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Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide with increasing prevalence. Breast cancer is the

most common type among women, and its early diagnosis is crucially important. Cancer diagnosis is a classification

problem, where its nature requires very high classification accuracy. As artificial neural networks (ANNs) have a high

capability in modeling nonlinear relationships in data, they are frequently used as good global approximators in prediction

and classification problems. However, in complex problems such as diagnosing breast cancer, shallow ANNs may cause

certain problems due to their limited capacity of modeling and representation. Therefore, deep architectures are essential

for extracting the complicated structure of cancer data. Under such circumstances, deep belief networks (DBNs) are

appropriate choice whose application involves two major challenges: (1) the method of fine-tuning the network weights

and biases and (2) the number of hidden layers and neurons. The present study suggests two novel evolutionary methods,

namely E(T)-DBN-BP-ELM and E(T)-DBN-ELM-BP, that address the first challenge via combining DBN with extreme

learning machine (ELM) classifier. In the proposed methods, because of the very large solution space of DBN topologies,

the genetic algorithm (GA), which is able to search globally in the solutions space wondrously, has been applied for

architecture optimization to tackle the second challenge. The third proposed method in this paper, E(TW)-DBN, uses GA to

solve both challenges, in which DBN topology and weights evolve simultaneously. The proposed models are tested using

two breast cancer datasets and compared with the state-of-the-art methods in the literature in terms of classification

performance metrics and area under ROC (AUC) curves. According to the results, the proposed methods exhibit very high

diagnostic performance in classification of breast cancer.
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1 Introduction and literature review

Cancer is the second leading cause of death globally and is

responsible for an estimated 9.6 million deaths in 2018,

according to World Health Organization1 (WHO) report.

Based on this report, men are mostly confronted with lung,

prostate, colon, stomach and liver cancer, while in women,

breast, colon, lung, cervical, and stomach cancer are the

most prevalent. Among all different types of cancers,

breast cancer is the second cause of cancer death after lung

cancer which is the most prevalent among women.

One of the most basic obstacles in treating breast cancer

is lack of appropriate method for early diagnosis. Today,

due to advancements in medical field and the complexity of

decisions related to diagnosis and treatment, the attention

of experts is drawn to the use of smart equipment and

Medical Decision Support Systems (MDSS), especially in

the critical field of breast cancer diagnosis. The use of

various types of smart systems in medicine is increasing.

Also, the use of these equipment and systems can reduce

potential mistakes caused by the fatigue or lack of expe-

rience of clinical professionals in detecting this type of

cancer and deciding whether to be benign or malignant
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(Milovic 2012). Cancer diagnosis is a classification prob-

lem including complex and nonlinear relationships among

its data sets. A wide range of data mining methods have

been proposed so far in the literature to predict the diag-

nosis of breast cancer. Quinlan (1996) used C4.5 decision

tree method to classify this cancer and achieved a classi-

fication accuracy of 94.74%. Nauck and Kruse (1999) used

neuro-fuzzy method and obtained an accuracy of 95.06%.

Pena-Reyes and Sipper (1999) applied fuzzy genetic

method and achieved 97.36% classification accuracy.

Albrecht et al. (2002) used a combination of perceptron

with simulated annealing (SA) method and reported an

accuracy of 98.8%. Abonyi and Szeifert (2003) imple-

mented supervised fuzzy clustering technique to achieve an

accuracy of 95.57%. Polat and Günes (2007) used Artificial

Immune Recognition System (AIRS) and fuzzy resource

allocation mechanism to achieve 98.51% accuracy and

they also applied least square-support vector machine (LS-

SVM) to obtain 98.53% accuracy.

Übeyli (2007) applied five different classifiers, i.e.,

SVM, probabilistic neural network, recurrent neural net-

work, combined neural network and multilayer perceptron

neural network, which respectively, achieved accuracies of

99.54%, 98.61%, 98.15%, 97.4%, and 91.92%. Örkcü and

Bal (2011) compared performance of back-propagation

neural network (BPNN), binary-coded genetic algorithm,

and also real-coded genetic algorithm on breast cancer

dataset and acquired accuracies of 93.1%, 94%, and 96.5%,

respectively. Marcano-Cedeño et al. (2011) proposed a new

artificial metaplasticity multilayer perceptron algorithm

that outperformed BPNN on similar breast cancer dataset

with 99.26% accuracy compared to BPNN with 94.51%

accuracy rate for 60–40 training–testing samples. Simi-

larly, Lavanya and Rani (2011) used decision tree algo-

rithms and achieved 94.84% accuracy on Breast Cancer

Wisconsin—Original (WBCO) dataset and 92.97% on

Breast Cancer Wisconsin—Diagnostic (WDBC) dataset.

Malmir et al. (2013) reported 97.75% and 97.63% accu-

racies by training a multilayer perceptron network, through

applying imperialist competitive algorithm (ICA) and

particle swarm optimization (PSO), respectively. Koyuncu

and Ceylan (2013) achieved a higher classification accu-

racy of 98.05% by using nine classifiers in a Rotation

Forest-Artificial Neural Network (RF-ANN). Xue et al.

(2014) applied PSO algorithm for feature selection using

novel initialization and updating mechanisms, which

resulted in 94.74% accuracy rate. Sumbaly et al. (2014)

also used decision tree to achieve 94.56% accuracy. Zheng

et al. (2014) obtained 97.38% accuracy through applying a

combination of K-means and SVM algorithms on WDBC

dataset. Bhardwaj and Tiwari (2015) obtained 99.26%

accuracy on WBCO dataset using tenfold cross-validation

method in genetically optimized neural network (GONN)

model.

In Karabatak’s research (2015), a new classifier, namely

weighted naı̈ve Bayesian, was proposed which achieved a

classification accuracy of 98.54% on WBCO dataset.

Abdel-Zaher and Eldeib (2016) also achieved an accuracy

of 99.68% through using of DBN composition along with

Levenberg–Marquardt (LM) algorithm on the WBCO

dataset considering 54.9–45.1% of data for training–testing

partitions. Kong et al. (2015) also presented the jointly

sparse discriminant analysis (JSDA) for feature selection

and reached an accuracy of 93.85% for the WDBC dataset.

Table 1 summarizes these methods.

Among the various approaches in the field of medical

diagnosis, ANN is one of the data mining techniques,

which has attracted the attention of many researchers for

medical decisions support. The ANNs are flexible mathe-

matical structures that can identify complex relationships

between input and output data. The learning ability of

ANNs has made them a powerful tool for various appli-

cations, such as classification, clustering, control systems,

prediction, and many other applications (Ahmadizar et al.

2015). The feed-forward back propagation (BP) is the most

commonly used architecture among various types of neural

networks. In the literature, the BP’s three-layer networks

(including one hidden layer) are used as a global approx-

imator for cancer diagnosis (Çinar et al. 2009; Saritas et al.

2010).

The most of machine learning techniques applied are

shallow architectures, so far. Çınar et al. (2009) presented a
system for early detection of prostate cancer using ANN

and SVM with a structure containing one hidden layer.

Saritas et al. (2010) also applied single-hidden-layer ANN

for the detection of prostate cancer. Many other researchers

also used architectures for neural networks, which typically

had at most one or two layers of nonlinear feature trans-

formations (Bhardwaj and Tiwari 2015; Chen et al. 2011;

Flores-Fernández et al. 2012; Park et al. 2013; Wu et al.

2011; Zheng et al. 2014). It has been observed that shallow

architectures have been effective in solving many simple or

finite problems, but their limited capacity in modeling and

representation can trigger problems in dealing with more

complex real-world applications (Deng and Yu 2014). In

fact, cancer diagnosis problems with complex, high-di-

mensions and noisy data cannot be solved simply by using

conventional shallow methods that contain only a few

nonlinear operations, and these methods do not have the

capacity to accurately model such data (Längkvist et al.

2014). The complicated information processing mecha-

nisms require deep architectures to extract complex struc-

tures and make input representations. Therefore,

researchers became interested more in using deeper
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structures for the network (Asadi et al. 2012, 2013; Kazemi

et al. 2016; Razavi et al. 2015; Shahrabi et al. 2013).

Learning techniques in deep neural networks refer to a

class of machine learning techniques that model high-level

abstractions in input data with hierarchical architectures

and multiple layers. In these structures, hierarchical

extraction of the features is possible, so that high-level

features are formed in a combination of low-level features

at several levels (Bengio 2009). Different types of deep

neural networks are used for classification in the literature

(Abdel-Zaher and Eldeib 2016; Cao et al. 2016; Ciompi

et al. 2015; Wang et al. 2016; Yu et al. 2015). Deep belief

network (DBN) (Hinton et al. 2006) is one of the deep

networks that have achieved remarkable performance in

prediction and classification problems using restricted

Boltzmann machines (RBMs) for layer-wise unsupervised

learning (network’s weights pre-training), and supervised

back-propagation algorithm for fine-tuning.

There are two major challenges in applying DBN: (1)

Taking which method for training the network; (2) How

many hidden layers and neurons should be included in the

network? Since in usual DBN, after network unsupervised

pre-training stage, the weights between the last hidden

layer and output layer is randomly assigned, it sounds that

selecting a method which opts these weights in a more

intelligent way improves the classification’s performance.

ELM (Huang et al. 2006) is a competitive learning method

having a considerable performance in terms of accuracy

and computational time. One of the main objectives of this

paper is to employ ELM in DBN in order to select the

weights between the last hidden layer and output layer

intelligently than randomly. Moreover, it has already been

shown in the literature that combination of ELM with SVM

Table 1 A list of data mining methods in breast cancer diagnosis literature

References Data mining methods Accuracy (%)

Quinlan (1996) C4.5 decision tree 94.74a

Nauck and Kruse (1999) Neuro-fuzzy 95.06a

Pena-Reyes and Sipper (1999) Fuzzy-GA 97.36a

Albrecht et al. (2002) Hybrid of perceptron and simulated annealing 98.8a

Abonyi and Szeifert (2003) Supervised fuzzy clustering 95.57a

Polat and Günes (2007) Artificial immune recognition system and fuzzy resource allocation mechanism

Least square-support vector machine

98.51a

98.53a

Übeyli (2007) Support vector machine

Probabilistic neural network

Recurrent neural network

Combined neural network

Multilayer perceptron neural network

99.54a

98.61a

98.15a

97.4a

91.92a

Örkcü and Bal (2011) Back-propagation neural network

Binary-coded genetic algorithm

Real-coded genetic algorithm

93.1a

94a

96.5a

Marcano-Cedeño et al. (2011) Artificial metaplasticity multilayer perceptron 99.26a

Lavanya and Rani (2011) Decision tree 94.84a

92.97b

Malmir et al. (2013) MLP training with imperialist competitive algorithm

MLP training with particle swarm optimization

97.75a

97.63a

Koyuncu and Ceylan (2013) Rotation forest-artificial neural network 98.05a

Xue et al. (2014) Feature selection with PSO 94.74b

Sumbaly et al. (2014) Decision tree 94.56a

Zheng et al. (2014) Hybrid of K-means and SVM 97.38b

Bhardwaj and Tiwari (2015) Genetically optimized neural network 99.26a

Karabatak (2015) Weighted naı̈ve Bayesian 98.54a

Abdel-Zaher and Eldeib (2016) Hybrid of DBN with Levenberg–Marquardt 99.68a

Kong et al. (2015) Jointly sparse discriminant analysis 93.85b

aAccuracy on WBCO, baccuracy on WDBC
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yields desirable consequences. Liu et al. (2008) and Frénay

and Verleysen (2011) provided a considerable contribution

through presenting a method in which ELM was employed

within SVM which resulted in better generalization per-

formance. Huang et al. (2010) showed that optimization

constrains of SVM can be lowered, if the core of ELM is

used and the optimal solution could be consequently more

effectively found. Therefore, one can expect that combi-

nation of ELM with DBN yield acceptable outcomes. In

the present study, two new structures are presented by

applying ELM classifier to improve DBN training.

On the other hand, due to very large solution space of

deep network weights, it seems necessary to apply a

method with global search characteristic. Genetic algo-

rithm (GA) is incredibly capable of global search in solu-

tion space. Therefore, in the third proposed method in this

research, a combination of GA and DBN has been used for

fine-tuning and acquiring suitable DBN weights.

Architecture of a neural network is crucially important,

as it affects learning capacity and generalization perfor-

mance of network (Ahmadizar et al. 2015). Although deep

learning methods has acquired acceptable results in dif-

ferent applications, it is difficult to determine which

structure with how many layers or how many neurons in

each layer is suitable for specific task, and also, a special

knowledge is required for choosing reasonable values for

necessary parameters (Guo et al. 2015). Therefore, a

method for finding optimized architecture of DBN is

required that be suitable for cancer diagnosis.

To the best of the authors’ knowledge, there is no

method in the literature to determine the number of hidden

layers and neurons in DBN. Researchers also used pre-

determined structures for applying DBN in their applica-

tions (Abdel-Zaher and Eldeib 2016; Hrasko et al. 2015).

Manual search is another strategy which has been widely

used to do so (Hinton 2010; Larochelle et al. 2007; Shen

et al. 2015). In this method, the DBN is frequently tested

by different structures, and finally, a structure with the best

performance is selected.

Discovering optimal architecture for a deep network is a

search problem in which determining the optimized

topology for neural networks is the goal. Evolutionary

algorithms are appropriate choices for solving the neural

networks architecture problem. GA is an evolutionary

search method that is capable of finding optimal or near

optimal solutions (Asadi 2019; Mansourypoor and Asadi

2017; Mehmanpazir and Asadi 2017; Tahan and Asadi

2018a, b). The most attractive GA characteristic is its

flexibility in handling various types of objective functions.

The main reasons for this success are as follows. GAs are

capable of solving difficult problems quickly and confi-

dently. They are also quite easy to interface with existing

simulations and models. Moreover, they are extensible and

easy to hybridize. All of these reasons can be summarized

into one reason: GAs are robust. In spite of this fact that

they do not guarantee to find the global optimum solution

of a problem, they are generally suitable for finding

acceptably good solutions to problems in a reasonable

amount of time (Asadi and Shahrabi 2017). So, in this

article’s proposed models, i.e., E(T)-DBN-BP-ELM, E(T)-

DBN-ELM-BP, and E(TW)-DBN, GA has been used for the

first time in the DBN architecture optimization.

In summary, the present research suggests three new

evolutionary methods called E(T)-DBN-BP-ELM, E(T)-

DBN-ELM-BP, and E(TW)-DBN, to find the optimal or near

optimal network architecture using GA. Additionally, to

improve the DBN training, the new and different learning

algorithms in each proposed method are presented.

The remainder of this paper is organized as follows. The

used materials, proposed models, and its novelties are

detailed in Sect. 2. In Sect. 3, evaluation of experimental

results is presented. A discussion is provided in Sect. 4.

Finally, the conclusion and future works are given in

Sect. 5.

2 Methodology

In this paper, the DBN classic model is improved by

applying the efficient classifier ELM, and two new com-

binations, E(T)-DBN-ELM-BP and E(T)-DBN-BP-ELM, are

then presented. The third proposed model, E(TW)-DBN,

effectively utilizes the advantages of GA for DBN fine-

tuning. In all three methods, the appropriate network

architecture is evolved by employing GA. In order to

understand more about the proposed models, first, Sect. 2.1

introduces DBN and ELM, and then, the proposed models

are presented in Sect. 2.2, comprehensively.

2.1 Material

The infrastructure of DBN includes several layers of the

RBMs. The layers of RBMs are placed on top of each other

to build a DBN, forming a network that can extract high-

level abstractions from the raw data. The DBN is detailed

in Sect. 2.1.1. ELM is another method that has been used in

the two proposed models of this paper and described in

Sect. 2.1.2. ELM is an efficient learning algorithm for

SLFN, which has a higher scalability and less computa-

tional complexity than the error back-propagation (BP)

algorithm.

2.1.1 Deep belief network

A DBN is created with several layers of the RBM. RBM is

an artificial neural network that has a single visible layer
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and a single hidden layer, in which unsupervised learning is

performed. The visible layer represents the data, while

another layer of hidden units represents features that cap-

ture higher-order correlations in the data. In a DBN, the

hidden layer of each RBM is considered as the visible layer

of the next RBM, with the last RBM hidden layer, as an

exception. RBMs use the hidden layer for the probability

distribution of visible variables (Hinton et al. 2006).

A DBN for a problem with m input, C output and N RBM is

shown in Fig. 1. Also, b and c in the first RBM are the

biases of visible and hidden layer, respectively, that are not

shown in other RBMs for the sake of simplicity.

The RBM (Smolensky 1986) is a generative stochastic

neural network that can learn the probability distribution of

input data sets. RBM is a type of Boltzmann machine with

this limitation that visible and hidden units form a bipartite

graph (there is no connection between nodes in a layer).

A RBM consists of a set of visible units, v 2 0; 1f gn,
and a set of hidden units, h 2 0; 1f gm, where n and m

represent the number of visible and hidden units, respec-

tively. In a RBM, the joint configuration v; hð Þ considering
bias has the following energy, as Eq. (1):

E v; hð Þ ¼ �
X

i2visible
bivi �

X

j2hidden
cjhj �

X

i

X

j

Wijvihj;

ð1Þ

where vi and hj are the binary state of the visible unit i and

the hidden unit j. Also, bi and cj are, respectively, biases of

visible and hidden layers, and Wij is the connection weight

between them. Lower energy indicates that the network is

in a more desirable state. This network, for each possible

state of visible and hidden vectors pairs, assigns a proba-

bility value using energy function as Eq. (2):

P v; hð Þ ¼ 1

Z
exp �E v; hð Þð Þ; ð2Þ

where Z is a partition function that can be obtained from

total of exp �E v; hð Þð Þ on all possible configurations, and it

is used for normalization:

Z ¼
X

v

X

h

exp �E v; hð Þð Þ: ð3Þ

The probability that the network assigns to the visible

vector v is given by Eq. (4):

P vð Þ ¼ 1

Z

X

h

exp �E v; hð Þð Þ ð4Þ

The derivative of the log probability of a training vector

with respect to a weight can be computed as Eq. (5):

o

oWij
logP vð Þ ¼ vihj

� �
data

� vihj
� �

model
; ð5Þ

where � � �h ip indicates the expected value according to the

distribution P. This means that the training rule for

updating the weights in the log probability of training data

is as Eq. (6):

DWij ¼ e vihj
� �

data
� vihj
� �

model

� �
ð6Þ

where e is the learning rate. Similarly, the weight-updating

rule in the bias parameters is given through Eqs. (7) and

(8):

Dbi ¼ e vih idata� vih imodel

� �
ð7Þ

Dcj ¼ e hj
� �

data
� hj
� �

model

� �
ð8Þ

Since the RBM is a bipartite graph, it is easy to calculate

vihj
� �

data
, called ‘‘positive phase.’’ The hidden unit acti-

vations are mutually independent with respect to the visible

unit activations (and vice versa):

P vjhð Þ ¼
Ym

i¼1

P vijhð Þ ð9Þ

The individual activation probabilities, i.e., the state of a

visible node with respect to the hidden vector is shown by

Eq. (10):

Pðvi ¼ 1jhÞ ¼ sigm bi þ
X

j

Wijhj

 !
ð10Þ

Visible 
layer 

h1

h2

h3

hn

v2

v3

vm

v1 v1

v2

v3

vn

h1

h2

h3

hl

v1

v2

v3

vs

h1

h2

h3

hr

RBMNRBM2RBM1

W1 W2 WN

In
pu

t d
at

a 1

2

C

b c

Same units

Visible 
layer

Visible 
layer

Hidden 
layer

Hidden 
layer

Hidden 
layer

Fig. 1 The network structure of

deep belief network
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where ‘‘sigm’’ is the logistic sigmoid function defined as

(sigm xð Þ ¼ 1=ð1þ expð�xÞÞ). Similarly, for the randomly

selected training input v, the binary state hj of each hidden

unit j is set to 1 with the probability according to Eq. (11):

Pðhj ¼ 1jvÞ ¼ sigm cj þ
X

i

Wijvi

 !
: ð11Þ

By calculating this probability, this hidden unit is turned

on (value is changed to 1), if a random generated number

from uniform distribution over range (0, 1) be less than the

probability value.

The accurate calculation of Eq. (6), called ‘‘negative

phase,’’ is difficult because it involves all possible states of

the model (Palm 2012). Researchers have presented vari-

ous algorithms for calculating negative phase (Hinton

2010; Keyvanrad and Homayounpour 2015; Le Roux and

Bengio 2008; Tieleman 2008; Tieleman and Hinton 2009).

These algorithms differ in the choice of approximation for

the gradient of the objective function. Currently, one of the

most popular methods is Contrastive Divergence (CD-k),2

especially CD-1 (Hinton 2010). The CD-1 method uses one

step of Gibbs sampling. The advantages of this method

include: (1) it is fast; (2) it has low variance; and (3) it is an

acceptable approximation for likelihood gradient (Key-

vanrad and Homayounpour 2015).

In the CD-1, for computation vihj
� �

model
, firstly, the

visible units vi are set to the input sample. Then the hidden

states of hj are calculated according to Eq. (11). By one-

step reconstruction of visible and hidden units, v0i and h0j,

are produced using Eqs. (10) and (11). Therefore, the

weights can be updated according to Eq. (12):

DWij ¼ e vihj
� �

data
� v0ih

0
j

D E

reconstruction

� �
ð12Þ

Also, the updating rules for the biases of visible and

hidden layers are as Eqs. (13) and (14):

Dbi ¼ e vih idata� v0i
� �

reconstruction

� �
ð13Þ

Dcj ¼ e hj
� �

data
� h0j

D E

reconstruction

� �
: ð14Þ

Algorithm 1 indicates the CD-1 pseudo-code to train a

RBM, which includes one step of Gibbs sampling (Palm

2012). The rand() function produces random uniform

numbers over range (0, 1). This procedure is repeatedly

called with v0 = t sampled from the training distribution for

RBM. In this algorithm, e is a learning rate for the

stochastic gradient descent in contrastive divergence.

2.1.2 Extreme learning machines

The ELM is a simple and efficient learning algorithm of the

single-hidden-layer feed-forward neural networks (SLFN)

family, which aims at avoiding duplicate and costly train-

ing process as well as improving the generalization
2 Contrastive Divergence with k step of Gibbs Sampling.
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performance (Qu et al. 2016). In the ELM, the hidden layer

does not need to be tuned (Huang et al. 2012). That is, the

connection weights between the input layer and the hidden

layer of the SLFN, as well as the hidden biases and neu-

rons, are generated randomly and without additional tun-

ing. Also, the connection weights between the hidden layer

and the output layer are calculated using the efficient least

squares method (Qu et al. 2016). Figure 2 shows the

structure of the ELM.

The output function of ELM is as Eq. (15).

fL xð Þ ¼
XL

i¼1

bihi xð Þ ¼ h xð Þb ð15Þ

where b ¼ b1; . . .; bL½ �T is the vector of output weights

between the hidden layer with L nodes and the output

nodes. Also, h xð Þ ¼ h1 xð Þ; . . .; hL xð Þ½ � is the output vector

of the hidden layer with respect to the input x. Actually,

h xð Þ maps the data from the d-dimensional input space to

the L-dimensional hidden layer feature space H. For binary

classification applications, the ELM decision function is as

Eq. (16).

fL xð Þ ¼ sigm h xð Þbð Þ: ð16Þ

Unlike conventional learning algorithms (e.g., the BP

algorithm), ELM tends to reach not only the smallest

training error but also to the smallest norm of output

weight, which leads to better network performance (Huang

et al. 2012):

Minimize: Hb� Tk k2; jjbjj ð17Þ

where H is the hidden layer’s output matrix:

H ¼
h x1ð Þ
..
.

h xNð Þ

2

64

3

75 ¼
h1 x1ð Þ � � � hL x1ð Þ

..

. . .
. ..

.

h1 xNð Þ � � � hL xNð Þ

2

64

3

75 ð18Þ

If desired matrix T ¼ y1; . . .; yN½ �T (Huang et al. 2012) is

composed of labeled samples, the output weight b can be

defined as Eq. (19):

b¼HyT¼HT HHT
� ��1

T ð19Þ

where Hy is the Moore–Penrose generalized inverse of

matrix H (Huang et al. 2006). The ELM output layer

behaves like a linear solver in the new feature space H, and

the output weights are only the system parameters that need

to be tuned and can be mathematically calculated using

Eq. (19).

2.2 Proposed models

BP algorithm has yielded acceptable and desirable results

in shallow network. Random assignment of network initial

weights in BP learning algorithm resulted in occurrence of

several problems in training of deeper networks, where

training of networks with more than one or two hidden

layers using BP was indeed impossible. The main idea of

unsupervised pre-training of DBN using RBMs was recti-

fying this problem and assignment of appropriate initial

weights to network (to provide a good start in fine-tuning

stage using BP). The process of DBN training involves

three stages: (1) pre-training: training a sequence of

learning modules, in a greedy layer-wise way, using

unsupervised data; (2) the first fine-tuning: using random

weights for the last layer; and (3) the second fine-tuning:

applying back propagation for fine-tuning of the network,

using supervised data. The unsolved problem here is ran-

dom selecting the weights between the last hidden layer (in

the last RBM) and output layer. One of the goals of E(T)-

DBN-ELM-BP model is to use ELM in the first fine-tuning

stage for intelligent selecting of these weights which pro-

vide a more appropriate initial point for BP algorithm.

Actually, ELM similar to RBMs provides an initial weight

to network and the network main training in the second

fine-tuning stage is happened using BP algorithm.

The second proposed method to improve the fine-tuning

steps is E(T)-DBN-BP-ELM model, which uses the BP and

ELM algorithms in the first and second fine-tuning steps,

respectively. Finally, the third proposed method, E(TW)-

DBN, uses the advantages of GA in DBN training. The all

three proposed models, described in following subsections,

use GA to optimize the network architecture, which is a

challenging problem in using deep neural networks.

2.2.1 Topology evolving of DBN-ELM-BP algorithm: E(T)-
DBN-ELM-BP

To have a better understanding about this model, first, the

new training method, DBN-ELM-BP, is described. Given
Fig. 2 Extreme learning machine
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the local search property of the error back-propagation

algorithm, if we can use non-random and more appropriate

network weights instead of using random weights at the

beginning of this algorithm, the algorithm converges earlier

and leads to better classification performance. This is also

the philosophy of DBN pre-training; however, the problem

is that the network can be pre-trained only up to the last

hidden layer and the weights between the last hidden layer

and the output layer are randomly selected.

DBN-ELM-BP solves this problem using the ELM

classifier. In this model, after an unsupervised pre-training

of network and a supervised ELM classification, a super-

vised BP stage is added to the DBN-ELM network. Fig-

ure 3 illustrates the process of training this model

graphically. In the methodology of this model a DBN

unsupervised pre-training stage is first performed. Then,

the ELM classifier is used to calculate the weights between

the last hidden layer and the output layer (the first fine-
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tuning stage), so that the matrix H is considered equal to

the weights matrix obtained from the last RBM of the DBN

(i.e.,WN) and the matrix b is calculated. Finally, the error is

computed, and BP updates the weights matrix (shown

below the dash arrows) and trains the entire network

(second fine-tuning stage). The dash arrows in Fig. 3 rep-

resent the update of the weights matrix by the BP

algorithm.

In the evolutionary model E(T)-DBN-ELM-BP, network

topology is optimized by GA. The fitness function of this

model for each chromosome is the classification accuracy

obtained from the DBN-ELM-BP network.

2.2.2 Topology evolving of DBN-BP-ELM algorithm: E(T)-
DBN-BP-ELM

In the DBN-BP-ELM training method, after the pre-train-

ing stage of the network, the first fine-tuning stage is per-

formed by the BP and then the ELM classifier is used for

the second fine-tuning stage. The network structure and
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training process of this model are graphically illustrated in

Fig. 4. The evolutionary model E(T)-DBN-BP-ELM uses

GA to find the optimal or near optimal architecture for the

network. The fitness function for evaluating the chromo-

somes of this model is the classification accuracy obtained

from the network trained by the DBN-BP-ELM method.

In the following, the steps and operators of these two

evolutionary models to find the optimal structure of the

DBN are described. The steps needed for evolving network

topology are described below:

Step 1. Chromosomes encoding

In the two described models, each chromosome is a deep

neural network with direct coding, i.e., the network

topology is directly represented by the vector of positive

integers. The number of genes in each chromosome indi-

cates the number of hidden layers of the deep network and

the value of each gene represents the number of neurons in

the corresponding hidden layer. Figure 5 illustrates an

example of the chromosome representation and its corre-

sponding DBN for a problem with nine input features x1,

x2, …, and x9, as well as an output C specifying the class

label.

Step 2. Population initialization

The population size (number of chromosomes) is

M which are randomly generated. To reduce the very large

search space of the problem, the maximum number of

genes of the initial population (chromosomes) is assigned

to five genes. The value of each gene is also initialized

randomly in a given interval considering the number of

input features of each data set. It is possible to increase or

decrease the number of genes and the value of each gene by

genetic operators, during the running the algorithm.

32 21 33

x2

x3

x9

x1

W1
W2 W3

h1

h2

h3

h32

h1

h2

h3

h21

h1

h2

h3

h33

C
W

Fig. 5 An example of

chromosome encoding in E(T)-

DBN-ELM-BP and E(T)-DBN-

BP-ELM

First parent:

Second parent:

First child:

Second child:

Fig. 6 An example of one-point

crossover in E(T)-DBN-ELM-

BP and E(T)-DBN-BP-ELM

Mutation in the third geneFig. 7 An example of mutation

in E(T)-DBN-ELM-BP and

E(T)-DBN-BP-ELM
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Step 3. Evaluation

In order to evaluate and obtain the fitness value for each

chromosome in each model, the accuracy percentage of the

training data with respect to the relevant model is calcu-

lated. The classification accuracy percentage is calculated

using confusion matrix elements as Eq. (20):

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
� 100 ð20Þ

where TP, TN, FP and FN are true positive, true negative,

false positive, and false negative, respectively.

Step 4. Selection

In order to select the parents for crossover, the well-

known roulette wheel selection mechanism is used. A

random selection mechanism is also used so as to select a

chromosome for mutation.

Step 5. Crossover

After the parent selection process, a single-point cross-

over, which is the most popular crossover operator in the

literature, is used to generate the new offsprings and search

in the solutions space. This operator, via random selection

of the crossover point, generates chromosomes of varying

Selection
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Fig. 8 The GA framework for

E(T)-DBN-ELM-BP and E(T)-

DBN-BP-ELM
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lengths. Figure 6 shows an example of the single-point

crossover in these two topology evolving models. The

random point of the crossover is shown with a blue arrow.

Step 6. Mutation

First, a chromosome is selected randomly. Then, the

mutation operator generates a new chromosome by ran-

domly selecting a gene (a layer) and reducing or increasing

its value (the number of neurons in that layer). The aim of

this operator is to avoid being trapped in local optima,

through exploration of new solutions space. Figure 7 shows

an example of the mutation operator in the two topology

evolving models. In this example, the mutation operator

reduces the number of hidden neurons in the third hidden

layer of the network from 14 to 98.

Step 7. Survivor selection

At this step, the current population’s chromosomes and

the chromosomes obtained from the crossover and the

mutation are all sorted in descending order based on their

fitness values. Then, M chromosomes with better fitness

value/rank are used to form the newpopulations as survivors.

Step 8. Stopping criteria

When the number of generations (iterations) reaches to

the predefined maximum number of generations, the

algorithm stops; otherwise, it returns to Step 4 to generate a

new generation. Figure 8 summarizes the GA framework

for obtaining an optimal or near optimal topology from the

two E(T)-DBN-ELM-BP and E(T)-DBN-BP-ELM models.

2.2.3 Topology and weights evolving of DBN: E(TW)-DBN

The third proposed model of this paper is called E(TW)-

DBN, in which GA is used to optimize network topology

and weights, simultaneously. In this model, a number of

initial population chromosomes are pre-trained by DBNs.

The GA steps for evolving of network topology and

weights in E(TW)-DBN model are described below:

Step 1. Chromosome encoding

The used chromosome in E(TW)-DBN includes two

parts: topology and weight. The number of genes in the

topology part represents the number of hidden layers and

the value of each gene signifies the number of neurons in

that layer.

Step 2. Population initialization

In the initial population, the maximum number of genes

in the topology part of a chromosome is limited to five

genes, and the value of each gene is selected randomly in

an interval according to the number of features of the input

data set. To generate the initial population, the topology is

first generated randomly. Then, based on the generated

topologies, a vector of real numbers is generated randomly

over range (0, 1), for the chromosome’s weight part. The

pre-trained DBN weights are used for weight part of K ¼
1
5
M chromosome (M is the number of initial population

chromosomes). Figure 9 illustrates a simple example of

chromosome encoding in the E(TW)-DBN model.

Step 3. Evaluation

The fitness of each chromosome is obtained through a

feed-forward pass and calculating the classification accu-

racy percentage for training data.

Step 4. Selection

Parent selection for crossover and generating two new

offsprings are carried out using the roulette wheel selection

mechanism. A random selection method is also used to

select the chromosomes for mutation.

Step 5. Crossover

Given that the chromosomes have two parts, the cross-

over operator with a predefined probability is applied to the

weight part of two parents, while with another probability

is applied to the topology part. This means that, a random

number is firstly generated over (0, 1). If this value is less

than or equal to 0.7, then crossover is applied to the weight

part of the two parents, otherwise to the topology part.

Intermediate crossover is used for weight part crossover.

In this operator, due to the unequal length of the weight

parts and dependence of the length of this part to the

topology part, a point in the parent with a shorter length is

first randomly selected. Then, the mean is taken from the

genes of the two parents up to the crossover point. The

remaining genes of the two generated offsprings will be the

same as their parents. In this way, the new weights are still

proportional to the topology part (since the number of

genes of each offspring is equal to its parent).

Figure 10 schematically shows the crossover operator

for the weight part of the two parents, through a simple

example. The randomly selected crossover point is shown

Topology part: 2

Weight part: b1 w11 w21 w31 b2 w12 w22 w32 bC w1 w2

x2

x3

x1

h1

h2

C

bias bias
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bC

w1
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Fig. 9 A simple example of chromosome encoding in E(TW)-DBN
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with blue arrow. For the topology part of the chromosomes,

the single-point crossover shown in Fig. 6 is used. By

changing the child’s chromosome length or the genes

value, which occurs when the crossover is applied to the

topology part, the weights part should also be regenerated

and updated according to the new topology. Due to this

reason, the crossover probability of the weight part is ini-

tially considered more.

Step 6. Mutation

The mutation and crossover operators with a given

probability are applied to the weight part, while with

another probability are applied to the topology part. In the

case of mutation in the weight part, for each gene a random

amount drawn from a Gaussian distribution, with mean

zero and standard deviation selected at random from {0.2,

0.5, 1, 2, 5}, is added to the current gene value (Ahmadizar

et al. 2015). Figure 11 graphically illustrates an example of

the mutation on the weight part. In this case, the topology

part of the offspring will be the same as that of its parents.

Mutation in the topology part of chromosome is applied by

random selection of a gene and increasing or decreasing its

value. This is done through increasing or decreasing a

number in range of [1, the amount of that gene] (as in

Fig. 7). In this case, the weigh part needs to be updated

according to the topology part.

Step 7. Survivor Selection

To select the survivor, the ranked-based selection

mechanism is used.

Step 8. Stopping criteria

The GA stopping criteria in the E(TW)-DBN model is to

reach to a certain number of generations. If the stopping

criteria are not met, the algorithm returns to Step 4 so as to

create the new population.

3 Experimental results

In this section, performance evaluation of the proposed

models is carried out using classification accuracy, sensi-

tivity, and specificity measures on breast cancer data sets.

The calculating of classification accuracy is shown in

Eq. (20), while the sensitivity and specificity are also cal-

culated as Eqs. (21) and (22):

Sensitivity ¼ TP

TPþ FN
� 100 ð21Þ

Specificity ¼ TN

TNþ FP
� 100 ð22Þ

In addition to the above-mentioned measures, the

receiver operating characteristic (ROC) curve (Bradley

Fig. 10 An example of crossover in weight part of two chromosomes for E(TW)-DBN

0.3 0.4 0.1 0.9 0.3 0.7 0.9 0.1 0.5 0.2 0.1

0.31 0.37 0.12 0.93 0.29 0.77 0.86 0.21 0.47 0.23 0.14

Gaussian perturbation

Fig. 11 An example of the mutation in weight part of E(TW)-DBN
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1997) and the area under the ROC curve (AUC) (Huang

and Ling 2005) are also applied for models evaluation.

The performance of the proposed algorithms (E(T)-

DBN-ELM-BP, E(T)-DBN-BP-ELM and E(TW)-DBN) is

investigated using two breast cancer data sets. For further

evaluation, the results of the proposed algorithms are

compared with the results of E(T)-DBN-BP and E(T)-DBN-

ELM models (proposed and implemented by the authors).

The E(T)-DBN-BP model optimizes the architecture for a

DBN which uses BP to fine-tuning the network (the inner

part of Fig. 4 depicts the DBN-BP training process

graphically). The network training process in E(T)-DBN-

ELM model is also shown in the inner part of Fig. 3.

3.1 Data sets

To evaluate the proposed algorithms’ performance, two

available and most popular breast cancer data sets, namely

Breast Cancer Wisconsin—Original (WBCO) and Breast

Cancer Wisconsin—Diagnostic (WDBC) on UCI machine

learning repository are used in the experiments. The main

features of these data sets are summarized in Table 2,

including the number of benign instances, the number of

malignant instances, the total number of instances, the

number of attributes, as well as the number of classes for

each data set. The total number of samples in WBCO data

set is 699. Among them, 16 samples were rejected due to

incomplete features. So, we reduced the used samples

down to 683 entries to compare our results easier with the

others.

3.2 Implementation

MATLAB R2013a software has been used to implement

the proposed models. The partition of training–testing data

in each data set is considered 80–20% for all models (Garro

et al. 2016; Pham and Sagiroglu 2000). In each run, the

training and testing data are selected among the main data

sets randomly for each neural network.

3.3 Performance evaluation of the proposed
models

This subsection evaluates the classification performance of

the three proposed evolutionary algorithms: E(T)-DBN-

ELM-BP, E(T)-DBN-BP-ELM, and E(TW)-DBN. For fur-

ther evaluation, the results of the E(T)-DBN-BP and E(T)-

DBN-ELM models implemented by the authors are also

compared with the proposed algorithms.

3.3.1 Parameters tuning

Many parameters may impact how algorithm yields

appropriate solutions. Various combinations of parameters

can lead to a variety of solutions. Therefore, in this sub-

section, the focus is on tuning the parameters of E(T)-DBN-

Table 3 Genetic algorithm parameters for evolutionary models

Parameters Models

E(TW)-DBN E(T)-DBN-ELM-BP, E(T)-DBN-BP-ELM,

E(T)-DBN-BP & E(T)-DBN-ELM

# of generations 400 100

Population size 50a

60b
40a

50b

Crossover rate 0.7 0.8

Mutation rate 0.2 0.15

# of genes Topology part: random in [1, 5]

Weight part: according to the topology

Random in [1, 5]

Value of genes Topology part: random in [0, 100]a

Random in [0, 200]b

Weight part: random in [0, 1]

Random in [0, 100]a

Random in [0, 200]b

aFor WBCO; bfor WDBC

Table 2 Properties of the datasets used in the experiments

Datasets # of benign instances # of malignant instances # of total instances # of attributes # of classes

WBCO 444 239 683 9 2

WDBC 357 212 569 30 2
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ELM-BP, E(T)-DBN-BP-ELM, E(TW)-DBN, E(T)-DBN-BP,

and E(T)-DBN-ELM models. Table 3 shows the GA

parameters used for evolutionary models. These parameters

are set through trial-and-error method.

3.3.2 Classification performance

Each proposed evolutionary model is run 20 times and the

average results are then calculated and shown in Table 4,

including the average classification accuracy, sensitivity

and specificity of the models. In this table, the topology

obtained from the best run of the algorithms is also shown

for each model.

According to the results presented in Table 4, following

observations and analysis can be extracted:

(a) The highest classification accuracy for the WBCO

data set is 99.75%, which is derived from the

proposed E(T)-DBN-ELM-BP. In the WDBC data

set, the highest accuracy is 99.12% obtained from the

proposed E(T)-DBN-BP-ELM. These good results are

due to the two steps of the DBN fine-tuning and the

use of an efficient ELM classifier.

(b) The E(TW)-DBN model has the least accuracy

(98.05%) compared to other models on the WBCO

data set, but the accuracy of this model on the WDBC

data set ranks the third (with an accuracy of 98.54%).

(c) The best possible sensitivity, 100%, has been derived

for the WBCO data set by E(T)-DBN-ELM-BP, E(T)-

DBN-BP-ELM and E(T)-DBN-ELM models. This

output is also yielded for the WDBC data set by E(T)-

DBN-ELM-BP model.

(d) In general, in both experimental data sets, classifi-

cation performance of models that use only one fine-

tuning step (i.e., E(T)-DBN-BP and E(T)-DBN-ELM)

has been lower than that of the proposed models.

(e) The proposed model E(T)-DBN-ELM-BP outper-

forms the other methods in ‘‘accuracy’’ and ‘‘sensi-

tivity’’ measures on the WBCO data set and has

yielded a deep topology of 9-48-19-1.

3.3.3 ROC curves and AUC values

The ROC curve is a graphical plot and a fundamental tool

for evaluating a diagnostic classification system. This curve

has two dimensions: true positive rate (x-axis) versus false

positive rate (y-axis). Each point on the ROC curve shows a

pair of sensitivity–specificity related to a specific threshold

of a decision. The AUC is a suitable measure for evaluating

the performance of a disease diagnostic system. The AUC

value ranges over [0, 1]. The closer this value to 1 is, the

more reliable the diagnostic system is Asadi and Shahrabi

(2016, 2017), Asadi et al. (2013), and Fotouhi et al. (2019).

Figures 12 and 13 show ROC curves and their AUC

values for WBCO and WDBC data sets, respectively.

According to these figures and the AUC value shown in each

ROC curve, one can conclude that the two proposed models

E(T)-DBN-BP-ELMand E(T)-DBN-ELM-BP, with two steps

of fine-tuning and using the ELM in one of these two steps,

can obtain the highest AUC (i.e., AUC = 1) in both data sets.

4 Discussion

In this section, at first, the classification accuracy of the

proposed methods is compared to some of the data mining

techniques since 2011 introduced in Sect. 1. Then, per-

formance analyses of the proposed models are presented.

Table 5 presents the abbreviation of the data mining

techniques existing in the WBCO classification literature,

along with its accuracy. Due to the use of decision tree

Table 4 Classification performance of topology evolving models and their optimized topology

Models Datasets

WBCO WDBC

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

Topology Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

Topology

E(T)-DBN-ELM-

BP

99.75 100 98.80 9-48-19-1 98.83 100 98.27 30-37-113-

1

E(T)-DBN-BP-

ELM

99.45 100 99.17 9-27-42-1 99.12 98.81 99.31 30-19-274-

1

E(TW)-DBN 98.05 99.46 97.29 9-18-1-1 98.54 98.55 98.61 30-12-1

E(T)-DBN-BP 98.29 99.26 97.86 9-32-21-33-

1

97.95 97.36 98.19 30-68-1

E(T)-DBN-ELM 98.91 100 98.32 9-98-1 96.49 95.29 97.19 30-277-1

Bold indicates the best result in each criterion

An evolutionary deep belief network extreme learning-based for breast cancer diagnosis 13153

123



AUC= 0.9931 AUC= 0.9981

AUC= 1AUC= 1

AUC= 0.9988

Fig. 12 ROC curves and AUC values of classifiers for WBCO
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AUC= 0.9936 AUC= 0.9953

AUC= 0.9921

AUC= 1AUC= 1

Fig. 13 ROC curves and AUC values of classifiers for WDBC
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method in two separate studies, the numbers 1 and 2 are

located next to the abbreviated name.

Figure 14 graphically shows the classification perfor-

mance results of the proposed methods and the techniques

presented in Table 5 belonging to the WBCO.

According to Fig. 14, the superiority of E(T)-DBN-

ELM-BP method with a mean accuracy of 99.75% is evi-

dent compared to other methods in classification of

WBCO. Subsequently, the DBN-NN-LM method with an

accuracy of 99.68% and the proposed E(T)-DBN-BP-ELM

technique with an accuracy of 99.45%, had the best per-

formances, respectively.

It should be noted that the providers of the DBN-NN-

LM method have tested different partitions for training–

testing data and achieved an accuracy of 99.68% at a

specific partition 54.9–45.1%, while the proposed models

in this article use a partition 80–20% for training–testing

data sets, which randomly select among the main data set at

each run.

In Table 6, the classification accuracy of different data

mining methods is shown on the WDBC data set.

Figure 15 presents the proposed methods’ performance

in graphical form compared to other methods in the cancer

detection literature that is presented in Table 6 on the

WDBC data set.

According to Fig. 15, the proposed E(T)-DBN-BP-ELM

method with a mean accuracy of 99.12% ranks first in the

classification performance, compared to other methods.

Subsequently, two other proposed methods, E(T)-DBN-

ELM-BP and E(TW)-DBN, stand on the second and third

Fig. 14 The comparison of

classification accuracy

percentages of proposed models

with other models in the

literature for WBCO

Table 5 Accuracy of data

mining methods in WBCO

classification since 2011 until

now

Methods name Year References Accuracy (%)

BP

BC-GA

RC-GA

2011 Örkcü and Bal (2011) 93.1

94

96.5

AMMLP 2011 Marcano-Cedeño et al. (2011) 99.26

DT-1 2011 Lavanya and Rani (2011) 94.84

ICA-MLP

PSO-MLP

2013 Malmir et al. (2013) 97.75

97.63

RF-ANN 2013 Koyuncu and Ceylan (2013) 98.05

DT-2 2014 Sumbaly et al. (2014) 94.56

GONN 2015 Bhardwaj and Tiwari (2015) 99.26

W-NB 2015 Karabatak (2015) 98.54

DBN-NN-LM 2016 Abdel-Zaher and Eldeib (2016) 99.68
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positions, respectively. Figures 14 and 15 suggest that

combining the DBN with ELM for the diagnosis of breast

cancer is very attractive, having two steps of the DBN fine-

tuning using an efficient ELM classifier.

In general, one can claim that the proposed methods in

this paper, especially E(T)-DBN-ELM-BP and E(T)-DBN-

BP-ELM, improve the classification performance in both

WBCO and WDBC data sets.

5 Conclusion and future work

In this paper, three models for the diagnosis of breast

cancer were developed based on DBN. A common method

for DBNs training is using an unsupervised pre-training

phase (restricted Boltzmann machine training with a layer-

wise manner using CD-1 algorithm) and a supervised fine-

tuning phase (applying back-propagation algorithm). In the

two presented models in this paper called E(T)-DBN-ELM-

BP and E(T)-DBN-BP-ELM, the extreme learning machine

(ELM) and the back-propagation (BP) algorithm were

applied in the DBN fine-tuning. In the third proposed

model, E(TW)-DBN, the genetic algorithm (GA) was

applied to the DBN fine-tuning. In addition, these models

use the GA to optimize the DBN structure in order to

answer this question: how many hidden layers and how

many neurons in each layer in DBNs should be used.

To evaluate the proposed models, extensive experiments

were carried out and models were compared in different

aspects. Classification accuracy, sensitivity, specificity, and

AUC measurements for classifiers were used to evaluate

the proposed models. In summary, the following results

were obtained concerning classification performance of the

proposed models:

(a) The first two proposed models in the breast cancer

diagnosis have achieved remarkable performance

over E(TW)-DBNs and existing approaches in the

literature, with an accuracy of 99.75% through E(T)-

DBN-ELM-BP model on WBCO data set and an

accuracy of 99.12% through E(T)-DBN-BP-ELM on

the WDBC data set.

(b) The high AUC value of the E(T)-DBN-ELM-BP and

E(T)-DBN-BP-ELM (i.e., AUC = 1), indicates a very

good diagnostic performance of these two models in

detecting breast cancer.

Considering the impressive performance of the first two

proposed models for cancer diagnosis, it can be expected

that these models also perform well in other cancer data

sets. Consequently, it is suggested that the proposed models

be used to diagnose other types of cancer data. Also, to

improve individual performance of the classifiers, using

these models in providing an ensemble learning approach

seems appropriate.

Due to the success combination of the ELM with DBN,

its combination with a different kind of deep network such

as autoencoder is suggested for future researches.
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DT-1 2011 Çınar et al. (2009) 92.97

Xue14 2014 Xue et al. (2014) 94.74

K-SVM 2014 Zheng et al. (2014) 97.38

JSDA 2015 Kong et al. (2015) 93.85

An evolutionary deep belief network extreme learning-based for breast cancer diagnosis 13157

123



Albrecht AA, Lappas G, Vinterbo SA, Wong C, Ohno-Machado L

(2002) Two applications of the LSA machine, neural information

processing, 2002. In: Proceedings of the 9th international

conference on ICONIP’02. Publishing, pp 184–189

Asadi S (2019) Evolutionary fuzzification of RIPPER for regression:

case study of stock prediction. Neurocomputing 331:121–137

Asadi S, Shahrabi J (2016) ACORI: a novel ACO algorithm for Rule

Induction. Knowl Based Syst 97:175–187

Asadi S, Shahrabi J (2017) Complexity-based parallel rule induction

for multiclass classification. Inf Sci 380:53–73

Asadi S, Hadavandi E, Mehmanpazir F, Nakhostin MM (2012)

Hybridization of evolutionary Levenberg–Marquardt neural

networks and data pre-processing for stock market prediction.

Knowl Based Syst 35:245–258

Asadi S, Shahrabi J, Abbaszadeh P, Tabanmehr S (2013) A new

hybrid artificial neural networks for rainfall–runoff process

modeling. Neurocomputing 121:470–480

Bengio Y (2009) Learning deep architectures for AI. Foundations and

trends� Mach Learn 2:1–127

Bhardwaj A, Tiwari A (2015) Breast cancer diagnosis using

genetically optimized neural network model. Expert Syst Appl

42:4611–4620

Bradley AP (1997) The use of the area under the ROC curve in the

evaluation of machine learning algorithms. Pattern Recogn

30:1145–1159

Cao L-L, Huang W-B, Sun F-C (2016) Building feature space of

extreme learning machine with sparse denoising stacked-au-

toencoder. Neurocomputing 174:60–71

Chen H-L, Yang B, Liu J, Liu D-Y (2011) A support vector machine

classifier with rough set-based feature selection for breast cancer

diagnosis. Expert Syst Appl 38:9014–9022
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