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Abstract
Human beings follow a continuous learning paradigm, i.e., they learn to solve smaller and relatively easy problems, retain
the learnt knowledge and apply that knowledge to learn and solve more complex and large-scale problems of the domain.
Currently, most machine learning and evolutionary computing systems lack this ability to reuse the previous learnt knowledge.
This paper presents a lifelong machine learning model for text classification that extracts the useful knowledge from simple
problems of a domain and reuses the learnt knowledge to learn complex problems of the domain. The proposed approach
adopts a rule-based learning classifier system, and a rich encoding scheme is used to extract and reuse building units of
knowledge. The experimental results show that the continuous learning approach outperformed the baseline classifier system.

Keywords Learning classifier systems · Lifelong learning · Code fragments · Transfer learning

1 Introduction

Lifelongmachine learning (LML) is a learning paradigm that
learns continuously like humans, and it retains the knowl-
edge gained from solving previous tasks and uses it to solve
future tasks (Chen and Liu 2016). In this process, the learn-
ing agent becomes more knowledgeable and can learn such
problems which are not possible in isolation. Humans do
not learn in isolation; instead, they learn continually and
retain the knowledge previously learned from small and
related problems which help them in future learning to solve
complex problems. Currently, most machine learning (ML)
algorithms work in isolation, train on the current problem,
build a model and solve the current problem. They do not
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retain that knowledge, and whenever a new more complex
problem is presented, they need to re-learn from the start. In
modern day, artificial intelligence applications that interact
with humans or systems in real time such as physical robots,
chat bots, and intelligent assistants also need lifelong learn-
ing capabilities.

Humans build their language, understanding and knowl-
edge throughout their life span, and they do not need to read
5000 negative product reviews and 5000 positive product
reviews to classify a new review as either negative or pos-
itive. But if they do not build up this past knowledge, they
cannot classify it manually even such number of training
examples. Natural language processing (NLP) problems are
the key target of LML because language learned from one
problem can help to learn other problems (Chen et al. 2015).
Sentences in different domains have the same structure and
phrases in sentences and bear almost the same meanings in
different domains. Therefore, the knowledge learned from
solving one NLP problem can be used to learn other prob-
lems of the same or the related domains.

LML is currently a hot research area, and it is used in dif-
ferent fields of ML. The target of LML is those systems that
learn multiple tasks sequentially from one or more domain.
Silver et al. (2013) provided a review of the previous work on
LML in supervised, unsupervised and reinforcement learn-
ing methods and advocated the use of LML techniques in all
fields of artificial intelligence. Shu et al. (2017) applied LML

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-019-03819-5&domain=pdf
http://orcid.org/0000-0002-6002-0391


12674 M. H. Arif et al.

for the supervised aspect extraction. They updated the con-
ditional random fields and used the lifelong learning pattern.
It is found that LML model of reusing the previous knowl-
edge of the aspect extractions from previous experiments
improved the results.

Sutton et al. (2007) discussed that continuous learning
should be incorporated in reinforcement learning model. A
continuous learning agent is proposed that keeps learning
during its operations throughout its life span, and it adapts
multiple different environments during learning. Continuous
learning achieved the better results than the static learning
solution. Chen and Liu (2016) discussed LML paradigm in
detail and compared it with other paradigms like transfer
learning and multitask learning.

LML can be defined as: “It is a continuous learning pro-
cess. The learner performs a sequence of N learning tasks,
{T1, T2, …, TN}, on N data sets, i.e., {D1, D2, …, DN}.
These tasks and data sets can be from the same or rel-
evant domains. Learner extract useful knowledge learned
from these N previous tasks and retain it in the knowledge
base (KB). When the learner is presented with a new task,
i.e., TN+1, it uses the past knowledge stored in KB to learn
T(N+1)th task. KB is updated after the completion of every
task, and new useful knowledge is added for future use.”
Three important points can be depicted from this definition:
(1) An LML model should follow the continuous learning
paradigm. (2) It should devise a mechanism to extract, accu-
mulate and maintain the past knowledge, and (3) It should be
capable of reusing the past knowledge in some useful way
and that past knowledge should help in learning the future
tasks. Therefore, an LML agent should be capable of learn-
ing a series of problems of the same or the similar domain,
extracts and stores useful knowledge and reuses that extracted
knowledge to the future problems. This definition does not
restrict the type of knowledge extracted from the previous
problems and how it can be reused in the future problems.

Learning classifier systems (LCS) are rule-based sys-
tems (Urbanowicz and Moore 2009) that assimilate ML
models and evolutionary computing techniques to evolve
classifier rules (Iqbal et al. 2015). These rules have two main
parts: the condition and the action, which are accompanied
by a set of parameters. An LCS agent interacts with unknown
environment and learns the problem by evolving the rule set
on the basis of the reward given by the environment. Evolu-
tionary component of LCS uses genetic algorithm’s (GA)
crossover and mutation operations to evolve the learning
component and finds a better set of rules.

Wilson (1995, 2000) proposedXCS andXCSR,which are
accuracy-based LCS models to learn binary and real-valued
classification problems, respectively. XCSR uses interval-
based conditions, and it tries to generate optimized rules.
Hassan et al. applied XCSR, for the first time, in the text
classification domain to solve social media text classification

problems (Arif et al. 2017c, 2018). XCSR showed relative
good performance in case of small data sets, but its perfor-
mance decreased with the increase in number of records in
a data set and the number of features in a record. XCSR
learns interval for every feature that is very hard in case of
sparse social media data sets. The standard XCSR system
was enhanced by introducing the concept of “don’t care”
intervals.A “don’t care” interval satisfies anyvalue of the cor-
responding feature; therefore, the resulting system XCSR#
does not need to learn interval range for all the features
and it has potential to explicitly handle the sparseness issue.
The introduction of explicit “don’t care” intervals in XCSR#
showed a great deal of improvement over XCSR. However, it
was observed from the obtained results thatwhen the problem
size becomes very large, the benefit of “don’t care” intervals
decreases. So, a new condition representationwas required to
handle very large-scale high-dimensional social media text
classification problems.

Previously, Iqbal et al. (2014) extended XCS to XCSCFC
by introducing a genetic programming tree like rich encod-
ing scheme (called code fragments) to represent the classifier
conditions, to extract and reuse knowledge in order to solve
large-scale Boolean problems. Recently, Arif et al. (2017b)
extended XCSR to XCSRCFC using code fragment-based
conditions and successfully solved high-dimensional real-
valued text classification problems from various social media
text analysis domains, i.e., sentiment analysis of tweets and
reviews (IMDB, Amazon, Yelp), and spam detection in SMS
messages and emails. This paper presents a further extension
of XCSRCFC as a LML model for text classification (Arif
et al. 2017a). Code fragments can be used as knowledge
extractor and can store useful knowledge. In the proposed
LMLmodel, the learning procedure of XCSRCFC is updated
according to the LMLmodel. The structure of code fragment
is updated, and in the new structure, either its leaf nodes can
be terminal symbols, or these can be previously learned fitter
code fragments.

In the proposed model, large problems are divided into a
bottom-up hierarchical layers of problemswhere each higher
level problem contains all the previous records and features.
Suppose the original task (i.e., the full dataset) consists of N
records and we want to decompose this task into five sub-
tasks (i.e., sub-datasets). Then, the decomposition will be
as follows. First of all, we choose five positive numbers,
n1, n2, n3, n4 and n5 such that n1 < n2 < n3 < n4 <

n5 = N . Level1 task/dataset consists of n1 records, which
are randomly selected from the original dataset of N records.
Level2 task consists of n2 records, which contains n1 records
from the level1 task and n2 − n1 records from the original
N −n1 records (i.e., the original dataset excluding the level1
records). Level3 task consists of n3 records, which contains
n2 records from the level2 task and n3 − n2 records from the
original N−n2 records (i.e., the original dataset excluding the
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level2 records). Similarly, Level4 task consists of n4 records,
which contains n3 records from the level3 task and n4 − n3
records from the original N − n3 records (i.e., the original
dataset excluding the level3 records). Finally, the level5 task
consists of n5 records that is actually the whole dataset.

Optimized rules with code fragment-based conditions
trained on the previous simple problems contain relevant
knowledge and can act as the past information stores (PIS) for
future tasks. A knowledge miner (KM) system is devised to
mine fitter rules from PIS, and these rules have fitness higher
than average fitness of the population. All distinct non-don’t
care code fragments from the fitter rules are stored as the
knowledge base (KB) for further learning. In the proposed
LML system, a knowledge-based learner (KBL) is trained
that uses fitter code fragments from KB and reuses them in
learning future high-dimensional problems.

The key difference of LML from other transfer learning
(TL) techniques is that TL-based methods are usually used
in those situations when target domain has no or very little
training data. In TL-based methods usually, a classifier is
trained on one or more source domains and then the trained
model is applied on the target domain that has very little or
no training data. The knowledge extracted from the results of
the previous learning is not used to learn new problems. TL-
based methods are usually not applied in those cases when
the target/future task has good training data. In cases when
the target problem has good training data, TL-based methods
usually give poor results than the traditional non-TL-based
learning methods. In contrast, the target of LML is those
cases when the target task has good training data, and its aim
is to improve the learning process using both the knowledge
gained during the previous learning and the training data of
the target task. The target of LML is those problems that
have a bottom-up hierarchical buildup, i.e., all the features
from the previous level simple problems exist in next level
complex problem.

The results show that training a code fragment-based
XCSR agent to solve a small problem with the small fea-
ture set is comparatively easy. Code fragments can act as the
building blocks of knowledge for further reuse because they
store knowledge independent of any specific classifier.

The proposed LML paradigm satisfies the three key char-
acteristics of LML:

1. It has a continuous learning process. It learns from small
problems and then moves toward large problems.

2. The proposed LML model has explicit knowledge reten-
tion policy. It selects the experienced and accurate rules
from the previously solved problems, and it extracts and
stores distinct code fragments from these experienced
rules.

3. These extracted fitter code fragments store the previously
learned knowledge which can be reused. The proposed

LML model introduced a new code fragment structure
that reuses the previously learned code fragments and
improves the future learning process.

The rest of this paper is organized as follows. Sec-
tion 2 describes the implementation detail of the proposed
approach. In Sect. 3, problem domains and the experimental
setup are described. Results are presented in Sect. 4, and a
comprehensive discussion is provided in Sect. 5. This study
is concluded in Sect. 6.

2 The proposedmethod

It is easy for code fragment-based systems to generate an
optimal population for small problems with a small feature
set. A novel scheme is proposed in which LML model is
used to extract useful information from the past problems
to improve learning in the future problems. A new lifelong
learning XCSRCFC system called “LL-XCSRCFC” is pro-
posed that reuses the previously learnt knowledge by solving
the small problems.

The proposed LML model tries to solve problems as
humans do, i.e., it learns small and simple problems, retains
the knowledge learnt from those problems, mines the use-
ful information from the stored knowledge and reuses the
extracted knowledge to learn future problems. Figure 1
shows the main components of the proposed LML model.

1. Task Manager (TM) In the proposed method, the main
task of classifying a large text data set is divided into a
bottom-up hierarchy of tasks. Large data sets are sub-
divided into a bottom-up hierarchy of data sets; for
example, the data set at each level contains all records
from the previous level plus some additional records.
Therefore, initial levels contain a small number of records
with a small number of features. At higher levels, the
number of features increaseswith the increase in the num-
ber of records. The tasks are presented sequentially to the
learning agent by the task manager.

2. Past Information Store (PIS) A population of optimal
general rules is generated by XCSR-based systems as a
solution to a given problem. The rule set generated by
LL-XCSRCFC, generated for small problems, can act as
PIS for the next level problems. PIS contains both expe-
rienced and non-experienced rules. Experienced rules
have higher fitness value than the non-experienced rules.
Whenever a new task is presented to the LL-XCSRCFC
system by the task manager, then the system generates a
new rule set as a solution to the presented task and PIS
is updated to incorporate a new rule set. Therefore, PIS
is updated after each learning cycle.
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Fig. 1 Proposed lifelong
machine learning model

3. Knowledge Miner (KM) PIS stores all the rules which
are created during the learning of the previous task. PIS
contains both accurate and non-accurate rules generated
during the past learning. Only accurate and experienced
rules best provides the solution and can be used for further
learning. An important aspect of lifelong learning is to
identify the useful information that can be extracted from
past tasks and reused for future learning. A knowledge
miner (KM) agent is used to extract useful knowledge
from PIS. KM selects all experienced and accurate rules
in the final population having fitness greater than aver-
age fitness. These rules are not directly used as part of
the solution to next higher level problems. KM extracts
distinct non-don’t care code fragments from fitter rules
for further reuse.

4. Knowledge Base (KB) Code fragments generated at any
level store useful knowledge and can act as building
blocks of knowledge for further reuse because they store
knowledge independent of any specific classifier. KM
extracts all distinct non-don’t care code fragments from
fitter rules of PIS and store them in knowledge base KB.

5. Knowledge-Based Learner (KBL) LL-XCSRCFC uses
a knowledge-based learning agent, which reuses fitter
code fragments from the previous KBs to solve high-
dimensional problems at the higher level layers. The
system can reuse any number of code fragments not just
from one previous level KB, but from all the previous
level KBs. These code fragments are used as terminal
symbols in the next level code fragments. LL-XCSRCFC
classifier is trained on the smaller problems, and the
knowledge extracted from those problems is reused to
train a classifier on the large problems. LL-XCSRCFC
improves the learning process by using the target task
data along with the knowledge extracted from the previ-
ous learning.
A code fragment in a higher level problem uses code

fragments from the previousKBs as leaf nodeswith prob-
ability Pkb. In these experiments, Pkb is set to 0.5. In new
structure of code fragment, either each leaf node refers
to a feature in the input state with an attached random
interval, or it refers to a code fragment from a previous
KB. In amultiple level problem, a leaf node can be a code
fragment from any previous level KB. It may be possible
that a code fragment can have only one leaf node which
can refer to a feature or it can be a code fragment from
KB. Therefore, each terminal symbol of each non-don’t
care code fragments is set either according to the corre-
sponding feature’s value from the observed input state or
if the leaf node is a previous code fragment, then it is
set according to the output of that code fragment. This is
further explained in the following subsection.

2.1 Structure and evaluation process of LML code
fragment

In LL-XCSRCFC, code fragment structure is changed and it
may have one or more previous level code fragments as its
leaf node. Therefore, code fragment evaluationmechanism is
changed in this method. When a code fragment is evaluated,
its terminal values are loaded and if a terminal symbol refers
to a code fragment from the previous level, it is evaluated
first and its result is loaded as the terminal value. Therefore,
in this approach code fragments are evaluated recursively.
Figure 2 shows structure of a sample code fragment, using a
previous level code fragment as its leaf node.

It is a depth 2 code fragment having four leaf nodes. One
leaf node refers to a previous level code fragment, i.e., 13th
code fragment from K B2, and other leaf nodes are terminal
symbols that refer to the corresponding features of input,
i.e., T3, T6 and T7. A random interval of the form [li , ui ]
is attached with each terminal symbol. During the recursive
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Fig. 2 A sample code fragment using a previous level code fragment
as a leaf

evaluation of code fragments, firstly all the leaf nodes are
checked and the terminal values are set either 0 or 1. If the leaf
node refers to a terminal symbol with an attached interval,
then the value of the corresponding input feature is matched
against the interval range. If its value lies in the interval range,
the terminal value is set to 1 else it is set to 0. If the leaf node
refers to a previous level code fragment, it is evaluated first
and its evaluation value is used as the terminal symbol. The
code fragment in Fig. 2 has 4 leaves, but its value depends
on only 2 nodes. One branch of tree always evaluates to 1 as
the interval attached with D7 has maximum span. Therefore,
this code fragment evaluates to 1, either if the previous level
code fragment KB2_13 evaluates to 1 or the value of input
feature 3 lies in the range [0, 0.44].

Algorithm 1 describes the code fragment evaluation pro-
cedure which is called recursively. Here, num is equal to the
number of leaves in the code fragment. Its maximum value
can be 4 as the largest code fragment with depth 2 can have
maximum 4 leaves.

Algorithm 1: Evaluate_Code_Fragment(c f , T )
Data: a code fragment c f , and the current input state T
Result: the evaluated Boolean value of c f against the state T

1 num ← the number of leaves in c f
2 for i = 1 to num do
3 if lea fi is an extracted code fragment then
4 terminalVali ← Evaluate_Code_Fragment(lea fi , T )
5 else
6 if the feature value Tj falls in the lea fi ’s interval D j then
7 terminalVali ← 1
8 else
9 terminalVali ← 0

10 end
11 end
12 end
13 evaluatedVal ← evaluate c f
14 return evaluatedVal

Table 1 A sample population of LML classifiers

Data set Code fragment

Name Expression

Level 1 KB1_0 (D1[0.1, 0.5] OR D2[0.1, 0.8]) AND
(D3[0, 0.8] AND D6[0.2, 0.5])

KB1_1 D5[0, 0.7]

… …

Level 2 KB2_0 (D0[0.13, 0.39] AND (D4[0, 0.55])) OR
KB1_7

KB2_1 (D4[0.33, 0.77] OR KB1_4) AND
(KB1_34 OR D5[0.2, 0.84])

… …

Level 3 KB3_0 D4[0, 0.1] OR KB1_18

KB3_1 KB2_31 NOR KB1_10

… …

LL-XCSRCFC is applied on the first level small data
set, and the optimal general solution is provided by a set
of rules. Then, the code fragments from fitter rules are
extracted and reused at next level. Table 1 shows some sam-
ple code fragments from KBs of a three-level problem. The
code fragments from level 1, 2 and 3 KB are named as
KB1i , KB2i and KB3i , respectively. Each level can contain
code fragments from all the previous levels. Small prob-
lems contain fewer features, and LL-XCSRCFC can learn
these problems with a small number of rules, and each rule
contains a small number of code fragments. To handle the
large high-dimensional problems, the condition length of
rule, i.e., number of code fragments used in a rule, can be
increased.

The proposed LL-XCSRCFC approach improves code
fragment-based XCSR system described in XCSRCFC ref-
erence in the following aspects: rule matching operation, the
covering operation and mutation operation.

2.2 Conditionmatching operation

Each new example is matched against the current population
[P], and all matching classifiers are selected in the match set
[M]. A classifiers condition is matched against the current
input if all the code fragments in the classifier’s condition
output 1 against the current input. The condition matching
procedure is updated in LL-XCSRCFC because the structure
of code fragment is updated and a recursive evaluation proce-
dure is introduced. A classifier condition in LL-XCSRCFC
can contain three types of code fragments:

1. It can contains “don’t care” code fragments with prob-
ability Pdon’tCare. Since “don’t care” code fragments
always evaluate to 1, they are given a special ID. Dur-
ing condition matching process, if ID of code fragment
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is matched with “don’t care“ code fragment’s ID, then it
is not further evaluated to improve speed.

2. It is a simple non-don’t care code fragment, and all its
leaves correspond to features in the current input state.
Its terminal symbols are loaded according to the corre-
sponding feature’s value, i.e., if the feature’s value lies in
the corresponding interval range, it is set to 1 else set to
0.

3. It is a recursive non-don’t care code fragment, and it con-
tains one ormore leaf nodes that correspond to a previous
level code fragment. First, that code fragment is evalu-
ated and its output is used as the terminal value in this
code fragment. The previous level code fragment can be
either a simple non-don’t care code fragment or a recur-
sive code fragment, and it is evaluated accordingly.

The condition matching process of LL-XCSRCFC is
shown in Algorithm 2. Here, cond denotes the classifier con-
dition and n is the length of the classifier condition.

Algorithm 2: Does_Match_Operation
Data: a classifier condition condition, and the current input

state T
Result: returns true if the condition condition satisfies the state

T
1 n ← the length of condition
2 isMatched ← true
3 for i = 1 to n do
4 c f ← the code fragment at condition[i]
5 if c f �= “don’t care“ code fragment then
6 evaluatedVal ← Evaluate_Code_Fragment(c f , T )
7 if evaluatedVal �= 1 then
8 isMatched ← f alse
9 break

10 end
11 end
12 end
13 return isMatched

2.3 Covering operation

When any action is missing in [M], the covering process
is applied. Covering operation is also updated in LL-
XCSRCFC. Newly created classifier condition can contain
“don’t care“ code fragments with probability Pdon’tCare. Each
non-don’t care code fragment can have the previous level
code fragments as its leaf nodes with probability Pkb. A
code fragment can have one or more previous level code
fragments. These previous level code fragments may further
contain the previous level code fragments as their leaf nodes.
This is a recursive process; therefore, a classifier condition
can contain code fragment from all the previous level KBs.
Every non-don’t care code fragment is evaluated recursively

against the current input using Algorithm 1 and it must out-
put 1. If any code fragment doesn’t evaluate to 1, then it
is discarded and a new random code fragment is created.
Algorithm 3 describes the updated covering operation in LL-
XCSRCFC. The action value of the new rule is equal to the
missing action in [M].

Algorithm 3: Covering_Operation
Data: state T , action act , don’t care probability Pdon′tCare
Result: a new classifier cl f r matching the current state T and

having the action act .
1 initialize classifier cl f r
2 n ← the length of classifier condition cl f r .condition
3 for i = 1 to n do
4 if random[0, 1) < Pdon′tCare then
5 cl f r .condition[i] ← the don’t care code fragment
6 else
7 initialize evaluatedVal ← 0
8 while evaluatedVal �= 1 do
9 c f ← a randomly created code fragment

10 evaluatedVal ← Evaluate_Code_Fragment(c f , T )
11 end
12 cl f r .condition[i] ← c f
13 end
14 end
15 cl f r .action ← act
16 return cl f r

2.4 Mutation operation

The mutation process is one of the two important genetic
operations (i.e., mutation and crossover) performed in any
evolutionary technique including the proposed approach in
this paper. The main purpose of the mutation operation is
to maintain the genetic diversity in the population during the
evolutionary learning process.Mutation operation is updated
in LL-XCSRCFC to incorporate recursive code fragments.
In new mutation operation, as shown in Algorithm 4, “don’t
care” code fragments are replaced with randomly created
non-don’t care code fragments and vice versa. These newly
created non-don’t code fragments may contain other non-
don’t care code fragments as their leaf nodes with probability
Pkb. On the other hand, all non-don’t code fragments of the
selected classifier are replaced with “don’t care” code frag-
ments. Newly generated classifier must satisfy the current
input state T , and therefore, each code fragment should out-
put 1; else it is discarded and a new random code fragment is
created. Then, the action of offsprings is also mutated with
probability μ.

123



Extracting and reusing blocks of knowledge in learning classifier systems for text… 12679

Algorithm 4: Mutation_Operation
Data: current input state T , a newly created classifier cl f r ,

mutation probability μ

Result: the classifier cl f r after mutation
1 n ← the length of classifier condition cl f r .condition
2 for i = 1 to n do
3 if random[0, 1) < μ then
4 if cl f r .condition[i] = the don’t care code fragment then
5 initialize value evaluatedVal to 0
6 while evaluatedVal �= 1 do
7 c f ← a randomly created code fragment
8 evaluatedVal ← Evaluate_Code_Fragment(c f ,

T )

9 end
10 cl f r .condition[i] ← c f

11 else
12 cl f r .condition[i] ← the don’t care code fragment
13 end
14 end
15 end
16 if random[0, 1) < μ then
17 act ← cl f r .action
18 repeat
19 cl f r .action ← a random action
20 until cl f r .action = act

21 end
22 return cl f r

Table 2 IMDB movie reviews bottom-up hierarchical division

Data Set Positive Negative Total Number of Features

Level 1 500 500 1000 4895

Level 2 5000 5000 10,000 9573

Level 3 12,500 12,500 25,000 12,704

3 Experiment design

3.1 Problem domains

Social media text analysis data sets are used for these exper-
iments because they can be subdivided into a bottom-up
hierarchy of tasks. For these experiments, two large data sets
are evaluated using LL-XCSRCFC, i.e., IMDB review (Maas
et al. 2011) and Enron email data set 1. These data sets are
subdivided into a bottom-up hierarchical form. In this hier-
archical subdivision, the feature set at each layer includes all
the features from the previous level.

Table 2 shows division of IMDB movie review data set.
It has total 25,000 records, and it is divided into 3 levels.
Level 1 contains only 1000 records: 500 positive and 500
negative records, but out of these 1000 records 4895 distinct
features are extracted. Then, in level 2 9000 next records are

1 https://www.cs.cmu.edu/~./enron/.

Table 3 Email bottom-up hierarchical division

Data Set Ham Spam Total Number of Features

Level 1 100 100 200 3684

Level 2 250 250 500 5345

Level 3 500 500 1000 6735

Level 4 1000 1000 2000 7981

Level 5 5000 5000 10,000 9946

Level 6 17,117 16,539 33,656 10,645

added to level 1, so it makes a total of 10,000 records with
5000 positive and 5000 negative reviews with 9573 features.
The final level contains all 25,000 reviews containing 12,500
positive and 12,500 negative reviews with 12,704 features.

Table 3 shows division of Enron email data set. It has total
33,656 records, and it is divided into 6 levels. Level 1 con-
tains only 200 records: 100 ham and 100 spam records, and
3684 distinct features are extracted. Then, in level 2, 300 next
records are added to level 1, so it makes a total of 500 records
with 250 ham and 250 spam emails with 5345 features. The
next level contains 1000, 2000, 10,000 and 33,656 records
with 3684, 5345, 6735, 7981, 9946 and 10,645 number of
features, respectively. This data set is divided into a deep
hierarchy for testing purpose.

3.2 Experimental setup

The commonlyusedparameter values in the literature, as sug-
gested by Butz andWilson (2002), are used: α = 0.1 (fitness
fall-off rate), ν = 5 (fitness exponent), θGA = 25 (threshold
for GA application in the action set), β = 0.2 (learning rate),
ε0 = 10 (prediction error threshold), μ = 0.04 (mutation
probability), χ = 0.8 (probability of two-point crossover),
P# = 0.33, θdel = 20 (threshold for classifier deletion),
δ = 0.1 (mean fitness for deletion), θsub = 20 (threshold for
subsumption), FI = 0.01 (initial fitness), εI = 0.0 (initial
prediction error), fitnessReduction = 0.1 and the selection
method is tournament with the size ratio 0.4. GA subsump-
tion is activated, and the action set subsumption is not used.
The value of P# is set to 0.33 for don’t care code fragments.
For these experiments, Pkb is set to 0.5. The condition length
and the population size (N ) are gradually increased at each
level in both experiments.

For the IMDB reviews data set, the value of N is set
to 5000, 7000 and 10,000 for level 1, level 2 and level 3,
respectively. The condition length, i.e., the number of code
fragments in classifier’s condition, is set to 200, 300 and
500 for level 1, 2 and 3, respectively. Similarly, the num-
ber of training examples is also increased at each level, i.e.,
150, 000, 200, 000 and 300, 000 training examples are used
for level 1, level 2 and level 3, respectively.
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For email data set, the value of N is set to 3000 for level
1, 5000 for level 2, 6000 for level 3, 7000 for level 4, 8000
for level 5 and 10, 000 for level 6. The condition length is
set to 200, 250, 300, 350, 400 and 500 for levels 1, 2, 3, 4, 5
and 6, respectively. For email data set, all the levels are tested
with the same number of training examples, i.e., 125, 000, to
understand the difference in learning.

The classification accuracy of the learning process is cal-
culated for evaluation and compared with XCSRCFC. The
results are calculatedby applyingXCSRCFCdirectly on each
level and compared with LL-XCSRCFC which reused the
knowledge retained from the previous tasks.

4 Results

The behavior of lifelong reinforcement learning model in
social media text classification domain was studied, and
the change in learning pattern was analyzed. The results
of LL-XCSRCFC were compared with XCSRCFC at each
level. The results showed the supremacy of lifelong rein-
forcement learning paradigm over standard reinforcement
learning model.

The performance of XCSRCFC and LL-XCSRCFC on
different hierarchical levels on email data set was compared
as shown in Figures 3, 4, 5, 6 and 7. The email data set
was divided into 6 levels, and LL-XCSRCFC showed its
supremacy at all levels. At level 2, there were only 500
examples and the performance of both XCSRCFC and LL-
XCSRCFC was very good, but LL-XCSRCFC learned very
fast as shown in Fig. 3. At level 3, LL-XCSRCFC used code
fragments stored in K B2 and K B1. Similarly, at each next
level code fragments from all the previous levels stored in the
respective knowledge base were used in learning a new task.
The complete data set was analyzed in level 6, where XCSR-
CFC gave 86% accuracy, while LL-XCSRCFC reached up
to 90% accuracy as shown in Fig. 7. It showed that lifelong
learning model improved the learning process and reusing
previously extracted knowledge gave better results.
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Fig. 3 Spam detection in email at level 2
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Fig. 4 Spam detection in email at level 3
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Fig. 5 Spam detection in email at level 4
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Fig. 6 Spam detection in email at level 5
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Fig. 7 Spam detection in email at level 6

The performance of XCSRCFC and LL-XCSRCFC on
IMDB movie reviews data sets at level 2 and level 3 is
shown in Fig. 8. The performance of LL-XCSRCFC showed
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Fig. 8 Sentiment analysis of IMDB reviews at a level 2, and b level 3

a clear improvement on level 2 with 10,000 records and
it reused the knowledge learned from level 1 problems as
shown in Fig. 8a. The maximum performance of XCSRCFC
reached 83%, while LL-XCSRCFC achieved 90% classifi-
cation accuracy. While on level 3 the performance of both
systems went down, but the performance of LL-XCSRCFC
was still better than XCSRCFC. The maximum performance
of XCSRCFC reached up to 78%, while the maximum per-
formance of LL-XCSRCFCwas reached to 82%. The results
showed that lifelong reinforcement learningmodel improved
the learning paradigm, and it showed statistically significant
improvement over stand-alone learning.

5 Discussion

In XCSR, there is a direct linkage between a specific input
feature and the corresponding interval in the classifier con-
dition. Therefore, XCSR has to learn a specific interval for
every input feature. In the case of social media text data sets
which are very sparse and very high dimensional, this direct
linkage results in the creation of very specific rules. However,
in code fragment-based XCSRCFC system there is no such
direct linkage between a specific code fragment in classifier
condition and a specific feature in the input state. There-
fore, due to this disassociation, condition matching process

becomes more flexible and it produces optimal classifiers as
they can be generated in multiple ways.

The classifier condition length is not fixed as in standard
XCSRwhich has a specific interval for every input feature. In
the case ofXCSRCFC, condition length can be different from
the number of input features. This gives additional flexibility
to XCSRCFC system, and system can decide that how many
non-don’t care and “don’t care” code fragments should be
used which increases the chances to produce optimal rules.
XCSRCFC takes longer training time than XCSR due to a
general rule set. Training time can be managed by reducing
the size of classifier condition.

Code fragments store useful knowledge, and they can act
as building units of knowledge that can retain the learnt
knowledge which can be reused. LML model is best suited
to those tasks that can be subdivided into a bottom-up hier-
archy of tasks. Experiments show that a social media text
classification task can be divided into a sequence of tasks
that contain a bottom-up hierarchical feature set.

In the proposed LL-XCSRCFC system, the population of
the rules evolved by the system at any problem level stores
important information that can be reused. A KM system
is devised in which distinct non-don’t care code fragments
from fitter rules are extracted and reused by the KBL to
solve higher level problems in the hierarchy. It shows that
reinforcement learning systems learn small problems easily
and code fragments retain the knowledge learned during the
procedure. Experimental results show the supremacy of LL-
XCSRCFC over simple XCSRCFC.

Although new rules and new code fragments are added
to the system using mutation operation, in LL-XCSRCFC,
GA operations of mutation and crossover are not performed
at code fragment level. The performance and scalability of
LL-XCSRCFC may improve if code fragments are evolved
in the training process.

The main strength of the proposed approach is to extract
knowledge, in the formof code fragments, in learning smaller
tasks, which can be reused to learn the more complex tasks
in the domain. However, this approach is best suited to those
tasks that can be subdivided into a bottom-up hierarchy of
sub-tasks. Further, the proposed systemmay hit a limit on the
number of hierarchical problem levels because the depth of
nested code fragments increases with every next level, which
results in an increased search space and eventually demands
more computational time.

6 Conclusion and future work

In this paper, a LML model for text classification is pro-
posed. It reuses the stored knowledge extracted from the
previous problems for the domain to solve high-dimensional
text classification problems. Text classification problems can
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be divided into a bottom-up hierarchy of tasks, and the rules
learned at each level can act as PIS for the next levels. Code
fragments extracted from the experienced rules can act as
building blocks of knowledge and can be reused to learn
higher level problems. These code fragments act as knowl-
edge base KB for higher level problems. Each level can reuse
the code fragments from all the previous levels. Results show
the supremacy of lifelong reinforcement learning paradigm
over standard reinforcement learning paradigm.

In the current work, code fragments are matched syntacti-
cally. but as a result, subsumption deletion process is almost
impossible. In future, a mechanism needs to be designed to
compare code fragments semantically which will enable the
subsumption deletion process in its true sense and may result
in reducing the size of the final population.

In the current implementation of LL-XCSRCFC, static
code fragments are used as KB to create higher level code
fragments. These code fragments are used as leaf nodes in
higher level code fragments. This hierarchical approach may
result in a limit on the number of hierarchical problem levels.
Some other approaches may be needed to find better reuse
of code fragments at the higher level.

The developed models are tested on sentiment analysis
and spam detection data sets. A further investigation in other
text classification problemswith different feature vectors can
be conducted in future. The current systems are developed
and tested for two class problems, and it should be further
investigated and extended for multi-class problems.
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