q(t) ∈ R
+ are continuous pos-

itive real functions. So we make a small substitution in the
Equation (3) (that means we replace f (t, x(t), Dg

H x(t)) =
(−1)[p(t)Dg

H x(t) + q(t)x(t)] + r(t)).

Definition 6 A fuzzy function x ∈ C2([t0, T ], E1) is called
a solution of MBVP for FSIDEs (4)–(5) if:

(i) x(t) and Dg
H x(t) are (F H gi )-differentiable functions for

i = 1, 2, that D2,g
H x(t) will be one of the terms in Theo-

rem 2;
(ii) x(t) and Dg

H x(t) satisfy MBVP for FSIDEs (4)–(5) .

Remark 3 In this subsection, we shall establish the explicit
solution to MBVP for FSIDEs (4)–(5) . Our strategy of solv-
ing MBVP for FSIDEs (4)–(5) is based on the choice of the
derivative in the fuzzy differential equation, such that we
have two kinds of Dg

H x(t) (it is (F H g1)-differentiable or is
(F H g2)-differentiable).

Other than (5), we can consider many other models, for
example D2,g

H x(t)+ p(t)Dg
H x(t)+q(t)x(t) = r(t)(∗). The

fuzzy second-order differential equations under generalized
Hukuhara differentiability (5) and (*) are not equivalent. But
we have the following Theorem.

Theorem 4 From the MBVP for FSIDEs (4)–(5) on [t0, T ]
with the real functions p(t) and q(t) are to define the sign

that means sign does not change on (t0, T ), then we get the
MBVP for four systems of real ordinary differential equations
(SRODEs).

Proof In order to solve MBVP for FSIDEs (4)–(5), we have
three steps: first we choose the type of derivative and change
problem MBVP for FSIDEs (4)–(5) to a system of real ordi-
nary differential equations (SRODEs) by using Theorem 2;
second we solve the obtained SRODEs; the final step is to
find such a domain in which the solution and its derivatives
have valid sets. By using Theorems 1 and 2, each x (t) ∈ E1

corresponds to [x (t)]α = [
x (t,α) , x̄ (t,α)

]
.

If x (t) is F H g1 then
[
Dg

H x (t)
]α = [

x′ (t,α) , x̄ ′ (t,α)
] ;

If
[
Dg

H x (t)
]α

is F H g1 then
[

D2g
H x (t)

]α = [
x′′ (t,α) , x̄ ′′

(t,α)] ;
If

[
Dg

H x (t)
]α

is F H g2 then
[

D2g
H x (t)

]α = [
x̄ ′′

(t,α) , x′′ (t,α)
]
.

Totally similar :
If x (t) is F H g2 then

[
Dg

H x (t)
]α = [

x̄ ′ (t,α) , x′ (t,α)
] ;

If
[
Dg

H x (t)
]α

is F H g1 then
[

D2g
H x (t)

]α = [
x̄ ′′

(t,α) , x′′ (t,α)
] ;

If
[
Dg

H x (t)
]α

is F H g2 then
[

D2g
H x (t)

]α

=
[
x′′ (t,α) ,

x̄ ′′ (t,α)
]
.

So, from The MBVP for FSIDEs (4)–(5), we have four
α−level set problems, as follows:
Case 1 x(t) and Dg

H x(t) are F H g1-differentiable functions
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
x

′′
(t, α), x

′′
(t, α)

]
= −p(t)

[
x

′
(t, α), x

′
(t, α)

]
− q(t)

[
x(t, α), x(t, α)

]
+ [

r(t, α), r(t, α)
]

α11
[
x(t0, α), x(t0, α)

] = −α12

[
x

′
(t0, α), x

′
(t0, α)

]
+

[
γ
1
(α), γ 1(α)

]
α21

[
x(T , α), x(T , α)

] = −α22

[
x

′
(T , α), x

′
(T , α)

]
+

[
γ
2
(α), γ 2(α)

]
,

Case 2 x(t) is F H g1-differentiable and Dg
H x(t) is F H g2-

differentiable functions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
x

′′
(t, α), x

′′
(t, α)

]
= −p(t)

[
x

′
(t, α), x

′
(t, α)

]
− q(t)

[
x(t, α), x(t, α)

]
+ [

r(t, α), r(t, α)
]

α11
[
x(t0, α), x(t0, α)

] = −α12

[
x

′
(t0, α), x

′
(t0, α)

]
+

[
γ
1
(α), γ 1(α)

]
α21

[
x(T , α), x(T , α)

] = −α22

[
x

′
(T , α), x

′
(T , α)

]
+

[
γ
2
(α), γ 2(α)

]
,

Case 3 x(t) is F H g2-differentiable and Dg
H x(t) is F H g1-

differentiable functions
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
x

′′
(t, α), x

′′
(t, α)

]
= −p(t)

[
x

′
(t, α), x

′
(t, α)

]
− q(t)

[
x(t, α), x(t, α)

]
+ [

r(t, α), r(t, α)
]

α11
[
x(t0, α), x(t0, α)

] = −α12

[
x

′
(t0, α), x

′
(t0, α)

]
+

[
γ
1
(α), γ 1(α)

]
α21

[
x(T , α), x(T , α)

] = −α22

[
x

′
(T , α), x

′
(T , α)

]
+

[
γ
2
(α), γ 2(α)

]
,

Case 4 x(t) and Dg
H x(t) are F H g2-differentiable functions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
x

′′
(t, α), x

′′
(t, α)

]
= −p(t)

[
x

′
(t, α), x

′
(t, α)

]
− q(t)

[
x(t, α), x(t, α)

]
+ [

r(t, α), r(t, α)
]

α11
[
x(t0, α), x(t0, α)

] = −α12

[
x

′
(t0, α), x

′
(t0, α)

]
+

[
γ
1
(α), γ 1(α)

]
α21

[
x(T , α), x(T , α)

] = −α22

[
x

′
(T , α), x

′
(T , α)

]
+

[
γ
2
(α), γ 2(α)

]
,
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Finally, we get theMBVP for four systems of real ordinary
differential equations (SRODEs), as follows.

(i) p(t), q(t) ∈ R
− :

Case 1 x(t) and Dg
H x(t) are F H g1-differentiable func-

tions

(I )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α),

Case 2 x(t) is F H g1-differentiable and Dg
H x(t) is

F H g2-differentiable functions

(I I )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α),

Case 3 x(t) is F H g2-differentiable and Dg
H x(t) is

F H g1-differentiable functions

(I I I )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α),

Case 4 x(t) and Dg
H x(t) are F H g2-differentiable func-

tions

(I V )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α).

(ii) p(t), q(t) ∈ R
+ :

Case 1 x(t) and Dg
H x(t) are F H g1-differentiable func-

tions

(I )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α),

Case 2 x(t) is F H g1-differentiable and Dg
H x(t) is

F H g2-differentiable functions

(I I )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α),

Case 3 x(t) is F H g2-differentiable and Dg
H x(t) is

F H g1-differentiable functions

(I I I )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α),

Case 4 x(t) and Dg
H x(t) are F H g2-differentiable func-

tions

(I V )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α).

(iii) p(t) ∈ R
+, q(t) ∈ R

− :
Case 1 x(t) and Dg

H x(t) are F H g1-differentiable func-
tions

(I )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α),
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Case 2 x(t) is F H g1-differentiable and Dg
H x(t) is

F H g2-differentiable functions

(I I )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α),

Case 3 x(t) is F H g2-differentiable and Dg
H x(t) is

F H g1-differentiable functions

(I I I )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α),

Case 4 x(t) and Dg
H x(t) are F H g2-differentiable func-

tions

(I V )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α).

(iv) p(t) ∈ R
−, q(t) ∈ R

+ :
Case 1 x(t) and Dg

H x(t) are F H g1-differentiable func-
tions

(I )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α),

Case 2 x(t) is F H g1-differentiable and Dg
H x(t) is

F H g2-differentiable functions

(I I )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α),

Case 3 x(t) is F H g2-differentiable and Dg
H x(t) is

F H g1-differentiable functions

(I I I )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α),

Case 4 x(t) and Dg
H x(t) are F H g2-differentiable func-

tions

(I V )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

x
′′
(t, α) = −p(t)x

′
(t, α) − q(t)x(t, α) + r(t, α),

α11x(t0, α) = −α12x
′
(t0, α) + γ

1
(α),

α11x(t0, α) = −α12x
′
(t0, α) + γ 1(α),

α21x(T , α) = −α22x
′
(T , α) + γ

2
(α),

α21x(T , α) = −α22x
′
(T , α) + γ 2(α).

��
Remark 4 If we ensure that the solutions [x(t, α), x(t, α)] of
the real multi-point boundary problems (I, II, III, IV) corre-
sponding to the values of p(t) and q(t) satisfy the first-order
and second-order derivatives [x ′

(t, α), x
′
(t, α)],

[x ′′
(t, α), x

′′
(t, α)] are valid level sets of fuzzy functionswith

two kinds differentiability, respectively, then we can con-
struct the solution of problemMBVP for FSIDEs (4)–(5). In
addition, if this solution satisfies the Definition 6, then it is
solution of problem MBVP for FSIDEs (4)–(5).

So every form (5) or (*) in Remark 3, we always get the
MBVPs for four systems of real ordinary differential equa-
tions, which are the conclusions of Theorem 4.

3.3 Solving theMBVP for FSDEs by real Green’s
function

In this subsection, we will build the real Green’s func-
tion method to solve for the multi-point boundary value
problem for fuzzy second-order inhomogeneous linear differ-
ential equations under generalizedHukuhara differentiability
(MBVP for FSIDEs) (4)–(5). Because it is very difficult to
build a fuzzy-valued Green’s function, so we will build real
Green’s function for each certain multi-point boundary value
problem.

Wewill consider the boundary condition (4) with a special
case when γ1 = γ2 = θ1 ∈ E1, the MBVP for FSIDEs (5)
is a following form:

{
α11x(t0) = (−1)α12Dg

H x(T )

α21x(t0) = (−1)α22Dg
H x(T ),

(6)
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where α11, α12, α21, α22 ∈ R
+ with α2

11 + α2
12 	= 0, α2

21 +
α2
22 	= 0.

Remark 5 In the case when γ1 = γ2 = θ1 ∈ E1, we cannot
write the multi-point boundary conditions (4) under form:

α11x(t0) + α12Dg
H x(T ) = θ1

α21x(t0) + α22Dg
H x(T ) = θ1,

because the sum of two fuzzy sets is always different of θ1.

Now,wewill proceed find a realGreen’s function. So that this
Green’s functionmust fitwith the purpose of posing problem.
We will transform the α-level sets problem MBVP (6) for
FSIDEs (5) become the real-value problem with method as
follows.

We denote [x(t)]α = [x(t, α), x(t, α)], [Dg
H x(t)]α =

[x ′
(t, α), x

′
(t, α)], [D2,g

H x(t)]α = [x ′′
(t, α), x

′′
(t, α)].

Hence, from MBVP (6) for FSIDEs (5), we obtain

[x ′′
(t, α), x

′′
(t, α)] = −p(t)[x ′

(t, α), x
′
(t, α)] (7)

− q(t)[x(t, α), x(t, α)] + [r(t, α), r(t, α)].{
α11[x(t0, α), x(t0, α)] = (−1)α12[x ′

(t0, α), x
′
(t0, α)]

α21[x(T , α), x(T , α)] = (−1)α22[x ′
(T , α), x

′
(T , α)].

(8)

Putting ṽ(t) = x(t,α=0)+x(t,α=0)
2 , r̃(t) = r(t,α=0)+r(t,α=0)

2 ,
we will transform the α-level sets problem (7)–(8) become
the real-value problem the following form.

ṽ
′′
(t) + p(t)ṽ

′
(t) + q(t)ṽ(t) = r̃(t), (9){

α11ṽ(t0) + α12ṽ
′
(t0) = 0

α21ṽ(T ) + α22ṽ
′
(T ) = 0.

(10)

Note: with putting above, we choose α = 0, so that lose
α in (9)–(10).

Finally, we will find real Green’s function of real-value
problem (9)–(10).

Remark 6 By the method above, we will find a appropriate
real Green’s function for MBVP that we are considering.

Consider the multi-point boundary value problem for
fuzzy second-order inhomogeneous linear differential equa-
tions under generalized Hukuhara differentiability (MBVP
for FSIDEs) .

D2,g
H x(t) = (−1)[p(t)Dg

H x(t) + q(t)x(t)] + r(t), (11)

where r(t) ∈ E1, r(t) 	= θ1 and p(t), q(t) ∈ R are continu-
ous real functions, with the multi-point boundary conditions

{
α11x(t0) = −α12Dg

H x(t0) + γ1

α21x(T ) = −α22Dg
H x(T ) + γ2,

(12)

where γ1, γ2 ∈ E1 , α11, α12, α21, α22 ∈ R
+ with α2

11 +
α2
12 	= 0, α2

21 + α2
22 	= 0 and γ1, γ2 	= θ1.

Theorem 5 A general solution of MBVP for FSIDEs (11)–
(12) will be under form:

x(t) =
b∫

a

G(t, s)r(s)ds + z(t), (13)

where r(s) is fuzzy function in (11), z(t) is general solution
of FSIDEs (11) with the real Green’s function G(t, s), that
will be defined by:

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

u1(s)u2(t)

w(s)
, if t0 � s � t � T ,

u1(t)u2(s)

w(s)
, if t0 � t � s � T ,

(14)

where u1(t), u2(t) are two linearly independent real solu-
tions of homogeneous real differential equations of the
form ũ

′′
(t) + p(t)ũ

′
(t) + q(t)ũ(t) = 0 where ũ(t) =

x(t,α=0)+x(t,α=0)
2 , and w(t) is Wronskian determinant of

u1(t), u2(t).

Proof A solution of Eq. (11) of the form x(t) = y(t) + z(t)
where

D2,g
H y(t) = (−1)[p(t)Dg

H y(t) + q(t)y(t)] + r(t), (15)

with the multi-point boundary real conditions

{
α11y(t0) = (−1)α12Dg

H y(t0)

α21y(T ) = (−1)α22Dg
H y(T ),

(16)

and

D2,g
H z(t) = (−1){p(t)Dg

H z(t) + q(t)z(t)}, (17)

with the multi-point boundary conditions

{
α11z(t0) = −α12Dg

H z(t0) + γ1

α21z(T ) = −α22Dg
H z(T ) + γ2.

(18)

Now, we find the real Green’s function for equation (15)–
(16).

Putting ṽ(t) = y(t,α=0)+y(t,α=0)
2 , r̃(t) = r(t,α=0)+r(t,α=0)

2 ,

we will transform the α-level sets problem of (15)–(16)
become the real-value problem similar form (15)–(16). The
real Green’s function of (15)–(16) must satisfy

G ′′(t, s) + p(t)G ′(t, s) + q(t)G(t, s) = δ(t − s), (19)
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with the multi-point boundary real conditions

{
α11G(t0, s) + α12G

′
(t0, s) = 0

α21G(T , s) + α22G
′
(T , s) = 0.

(20)

The continuity and jump conditions are

G(s−, s) = G(s+, s)

G
′
(s+, s) − G

′
(s−, s) = 1.

Let u1(t) and u2(t) be two linearly independent solutions
of the boundary problem for real homogeneous equa-
tion of the form ṽ

′′
(t) + p(t)ṽ

′
(t) + q(t)ṽ(t) = 0 with

ṽ(t) = y(t,α=0)+y(t,α=0)
2 . The non-vanishing of the Wron-

skian ensures that these solutions exist. Let w(t) denote the
Wronskian of u1(t) and u2(t). Since the homogeneous equa-
tion with homogeneous boundary conditions has only the
trivial solution, w(t) is nonzero on [t0, T ]. The real Green’s
function has the form

G(t, s) =
{

c1u1, if t0 � s � t � T ,

c2u2, if t0 � t � s � T .
(21)

The continuity and jump conditions for real Green’s function
gives us the equations

c1u1(s) − c2u2(s) = 0

c1u
′
1(s) − c2u

′
2(s) = −1

by solving this system, the solution is

c1 = u2(s)

w(s)

c2 = u1(s)

w(s)
.

Thus, the real Green’s function is

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

u1(s)u2(t)

w(s)
, if t0 � s � t � T ,

u1(t)u2(s)

w(s)
, if t0 � t � s � T .

(22)

The special solution for equation (15) is

y(t) =
T∫

t0

G(t, s)r(s)ds.

Note: r(s) is fuzzy function in (15). Thus, if there is a unique
solution for (17)–(18), then the general solution for (11)–(12)
is

x(t) =
T∫

t0

G(t, s)r(s)ds + z(t). (23)

��

Theorem 6 Let f : [t0, T ]× E1× E1 → E1 is a continuous
function, we suppose that there exist L1, L2 ∈ R+ such that

D0[ f (t, x(t), Dg
H x(t)), f (t, y(t), Dg

H y(t))] ≤ L1. (24)

D0[x(t), y(t)] + L2.D0[Dg
H x(t), Dg

H y(t)],

for all t ∈ [a, b], x(t), Dg
H x(t), y(t), Dg

H x(t) ∈ E1, where
the real numbers L1, L2 such that

M .(T − t0).D
∗
0 .[x, y] < 1 (25)

with D∗
0 [x, y] = max

t0�t�T
{L1.D0[x(t), y(t)] + L2.D0

[Dg
H x(t), Dg

H y(t)]} , the real Green’s function G(t, s) that
is defined by (22) is to define the sign (that means sign does
not changes on (t0, T )), and it is exists M > 0 such that
|G(t, s)| ≤ M, ∀s, t ∈ [t0, T ]. then the MBVP for FSDEs
(3)–(4) has a unique solution on [t0, T ] under form:

x(t) =
T∫

t0

G(t, s) f (s, x(s), Dg
H x(s))ds + z(t)

where z(t) is a general solution of the fuzzy second-order
homogeneous linear differential equations (FSHDEs) .

Proof Supporting that the operator

S : C1([t0, T ], E1) → C1([t0, T ], E1)

with:

S(x(t)) =
T∫

t0

G(t, s) f (s, x(s), Dg
H x(s))ds + z(t). (26)

We have

D0 [S(x(t)), S(y(t))]

= D0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t∫
t0

G(t, s) f (s, x(s), Dg
H x(s))ds + z(t),

t∫
t0

G(t, s) f (s, y(s), Dg
H y(s))ds + z(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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= D0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t∫
t0

G(t, s) f (s, x(s), Dg
H x(s))ds,

t∫
t0

G(t, s) f (s, y(s), Dg
H y(s))ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In this formula, the real Green function can be marked differ-
ently, so we have to look at each specific case, for example,
see the Illustrations in below by Example 1 and Example
2 (In the particular case, finding the real Green function is
much simpler than the general this Theorem 6).

By formula 2, we have

D0 [S(x(t)), S(y(t))] = sup
α∈[0,1]

{dH ([S(x(t))]α, [S(y(t))]α)}

where the Hausdorff metric D0 [S(x(t)), S(y(t))] by for-
mula 2, that means:

dH [A, B] = max{sup
a∈A

inf
b∈B

‖a − b‖Rd , sup
b∈B

inf
a∈A

‖a − b‖Rd },

with A = [S(x(t))]α, B = [S(y(t))]α for each case, when
the function Green is:

(i) G(t, s) > 0;
(ii) G(t, s) < 0;

D0 [S(x(t)), S(y(t))]

�
t∫

t0

|G(t, s)| .D0[ f (s, x(s),

Dg
H x(s)), f (s, y(s), Dg

H y(s))]ds

�
T∫

t0

|G(t, s)| . (L1.D0[x(s), y(s)]

+L2.D0[Dg
H x(s), Dg

H y(s)]) ds

�
T∫

t0

|G(t, s)| ds.D∗
0 [x, y]

where D∗
0 [x, y] = max

t0�t�T
{L1.D0[x(t), y(t)] + L2.

D0[Dg
H x(t), Dg

H y(t)]} . Therefore

D0 [S(x(t)), S(y(t))] � M .(T − t0)D∗
0 [x, y] < 1,

S is contractive operator and x(t) ∈ C1([t0, T ], E1) is a fixed
point. This solution x(t) of MBVP for FSDEs (3)–(4) is:

x(t) =
T∫

t0

G(t, s) f (s, x(s), Dg
H x(s))ds + z(t).

��
Remark 7 In this method, when we change the conditions of
the problem, we must find a, respectively, Green’s function.

Particularly, we consider the most simple FSDEs [with
α12 = α22 = 0, and α11 = α21 = 1, we have two-
point boundary value problem, there are several studies
published on this two-point boundary value problems (Bede
2006; Khastan and Nieto 2010; Lakshmikantham et al. 2001;
O’Regan et al. 2003)]:

D2,g
H x(t) = h(t), (27)

where h(t) ∈ E1 is a fuzzy functionwith two-point boundary
conditions:

x(t0) = γ1, x(T ) = γ2, (28)

where γ1, γ2 ∈ E1, with γ1, γ2 	= θ1.

Theorem 7 A general solution of MBVP for FSDEs (27)–
(28) will be under form:

x(t) =
T∫

t0

G(t, s)h(s)ds + z(t), (29)

where h(s) is fuzzy function in (27), z(t) is general solution
of fuzzy differential equations (27) in the case h(t) = θ1 and
the real Green’s function G(t, s) will defined by:

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

(t − T )(s − t0)

T − t0
, if t0 � s � t � T ,

(s − T )(t − t0)

T − t0
, if t0 � t � s � T .

(30)

Proof Similar to the proof of the theorem (5), we find the
real Green’s function for equation of the form.

D2,g
H y(t) = h(t), y(t0) = y(T ) = θ1, (31)

we have [h(t)]α = [h(t, α), h(t, α)], [D2,g
H y(t)]α = [y

′′
(t, α),

y
′′
(t, α)]. Hence from (31), we obtain

[y
′′
(t, α), y

′′
(t, α)] = [h(t, α), h(t, α)], (32)

[y(t0, α), y(t0, α)] = [y(T , α), y(T , α)] = [0, 0].
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Putting m̃(t) = y(t,α=0)+y(t,α=0)
2 and h̃(t) =

h(t,α=0)+h(t,α=0)
2 , we will transform the (32) α-level sets

problem become the real-value problem of the form

m̃
′′
(t) = h̃(t), m̃(t0) = m̃(T ) = 0, (33)

A pair of solution to the homogeneous real differential equa-
tions (33) are m̃1(t) = 1 and m̃2(t) = t .
The real Green’s function satisfies

G ′′(t, s) = δ(t − s), G(t0, s) = G(T , s) = 0. (34)

The real Green’s function has the form

G(t, s) =
{

c1 + c2t, if t0 � s � t � T ,

d1 + d2t, if t0 � t � s � T .
(35)

Applying the boundary conditions G(t0, s) = G(T , s) = 0,
we see that c1 = −c2t0 and d1 = −d2T . The real Green’s
function now has the form

G(t, s) =
{

c2(t − T ), if t0 � s � t � T ,

d2(t − t0), if t0 � t � s � T .
(36)

Since the real Green’s function must be continuous,

c2(s − T ) = d2(s − t0), d2 = c2
(s − T )

(s − t0)
(37)

from the jump condition,

G
′
(s+, s) − G

′
(s−, s) = 1, (38)

we get c2 = (s−t0)
(T −t0)

. Thus, the real Green’s function is

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

(t − T )(s − t0)

T − t0
, if t0 � s � t � T ,

(s − T )(t − t0)

T − t0
, if t0 � t � s � T .

(39)

The special solution for equation (31) is

y(t) =
T∫

t0

G(t, s)h(s)ds.

Note: h(s) is fuzzy function in (31). Thus, if the fuzzy dif-
ferential equation subject to the inhomogeneous boundary
conditions (28) has the unique solution z(t), the general solu-
tion for (27)–(28) is

x(t) =
T∫

t0

G(t, s)h(s)ds + z(t). (40)

��Remark 8 In the case, when the fuzzy functions x(t) and
Dg

H x(t) are F H g2-differentiable functions we have solved
the MBVP for FSDEs (4)–(5) analogously prove the case,
when the interval-valued functions x(t) and Dg

H x(t) are
F H g1-differentiable functions. For this case, we have some
illustrations, see example 1 below .

4 Illustrations

In this section, we shall present some example being illus-
trations of the theory of the multi-point boundary value
problem (MBVP) for fuzzy second-order differential equa-
tions (FSDEs) under generalized Hukuhara differentiability
(or fuzzy multi-point boundary value problem-FMBVP).

Example 1 Let us start the illustrations by considering the
followings MBVP for FSDEs:

D2,g
H x(t) = (−t2, 0, et ), t ∈ [0, 1] (41)

with multi-point boundary conditions :

{
x(0) = (−4, 0, 4)

x(1) = (0, 1, 2),
(42)

where x(0) = (−4, 0, 4), x(1) = (0, 1, 2) are the triangular
fuzzy numbers.

(a) By Zadeh’s extension principle method, we find solu-
tion of MBVP for FSDEs (41)–(42):
(In the problem, from (4)–(5)) and remark (1), we see p(t) =
q(t) = 0 and α12 = α22 = 0).
Case 1 From FMBVP (41)–(42), we get

⎧⎪⎪⎨
⎪⎪⎩

x
′′ = t2(α − 1),

x
′′ = et (1 − α),

x(0, α) = 4α − 4, x(0, α) = 4 − 4α,

x(1, α) = α, x(1, α) = 2 − α.

(43)

By solving (43), we obtain

{
x(t, α) = t4

12 (α − 1) + t
12 (49 − 37α) + 4α − 4

x(t, α) = t(2α + e(α − 1) − 1) − 3α − et (α − 1) + 3

(44)

where α ∈ [0, 1]. Since x(t) and Dg
H x(t) are not (F H g1)-

differentiable, there is no (F H g1 − F H g1)-solution in this
case.
Case 2 From FMBVP (41)–(42), we get

⎧⎪⎪⎨
⎪⎪⎩

x
′′ = et (1 − α),

x
′′ = t2(α − 1),

x(0, α) = 4α − 4, x(0, α) = 4 − 4α,

x(1, α) = α, x(1, α) = 2 − α.

(45)
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Fig. 1 Form-2D of (F H g2 − F H g1)-solution of Example 1 in Case 3

By solving (45), we obtain

{
x(t, α) = 5α + t(e(α − 1) − 4α + 5) − et (α − 1) − 5

x(t, α) = t4
12 (α − 1) + t

12 (35α − 23) − 4α + 4.

(46)

Since x(t) is not (F H g1)-differentiable, there is no (F H g1−
F H g2)-solution in this case.
Case 3 From FMBVP (41)–(42), we get

⎧⎪⎪⎨
⎪⎪⎩

x
′′ = et (1 − α),

x
′′ = t2(α − 1),

x(0, α) = 4α − 4, x(0, α) = 4 − 4α,

x(1, α) = α, x(1, α) = 2 − α.

(47)

By solving (47), we obtain

{
x(t, α) = 5α + t(e(α − 1) − 4α + 5) − et (α − 1) − 5

x(t, α) = t4
12 (α − 1) + t

12 (35α − 23) − 4α + 4

(48)

where α ∈ [0, 1]. Notice that, in this cases, since x(t) is
(F H g2)-differentiable and Dg

H x(t) is (F H g1)-differentiable.
Hence, there is a (F H g2− F H g1)-solution in this case. This
solution is shown in Fig. 1 (result illustrate 2-Dimensional
with α = 0.5) and in Fig. 2 (result illustrate 3-Dimensional).
Moreover, we use MATLAB software to numerical simula-
tion for this solution, with α = 0, α = 0.25, α = 0.5 and
α = 0.75.

Fig. 2 Form-3D of (F H g2 − F H g1)-solution of Example 1 in Case 3

Case 4 From FMBVP (41)–(42), we get

⎧⎪⎪⎨
⎪⎪⎩

x
′′ = t2(α − 1),

x
′′ = et (1 − α),

x(0, α) = 4α − 4, x(0, α) = 4 − 4α,

x(1, α) = α, x(1, α) = 2 − α.

(49)

By solving (49), we obtain

{
x(t, α) = t4

12 (α − 1) + t
12 (49 − 37α) + 4α − 4

x(t, α) = t(2α + e(α − 1) − 1) − 3α − et (α − 1) + 3

(50)

where α ∈ [0, 1]. Since x(t) and Dg
H are (F H g2)-

differentiable, there is (F H g2 − F H g2)-solution in this
case. This solution is shown in Fig. 3 (result illustrate 2-
Dimensional with α = 0.5) and in Fig. 4 (result illustrate
3-Dimensional). Moreover, we use MATLAB software to
numerical simulation for this solution, with α = 0, α =
0.25, α = 0.5 and α = 0.75.
(b) By Hukuhara integrals method, we find solution of
MBVP for FSDEs (41)–(42):
Case 1 Apply Theorem (3) for MBVP (41)–(42) with x(t)
and Dg

H x(t) is (F H g1)-differentiable, integrating the (41)
fuzzy differential equation twice yields, we get [x(t)]α =[

t4
12 (α−1)+C1(α)t+C2(α), −et (α−1)+C3(α)t+C4(α)

]
,

applying the boundary condition, we find that the solution is

[x(t)]α =
[

t4
12 (α−1)+ t

12 (49−37α)+4α−4, t(2α+e(α−
1) − 1) − 3α − et (α − 1) + 3

]
is not F H g1-differentiable,

there is no solution in this case.
Case 2 Apply Theorem (3) for MBVP (41)–(42) with
x(t) is (F H g1)-differentiable, and Dg

H X(t) is (F H g2)-
differentiable, integrating the (41) fuzzy differential equation

twice yields, we get [x(t)]α =
[

− et (α − 1) + C1(α)t +
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Fig. 3 Form-2D of (F H g2 − F H g2)-solution of Example 1 in Case 4

Fig. 4 Form-3D of (F H g2 − F H g2)-solution of Example 1 in Case 4

C2(α), t4
12 (α−1)+C1(α)t +C2(α)

]
, applying the boundary

condition,wefind that the solution is [x(t)]α =
[
t(2α+e(α−

1)−1)−3α−et (α−1)+3, t4
12 (α−1)+ t

12 (49−37α)+4α−4
]

is not F H g1-differentiable, there is no solution in this case.
Case 3 Apply Theorem (3) for MBVP (41)–(42) with
x(t) is (F H g2)-differentiable, and Dg

H X(t) is (F H g1)-
differentiable, integrating the (41) fuzzy differential equation

twice yields, we get [x(t)]α =
[
t(2α +e(α −1)−1)−3α −

et (α − 1) + 3, t4
12 (α − 1) + t

12 (49 − 37α) + 4α − 4
]
.

Case 4 Apply Theorem (3) for MBVP (41)–(42) with x(t)
and Dg

H x(t) is (F H g2)-differentiable, integrating the (41)
fuzzy differential equation twice yields, we get [x(t)]α =[

t4
12 (α − 1) + t

12 (49 − 37α) + 4α − 4, t(2α + e(α − 1) −
1) − 3α − et (α − 1) + 3

]
.

(c) By the real Green’s function method we find solution
of MBVP for FSDEs (41)–(42):
Case 3ByTheorem (7) general solution ofMBVP for FSDEs
(41)–(42) under form:

x(t) =
1∫

0

G(t, s)(−t2, 0, et )ds + z(t) (51)

where the real Green’s function G(t, s) will be defined by
(30) and z(t) is general solution of homogeneous fuzzy dif-
ferential equation.
Thus, the Green’s function G(t, s) will be defined by:

G(t, s) =
{

(t − 1)s , if 0 � s � t � 1,

(s − 1)t , if 0 � t � s � 1
(52)

and we have

[x(t)]α =
t∫

0

G(t, s)[es(1 − α), s2(α − 1)]ds

+
1∫

t

G(t, s)[es(1 − α), s2(α − 1)]ds + [z(t)]α

=
[

t(e(α − 1) − α + 1) − et (α − 1) + α − 1,
t4
12 (α − 1) + t

12 (α − 1)

]

+ [C1(α)t + C2(α), C3(α)t + C4(α)]

=
[

−et (α − 1) + C∗
1 (α)t + C∗

2 (α),
t4
12 (α − 1) + C∗

3 (α)t + C4(α)

]

applying the boundary condition (42), we find that the solu-
tion is

[x(t)]α =
⎡
⎣ t(e(α − 1) − 4α + 5) − et (α − 1) − 5 + 5α,

t4

12
(α − 1) + t

12
(35α − 23) − 4α + 4

⎤
⎦ .

Case 4 Similar case 3. However, in this case x(t) and Dg
H x(t)

are F H g2-differentiable. Thus, ByTheorem (7) general solu-
tion of MBVP for FSDEs (41)–(42) under form:

x(t) =
1∫

0

G(t, s)(−t2, 0, et )ds + z(t) (53)

where the real Green’s function G(t, s) will be defined by
(30) and z(t) is general solution of homogeneous fuzzy dif-
ferential equation.
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Thus the Green’s function G(t, s) will be defined by:

G(t, s) =
{

(t − 1)s , if 0 � s � t � 1,
(s − 1)t , if 0 � t � s � 1

(54)

and we have

[x(t)]α =
t∫

0

G(t, s)[s2(α − 1), es(1 − α)]ds

+
1∫

t

G(t, s)[s2(α − 1), es(1 − α)]ds + [z(t)]α

=
[

t4
12 (α − 1) + t

12 (α − 1),
t(e(α − 1) − α + 1) − et (α − 1) + α − 1

]

+ [C1(α)t + C2(α), C3(α)t + C4(α)]

=
[

t4
12 (α − 1) + C∗

1 (α)t + C2(α),

−et (α − 1) + C∗
3 (α)t + C∗

4 (α)

]

applying the boundary condition (42), we find that the solu-
tion is

[x(t)]α =
⎡
⎣ t4

12
(α − 1) + t

12
(49 − 37α) + 4α − 4,

−et (α − 1) + t(2α + e(α − 1) − 1) − 3α + 3

⎤
⎦

Case 1 Similar results case 4. However [x(t)]α =
[

t4
12 (α −

1)+ t
12 (49−37α)+4α−4, −et (α−1)+ t(2α+e(α−1)−

1) − 3α + 3
]
is not H g1-differentiable, there is no solution

in this case.

Fig. 5 Form-2D of (F H g1 − F H g1)-solution of Example 2 in Case 1

Case 2 Similar results case 3. However [x(t)]α =
[
t(e(α −

1) − 4α + 5) − et (α − 1) − 5+ 5α, t4
12 (α − 1) + t

12 (35α −
23) − 4α + 4

]
is not H g1-differentiable, there is no solution

in this case.

Example 2 Solve the followings MBVP for FSIDEs:

D2,g
H x(t) = −3

t
Dg

H x(t) − 1

t2
x(t) + (0, 1, 2), t ∈ [1, 2],

(55)

with multi-point boundary conditions:

⎧⎪⎨
⎪⎩

x(1) = −1

2
Dg

H x(1) + (−1, 0, 1)

1

2
x(2) = −Dg

H x(2) + (0, 1, 2).
(56)

(a) By Zadeh’s extension principle method, we find solu-
tion of MBVP for FSDEs (55)–(56):
(In this problem, from (5) we see p(t) = 3

t > 0 and q(t) =
1
t2

> 0 are continuous functions on t > 0).

Case 1 From FMBVP (55)–(56), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
′′
(t, α) = − 3

t x
′
(t, α) − 1

t2
x(t, α) + α,

x
′′
(t, α) = − 3

t x
′
(t, α) − 1

t2
x(t, α) + 2 − α,

x(1, α) = − 1
2 x

′
(1, α) + α − 1,

x(1, α) = − 1
2 x

′
(1, α) + 1 − α,

1
2 x(2, α) = −x

′
(2, α) + α,

1
2 x(2, α) = −x

′
(2, α) + 2 − α.

(57)

By solving (57), we obtain

{
x(t, α) = 2α−18

9t + αt2
9 + 4α ln(t)

3t

x(t, α) = − t2
9 (α − 2) − 2α+14

9t − ln(t)
t

( 4α
3 − 8

3

)
.
(58)

Fig. 6 Form-3D of (F H g1 − F H g1)-solution of Example 2 in Case 1
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Table 1 Numerical simulation for (F H g2 − F H g1)-solution of Example 1 in Case 3

t α = 0 α = 0.25 α = 0.5 α = 0.75

x(t, α) x(t, α) x(t, α) x(t, α) x(t, α) x(t, α) x(t, α) x(t, α)

0 −4.0000000 4.0000000 −3.0000000 3.0000000 −2.0000000 2.0000000 −1.0000000 1.0000000

0.1 −3.6666572 3.8083250 −2.7249929 2.8812438 −1.7833287 1.9541625 −0.8416643 1.0270813

0.2 −3.3222536 3.6165333 −2.4416902 2.7624000 −1.5611268 1.9082667 −0.6805634 1.0541333

0.3 −2.9656257 3.4243250 −2.1492193 2.6432438 −1.3328129 1.8621625 −0.5164064 1.0810813

0.4 −2.5954880 3.2312000 −1.8466160 2.5234000 −1.0977440 1.8156000 −0.3488720 1.1078000

0.5 −2.2104196 3.0364583 −1.5328147 2.4023438 −0.8552098 1.7682292 −0.1776049 1.1341146

0.6 −1.8088502 2.8392000 −1.2066377 2.2794000 −0.6044251 1.7196000 −0.0022126 1.1598000

0.7 −1.3890445 2.6383250 −0.8667834 2.1537438 −0.3445222 1.6691625 0.1777389 1.1845813

0.8 −0.9490845 2.4325333 −0.5118134 2.0244000 −0.0745423 1.6162667 0.3627289 1.2081333

0.9 −0.4868505 2.2203250 −0.1401379 1.8902438 0.2065748 1.5601625 0.5532874 1.2308113

1 −2.9952545 2.0000000 0.2500000 1.7500000 0.5000000 1.5000000 0.7500000 1.2500000

Table 2 Numerical simulation for (F H g2 − F H g2)-solution of Example 1 in Case 4

t α = 0 α = 0.25 α = 0.5 α = 0.75

x(t, α) x(t, α) x(t, α) x(t, α) x(t, α) x(t, α) x(t, α) x(t, α)

0 −4.0000000 4.0000000 −3.0000000 3.0000000 −2.0000000 2.0000000 −1.0000000 1.0000000

0.1 −3.5916750 3.7333427 −2.6687600 2.8250071 −1.7458375 1.9166714 −0.8229188 1.0083357

0.2 −3.1834667 3.4777464 −2.3376000 2.6583109 −1.4917333 1.8388732 −0.6458667 1.0194366

0.3 −2.7756750 3.2343742 −2.0067563 2.5007806 −1.2378375 1.7671871 −0.4689188 1.0335936

0.4 −2.3688000 3.0045119 −1.6766000 2.3533839 −0.9844000 1.7022559 −0.2922000 1.0511279

0.5 −1.9635417 2.7895803 −1.3476563 2.2171852 −0.7317708 1.6447902 −0.1158854 1.0723951

0.6 −1.5608000 2.5911497 −1.0206000 2.0933623 −0.4804000 1.5955748 0.0598000 1.0977874

0.7 −1.1616750 2.4109554 −0.6962563 1.9832166 −0.2308375 1.5554777 0.2345813 1.1277388

0.8 −0.7674667 2.2509155 −0.3756000 1.8881866 0.0162667 1.5254577 0.4081333 1.1627288

0.9 −0.3796750 2.1131495 −0.0597563 1.8098621 0.2601625 1.5065747 0.5800813 1.2032874

1 0.0000000 2.0000000 0.2500000 1.7500000 0.5000000 1.5000000 0.7500000 1.2500000

Table 3 Numerical simulation for (F H g1 − F H g1)-solution of Example 2 in Case 1

t α = 0 α = 0.25 α = 0.5 α = 0.75

x(t, α) x(t, α) x(t, α) x(t, α) x(t, α) x(t, α) x(t, α) x(t, α)

1 −2.0000000 −1.3333333 −1.9166667 −1.4166667 −1.8333333 −1.5000000 −1.7500000 −1.5833333

1.1 −1.8181818 −0.9141975 −1.7051837 −1.0271956 −1.5921857 −1.1401936 −1.4791877 −1.2531917

1.2 −1.6666667 −0.5711373 −1.5297255 −0.7080785 −1.3927843 −0.8450196 −1.2558432 −0.9819608

1.3 −1.5384615 −0.2828425 −1.3815092 −0.4397949 −1.2245567 −0.5967473 −1.0676044 −0.7536997

1.4 −1.4285714 −0.0346561 −1.2543320 −0.2088955 −1.0800925 −0.3831349 −0.9058532 −0.5573743

1.5 −1.3333333 0.1837898 −1.1436929 −0.0058505 −0.9540525 −0.1954909 −0.7644122 −0.3851314

1.6 −1.2500000 0.3800061 −1.0462492 0.1762553 −0.8424985 −0.0274955 −0.6387478 −0.2312462

1.7 −1.1764706 0.5595475 −0.9594683 0.3425453 −0.7424661 0.1255431 −0.5254638 −0.0914592

1.8 −1.1111111 0.7265975 −0.8813975 0.4968839 −0.6516839 0.2671704 −0.4219704 0.0374568

1.9 −1.0526316 0.8843563 −0.8105081 0.6422328 −0.5683846 0.4001094 −0.3262611 0.1579858

2 −1.0000000 1.0353073 −0.7455866 0.7808932 −0.4911732 0.5264805 −0.2367597 0.2720671
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where α ∈ [0, 1]. Clearly, x and Dg
H x are (F H g1)-

differentiable. Hence, there is a (F H g1 − F H g1)-solution
in this case. This solution is shown in Fig. 5 (result illustrate
2-Dimensional with α = 0.5) and in Fig. 6 (result illus-
trate 3-Dimensional). Moreover, we use MATLAB software
to numerical simulation for this solution, with α = 0, α =
0.25, α = 0.5 and α = 0.75 (Tables 1, 2, 3).

In the Case 2, Case 3 and Case 4 by direct calculation,
we have not any solution of MBVP for FSIDEs (55)–(56) .
(b) By the real Green’s function method we find solution
of MBVP for FSDEs (55)–(56):
Case 1 By Theorem (5) general solution of MBVP for
FSIDEs (55)–(56) under form:

x(t) =
2∫

1

G(t, s)(1, 2, 3)ds + z(t) (59)

where the real Green’s function G(t, s) will be defined by
(14), with u1(t) = 1

t and u2(t) = ln(t)
t are two linearly inde-

pendent solutions of homogeneous real differential equations
of the form x̄

′′
(t) + 3

t x̄
′
(t) + 1

t2
x̄(t) = 0 with homoge-

neous real boundary conditions and z(t) is general solution
of homogeneous fuzzy-valued differential equation.
Thus, the real Green’s function G(t, s) will be defined by:

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

s2 ln(t)

t
, if 1 � s � t � 2,

s2 ln(s)

t
, if 1 � t � s � 2

(60)

then

[x(t)]α =
t∫

1

G(t, s)[α, 2 − α]ds +
2∫

t

G(t, s)[α, 2 − α]ds + [z(t)]α

=
[ (

8 ln(2)
3 − 8

9

)
α
t + αt2

9 − α ln(t)
3t ,

− t2
9 (λ − 2) − (24 ln(2)−8)

9t (λ − 2) + ln(t)
3t (α − 2)

]

+
[
C1(α)t−1 + C2(α)

ln(t)

t
, C3(α)t−1 + C4(α)

ln(t)

t

]

=
[

αt2
9 + C∗

1 (α)t−1 + C2(α)
ln(t)

t ,
−t2(α−2)

9 + C∗
3 (α)t−1 + C∗

4 (α)
ln(t)

t

]

Applying the boundary conditions (56), we find that the
solution is

[x(t)]α =
[

αt2
9 + 2α−18

9t + 4α ln(t)
3t ,

− t2
9 (α − 2) − 2α+14

9t − ln(t)
t

( 4α
3 − 8

3

)
]

We have known that, in the Case 2, Case 3 and Case 4 by
direct calculation, we have not any solution of of MBVP for
FSIDEs (55)–(56).

5 Conclusions

As we all know, the boundary value problems for second-
order real differential equations (BVP for RSDEs) are widely
applied in oscillation, in Lagrange problem of optimal con-
trol, etc. . . But in practice almost of the processes in nature
are often fuzzy. The consideration for multi-point boundary
value problem for fuzzy second-order differential equations
becomes urgent. Differences exist between the fuzzy multi-
point boundary value problem (FMBVP) (or a multi-point
boundary value problem for fuzzy second-order differen-
tial equations (MBVP for FSDEs)) and the boundary value
problems for second-order real differential equations (BVP
for RSDEs). In the multi-point boundary value problem
for fuzzy second-order differential equations (MBVP for
FSDEs), there are more stringent conditions, such as the
availability of the generalized Hukuhara differentiability of
solutions; summation of the boundary conditions is not elim-
inated, that is γ1 + γ2 is not equal to θ1 (because the total
sum of two sets in the general case and in particular of two
fuzzy sets can not be zero). In this paper, we have shown the
ability and how to find solutions of the MBVP for FSDEs in
the form of (F H gi − F H gj )-solutions. Simultaneously, we
give some examples to illustrate the results of the theory.
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