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Abstract
Most of the portfolio optimization problems are devoted to either stochastic model or fuzzy one. However, practical

portfolio selection problems often involve the mixture of the stochastic returns with fuzzy information. In this paper, we

propose a new mean variance random credibilitic portfolio selection problem with different convex transaction costs, i.e.,

linear function, non-smooth convex function, smooth convex function. In this proposed model, we assume that the returns

of assets obey the trapezoidal-type credibilitic distributions, and the risks obey the stochastic distributions. Based on the

random credibilitic theories, these models are transformed into crisp convex programming problems. To find the optimal

solution, we, respectively, present a pivoting algorithm, a branch-and-bound algorithm, and a sequence quadratic pro-

gramming algorithm to solve these models. Furthermore, we offer numerical experiments of different forms of convex

transaction costs to illustrate the effectiveness of the proposed model and approach.

Keywords Mean variance portfolio optimization model � Random credibilitic variable � Convex transaction costs �
A pivoting algorithm � Sequence quadratic programming

1 Introduction

The traditional mean variance method, which was proposed

by Markowitz (1952), is the foundation of the modern

portfolio theory. After that, a number of methods were

proposed to find efficient portfolio such as Gao and Li

(2013), Macedo et al. (2017), Al Janabi et al. (2017),

Liagkouras and Metaxiotis (2017)and so on. The basic

assumption for using portfolio model within a probabilistic

framework is that the situation of financial markets in

future can be correctly reflected by security data in the past.

If there are not enough data for the practical problem, these

models will be invalid. Because of lack of data in an

emerging financial market, the parameters or probability

distributions of random returns are difficult to be accurately

estimated.

However, these quantities can be provided by the

experts based on their past information and subjective

belief. In other words, security returns may be considered

as fuzzy variables instead of random variables when there

is lack of data. The fuzzy set is a powerful tool used to

describe an uncertain financial environment where not only

the financial markets but also the investment decision-

makers are subject to vagueness, ambiguity or fuzziness.

Possibility theory has been proposed in Zadeh (1978),

where fuzzy variables are associated with possibility dis-

tributions. Recently, a number of researchers have inves-

tigated fuzzy portfolio selection problem, such as Zhang

et al. (2009), Qin et al. (2009), Zhang and Zhang (2014),

and Kar et al. (2018). But the possibility measure is not

self-dual. Credibility theory has been newly proposed in

Liu (2002a). As the average of a possibility measure and a

necessity measure, the credibility measure is self-dual. In

this respect, the credibility measure shares some properties

with the probability measure. Recently, a number of

researchers have investigated credibilitic portfolio selec-

tion problem, such as Zhang et al. (2010), Mehlawat and

Gupta (2014), Jalota et al. (2017), and Deng et al. (2018).

Actually, the investors may encounter uncertainty of

both randomness and fuzziness simultaneously when
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handling the practical portfolio selection problem. Random

and credibilitic optimization models provide useful meth-

ods for investors to handle uncertainty. For example, the

probability distributions of security returns may be par-

tially known. Therefore, the uncertain parameters may be

estimated by experts on the basis of available data, which

implies that security returns may be characterized by ran-

dom credibilitic variables. Random credibilitic variable

was a recently introduced variable by Liu (2002b) to

describe a random fuzzy phenomenon. After that, several

authors have also applied random credibilitic variable to

model portfolio optimization, such as Hasuike et al. (2009),

Huang (2007a, b), Liu et al. (2011), Qin (2017),Wang et al.

(2017), Dutta et al. (2018).

To the best of the author’s knowledge, at present, there

is little research in modeling and solving random credi-

bilitic portfolio selection problem with different convex

transaction costs. This stimulates the authors to employ the

latest development of mathematics on uncertainty theory to

study the portfolio selection problem in random credibilitic

environment. The contribution of this work is as follows.

We propose a new mean variance random credibilitic

portfolio selection model with different convex transaction

costs. Using the random credibilitic decision-making

approach, the proposed model is transformed into a crisp

convex programming problem. Three algorithms are

designed to obtain the optimal portfolio strategy.

The rest of the paper is organized as follows. In Sect. 2,

necessary knowledge about credibilitic variable, random

credibilitic variable, and some properties will be briefly

introduced. In Sect. 3, we propose a new mean variance

random credibilitic portfolio selection model with three

types of convex transaction costs functions, i.e., linear

function, non-smooth convex function, and smooth func-

tion. Using the random credibilitic theory, the proposed

model is turned into a crisp convex programming problem.

A novel pivoting algorithm, a branch-and-bound algorithm,

and a sequence quadratic programming are proposed to

solve the proposed models with different convex transac-

tion costs in Sect. 4. Numerical examples are presented in

Sect. 5 to help understanding the modeling idea and the

designed algorithm. Finally, some conclusions are given in

Sect. 6.

2 Preliminaries

Some definitions, which are needed in the following sec-

tion, will be introduced herein.

Definition 1 (Liu (2002a)). Let H be a nonempty set and

P the power set of H. A set function Cr on P is called

credibility measure if it satisfies:

(1) (Normality) Cr{H} = 1;

(2) (Monotonicity) Cr{A} B Cr{B} whenever A , B;

(3) (Self-duality) Cr{A} ? Cr{Ac} = 1 for any A[P;
(4) (Maximality) Crf[iAig ¼ supi CrfAig for any

sequence {Ai} , P with supi CrfAig\0:5. The

triplet (H, P, Cr) is called a credibility space.

Let n be a fuzzy variable with membership function l.
For any x[ <, l (x) represents the possibility that n takes

value x. Hence, it is also called the possibility distribution.

For any set B, the possibility measure and necessity mea-

sure of n [ B were, respectively, defined by Zadeh (1978)

as

Posfn 2 Bg ¼ sup
x2B

lðxÞ ð1Þ

Necfn 2 Bg ¼ 1� sup
x2Bc

lðxÞ ð2Þ

It is proved that both possibility measure and necessity

measure satisfy the properties of normality, nonnegativity,

and monotonicity. However, neither of them is self-dual.

Since the self-duality is intuitive and important in real

problems, Liu (2002a, b) defined a credibility measure as

the average of possibility measure and necessity measure

Crfn 2 Bg ¼ 1

2
sup
x2B

lðxÞ þ 1� sup
x2Bc

lðxÞ
� �

ð3Þ

where Cr is self-dual measure and satisfies

Cr n� rf g þ Cr n� rf g ¼ 1.

Definition 2 (Liu (2002a)). Let n be a credibilitic variable.
Then, the expected value is defined as

E½n� ¼
Z 1

0

Crfn� rgdr �
Z 0

�1
Crfn� rgdr ð4Þ

Based on Definition 2, Liu (2002a) deduced the fol-

lowing two theorems.

Theorem 1 (Liu (2002a)). Let n be a credibilitic variable

with finite expected value. Then, for any real numbers k
and l, it holds that

Eðknþ lÞ ¼ kEðnÞ þ l ð5Þ

Theorem 2 (Liu (2002a)) Let n and g be independent

credibilitic variables with finite expected values. Then, for

any real numbers k and l, it holds that

E knþ lgð Þ ¼ kE nð Þ þ lE gð Þ ð6Þ

A popular credibilitic number is the trapezoidal credi-

bilitic number n = (a, b, a, b) with membership function

ln(x) in the following form
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lnðxÞ ¼

x� ða� aÞ
c

; x 2 ½a� a; a�
1; x 2 ½a; b�
bþ b� x

b
; x 2 ½b; bþ b�

0; otherwise

8>>>>><
>>>>>:

ð7Þ

where a and b are positive numbers, i.e., a, b[ 0.

From Eq. (3), the credibility of the event {n B r} is as

follows:

Crfn� rg ¼

1; if r� bþ b
r � bþ b

2b
; ifb� r� bþ b

1

2
; if a� r� b

r � aþ a
2a

; ifa� a� r� a

0; otherwise

8>>>>>>>><
>>>>>>>>:

ð8Þ

Theorem 3 Let n be a the trapezoidal credibilitic number

n = (a, b, a, b) with membership function ln(x). Then,

EðnÞ ¼ aþ b

2
þ b� a

4
ð9Þ

Proof Because the credibility measure is self-dual mea-

sure, according to Eq. (8), we can obtain the following:

Crfn� rg ¼

0; if r� bþ b
bþ b� r

2b
; if b� r� bþ b

1

2
; if a� r� b

aþ a� r

2a
; if a� a� r� a

1; otherwise

8>>>>>>>><
>>>>>>>>:

ð10Þ

According to Definition 2, we can obtain as follows:

E½n� ¼
Z 1

0

Crfn� rgdr �
Z 0

�1
Crfn� rgdr

¼
Z a�a

0

1dr þ
Z a

a�a

aþ a� r

2a
dr þ

Z b

a

1

2
dr

þ
Z bþb

b

bþ b� r

2b
dr þ

Z þ1

bþb
0dr

¼ r a�a
0

�� þ aþ a
2a

r a
a�a

�� � 1

2a
r2

2
a
a�a

�� þ 1

2
r b

a

��
þ bþ b

2b
r

bþb
b

��� � 1

2b
r2

2
bþb
b

��� þ 0

¼ a� aþ aþ a
2

� a

2
þ a
4
þ b� a

2
þ bþ b

2
� b

2
� b

4

¼ aþ b

2
þ b� a

4
:

Thus, the proof of Theorem 3 is ended.

Until now, there are many studies of portfolio selection

problems whose future returns are assumed to be random

variables or fuzzy numbers. However, since few studies of

them are treated as random credibilitic variables, we

introduce a random credibilitic variables defined by Liu

(2002b) as follows.

Definition 3 (Liu (2002b)). A random credibilitic variable

is a function n from a credibility space(H, Cr(H), Cr) to

collection of random variables R. An n-dimensional ran-

dom credibilitic vector n = (n1, n2,…, nn) is an n-tuple of

random credibilitic variables n1, n2,…, nn.
That is, a random credibilitic variable is a fuzzy set

defined on a universal set of random variables. Further-

more, the following random credibilitic definition is

introduced.

Definition 4 (Liu (2002b)). Let n1, n2,…, nn be random

credibilitic variables, and f: Rn ? R be a continuous

function. Then, n = f (n1, n2,…, nn) is a random credibilitic

variable on the product credibility space(H, Cr(H), Cr),

defined as

xðh1; h2; : : : ; hqnÞ ¼ f ðn1ðh1Þ; n2ðh2Þ; : : : ; nnðhnÞÞ

for all(h1, h2,…, hn) [H.

From these definitions, the following theorem is derived.

Theorem 4 (Liu (2002b)). Let ni be random credibilitic

variables with membership functions li, i = 1, 2,…, n,

respectively, and f: Rn ? R be a continuous function.

Then, n = f (n1, n2,…, nn) is a random credibilitic variable

whose membership function is

lðgÞ ¼ sup
gi2Ri;1� i� n

min
1� i� n

liðgiÞ g ¼ f ðg1; g2; � � � ; gnÞj
� �

for all g[ R, where R = {f (g1, g2,…, gn)| gi [Ri, i = 1,

2,…, n}.

Definition 5 Let n be a random credibilitic variable with

finite mean value e. Then, the variance of n is defined by

r2½n� ¼ E½ðn� eÞ2� ð11Þ

3 The random fuzzy portfolio selection
model

Assume that there are n risky assets in financial market for

trading. An investor wants to allocate his/her wealth among

n assets. Then, an optimal portfolio should be the one with

minimized variance for the given expected return level.

Suppose that the return rates of the n risky assets at each

period are denoted as trapezoidal credibilitic variables. Let

w be the portfolio, where w = (w1,w2,…,wn)
0; eRi be the

random credibilitic return of risky asset i; rp be the

excepted return rate of the portfolio w; r2 be the variance

of the portfolio w, where r2 = (rij)n9n, rij = Cov(Ri,Rj);

c(w) be the transaction cost of the portfolio w; rN be the net

return rate of the portfolio w.
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3.1 Return, risk, and transaction costs
constraints

In this section, we employ the credibilitic mean value to

measure the return of portfolio. The risk on the return rate

of portfolio is quantified by the random variance. The

return rate of security i, eRi = (ai,bi,ai, bi), is trapezoidal

random credibilitic variable for all i = 1,…,n.

The credibilitic value of the portfolio w = (w1, w2, …,

wn)
0 can be expressed as

rp ¼
Xn
i¼1

eRiwi ð12Þ

Let eRi be trapezoidal credibilitic variable for all

i = 1,…,n, eRi = (ai,bi,ai, bi). The mean value of the port-

folio w = (w1, w2, …, wn)
0 can be expressed as

rp ¼
Xn
i¼1

Mð eRiÞwi ¼
Xn
i¼1

ai þ bi

2
þ bi � ai

4

� �
wi ð13Þ

Transaction cost is one of the main concerns for port-

folio managers. Arnott and Wagner (1990) and Yoshimoto

(1996) found that ignoring transaction costs would result in

an inefficient portfolio. Bertsimas and Pachamanova

(2008), Gülpınar et al. (2003), and Zhang (2016, 2017)

incorporated transaction cost into the multiperiod portfolio

selection problem. In this paper, the transaction cost for

asset i can be expressed as ci(wi). Hence, the total trans-

action costs of the portfolio w = (w1, w2,…, wn)
0 can be

represented as C(w)

CðwÞ ¼
Xn
i¼1

ciðwiÞ ð14Þ

The net return rate of the portfolio w can be denoted as

rN ¼
Xn
i¼1

ai þ bi

2
þ bi � ai

4

� �
wi �

Xn
i¼1

ciðwiÞ ð15Þ

The variance of the portfolio w can be expressed as

VðwÞ ¼ w
0
r2w ð16Þ

where w = (w1, w2,…, wn)
0, r2 = (rij)n9n, rij = Cov(Ri,Rj).

The capital constraint of risky assets is

w1 þ w2 þ � � � þ wn ¼ 1 ð17Þ

3.2 The basic multiperiod portfolio optimization
models

Let eRi be expressed with a fuzzy set and r0 be a minimum

target value of the total future profit. We formally intro-

duce the following mean–variance model:

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Pn
i¼1

eRiwi �
Pn
i¼1

ciðwiÞ� r0 ðaÞ

w1 þ w2 þ � � � þ wn¼ 1 ðb)
wi � 0; i ¼ 1; . . .; n ðc)

8>>><
>>>:

ð18Þ

where constraint (a) denotes that the return of the portfolio

is not less than the preset value r0; constraint (b) indicates

that the proportion of risk assets sums to one; and con-

straint (c) states the nonnegative constraints of wi.

Model (18) is a fuzzy optimization problem. Let

eRi = (ai,bi,ai, bi). Using the random credibilitic theory, the

proposed Model (18) can be turned into as

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Pn
i¼1

ai þ bi

2
þ bi � ai

4

� �
wi �

Pn
i¼1

ciðwiÞ� r0

w1 þ w2 þ � � � þ wn ¼ 1

wi � 0; i ¼ 1; . . .; n

8>>><
>>>:

ð19Þ

If the covariance matrix r2 is semi-definite, and C(w1,-

w2,…,wn) is linear function, Model (19) is a convex

quadratic programming problem, which can be solved by

Algorithm 1. If the covariance matrix r2 is semi-definite,

and C(w) is non-smooth or smooth convex function, Model

(19) is a convex programming problem, which can be

solved by Algorithm 2 or Algorithm 3.

4 Solution algorithm

In this section, the smallest and biggest value of r0 can be

obtained. Several methods will be proposed to solve the

problems with the different transaction costs.

4.1 The smallest and biggest value of r0

In Model (19), investors can choose r0 between rmin
0 and

rmax
0 . rmin

0 and rmax
0 can be, respectively, obtained as

follows:

The investor considers to maximize the expected return

of the portfolio

max
Xn
i¼1

ai þ bi

2
þ bi � ai

4

� �
wi �

Xn
i¼1

ciðwiÞ

s:t:
w1 þ w2 þ � � � þ wn ¼ 1

wi � 0; i ¼ 1; . . .; n

� ð20Þ

w* (the optimal solution w = (w1, w2,…, wn)
0) can be

obtained solving Model (20) by the following algorithms.
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The biggest of objective (rmax
N ¼

Pn
i¼1

aiþbi
2

þ bi�ai
4

	 

w�
i

�
Pn
i¼1

ciðw�
i Þ) can be obtained, i.e., rmax

0 ¼ rmax
N .

The smallest value of the rmin
0 can be obtained as

follows:

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:
w1 þ w2 þ � � � þ wn ¼ 1

wi � 0; i ¼ 1; . . .; n

� ð21Þ

w* (the optimal solution w = (w1, w2,…, wn)
0) can be

obtained solving Model (21) by Algorithm 1. Simultane-

ously, rmin
N (the smallest of rmin

N ¼
Pn
i¼1

aiþbi
2

þ bi�ai
4

	 

w�
i

�
Pn
i¼1

ciðw�
i Þ) is obtained, i.e., rmin

0 ¼ rmin
N .

4.2 Several methods for the problems
with different transaction costs

In this section, we will present several methods for the ran-

dom credibilitic mean variance portfolio selection models

with different types of transaction costs, i.e., linear function,

non-smooth convex functions, and smooth functions

4.2.1 The transaction cost is linear function

In Model (19), let the transaction costs be linear functions,

i.e., ci(wi) = kiwi, andModel (19) can be obtained as follows:

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Pn
i¼1

ai þ bi

2
þ bi � ai

4
� ki

� �
wi � r0

w1 þ w2 þ � � � þ wn ¼ 1

wi � 0; i ¼ 1; . . .; n

8>>><
>>>:

ð22Þ

Let l1 and l2 be the Lagrange multiplier. The KKT

conditions for Model (22) are as follows:

where the KKT conditions of Model (22) are a system of

equalities where all the expressions are linear equalities or

inequalities except for complementarity conditions, and

there are n ? 2 variables and 2n ? 4 linear equalities or

inequalities in Eq. (23).

Algorithm 1. The pivoting algorithm for Eq. (23).

Step 1 Construct initial table.

Let wi
3 0, i = 1,2,…,n, l1

3 0, l2
3 0 be the initial basic

inequality. The initial basic solution is x0 = (0,…,0,0,0)0.
The initial basic vector is ei, i = 1, 2,…, n ? 2, which is

the ith row of the identity matrix of order n ? 2. Other

equalities and inequalities of Eq. (23) and their coefficient

vectors are non-basic gi.

Let di ¼ aiþbi
2

þ bi�ai
4

� ki, q ¼ ð0; . . .; 0; r0; 1Þ0; gi ¼
ðri1; ri2; . . .; rin;�di; 1Þ, i = 1,2,…,n; gnþ1 ¼ ðd1; . . .; dn;
0; 0Þ; gnþ2 ¼ ð1; . . .; 1; 0; 0Þ

The deviation with respect to x0 is D = gx0 - q. Thus,

we have an initial table as shown in Table 1.

Step 2 Preprocessing.

Let I3 be the index set of equalities, i.e., I3 = {n ? 2}, I4
be the index set of inequalities, i.e., I4 = {1,2,…,n,n ? 1}.

Select a non-basic vector gn?2 to enter the basis, and the

basic vector e1 leaves the basis. Select a non-basic vector

g1 to enter the basis, and the basic vector en?2 leaves the

basis. Then, carry out two pivoting on the positive elements

1. Then, delete the column of gn?2 and the row of en?2. The

calculating process is as follows:

g1 ¼ g11e1 þ g12e2 þ � � � þ g1nen þ g1nþ1enþ1

þ g1nþ2enþ2; i
¼ 1; . . .3nþ 2 ð24Þ

According to Eq. (24), we can obtain Eq. (25).

ri1w1 þ � � � þ rinwn � l1
ai þ bi

2
þ bi � ai

4
� ki

� �
þ l2 � 0 i ¼ 1; . . .; n

a1 þ b1

2
þ b1 � a1

4
� k1

� �
w1 þ � � � þ an þ bn

2
þ bn � an

4
� kn

� �
wn � r0

w1 þ w2 þ � � � þ wn ¼ 1

wi � 0; i ¼ 1; . . .; n; l1 � 0
a1 þ b1

2
þ b1 � a1

4
� k1

� �
w1 þ � � � þ an þ bn

2
þ bn � an

4
� kn

� �
wn � r0

� �
l1 ¼ 0

ri1w1 þ � � � þ rinwn � l1
ai þ bi

2
þ bi � ai

4
� ki

� �
þ l2

� �
wi ¼ 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð23Þ
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enþ2 ¼
1

arnþ2

g1 þ
Xnþ2

j¼1;j 6¼nþ2

� a1j

a1nþ2

� �
ej ð25Þ

Substituted Eq. (25) into Eq. (24), we can get Eq. (26).

gi ¼
ainþ2

a1nþ2

g1 þ
Xnþ2

j¼1;j6¼nþ2

aij �
ainþ2

a1nþ2

a1j

� �
ej; i

¼ 1; . . .; n; nþ 1; nþ 2 ð26Þ

Using the same method, we obtain the following piv-

oting operation: gn?2 $ e1.

Step 3 Main iterations.

(1) If all of the deviations of non-basic vectors are

nonnegative, the current basic solution is a solution

to Eq. (23).

(2) Otherwise, select a non-basic vector gr with negative

deviation to enter the basis. If there is no positive

element in the row of entering vector that is

corresponding to the basic inequality, Eq. (23) has

no solution. If there is the biggest positive element

grs in the row of entering vector, the basic vector of

the sth column corresponding to grs leaves the basis.

Then, carry out a pivoting operation: gr$es. After

that, return to Step 3. (1).

4.2.2 The transaction cost is non-smooth convex functions

Let the transaction costs be non-smooth convex functions;

the random credibilitic portfolio selection model is:

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Pn
i¼1

ai þ bi

2
þ bi � ai

4

� �
wi �

Pn
i¼1

ciðwiÞ� r0

w1 þ w2 þ � � � þ wn ¼ 1

0�wi � ui; i ¼ 1; . . .; n

8>>><
>>>:

ð27Þ

Model (27) is a non-smooth convex quadratic pro-

gramming problem.

If ci(wi) is a non-smooth convex function,Pn
i¼1

aiþbi
2

þ bi�ai
4

	 

wi �

Pn
i¼1 ciðwiÞ is concave function.

So, Model (27) is a non-smooth convex programming

problem. We propose a branch-and-bound method and a

pivoting algorithm to solve Model (27). Let the function of

OB be ci(wi) = kiwi, where ki = ci(ui)/ui. When ci(wi) is

substituted by ki xi, Model (27) can be turned into as

follows:

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Xn
i¼1

ai þ bi

2
þ bi � ai

4

� �
wi �

Xn
i¼1

kiwi � r0

w1 þ w2 þ � � � þ wn ¼ 1; 0�wi � ui; i ¼ 1; . . .; n

8>><
>>:

ð28Þ

Theorem 5 Let w0 be the optimal solution of Model (28).

Then, w0 is the feasible solution of Model (27).

Proof If x0 is the optimal solution of Model (28), we can

get the following equation:

Xn
i¼1

ai þ bi

2
þ bi � ai

4

� �
w0
i �

Xn
i¼1

kiw
0
i � r0 ð29Þ

Because ci(wi) is a non-smooth convex function, we can

obtain the following equation:

kiw
0
i � ci w

0
i

� �
ð30Þ

According to Eq. (29) and Eq. (30), we can get

Xn
i¼1

ai þ bi

2
þ bi � ai

4

� �
w0
i �

Xn
i¼1

ciðw0
i Þ� r0

So, wi
0 is the feasible solution of Model (27).

Thus, the proof of Theorem 5 is ended.

Theorem 6 Let w0 and g(w0), respectively, be the optimal

solution and the optimal objective function value of Model

(28), w*and f(w*), respectively, be the optimal solution and

the optimal objective function value of Model (27), f(w0) be

the objective function value of the feasible solution w0 of

Model (27). Then,

g w0
� �

� f w�ð Þ� f w0
� �

ð31Þ

Proof According to Theorem 5, we can obtain that w0 is

the feasible solution of Model (27). Because w* is the

optimal solution of Model (27), we can get that

f w�ð Þ� f w0
� �

ð32Þ

According to Fig. 1, we can obtain that

kiwi � ci wið Þ ð33Þ

According to Eq. (33), we can obtain that

Xn
i¼1

½riwi � ciðwiÞ� �
Xn
i¼1

ðriwi � kiwiÞ� r0 ð34Þ

Table 1 Initial table

e1 … en en?1 en?2 Di

g1 r11 … r1n - (r1 - k1) 1 0

… … … … … … …
gn rn1 … rnn - (rn - kn) 1 0

gn?1 r1 - k1 … rn - kn 0 0 - r0

gn?2 1 … 1 0 0 - 1
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According to Eq. (34), we can obtain that w* is the

feasible solution of Model (28), i.e.,

g w0
� �

� g w�ð Þ: ð35Þ

Because the objective functions of Model (27) and

Model (28) are same, we can get that

g w�ð Þ� f w�ð Þ: ð36Þ

According to Eqs. (32), (35), and (36), we can obtain

that

g w0
� �

� f w�ð Þ� f w0
� �

:

Thus, the proof of Theorem 6 is ended.

From Eq. (36), we can obtain that there are upper and

lower bounds on the optimal objective function value of

Model (28).

Definition 6 Let w0 be the optimal solution of Model (28),

and

Xn
i¼1

ðkiw0
i � ciðw0

i ÞÞ� e; e ¼ 10�6: ð37Þ

Then, w0 is almost the optimal solution of Model (27).

If there is an optimal solution of Model (28) w0, which

cannot satisfy Eq. (37), then let

ksw
0
s � cs w0

s

� �
¼ maxfkiw0

i � ci w
0
i

� �
ji ¼ 1; . . .; ng ð38Þ

W1 ¼ fxj0�ws � us=2; 0�wj � uj; j 6¼ sg ð39Þ

W2 ¼ fxjus=2�ws � us; 0�wj � uj; j 6¼ sg: ð40Þ

Model (27) can be turned into the following two models:

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Pn
i¼1

ai þ bi

2
þ bi � ai

4

� �
wi � ci wið Þ

� �
� r0

eTw ¼ 1

w 2 X1

8>>><
>>>:

ð41Þ

and

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Pn
i¼1

ai þ bi

2
þ bi � ai

4

� �
wi � ci wið Þ

� �
� r0

eTw ¼ 1

w 2 X2

8>>><
>>>:

ð42Þ

Let cs(ws) be substituted by two piecewise linear func-

tion. The function of cs(xs) can be denoted as in Fig. 2.

In Fig. 2, the linear OA is ks1 (ws1), in which the slope of

OA is cs(us/2)/(us/2), and the linear AB is ks2(ws2), in which

the slope of AB is ks2 = (cs(as) - cs(as/2))/(as/2).

Model (28) can be turned into the two following models:

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Pn
i¼1;i 6¼s

ðriwi � kiwiÞ þ ðrsws � ks1ðws1ÞÞ� r0

eTw ¼ 1

w 2 X1

8>>><
>>>:

ð43Þ

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Pn
i¼1;i 6¼s

ðriwi � kiwiÞ þ ðrxws � ks2ðws2ÞÞ� r0

eTw ¼ 1

w 2 X2

8>>><
>>>:

ð44Þ

Definition 7 Let w1 and w2 be, respectively, the optimal

solution of Model (43) and Model (44). IfPn
i¼1

kiw
1
i � ciðw1

i Þ
� �

� e or
Pn
i¼1

kiw
2
i � ciðw2

i Þ
� �

� e, then x1

or x2 is the optimal solution of Model (27).

Algorithm 2. The branch-and-bound algorithm for

Model (27)

Step 1 Let k = 0, li
0 = 0, u0i ¼ ui;w

0
i ¼fwijl0i �wi � u0i g:

Step 2 Let ki
j(wi) be the approximate linear function of

ci(wi). We can obtain the optimal solution of the following

model by Algorithm 1.

B kiwi

0

ci(wi)

wiui

Fig. 1 Non-smooth convex function

us/2

cs(ws) 
ks2(ws2)

ks1(ws1) A

B

0
ws 

us

Fig. 2 cs(ws) substituted by two piecewise linear functions
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min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Pn
i¼1

ai þ bi

2
þ bi � ai

4

� �
wi � k

j
i ðwiÞ

� �
� r0

eTw ¼ 1

w 2 W j

8>>><
>>>:

ð45Þ

where the optimal solution of Model (45) is

Wj = (w1
j ,…,wn

j ).

Step 3 If
Pn
i¼1

ðk j
i ðw

j
i Þ � ciðwj

i ÞÞ� e, W j ¼ w
j
1; . . .;w

j
n

� �
is

the optimal solution of Model (27). Otherwise,

k j
s w j

s

� �
� c j

s w j
s

� �
¼ maxfk j

i w
j
i

� �
� c

j
i w

j
i

� �
ji ¼ 1; . . .; ng

, Wjþ1 ¼ fl js �ws �ðu j
s þ l

jÞ
s Þ=2;w 2 W jjwi 6¼ wsg,

Wjþ2 ¼ fðu j
s þ l

jÞ
s Þ=2�ws � u j

s ; x 2 X jjwi 6¼ wsg, turn Step

2.

4.2.3 The transaction cost is smooth convex functions

Let the transaction costs be smooth convex functions. The

function can be denoted as in Fig. 3.

The random credibilitic portfolio selection with smooth

convex transaction costs is as follows:

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Pn
i¼1

ai þ bi

2
þ bi � ai

4

� �
wi � ciðwiÞ

� �
� r0

eTw ¼ 1;wi � 0 ; i ¼ 1; . . .; n

8<
:

ð46Þ

If ci(xi) is a convex function,
Pn

i¼1 ½riwi � ciðwiÞ� is a

concave function. So, Model (46) is a smooth convex

programming problem.

Algorithm 3. A sequence quadratic programming

algorithm for Model (46)

We propose a sequence quadratic programming and a

pivoting algorithm to solve Model (46).

Step 1 Let w0 = (1/n, …, 1/n)T, ci(wi) be approximated

as gi(wi) = ci(wi
0) ? ci

0 (wi
0)(wi - wi

0). The subproblem of

Model (46) can be obtained as follows:

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Pn
i¼1

ai þ bi

2
þ bi � ai

4

� �
wi � ciðw0

i Þ þ c
0

iðw0
i Þðwi � w0

i

� �� �
� r0

eTw ¼ 1

wi � 0 ; i ¼ 1; � � � ; n

8>>><
>>>:

ð47Þ

The optimal solution of Model (47) w* can be obtained

by Algorithm 1. Let w1 = w*.

Step 2 Let ci(wi) be approximated as gi(wi) = ci(-

wi
k) ? ci

0 (wi
k)(wi - wi

k). The subproblem of Model (46)

can be obtained as follows:

min
1

2

Xn
i¼1

Xn
j¼1

rijwiwj

s:t:

Pn
i¼1

ai þ bi

2
þ bi � ai

4

� �
wi � ciðwk

i Þ þ c
0
iðwk

i Þðwi � wk
i Þ

� �� �
� r0

eTw ¼ 1

wi � 0; i ¼ 1; � � � ; n

8>>><
>>>:

ð48Þ

The optimal solution of Model (48) w*can be obtained

by Algorithm 1. Let wk?1 = w*.

Step 3 If wkþ1 � wk
�� ��� e; e ¼ 10�6; wkþ1 is the optimal

solution of Model (46). Otherwise, let wk: = wk?1. Turn to

Step 2.

5 Numerical examples

In this section, three numerical examples are given to

express the idea of the proposed model. Assume that an

investor chooses twenty stocks from Shanghai Stock

Exchange for his investment. The stocks codes are,

respectively, S1 (600036), S2 (600002), S3 (600060), S4
(600362), S5 (600519), S6 (601111), S7 (601318), S8
(600900), S9 (600887), S10 (600690), S11 (6000970), S12
(600000), S13 (600009), S14 (600019), S15 (600029), S16
(600104), S17 (600315), S18 (600518), S19 (600570), and

S20 (600880). He/she assumes that the returns and risk of

the twenty stocks at each period are represented as trape-

zoidal fuzzy numbers. We collect historical data of them

from April 2006 to June 2018 and set every three months as

a period to handle the historical data. By using the simple

estimation method in Vercher et al. (2007) to handle their

historical data, the trapezoidal possibility distributions of

the return rates of assets can be obtained as shown in

Table 2. We use the above algorithms to obtain the optimal

solution of Model (19) with the three types transaction

costs. (1) When the transaction cost is linear function, we

assumed that ci(wi) = 0.003wi. (2) When the transaction

B

0

ci(wi) 

Fig. 3 Smooth convex function
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cost is non-smooth convex function, we assumed that

ciðwiÞ ¼
0:003wi; 0�wi � 0:5
0:004wi � 0:0005; 0:5�wi � 1

�
.

(3) When the transaction cost is smooth convex func-

tion, we assumed that ciðwiÞ ¼ 0:003w2
i þ 0:003wi.

The trapezoidal possibility distributions eRi = (ai,bi,ai,
bi) can be obtained as shown in Table 2.

The covariance matrix r2 = (rij)n9n can be obtained as

follows:

rij ¼
1

m

Xm
k¼1

Rik �Mð eRiÞ
� �

Rjk �Mð eRjÞ
� �

As illustrations, the following numerical examples are

given to show the effectiveness of the proposed model and

the algorithms. The algorithm was programmed by C??

language and run on a personal computer with Pentium

Dual CPU, 4 GHz, and 8 GB RAM.

(1) When the transaction cost is linear function, we

assumed that the coefficients of transaction costs are gen-

erated same for all assets, i.e., ci(wi) = 0.003wi. By using

the pivoting algorithm to solve Model (20) and Model (21),

we can, respectively, obtain r0
max = 0.179025,

r0
min = 0.0964.

By using the pivoting algorithm to solve Model (22), the

computational results are summarized in Table 2.

If r0 = 0.1, 0.12, 0.13, the optimal solution will be

obtained as Table 3.

When r0 = 0.1, the optimal investment strategy at period

1 is w1 = 0.1207, w3 = 0.6370, w6 = 0.1018, w9 = 0.0984,

w12 = 0.0004, w19 = 0.0324, w20 = 0.0093 and being the

rest of variables equal to zero, which means investor should

allocate his initial wealth on asset 1, asset 3, asset 6, asset

9, asset 12, asset 19, asset 20 and otherwise asset by the

proportions of 12.07%, 63.7%, 10.18%, 9.84%, 0.04%,

3.24%, 0.93% and being the rest of variables equal to zero

among the twenty stocks, respectively. From Table 3, it

can be seen that the investment proportion of asset 8 will

increase when the minimum target value of the total future

profit r0 increases.

If r0 = 0.0964, 0.1, 0.105, 0.01,…, 0.17, 0.175,

0.179025, the variance and expected return will be

obtained as given in Table 4.

In Table 4, it can be seen that the standard deviation will

increase when the net expected return increases.

(2) When the transaction cost is non-smooth convex

function, we assumed that

ciðwiÞ ¼
0:003wi; 0�wi � 0:5
0:004wi � 0:0005; 0:5�wi � 1

�
. By using

Algorithm 2 to solve Model (20) and Model (21), we can,

respectively, obtain r0
max = 0.178525, r0

min = 0.096203.

By using Algorithm 2 to solve Model (27), the com-

putational results are summarized in Table 2.

If r0 = 0.1, 0.12, 0.13, the optimal solution will be

obtained as given in Table 5.

From Table 5, it can be seen that the investment pro-

portion of asset 8 will increase when the minimum target

value of the total future profit r0 increases.

If r0 = 0.096203, 0.1, 0.105, 0.01,…, 0.17, 0.175,

0.178525, the variance and expected return will be

obtained as given in Table 6.

Table 2 Fuzzy return rates on

assets
Asset 1 0.1115 0.1439 0.0719 0.0526 Asset 2 0.0756 0.0943 0.0463 0.0470

Asset 3 0.0956 0.1213 0.0617 0.0443 Asset 4 0.0974 0.1178 0.0594 0.0679

Asset 5 0.0681 0.0989 0.0541 0.0426 Asset 6 0.0887 0.1231 0.0470 0.0453

Asset 7 0.0687 0.0920 0.0439 0.0571 Asset 8 0.0981 0.1495 0.0558 0.0766

Asset 9 0.0513 0.0765 0.0396 0.0825 Asset 10 0.0310 0.0443 0.0258 0.0347

Asset 11 0.0510 0.0639 0.0338 0.0217 Asset 12 0.1048 0.1438 0.0975 0.0645

Asset 13 0.0778 0.1319 0.0573 0.0706 Asset 14 0.0508 0.0746 0.0489 0.0364

Asset 15 0.0422 0.1250 0.0334 0.0526 Asset 16 0.0603 0.0833 0.0503 0.0598

Asset 17 0.0832 0.1321 0.0608 0.0701 Asset 18 0.0648 0.1183 0.0612 0.4231

Asset 19 0.0760 0.1000 0.0540 0.0550 Asset 20 0.0700 0.1184 0.0578 0.0552

Table 3 Optimal solution when

r0 = 0.1, 0.12, 0.13
Asset i Optimal investment proportions

r0

0.1 Asset 1

0.1207

Asset 3

0.6370

Asset6

0.1018

Asset 9

0.0984

Asset 12

0.0004

Asset 19

0.0324

Asset 20

0.0093

0.12 Asset 1

0.1272

Asset 3

0.1428

Asset6

0.0231

Asset 8

0.6456

Asset 12

0.0214

Asset 18

0.0083

Asset 19

0.0316

0.13 Asset 1 Asset 8 Asset12 Asset 18
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In Table 6, it can be seen that the standard deviation will

increase when the net expected return increases.

(3) When the transaction cost is smooth convex func-

tion, we assumed that ciðwiÞ ¼ 0:003w2
i þ 0:003wi. By

using Algorithm 3 to solve Model (20) and Model (21), we

can, respectively, obtain

rmax
0 ¼ 0:1760250; rmin

0 ¼ 0:094818:

By using Algorithm 3 to solve Model (16), the corre-

sponding results can be obtained as follows.

If r0 = 0.1, 0.12, 0.13, the optimal solution will be

obtained as given in Table 7.

From Table 7, it can be seen that the investment pro-

portion of asset 8 will increase when the minimum target

value of the total future profit r0 increases.

If r0 = 0.094818, 0.1, 0.105, 0.01,…, 0.175, 0.1760250,

the variance and expected return will be obtained as given

in Table 8.

In Table 8, it can be seen that the standard deviation will

increase when the net expected return increases.

Table 4 Variance and expected

return when r0 = 0, 0.01,…,

0.16, 0.1671

r0 0.0964 0.1 0.105 0.11 0.115 0.12 0.125

r2 (10-4) 5.5764 5.9887 7.4112 9.0942 11.0435 13.4378 16.3564

r (10-2) 2.3614 2.4472 2.7224 3.0157 3.3232 3.6658 4.0443

r0 0.13 0.135 0.14 0.145 0.15 0.155 0.16

r2 (10-4) 20.4697 28.0242 40.8935 59.1103 82.6743 111.6139 146.9718

r (10-2) 4.5243 5.2938 6.3948 7.6883 9.0925 10.5647 12.1232

r0 0.165 0.17 0.175 0.179025

r2 (10-4) 189.2751 238.5238 294.7178 345

r(10-2) 13.7577 15.4442 17.1673 18.5742

Table 5 Optimal solution when

r0 = 0.1, 0.12, 0.13
Asset i Optimal investment proportions

r0

0.1 Asset 1

0.1246

Asset 3

0.6331

Asset6

0.1032

Asset 9

0.0963

Asset 12

0.0006

Asset 19

0.0325

Asset 20

0.0096

0.12 Asset 1

0.1380

Asset 3

0.1550

Asset6

0.0271

Asset 8

0.6146

Asset 12

0.0215

Asset 18

0.0162

Asset 19

0.0276

0.13 Asset 1 Asset 8 Asset12 Asset 18

Table 6 Variance and expected

return when r0 = 0, 0.01, …,

0.175, 0.178525

r0 0.096203 0.1 0.105 0.11 0.115 0.12 0.125

r2 (10-4) 5.5764 6.0188 7.4189 9.0942 11.0435 13.5074 16.5064

r (10-2) 2.3614 2.4533 2.7238 3.0157 3.3232 3.6752 4.0628

r0 0.13 0.135 0.14 0.145 0.15 0.155 0.16

r2 (10-4) 20.6988 28.1624 40.8935 59.1103 82.6743 112.2238 148.3853

r (10-2) 4.5496 5.3068 6.3948 7.6883 9.0925 10.5936 12.1814

r0 0.165 0.17 0.175 0.178525

r2 (10-4) 191.7332 242.2674 299.9880 345

r (10-2) 13.8468 15.5649 17.3202 18.5742

Table 7 Optimal solution when

r0 = 0.1, 0.12, 0.13
Asset i Optimal investment proportions

r0

0.1 Asset 1

0.1361

Asset 3

0.6069

Asset6

0.1071

Asset 8

0.0203

Asset 9

0.0849

Asset 12

0.0027

Asset 19

0.0325

Asset 20

0.0095

0.12 Asset 1

0.1578

Asset 3

0.1596

Asset6

0.0280

Asset 8

0.5794

Asset 12

0.0218

Asset 18

0.0344

Asset 19

0.0190

0.13 Asset 1 Asset 8 Asset 18
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The computational results for these three types of

transaction costs are summarized in Tables 3, 5, and 7. In

general, the optimal strategies under different transaction

costs are different. The change of the transaction cost has

great influence on the strategy making.

In the general type of convex transaction cost function

ci(wi) contains three types, i.e., linear function, non-smooth

convex function, and smooth convex function. The above

three types of transaction costs can be used to describe the

practical situation for the transaction cost precisely.

6 Conclusions

A random credibilitic portfolio optimization model with

different convex transaction costs is proposed, which can

be deduced into any specific form by investors’ estimation

and practical situation. We present three algorithms espe-

cially for solving the different convex transaction costs

function form of portfolio selection problem. Moreover, we

define three general types of transaction cost and describe

the practical situation for the transaction cost precisely.

The computational experiments show that different types

of transaction cost have great influence on strategy making.
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