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Abstract
In this article, bipolar fuzzy algebra and bipolar fuzzy relation are defined, and then, the bipolar fuzzy matrix is introduced.
Also, an order relation (≤) is defined and it is proved that the bipolar fuzzy set is a poset and a lattice. Some results on
transitive closure and power-convergent of bipolar fuzzy matrices are investigated. Some applications of bipolar fuzzy sets
and bipolar fuzzy matrix are included in this study.
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1 Introduction

We know that almost every word has its opposite word. So,
every matter has two sides; one is called positive side, and
another is called negative side due to the observer’s point of
view, which can bemeasured with certain degree of member-
ship levels. In this article, we focus on problems that present
positive and negative preferences and it is called bipolar pref-
erence problem.

Bipolar is an important topic in several domains, for
example, psychology, multi-criteria decision making, arti-
ficial intelligence, qualitative reasoning, etc. In a real-life
situation, both positive and negative preferences are useful
to handle the problem; in this aspect, this topic is our next
issue.

The membership degrees of elements range over the inter-
val [0, 1] in traditional fuzzy set. Sometimes, themembership
degree means the satisfaction degree of elements to some
property or constraint corresponding to a fuzzy set. So, some
elements have irrelevant characteristics to the property corre-
sponding to a fuzzy set and the others have contrary elements
in fuzzy sets where the membership degrees ranged only in
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the interval [0, 1]. If a set representation could express this
kind of difference, it would be more informative than the
traditional fuzzy set representation. Based on these obser-
vations, Zhang (1994) introduced an extension of fuzzy set,
named bipolar fuzzy set (BFS).

Major advantages of the BFS theory include

• It formalizes a unified approach to polarity and fuzziness,
• It captures the bipolar or double-sided nature of human
perception and cognition,

• It provides a basis for bipolar cognitive modeling and
multi-agent decision analysis .

Like classical (crisp) matrices, fuzzy matrices (FMs) are
now a very rich topic, in modeling uncertain situations that
occur in science, engineering, automata theory, logic of
binary relations, medical diagnosis, etc. FMs defined first
time by Thomson in (1977) and discussed about the conver-
gence of the powers of a fuzzy matrix. The theories of fuzzy
matrices were developed by Kim and Roush FW (1980) as
an extension of Boolean matrices. With max–min operation,
the fuzzy algebra and its matrix theory are considered by
many authors Bhowmik and Pal (2008a), Gavalec (1997),
Khan and Pal (2006, 2007), Pal (2001), Shyamal and Pal
(2004), Xin (1992) who studied controllable fuzzy matrices.
The transitivity of matrices over path algebra (i.e., additively
idempotent semiring) is discussed by Hashimoto (1983a, b,
1985). Generalized fuzzy matrices, matrices over an incline
and some results about the transitive closer, determinant,
adjoint matrices, convergence of powers and conditions for
nilpotency are considered by Duan (2004) and Lur et al.
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(2004). In FMs, rows and columns are taken as certain. But,
they may be uncertain. Pal (2015a) has introduced this con-
cept. Here, rows and columns are taken as uncertain. He also
investigated different properties of these types of matrices
along with applications.

There are some limitations in dealingwith uncertainties by
fuzzy set. To overcome these difficulties, Atanassov (1983)
introduced theory of intuitionistic fuzzy set as a generaliza-
tion of fuzzy set. Based on this concept, Pal (2001) have
defined intuitionistic fuzzy determinant (Pal 2001) and intu-
itionistic fuzzy matrices (IFMs) in 2002 (Pal et al. 2002).
Bhowmik and Pal (2008a, b, 2009, 2010a), Bhowmik et al.
(2008) introduced some results on IFMs, intuitionistic circu-
lant fuzzy matrix and generalized intuitionistic fuzzy matrix.
Shyamal and Pal (2002, 2005) defined the distances between
IFMs and hence defined a metric on IFMs. They also cited
few applications of IFMs. In Mondal and Pal (2013b), the
similarity relations, invertibility conditions and eigenvalues
of IFMs are studied. Idempotent, regularity, permutation
matrix and spectral radius of IFMs are also discussed. Also,
intuitionistic fuzzy incline matrix and determinant are stud-
ied in Mondal and Pal (2014). The parameterizations tool
of IFM enhances the flexibility of its applications. For other
works on IFMs, see Adak et al. (2012a, b, 2013), Pradhan
and Pal (2012, 2013a, b).

The concept of interval-valued fuzzy matrices (IVFMs)
as a generalization of FM was introduced and developed in
Shyamal and Pal (2006) by extending themax–min operation
in fuzzy algebra. We introduced interval-valued fuzzy vector
space (Mondal 2012), rank and its associated properties on
IVFMs Mondal and Pal (2016). Pal (2015b) defined a new
type of IVFM whose rows and column are uncertain along
with uncertain elements.

Combining IFMs and IVFMs, a new fuzzy matrix called
interval-valued intuitionistic fuzzymatrix (IVIFM) is defined
Khan and Pal (2005). For other works on IVIFMs, see
Bhowmik and Pal (2010b, 2012).

After the invention of BFSs Cacioppo et al. (1997), Zhang
(1994, 1998) introduced fuzzy equilibrium relations and
bipolar fuzzy clustering (Zhang 1999), bipolar logic and
bipolar fuzzy partial ordering for clustering and coordina-
tion (Zhang 2002), bipolar logic and bipolar fuzzy logic
(Zhang 2002) andYinYang bipolar logic, bipolar fuzzy logic
(Zhang and Zhang 2004). The bipolar-valued fuzzy sets were
introduced by Lee (2000a, b). After that, many authors Ben-
ferhat et al. (2006), Dubois and Prade (2008), Dudziak and
Pekala (2010) are working on this topic till now. Samanta
and pal introduced the bipolar fuzzy hypergraphs (Samanta
and PaL 2012a). They investigated irregular bipolar fuzzy
graphs (Samanta and PaL 2012b) and bipolar fuzzy intersec-
tion graphs (Samanta and PaL 2014). But, no one introduced
the bipolar fuzzy matrix.

1.1 Motivation

Bipolar (fuzzy) set theory becomes popular due to its wide
applications to model real-life situation. Bipolar logic is also
used to represent bistable devices in computer and com-
munication systems, particularly to represent electrical and
electronics systems. Often it is seen that, to model or to solve
such problems, a matrix is constructed, i.e., matrix is used
as a tool. If uncertainties are present in the system, then
fuzzy matrix is considered instead of crisp matrix. To solve
or model a problem relating to bipolar uncertain system, a
bipolar fuzzy matrix is essential.

Motivated from the above works and properties of BFS,
we define bipolar fuzzymatrices. In this article, we introduce
some basic properties of bipolar fuzzy elements by using
max–min composition. Bipolar fuzzy relation, matrix and
its basic properties are also introduced here. The properties
of transitive closure, power-convergent are investigated with
examples.

2 Preliminaries

The BFS is one of the extensions of fuzzy sets with positive
and negative membership values. In this section, some basic
notions of BFS are introduced. Also, some basic operations
both binary and unary, viz., +, ·,×,−,¬,⇒ on BFS, are
given.

Definition 1 (Bipolar fuzzy set) A BFS BF in X (universe of
discourse) is an object having the form

BF = {(x, µn(x), µp(x))}

where µn : X → [−1, 0] and µp : X → [0, 1] are two
mappings.

The positive membership degree µp(x) denotes the satis-
faction degree of an element x to the property corresponding
to a BFS BF , and the negative membership degree µn(x)
denotes the satisfaction degree of x to some implicit counter-
property of BF .

If µp(x) �= 0 and µn(x) = 0, it is the situation that x
is regarded as having only positive satisfaction for BF . If
µp(x) = 0 and µn(x) �= 0, it is the situation that x does not
satisfy the property ofBF but somewhat satisfied the counter-
property of BF . There is a possibility that for an element x ,
µp(x) �= 0 and µn(x) �= 0, when the membership function
of theproperty overlaps that of its counter-property over some
portion of the domain Lee (2000b).

To understand the definition, we consider the following
examples below.
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Fig. 1 Bipolar fuzzy set with linear membership function

Example 1 Let us consider five students from a school and
one student from other school. If we consider the property
co-operation of five students with the other particular stu-
dents separately, the counter-property is competition. Then,
the bipolar function is (competition and co-operation), and
the corresponding BFS is

B1 = {(−0.5, 0.3), (−0.7, 0.5), (−0.3, 0.2),

(−0.8, 0.6), (−0.1, 0.4)} .

Here, in the first element 0.3 denotes the satisfaction degree
of co-operation of first student among five with only student
from another school and −0.5 denotes the corresponding
satisfaction value of competition. It is similar for other cases.

Following is another example of BFS.

Example 2 Suppose that theminimum height of an adult man
is 2ft. andmaximum height is 8ft.; therefore, the height of the
shortest adult man is 2ft. and that of the tallest adult man is
8ft. and for all other cases (heights) themembership functions
are linear. The geometrical presentation of the above BFS B2

is shown in Fig. 1.
We consider the property as tall man, so the counter-

property is short man and their corresponding linear mem-
bership functions are

µp(x) = x − 2

6
and µn(x) = −8 − x

6
(say).

Example 3 In Example 1, the universe X for B1 is discrete
set but for B2 the universe X (Example 2) is continuous
and bounded set. For continuous unbounded universe X ,
if the counter-property is the exactly opposite to the prop-
erty, then the geometrical presentation of the BFS looks like
Fig. 2.

Second geometric interpretation of BFS indicates that the
bipolar fuzzy membership function maps from the universe
of discourse X to the square region OPQR which is shown
in Fig. 3.

In arithmetic operations (such as addition and multiplica-
tion), only the membership values of BFS are needed. So,

Fig. 2 Bipolar fuzzy set with nonlinear membership function

Fig. 3 Second geometrical interpretation of a BFS

from now we represent a BFS as

BF = {x = (−xn, xp)|x ∈ X}

where −xn ∈ [−1, 0], i.e., xn ∈ [0, 1] and xp ∈ [0, 1] are
the, respectively, negative and positive membership degree
of x ∈ X in BF .

Definition 2 (Equality) Let x, y ∈ BF where x = (−xn, xp)
and y = (−yn, yp), then the equality of two elements x and
y is denoted by x = y and is defined by, x = y if and only if
xn = yn and xp = yp.

Definition 3 Let x, y ∈ BF where x = (−xn, xp), y =
(−yn, yp) and xn, xp, yn, yp ∈ [0, 1] then the following
operations are defined by Zhang and Zhang (2004).

1. The disjunction of x and y is denoted by x + y and is
defined by

x + y = (−xn, xp) + (−yn, yp)

= (−max{xn, yn},max{xp, yp})
= (−{xn ∨ yn}, {xp ∨ yp}).

2. The parallel conjunction of x and y is denoted by x · y
and is defined by

x · y = (−xn, xp) · (−yn, yp)

= (−min{xn, yn},min{xp, yp})
= (−{xn ∧ yn}, {xp ∧ yp}).

3. The serial conjunction of x and y is denoted by x × y
and is defined by
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x × y = (−xn, xp) × (−yn, yp)

= (−{(xn ∧ yp) ∨ (xp ∧ yn)},
{(xn ∧ yn) ∨ (xp ∧ yp)}).

4. The negation of x is denoted by −x and is defined by
−x = −(−xn, xp) = (−xp, xn).

5. The compliment of x is denoted by ¬x and is defined
by

¬x = ¬(−xn, xp) = (¬(−xn),¬xp)

= (−1 + xn, 1 − xp).

6. The implication of x to y is denoted by x ⇒ y and is
defined by (x ⇒ y) = ¬x + y.

3 Some properties on BFSs

In this section, we introduced some basic definitions related
to BFS, and then, we prove some simple properties on it.

Definition 4 (Zero element) The zero element of a BFS is
denoted by ob and is defined by ob = (0, 0).

Definition 5 (Unit element) The unit element of a BFS is
denoted by ib and is defined by ib = (−1, 1).

Definition 6 (Identity element) The identity element of a
BFS in respect to serial conjunction is denoted by eb and
is defined by eb = (0, 1).

Proposition 1 Let BF be a BFS and x, y, z ∈ BF , where
x = (−xn, xp), y = (−yn, yp) and z = (−zn, z p), then the
following properties are satisfied

(a) x + y = y + x, x · y = y · x, x × y = y × x.
(b) x + (y + z) = (x + y)+ z, x · (y · z) = (x · y) · z, x ×

(y × z) = (x × y) × z.
(c) x + ob = ob + x = x, x · ib = ib · x = x, x × eb =

eb × x = x.
(d) Inverse element does not exist except the identity in

respect to the operations.
(e) x · (y+ z) = x · y+ x · z, x × (y+ z) = x × y+ x × z.
(f) x − y = −(y − x) [where x − y = x + (−y)].
(g) x ·(−y), (−x)·y, −(x ·y) are not equal, but x×(−y) =

(−x) × y = −(x × y).
(h) x ·(y−z) �= x · y−x ·z, but x×(y−z) = x× y−x×z.

Proof Given that x = (−xn, xp), y = (−yn, yp) and z =
(−zn, z p).

(a)

x × y = (−xn, xp) × (−yn, yp)
= (−{(xn ∧ yp) ∨ (xp ∧ yn)}, {(xn ∧ yn) ∨ (xp ∧ yp)})
= (−{(xp ∧ yn) ∨ (xn ∧ yp)}, {(xn ∧ yn) ∨ (xp ∧ yp)})
= (−{(yn ∧ xp) ∨ (yp ∧ xn)}, {(yn ∧ xn) ∨ (yp ∧ xp)})
= (−yn, yp) × (−xn, xp) = y × x .

The proofs are similar for other cases.
(b)

x × (y × z) = (−xn, xp) × {(−yn, yp) × (−zn, z p)}
= (−xn, xp) × (−{yn ∧ z p} ∨ {yp ∧ zn}, {yn ∧ zn}

∨{yp ∧ z p})
= (−[xn ∧ {(yn ∧ zn) ∨ (yp ∧ z p)}]

∨[xp ∧ {(yn ∧ z p) ∨ (yp ∧ zn)}],
[xn ∧ {(yn ∧ z p) ∨ (yp ∧ zn)}]
∨[xp ∧ {(yn ∧ zn) ∨ (yp ∧ z p)}])

= (−an, ap) (say)

where

an = [xn ∧ {(yn ∧ zn) ∨ (yp ∧ z p)}]
∨[xp ∧ {(yn ∧ z p) ∨ (yp ∧ zn)}]

= [xn ∧ {(yp ∧ z p) ∨ (yn ∧ zn)}]
∨[{xp ∧ (yn ∧ z p)} ∨ {xp ∧ (yp ∧ zn)}]

= [{xn ∧ (yp ∧ z p)} ∨ {xn ∧ (yn ∧ zn)}]
∨[{(xp ∧ yn) ∧ z p} ∨ {(xp ∧ yp) ∧ zn}]

= [{(xn ∧ yp) ∧ z p} ∨ {(xn ∧ yn) ∧ zn}]
∨[{(xp ∧ yn) ∧ z p} ∨ {(xp ∧ yp) ∧ zn}]

= {(xn ∧ yp) ∧ z p} ∨ [{(xn ∧ yn) ∧ zn}
∨{(xp ∧ yn) ∧ z p}] ∨ {(xp ∧ yp) ∧ zn}

= {(xn ∧ yp) ∧ z p} ∨ {(xp ∧ yn) ∧ z p}
∨[{(xn ∧ yn) ∧ zn} ∨ {(xp ∧ yp) ∧ zn}

= [{(xn ∧ yp) ∨ (xp ∧ yn)} ∧ z p]
∨[{(xn ∧ yn) ∨ (xp ∧ yp)} ∧ zn].

Similarly, ap = [{(xn ∧ yp) ∨ (xp ∧ yn)} ∧ zn] ∨ [{(xn ∧
yn) ∨ (xp ∧ yp)} ∧ z p].

Also, (x × y) × z = {(−xn, xp) × (−yn, yp)} × (−zn, z p)
= (−{(xn ∧ yp) ∨ (xp ∧ yn)}, {(xn ∧ yn)

∨(xp ∧ yp)}) × (−zn, z p)
= (−[{(xn ∧ yp) ∨ (xp ∧ yn)} ∧ z p]

∨[{(xn ∧ yn) ∨ (xp ∧ yp)} ∧ zn],
[{(xn ∧ yp) ∨ (xp ∧ yn)} ∧ zn]
∨[{(xn ∧ yn) ∨ (xp ∧ yp)} ∧ z p]).

Hence, x × (y × z) = (x × y) × z.
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Other two proofs are similar.
(c) x×eb = (−xn, xp)×(0, 1) = (−xn, xp) and eb×x =

(0, 1) × (−xn, xp) = (−xn, xp).
Hence, x × eb = eb × x = x , where eb = (0, 1) is called the
identity in respect to serial conjunction.

Other proofs are similar.
(d) Let a = (−an, ap) ∈ BF be the inverse of x =

(−xn, xp) in respect to the disjunction (+) operation.
Then, x +a = a+ x = ob, i.e., (−xn, xp)+ (−an, ap) =

(−an, ap) + (−xn, xp) = (0, 0)
or, (−max{xn, an},max{xp, ap}) = (−max{an, xn},

max{ap, xp}) = (0, 0).
Thus, max{xn, an} = 0 and max{xp, ap} = 0, which

implies that xn = xp = an = ap = 0. But, x = (−xn, xp)
be any element of BF .

Hence, the inverse element does not exist in respect to the
operation disjunction except zero element ob.

Other proofs can be done by similar way.
(e)

x · (y + z) = (−xn, xp) · {(−yn, yp) + (−zn, z p)}
= (−xn, xp) · (−{yn ∨ zn}, {yp ∨ z p})
= (−xn ∧ {yn ∨ zn}, xp ∧ {yp ∨ z p})
= (−{xn ∧ yn} ∨ {xn ∧ zn}, {xp ∧ yp} ∨ {xp ∧ z p})
= (−xn ∧ yn, xp ∧ yp) + (−xn ∧ zn, xp ∧ z p)
= (−xn, xp) · (−yn, yp) + (−xn, xp) · (−zn, z p)
= x · y + x · z.

Similarly, we can prove the other result.
(f) x− y = x+(−y) = (−xn, xp)+(−yp, yn) = (−xn∨

yp, xp ∨ yn).

Also, − (y − x) = −{y + (−x)} = −{(−yn, yp) + (−xp, xn)}
= −(−yn ∨ xp, yp ∨ xn)
= (−yp ∨ xn, yn ∨ xp)
= (−xn ∨ yp, xp ∨ yn).

Hence, x − y = −(y − x).
(g) x ·(−y) = (−xn, xp)·(−yp, yn) = (−xn∧yp, xp∧yn)
(−x) · y = (−xp, xn) · (−yn, yp) = (−xp ∧ yn, xn ∧ yp)
and −(x · y) = −{(−xn, xp) · (−yn, yp)} = −(−xn ∧

yn, xp ∧ yp) = (−xp ∧ yp, xn ∧ yn).
Thus, x ·(−y), (−x)·y and−(x ·y) are not equal. Actually,

x · (−y) = −{(−x) · y} �= −(x · y) = (−x) · (−y).

But, for serial conjunction
x × (−y) = (−xn, xp) × (−yp, yn) = (−{xn ∧ yn} ∨

{xp ∧ yp}, {xn ∧ yp} ∨ {xp ∧ yn})

(−x) × y = (−xp, xn) × (−yn, yp)
= (−{xp ∧ yp} ∨ {xn ∧ yn}, {xp ∧ yn} ∨ {xn ∧ yp})
= (−{xn ∧ yn} ∨ {xp ∧ yp}, {xn ∧ yp} ∨ {xp ∧ yn})

and

−(x × y) = −{(−xn, xp) · (−yn, yp)}
= −(−{(xn ∧ yp) ∨ (xp ∧ yn)}, {(xn ∧ yn)

∨(xp ∧ yp)})
= (−{xn ∧ yn} ∨ {xp ∧ yp}, {xn ∧ yp}

∨{xp ∧ yn})

Hence, x × (−y) = (−x) × y = −(x × y).
(h) Using (e) and (g), we can easily prove that

x · (y − z) = x · {y + (−z)} = x · y + x · (−z)
�= x · y − x · z [Since x · (−z) �= −(x · z)].

But, x × (y − z) = x × {y + (−z)} = x × y + x × (−z) =
x × y − x × z. 	


Remark 1 (BF ,+), (BF , ·) and (BF ,×) are all Abelian
groupoids.

Theorem 1 DeMorgan’s laws are satisfied on BFSBF . That
is, if x = (−xn, xp) and y = (−yn, yp) ∈ BF then

(a) ¬(x + y) = (¬x) · (¬y) and
(b) ¬(x · y) = (¬x) + (¬y).

Proof (a)

¬(x + y) = ¬{(−xn, xp) + (−yn, yp)}
= ¬(−{xn ∨ yn}, {xp, yp})
= (−1 + xn ∨ yn, 1 − xp ∨ yp).

Also,

(¬x) · (¬y) = {¬(−xn, xp)} · {¬(−yn, yp)}
= (−1 + xn, 1 − xp) · (−1 + yn, 1 − yp)
= (−{1 − xn} ∧ {1 − yn}, {1 − xp} ∧ {1 − yp})
= (−1 + xn ∨ yn, 1 − xp ∨ yp) = ¬(x + y).

Similarly, we can prove the second part. 	


Example 4 Let x = (−0.5, 0.3) and y = (−0.1, 0.8), then
¬x = (−1 + 0.5, 1 − 0.3) = (−0.5, 0.7) and ¬y = (−1 +
0.1, 1 − 0.8) = (−0.9, 0.2).

Therefore, (¬x) + (¬y) = (−0.5, 0.7) + (−0.9, 0.2) =
(−0.9, 0.7) and (¬x) · (¬y) = (−0.5, 0.7) · (−0.9, 0.2) =
(−0.5, 0.2).

Also, x + y = (−0.5, 0.3) + (−0.1, 0.8) = (−0.5, 0.8)
and x · y = (−0.5, 0.3) · (−0.1, 0.8) = (−0.1, 0.3).

Thus, ¬(x + y) = (−1 + 0.5, 1 − 0.8) = (−0.5, 0.2)
and ¬(x · y) = (−1 + 0.1, 1 − 0.3) = (−0.9, 0.7). Hence,
¬(x + y) = (¬x) · (¬y) and ¬(x · y) = (¬x) + (¬y).
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4 Bipolar fuzzy relation

In this section, we define Cartesian product of two BFSs, and
relation. Also, several basic properties are investigated.

Definition 7 (Cartesian product of BFSs) Let X1 and X2 be
two universe of discourses and let A = {x = (−xn, xp)|x ∈
X1}, B = {y = (−yn, yp)|y ∈ X2} be two BFSs. The
Cartesian product of A and B is denoted by A × B and is
defined by

A × B = {(x, y)|x ∈ X1 and y ∈ X2}.

Definition 8 (Bipolar fuzzy relation)Abipolar fuzzy relation
between two BFSs A and B is defined as a BFS in A × B.
If R is a relation between A and B, x ∈ A and y ∈ B,
and if −rn(x, y), rp(x, y) denote the negative and positive
membership values to which x is in relation R with y, then
r = (−rn, rp) ∈ R.

Now, we define an order relation ‘≤’ below.

Definition 9 (Inclusion) Let BF be a BFS over X and let
x, y ∈ BF where x = (−xn, xp) and y = (−yn, yp), then
x ≤ y if and only if xn ≤ yn and xp ≤ yp. That is, x ≤ y if
and only if x + y = y.

Definition 10 Let BF be a BFS over X and let x, y ∈ BF ,
where x = (−xn, xp) and y = (−yn, yp), then x < y if and
only if x ≤ y and x �= y.

Proposition 2 The relation ‘≤’ is partial order relation in a
BFS.

Proof I. Since xn ≤ xn and xp ≤ xp, so we write x ≤ x for
all x ∈ BF .
That is, the relation ‘≤’ is reflexive.

II. Let x ≤ y and y ≤ x for any x, y ∈ BF . Then,

xn ≤ yn, xp ≤ yp and yn ≤ xn, yp ≤ xp.
or xn = yn and xp = yp
or x = y.

Thus, x ≤ y and y ≤ x implies x = y for any x, y ∈ BF .
That is, the relation ‘≤’ is antisymmetric.

III. Let x ≤ y and y ≤ z for any x, y, z ∈ BF . Then,

xn ≤ yn, xp ≤ yp and yn ≤ zn, yp ≤ z p
or xn ≤ yn ≤ zn and xp ≤ yp ≤ z p
or xn ≤ zn and xp ≤ z p
or x ≤ z.

Thus, x ≤ y and y ≤ z implies x ≤ z for any x, y, z ∈ BF .
That is, the relation ‘≤’ is transitive.

Hence, the relation ‘≤’ in a BFS is a partial order relation.
	


Proposition 3 Let BF be a BFS over X and let x, y, z ∈ BF

where x = (−xn, xp), y = (−yn, yp) and z = (−zn, z p),
then

(a) ob ≤ x ≤ ib, for any x.
(b) If x ≤ y then x + z ≤ y + z and x · z ≤ y · z.
(c) x ≤ x + y and y ≤ x + y, x + y is the least upper

bound of x and y. In other words, if there is an element
z satisfying x ≤ z and y ≤ z then x + y ≤ z.

(d) x · y ≤ x and x · y ≤ y. That is, x · y is a lower bound
of x and y.

(e) x · y · z ≤ x · y.

Proof (a) Since x = (−xn, xp) ∈ BF , therefore 0 ≤
xn, xp ≤ 1. Hence, ob ≤ x ≤ ib.

(b) Let x ≤ y, then xn ≤ yn and xp ≤ yp.
Therefore, max{xn, zn}≤max{yn, zn} and max{xp, z p}
≤ max{yp, z p}. Thus, x + z ≤ y + z.
Also, min{xn, zn} ≤ min{yn, zn} and min{xp, z p} ≤
min{yp, z p}. Hence, x · z ≤ y · z.

(c) Weknow that xn ≤ max{xn, yn} and xp ≤ max{xp, yp}.
So x ≤ x + y. Similarly, y ≤ x + y.
Thus, x + y is the upper bound of x and y.
If possible let z �= x + y be the least upper bound of x
and y then

x ≤ z and y ≤ z,
i.e., xn ≤ zn, xp ≤ z p and yn ≤ zn, yp ≤ z p,
i.e., max{xn, yn} ≤ zn andmax {xp, yp} ≤ z p.

Thus

x + y ≤ z (1)

Also, since x + y is the upper bound of x, y and z is the
least upper bound so

z ≤ x + y (2)

From Eqs. (1) and (2), we can write as x + y = z. That
is, x + y is the least upper bound of x and y.

(d) Similarly, we can prove that x · y is the greatest lower
bound of x and y.

(e) We know that min{xn, zn, yn} ≤ min{xn, yn} and
min{xp, z p, yp} ≤ min{xp, yp}. Therefore, x · z · y ≤
x · y. 	


Hence, we say that under max–min operation every pair
of the partial order set has least upper bound and greatest
lower bound in BFS. So, a BFS is a lattice.
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5 Bipolar fuzzymatrix

In order to develop the theory of bipolar fuzzymatrix (BFM),
we begin with the concept of bipolar fuzzy algebra. A bipo-
lar fuzzy algebra is a mathematical system (BF ,+, ·) with
two binary operations + and · defined on BF satisfying the
following properties.

(P1) Idempotent: x + x = x , x · x = x
(P2) Commutativity: x + y = y + x , x · y = y · x
(P3) Associativity: x + (y + z) = (x + y)+ z, x · (y · z) =

(x · y) · z
(P4) Absorption: x + (x · y) = x , x · (x + y) = x
(P5) Distributivity: x ·(y+z) = (x · y)+(x ·z), x+(y ·z) =

(x + y) · (x + z)
(P6) Universal bounds: x+ob = x , x+ ib = ib, x ·ob = ob,

x · ib = x

where x = (−xn, xp), y = (−yn, yp) and z = (−zn, z p) ∈
BF .

Proof Most of the results are already proved. The proofs of
absorption and second distributive law are given below.

(P4) To prove the absorption property, we take the left-
hand side of first as

x + (x · y) = (−xn, xp) + {(−xn, xp) · (−yn, yp)}
= (−xn, xp) + (−min{xn, yn},min{xp, yp})
= (−max[xn,min{xn, yn}],max[xp,min{xp, yp}])
= (−xn, xp) = x .

Similarly, we can prove the second part.
(P5) For second distributive law, we have

x + (y · z) = (−xn, xp) + {(−yn, yp) · (−zn, z p)}
= (−xn, xp) + (−yn ∧ zn, yp ∧ z p)
= (−xn ∨ {yn ∧ zn}, xp ∨ {yp ∧ z p})
= (−{xn ∨ yn} ∧ {xn ∨ zn}, {xp ∨ yp} ∧ {xp ∨ z p})
= (−xn ∨ yn, xp ∨ yp) · (−xn ∨ zn, xp ∨ z p)
= {(−xn, xp) + (−yn, yp)} · {(−xn, xp)

+(−zn, z p)}
= (x + y) · (x + z).

Hence, (BF ,+, ·) is a bipolar fuzzy algebra. 	

Definition 11 (Bipolar fuzzy matrix) A bipolar fuzzy matrix
(BFM) is the matrix over the bipolar fuzzy algebra. The zero
matrix Om of orderm×m is thematrixwhere all the elements
are ob = (0, 0) and the identity matrix Im of order m × m
is the matrix where all the diagonal entries are ib = (−1, 1)
and all other entries are ob = (0, 0).

The set of all rectangular BFMs of order l ×m is denoted
byMlm and that of square BFMs of order m ×m is denoted
by Mm .

From the definition, we conclude that if A = (ai j )l×m ∈
Mlm , then ai j = (−ai jn, ai jp) ∈ BF , where ai jn, ai jp ∈
[0, 1] are the negative and positive membership values of the
element ai j , respectively.

5.1 Operations on BFM

The operations on BFM are as follows:

Definition 12 Let A = (ai j ), B = (bi j ) ∈ Mlm be two
BFMs. Therefore, ai j , bi j ∈ BF , then

A + B = (ai j + bi j )l×m

= (−max{ai jn, bi jn},max{ai jp, bi jp})l×m

and A · B = (ai j · bi j )l×m

= (−min{ai jn, bi jn},min{ai jp, bi jp})l×m .

Definition 13 Let A = (ai j ) ∈ Mlm and B = (bi j ) ∈ Mmq

be two BFMs. Therefore, ai j , bi j ∈ BF , then

A � B =
(

m∑
k=1

aik · bkj
)
l×q

=
(

− m
max
k=1

[min{aikn, bkjn}], m
max
k=1

[min{aikp, bkjp}]
)
l×q

and A ⊗ B =
(

m∏
k=1

{aik + bkj }
)
l×q

=
(

− m
min
k=1

[max{aikn, bkjn}],
m
min
k=1

[max{aikp, bkjp}]
)
l×q

Proposition 4 If the BFMs A, B,C are conformal for corre-
sponding operations, then

(a) A + B = B + A, A · B = B · A.
(b) A+ (B +C) = (A+ B)+C, A · (B ·C) = (A · B) ·C.
(c) A · (B +C) = A · B + A ·C, A+ (B ·C) = (A+ B) ·

(A + C).
(d) A+ O = O + A = A, A · O = O · A = A, if O be the

zero matrix, with appropriate order.
(e) A � B �= B � A, A ⊗ B �= B ⊗ A, in general.
(f) A�(B�C) = (A�B)�C, A⊗(B⊗C) = (A⊗B)⊗C.
(g) A � I = I � A = A, A ⊗ I = I ⊗ A = A, where I be

the identity matrix, with appropriate order.
(h) A � (B + C) �= (A � B) + (A � C), A ⊗ (B · C) �=

(A ⊗ B) · (A ⊗ C).

Proof The proof of (a), (b) and (d) is simple for the matrices
A, B,C of the same order.

(c) This property can be proved by using the distributive
property on BFS.

(e) From the definition, we say that A� B and A⊗ B are
possible if the order of A and B is q×r and r×s, respectively,
that is, number of columns of A = number of rows of B.
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Thus, if the order of A and B is q × r and r × s, then
B � A and B ⊗ A do not exist.

Now, if both the matrices are square of same order say
m, then for both cases the matrices are conformable, but the
equality does not hold in general. To verify it, we consider
the following example.

Let

A =
⎡
⎣ (−0.3, 0.5) (−0.5, 0.6) (−0.4, 0.4)
(−0.1, 0.8) (−0.2, 0.7) (−0.3, 0.6)
(−0.6, 0.3) (−0.7, 0.2) (−0.8, 0.1)

⎤
⎦ and

B =
⎡
⎣ (−0.1, 0.8) (−0.2, 0.9) (−0.3, 0.7)
(−0.4, 0.6) (−0.5, 0.4) (−0.6, 0.2)
(−0.2, 0.8) (−0.3, 0.6) (−0.4, 0.5)

⎤
⎦

then,

A � B =
⎡
⎣ (−0.4, 0.6) (−0.5, 0.5) (−0.5, 0.5)
(−0.2, 0.8) (−0.3, 0.8) (−0.3, 0.7)
(−0.4, 0.3) (−0.5, 0.3) (−0.6, 0.3)

⎤
⎦

and

B � A =
⎡
⎣ (−0.3, 0.8) (−0.3, 0.7) (−0.3, 0.6)
(−0.6, 0.5) (−0.6, 0.6) (−0.6, 0.4)
(−0.4, 0.6) (−0.4, 0.6) (−0.4, 0.6)

⎤
⎦ .

Note that, A � B �= B � A.
Again,

A ⊗ B =
⎡
⎣ (−0.3, 0.6) (−0.3, 0.6) (−0.3, 0.5)
(−0.1, 0.7) (−0.2, 0.6) (−0.3, 0.6)
(−0.6, 0.6) (−0.6, 0.4) (−0.6, 0.2)

⎤
⎦

and

B ⊗ A =
⎡
⎣ (−0.2, 0.7) (−0.2, 0.7) (−0.3, 0.7)
(−0.4, 0.3) (−0.5, 0.2) (−0.4, 0.2)
(−0.3, 0.5) (−0.3, 0.5) (−0.3, 0.5)

⎤
⎦ .

Here also, A ⊗ B �= B ⊗ A.
(f) Let A ∈ Mqr , B ∈ Mrs andC ∈ Mst and let B�C =

(di j ) ∈ Mr t . Then, the i j th entries of B � C is

di j =
s∑

k=1

bik · ck j where B = (bi j ) and C = (ci j ).

Therefore, the i j th entries of A � (B � C) is

r∑
l=1

ail · dl j =
r∑

l=1
ail ·

(
s∑

k=1
blk · ck j

)
[whereA = (ai j )]

=
r∑

l=1

s∑
k=1

ail · blk · ck j

=
s∑

k=1

r∑
l=1

ail · blk · ck j

=
s∑

k=1

(
r∑

l=1
ail · blk

)
· ck j

=
s∑

k=1
eik · ck j [whereA � B = (eik) ∈ Mqs].

This is the i j th entry of (A � B) � C .
Thus, A � (B � C) = (A � B) � C .

The proof of the second part is similar.
(g) For the squarematrix A = (ai j ) and the identitymatrix

I = (ei j ) of the same order, say m, then the i j th entry of

A � I = (bi j ), where bi j =
m∑

k=1
aik · ek j . Therefore,

bi j = ai1 · e1 j + ai2 · e2 j + · · · + ai, j−1 · e j−1, j

+ai j · e j j + ai, j+1 · e j+1, j + · · · + aim · emj

= ai1 · ob + ai2 · ob + · · · + ai, j−1 · ob + ai j · ib
+ai, j+1 · ob + · · · + aim · ob

= ai j .

Thus, A � I = A. Similarly, I � A = A. Hence, A � I =
I � A = A.

The second part can be proved by similar way.
(h) To verify this result, we consider the following exam-

ple.
Let

A =
[
(−0.3, 0.6) (−0.2, 0.8)
(−0.4, 0.5) (−0.1, 0.7)

]
,

B =
[
(−0.2, 0.7) (−0.5, 0.6)
(−0.3, 0.8) (−0.4, 0.5)

]

and

C =
[
(−0.4, 0.7) (−0.5, 0.6)
(−0.6, 0.4) (−0.7, 0.7)

]
.

Therefore

B ⊗ C =
[
(−0.4, 0.6) (−0.5, 0.7)
(−0.4, 0.5) (−0.5, 0.7)

]

and A � (B ⊗ C) =
[
(−0.3, 0.6) (−0.3, 0.7)
(−0.4, 0.5) (−0.4, 0.7)

]
.
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Now,

A � B =
[
(−0.2, 0.8) (−0.3, 0.6)
(−0.2, 0.7) (−0.4, 0.5)

]

and A � C =
[
(−0.3, 0.6) (−0.3, 0.7)
(−0.4, 0.5) (−0.4, 0.7)

]
.

Thus,

(A � B) ⊗ (A � C) =
[
(−0.3, 0.6) (−0.3, 0.7)
(−0.3, 0.5) (−0.3, 0.7)

]
.

Therefore, A � (B ⊗ C) �= (A � B) ⊗ (A � C).
Second part can be verified by similar way. 	


6 Convergence of BFM

In this section, we introduce the concept of convergence and
power of convergence of a BFM.

A sequence of matrices A1, A2, A3, . . . , Am, Am+1, · · ·
that is, {Am} is said to be converged to a finite matrix A (if
exist) if

lim
m→∞ Am = A.

Definition 14 (Power of convergence of aBFM)A least posi-
tive integer p is said to be the power of convergence of a BFM
A in respect to a binary composition ∗ if

Ap+n = Ap+n−1 = Ap+n−2 = · · · = Ap+1 = Ap,

where n ∈ N (set of natural numbers) and

A2 = A ∗ A, A3 = A ∗ A ∗ A = A2 ∗ A and so on.

The number p is called the index of A and is denoted by
i(A).

Definition 15 The partial order relation ‘≤’ over Mm is
defined as A ≤ B if and only if ai j ≤ bi j for all i, j ∈
{1, 2, 3, . . . ,m} where A = (ai j ), B = (bi j ) ∈ Mm . That
is, A ≤ B if and only if A + B = B. A < B holds if and
only if A ≤ B and A �= B.

Definition 16 Let A = (ai j ) ∈ Mm be a BFM. The i j th

entry of the squarematrix Ar is denoted by a(r)i j and obviously

a(r)i j =
∑

1≤ j1, j2,..., jr−1≤m

{ai j1 · a j1 j2 · a j2 j3 · · · a jr−1 j }. (3)

Definition 17 A matrix A is said to be nilpotent of order k if
Ak = Om for some k ∈ N, and A is idempotent if A2 = A.

Lemma 1 Let A = (ai j ) ∈ Mm be a BFM. If r > m, then

Ar ≤
∑m−1

k=0
Ak, where A0 = Im .

As a result, Ar+1 ≤ ∑m
k=1 A

k.

Proof Let B = ∑m−1
k=0 Ak . Now, a(r)i i ≤ ib = bii . Since

a(0)i i = ib.
If i �= j , we consider an arbitrary summand of right-hand

side of equality (3), i.e., ai j1 · a j1 j2 · a j2 j3 · · · a jr−1 j .
Since i, j1, j2, j3, . . . , jr−1, j ∈ {1, 2, 3, . . . ,m} and r +

1 > m, there are s, t such that js = jt (0 ≤ s < t ≤ r , j0 =
i, jm = j). Deleting a js js+1 · a js+1 js+2 · a js+2 js+3 · · · a jt−1 jt
from the summand ai j1 · a j1 j2 · a j2 j3 · · · a jr−1 j , we obtain

ai j1 · a j1 j2 · a j2 j3 · · · a jr−1 j

≤ ai j1 · a j1 j2 · a j2 j3 · · · a js−1 js · a jt jt+1 · · · a jr−1 j

[byProposition3 (e)].

If the number s + r − t + 2 of the subscripts in the right-
hand side of the above inequality still more thanm, the same
deleting method is used.

Therefore, there is a positive integer q ≤ m − 1 such that

ai j1 · a j1 j2 · a j2 j3 · · · a jr−1 j ≤ ail1 · al1l2 · al2l3 · · · alq−1 j .

Hence, by definition of Ar we have

a(r)i j ≤
m−1∑
k=1

aki j = bi j ,

i .e., Ar ≤
m−1∑
k=1

Ak ≤
m−1∑
k=0

Ak . 	

Definition 18 Let A, B,C ∈ Mm . The BFM A is said to be
transitive, if A2 ≤ A. The BFM B is said to be transitive
closure of matrix A, if B is transitive, A ≤ B and B ≤ C
for any transitive matrix C , satisfying A ≤ C . The transitive
closure of A is denoted by t(A).

Theorem 2 Let A ∈ Mm be a BFM. Then, the transitive
closure of A is given by t(A) = ∑m

k=1 A
k.

Proof Let B = ∑m
k=1 A

k , obviously A ≤ B. Since Mm is
idempotent under addition, we have

B2 =
2m∑
k=2

Ak ≤
2m∑
k=1

Ak

or, B2 ≤ B +
2m∑

k=m+1
Ak

By Lemma 1,

Ak ≤
m∑
l=1

Al = B as k > m.
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Hence, B2 ≤ B.
If there is a matrix C such that A ≤ C and C2 ≤ C , then

A2 ≤ AC ≤ C2 ≤ C , and by induction we have Ak ≤ Ck ≤
C for all positive integers k. Hence, B ≤ C .

Thus, by the definition of transitive closure, B = t(A) =∑m
k=1 A

k . 	

Example 5 Let

A =
[
(−0.3, 0.5) (−0.4, 0.6)
(−0.2, 0.4) (−0.1, 0.7)

]

or, A2 =
[
(−0.3, 0.5) (−0.4, 0.6)
(−0.2, 0.4) (−0.1, 0.7)

]

�
[
(−0.3, 0.5) (−0.4, 0.6)
(−0.2, 0.4) (−0.1, 0.7)

]

=
[
(−0.3, 0.5) (−0.3, 0.6)
(−0.2, 0.4) (−0.2, 0.7)

]

Thus, t(A) = A + A2

=
[
(−0.3, 0.5) (−0.4, 0.6)
(−0.2, 0.4) (−0.2, 0.7)

]

The convergence of powers of a fuzzy matrix was stud-
ied first time by Thomason (1977). He also pointed out
that the power of general fuzzy matrices either converge or
oscillate with a finite period. After that, many authors stud-
ied the convergence of fuzzy matrices (Bhowmik and Pal
2008b; Duan 2004; Lur et al. 2004; Mondal and Pal 2014.
Hashimoto (1983a, b, 1985) introduced the transitivity con-
dition on power of convergence of fuzzy matrices. Using
these concepts, we studied some properties about conver-
gence of power of BFMs.

Definition 19 (Periodicity of BFM) Let A ∈ Mm be a BFM.
If there exists two least positive integers s and t such that,
As+t = As holds, then t is said to be the periodicity of A and
s is the starting point of A corresponding to t .

Let r > s be any positive integer, then r − s > 0 and
multiplying Ar−s on both sides of As+t = As weget, Ar+t =
Ar which means that every r(> s) be also a starting point
corresponding to t .

Proposition 5 The power of a BFM A ∈ Mm is either con-
verged to Ap for a finite natural p or oscillate with a finite
period.

Proof The operation ismax–min ormin–max; so, in the pow-
ers of A the negative and the positive membership values are
not new at all. These are nothing but the negative and positive
membership values of A, respectively. Since n is finite and
max–min or min–max operations are deterministic, it cannot
introduce negative and positive membership values which
are not in A. Thus, if A does not converge in its powers, then
it must oscillate with finite period. 	


The following example shows that the matrix A converges
and the matrix B oscillates.

Example 6 Let

A =
⎡
⎣ (−0.7, 0.8) (−0.2, 0.3) (−0.3, 0.4)
(−0.3, 0.2) (−0.6, 0.7) (−0.4, 0.5)
(−0.4, 0.3) (−0.5, 0.4) (−0.8, 0.6)

⎤
⎦ .

Therefore,

A2 =
⎡
⎣ (−0.7, 0.8) (−0.2, 0.3) (−0.3, 0.4)
(−0.3, 0.2) (−0.6, 0.7) (−0.4, 0.5)
(−0.4, 0.3) (−0.5, 0.4) (−0.8, 0.6)

⎤
⎦

�
⎡
⎣ (−0.7, 0.8) (−0.2, 0.3) (−0.3, 0.4)
(−0.3, 0.2) (−0.6, 0.7) (−0.4, 0.5)
(−0.4, 0.3) (−0.5, 0.4) (−0.8, 0.6)

⎤
⎦

=
⎡
⎣ (−0.7, 0.8) (−0.3, 0.4) (−0.3, 0.4)
(−0.4, 0.3) (−0.6, 0.7) (−0.4, 0.5)
(−0.4, 0.3) (−0.5, 0.4) (−0.8, 0.6)

⎤
⎦ �= A.

Again

A3 = A2 � A

=
⎡
⎣ (−0.7, 0.8) (−0.3, 0.4) (−0.3, 0.4)
(−0.4, 0.3) (−0.6, 0.7) (−0.4, 0.5)
(−0.4, 0.3) (−0.5, 0.4) (−0.8, 0.6)

⎤
⎦

�
⎡
⎣ (−0.7, 0.8) (−0.2, 0.3) (−0.3, 0.4)
(−0.3, 0.2) (−0.6, 0.7) (−0.4, 0.5)
(−0.4, 0.3) (−0.5, 0.4) (−0.8, 0.6)

⎤
⎦

=
⎡
⎣ (−0.7, 0.8) (−0.3, 0.4) (−0.3, 0.4)
(−0.4, 0.3) (−0.6, 0.7) (−0.4, 0.5)
(−0.4, 0.3) (−0.5, 0.4) (−0.8, 0.6)

⎤
⎦ = A2.

Hence, the matrix A power converges to the power p = 2.
That is, i(A) = 2.

We consider another matrix

B =
⎡
⎣ (−0.3, 0.5) (−0.2, 0.6) (−0.4, 0.3)
(−0.1, 0.9) (−0.5, 0.4) (0, 0.6)
(−0.9, 0) (−0.3, 0.7) (−0.2, 0.2)

⎤
⎦ .

For this matrix, after calculating the values of the power of
matrix B we see that B9 = B11 = B13 = · · · . Therefore, B
oscillates with period 2, and the starting point is 9, where

B9 =
⎡
⎣ (−0.3, 0.5) (−0.3, 0.6) (−0.4, 0.5)
(−0.1, 0.6) (−0.5, 0.6) (−0.1, 0.6)
(−0.4, 0.6) (−0.4, 0.6) (−0.3, 0.6)

⎤
⎦ .

Also, B10 = B12 = B14 = · · · . So, the another starting
point is 10, where
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B10 =
⎡
⎣ (−0.4, 0.6) (−0.3, 0.5) (−0.3, 0.6)
(−0.1, 0.6) (−0.5, 0.6) (−0.1, 0.6)
(−0.3, 0.6) (−0.4, 0.6) (−0.4, 0.6)

⎤
⎦ .

Theorem 3 Let A ∈ Mm be a BFM. If either Aq ≤ Ar or
Ar ≤ Aq holds for every q < r , then A converges.

Proof Let A = (ai j ) and Aq ≤ Ar for every q < r . Then

a(q)i j ≤ a(r)i j ⇒ a(q)i jn ≤ a(r)i jn and a(q)i j p ≤ a(r)i j p.

Therefore,

a(q)i jn ≤ a(r)i jn ≤ a(r+1)
i jn ≤ a(r+2)

i jn ≤ · · ·

and

a(q)i j p ≤ a(r)i j p ≤ a(r+1)
i j p ≤ a(r+2)

i j p ≤ · · ·

Since a(q)i jn ≤ a(r)i jn and a
(q)
i j p ≤ a(r)i j p and max–min operation is

deterministic, a finite number of distinct negative and positive
membership values in the corresponding position occur in the
power of A so that

a(q)i jn ≤ a(r)i jn ≤ a(r+1)
i jn ≤ a(r+2)

i jn ≤ · · · ≤ a(s)i jn = a(s+1)
i jn = · · ·

and

a(q)i j p ≤ a(r)i j p ≤ a(r+1)
i j p ≤ a(r+2)

i j p ≤ · · · ≤ a(t)i j p = a(t+1)
i j p = · · ·

for some finite natural numbers s and t . Simply, a finite num-
ber of distinct BFM occurs in the powers of A. Hence, A
converges.

Similarly, it can be shown that A convergeswhen Ar ≤ Aq

for every q < r . 	


Definition 20 Let A = (ai j ) ∈ Mm be a BFM. A is said to
be row-diagonally dominant if ai j ≤ aii (1 ≤ i, j ≤ m), A
is column-diagonally dominant if a ji ≤ aii (1 ≤ i, j ≤ m),
the matrix A is called diagonally dominant if it is both row-
and column-diagonally dominant.

Diagonally dominant property is very important in the
matrix and its determinant theory. Here, we investigate some
results using this.

Theorem 4 Let A ∈ Mm be a BFM. If Aq ≤ Ar for every
q < r and A is row- or column-diagonally dominant, then
A converges to Al for some l ≤ m − 1.

Proof Let A be row-diagonally dominant. Now,

a(k)i in = ∑
j1, j2,..., jk−1

ai j1na j1 j2na j2 j3n · · · a jk−1in

= ∑
j1

ai j1n

( ∑
j2, j3,..., jk−1

a j1 j2na j2 j3n · · · a jk−1in

)

≤ ∑
j1

ai j1n = aiin [byProposition(3) d].

Similarly, a(k)i i p ≤ aiip. Therefore, a
(k)
i i ≤ aii . On the other

hand aii ≤ a(k)i i (k ≥ 1) by our assumption.

Therefore, a(k)i i = aii (k ≥ 1). Also using the Lemma 1
we conclude that

Am−1 = Am .

Hence, A converges to Al for some l ≤ m − 1. 	

Theorem 5 Let A ∈ Mm be a BFM. If Aq ≤ Ar for every
q < r and A is row- or column-diagonally dominant, then
A is power-convergent and converges to t(A) (transitive clo-
sure of A).

Proof From Theorem 3, if Aq ≤ Ar for every q < r then A
converges, taking q = 1, r = 2 we get A ≤ A2. Similarly,
A2 ≤ A3 ≤ A4 ≤ · · · . Now

t(A) =
m∑

k=1

Ak = A + A2 + A3 + · · · + Am .

Again since A is row- or column-diagonally dominant, A
converges to Al for some l ≤ m − 1. Then,

A ≤ A2 ≤ A3 ≤ · · · ≤ Al = Al+1 = Al+2 = · · · = Am .

Therefore, t(A) = Al .
Thus, A is power convergence to t(A). 	


Example 7 Thematrix A of order 3 in Example 6 is both row-
and column-diagonally dominant and i(A) = 2 = 3 − 1. If
all entries of a matrix A are same, then the BFM is power
convergence to 1.

Also, for the matrix A of Example 6, A ≤ A2. Therefore,
A converges to

t(A) = A + A2 + A3 = A + A2 + A2 = A2 [since A3 = A2]

7 An application on online education

Nowadays, online education is a very popular learning sys-
tem.But, the entire systemdepends on various characteristics
such as strength of the network signals, writing and pre-
senting quality of teacher, authentication of the site, i.e.,
knowledgeof the teacher on the topic, capability of the reader.

123



9896 M. Pal, S. Mondal

Suppose a group of five students want to learn a topic
from online learning system. Also, it is assumed that there
are six valid websites for learning this topic. We con-
sider the positive membership value as the learning level
of the students, and the negative membership value repre-
sents the inability to achieve that learning level from the
lecture from a particular site. Then, the ’learning the stu-
dents and sites’ system can be written as the following
matrix:

W1 W2 W3 W4 W5 W6

S1 (−0.4, 0.8) (−0.3, 0.7) (−0.4, 0.6) (−0.4, 0.7) (−0.3, 0.8) (−0.4, 0.5)
S2 (−0.2, 0.6) (−0.4, 0.7) (−0.2, 0.9) (−0.3, 0.6) (−0.2, 0.8) (−0.3, 0.7)
S3 (−0.4, 0.6) (−0.1, 0.8) (−0, 1) (−0.2, 0.9) (−0.1, 0.9) (−0.3, 0.8)
S4 (−0.1, 0.8) (−0.4, 0.6) (−0.3, 0.9) (−0, 1) (−0.4, 0.6) (−0.2, 0.9)
S5 (−0, 0.9) (−0.1, 0.8) (−0.2, 0.9) (−0.4, 0.6) (−0.3, 0.8) (−0.4, 0.7).

Here, W1, W2, W3, W4, W5, W6 are six different web-
sites and S1, S2, S3, S4, S5 are five different students. In the
first entry, (−0.2, 0.6), 0.6 and −0.2 represent the learning
and non-learning capacity of the student S1 from the website
W1.

8 Conclusion

It is well known that matrix theory is a very essential tool to
model a large number of problems that occur in science, engi-
neering, medical science and even in social science. Again,
the world is full of uncertainty. Also, in many problems, it is
observed that for the same attribute there are positive and neg-
ative information. So, bipolar fuzzymatrix is now essential to
model and solve the problem containing bipolar information.
In this paper, first time we introduce the bipolar fuzzy rela-
tion andbipolar fuzzymatrix based onbipolar fuzzy algebras.
Also, some results on transitive closure and power of con-
vergence are investigated. More results can be done about
bipolar fuzzy matrix, determinant, invertible matrix, rank,
eigenvalues, etc. We are working on these topics.
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