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Abstract
The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to
the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot
fuzzy numbers are generalized for arbitrary n-knot (n ≥ 2) piecewise linear fuzzy numbers. Some results on the existence
and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under
approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer
implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and
algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so
desired in real-world problems.

Keywords Approximation of fuzzy numbers · Calculations on fuzzy numbers · Characteristics of fuzzy numbers ·
Fuzzy number · Piecewise linear approximation

1 Introduction

A family of fuzzy numbers constitutes an important sub-
class of fuzzy sets having countless applications in all cases
where imprecise real values aremodeled by their fuzzy coun-
terparts. To avoid problems in processing and calculations
on fuzzy numbers described by complicated membership
functions the suitable approximations are commonly applied.
In particular, the interval (see Chanas 2001; Grzegorzewski
2002, 2012), triangular (see Abbasbandy et al. 2010; Ban
2011; Ban and Coroianu 2015a, 2016; Yeh 2017) or trape-
zoidal approximation (see Abbasbandy and Amirfakhrian
2006; Abbasbandy and Asady 2004; Abbasbandy and Haj-
jari 2009b; Ban 2008, 2009a, b; Ban et al. 2011a, b; Ban
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and Coroianu 2011, 2012, 2014; Coroianu 2011, 2012;
Grzegorzewski 2008a, b, 2010; Grzegorzewski and Mrówka
2005, 2007; Grzegorzewski and Pasternak-Winiarska 2009,
2014; Yeh 2007, 2008a, b) is very popular, mainly because
of simplicity of the output representation (by no more than
four points).More recently (see Ban et al. 2016; Yeh and Chu
2011), the studies were extended by employing approxima-
tions by L-R fuzzy numbers. Fuzzy number approximation
via shadowed sets was discussed in Grzegorzewski (2013).
For the review of the fuzzy numbers approximation methods
and their applications, we refer the reader to the monograph
Ban et al. (2015).

One of the reasons that the trapezoidal fuzzy numbers
are so popular in applications is that each such fuzzy num-
ber is represented completely by four real numbers only. Of
course, the representation simplicity is a strong advantage
but one may consider whether the shape reduction going so
far is not too impoverish and restrictive in some situations.
Therefore, the problem of the piecewise linear approxima-
tion of fuzzy numbers by the so-called 1-knot fuzzy numbers
was considered in Coroianu et al. (2013). Each such 1-knot
fuzzy number is completely characterized by six points on
the real line. This way we get fuzzy numbers which are still
simple enough, but simultaneously, having more “degrees of
freedom”, we may obtain approximations that are more flex-
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ible to preserve some important properties of the input fuzzy
numbers.

In this paper, a generalization of the results presented in
Coroianu et al. (2013) is given. Now, instead of six points
on the real line and piecewise linear sides each consisting
of two segments that characterize 1-knot fuzzy numbers, we
consider n-knot fuzzy numbers (where n ≥ 2) which enables
to quantify the uncertainty at n intermediate levels between 0
and 1. Such fuzzy numbers were already introduced in paper
Báez-Sánchez et al. (2012) and were called polygonal fuzzy
numbers. In thisway,weobtain a subfamily of fuzzy numbers
with piecewise linearmembership functions, where each side
consists of n + 1 segments. Hence, the output of the approx-
imation is still simple but more flexible for reconstructing
a fuzzy input than obtained using other methods discussed
above. Moreover, it turns out that basic characteristics of the
approximations converge to corresponding characteristics of
the input fuzzy numbers. When comparing n-knot approxi-
mation with the 1-knot, discussed in Coroianu et al. (2013),
its natural disadvantage is the longer processing time caused
by more knots but its obvious advantage is better accuracy.

It should be stressed that the n-knot fuzzy number is the
most natural and desired fuzzy structure for the computer
representation which is by definition discrete, even if the
original object it represents is a continuous one. Actually,
a typical way a fuzzy object is stored in a database is a set
of its α-cuts. Here a natural question arises about the ade-
quate choice of those α-cuts, even for a fixed set of α-levels.
The method of the nearest piecewise linear approximation
of fuzzy numbers proposed in this paper enables to avoid
unjustified subjectivity and to choose the required α-cuts in
an objective way based on the nearness criteria crucial to any
reasonable approximation.

The paper is organized as follows. In Sect. 2, we recall
basic terminology connected with fuzzy numbers and define
the α -piecewise linear n-knot fuzzy numbers. In Sect. 3,
we introduce some auxiliary results and present a convenient
reparametrization of piecewise linear fuzzy numbers useful
for solving the approximation problem. Then in Sect. 4, we
discuss briefly the existence and properties of the nearest
piecewise linear fuzzy number for the Euclidean distance
and a fixed knot setting.

Next section, i.e., Sect. 5, contains a broad study on the
convergence results concerning the approximation operator.
In particular, we consider some special cases, like the so-
called naïve approximator (i.e., an n-knot piecewise linear
fuzzy number that interpolates the sides of a fuzzy number
at the knots) or the approximator with equidistant knots. We
prove there some theorems on the rate of convergence but
we also examine the stability of basic characteristics like the
expected interval, expected value, value of fuzzy number and
its ambiguity.

Section 6 is both theoretical and strongly user-oriented
as well. We give there not only practical approximation
algorithms and illustrative examples but we also provide
a simulation study on the approximation accuracy of the
computer calculations on fuzzy numbers and stability of
some fuzzy number characteristics (for the practical imple-
mentation of the presented algorithms we refer the reader
to FuzzyNumbers package for R by Gagolewski 2015).
Therefore, Sect. 6 appears in some sense as the core of the
paper by linking theory with applications as the latter ones
are so desired in real-world problems.

Finally, Sect. 7 concludes the paper. Some open problems
and directions for the further research are also sketched there.

2 Piecewise linear fuzzy numbers

Fuzzy numbers are particular cases of convex fuzzy sets on
the real line. The membership function of a fuzzy number A
is given by

A(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if x < a1,
lA(x) if a1 ≤ x < a2,
1 if a2 ≤ x ≤ a3,
rA(x) if a3 < x ≤ a4,
0 if x > a4,

(1)

where a1, a2, a3, a4 ∈ R, lA : [a1, a2] −→ [0, 1] is a
nondecreasing upper semicontinuous function, lA(a1) = 0,
lA(a2) = 1, called the left side of the fuzzy number, and
rA : [a3, a4] −→ [0, 1] is a nonincreasing upper semicon-
tinuous function, rA(a3) = 1, rA(a4) = 0, called the right
side of the fuzzy number A. The α-cut of A, α ∈ (0, 1], is a
crisp set defined as

Aα = {x ∈ R : A(x) ≥ α}.

The case of the 0-cut is defined in slightly different way, and
it actually coincides with the support of the fuzzy number.
More exactly we have

supp(A) = A0 = {x ∈ R : A(x) > 0}.

From the convexity property, it easily results that every α-cut
of a fuzzy number is a compact interval

Aα = [AL(α), AU (α)],

where AL(α) = inf{x ∈ R : A(x) ≥ α} and AU (α) =
sup{x ∈ R : A(x) ≥ α}.

The 1-cut of A is also called the coreof A and the following
notation is commonly used

A1 = core(A) = {x ∈ R : A(x) = 1}.
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When core(A) is reduced to a single element, then A is
called a unimodal fuzzy number [in some works like the
book Hanss (2005), the authors reduce the term fuzzy num-
bers to unimodal fuzzy numbers only and call multimodal
fuzzy numbers as fuzzy intervals]. Further on we denote by
F(R) the set of all fuzzy numbers.

However, fuzzy numbers with simple membership func-
tions are often preferred in practice. For example, triangular
or trapezoidal fuzzy numbers are most often used to rank
fuzzy numbers (see, e.g., Abbasbandy and Hajjari 2009a;
Ban and Coroianu 2015b; Facchinetti and Ricci 2004). Then,
the same classes or even more generally the well-known
class of L-R fuzzy numbers are used in fuzzy arithmetic
(see, e.g., Carlsson and Fullér 2011; Hanss 2005; Hong and
Hwang 1997; Kolesárová 1995). We can also mention here
the Bodjanova (2005) fuzzy numbers used in statistical prob-
lems or in multicriteria decision making (see Ban and Ban
2012). Finally, we mention the recently introduced so-called
parametric fuzzy numbers also known as semi-trapezoidal
fuzzy numbers (see Nasibov and Peker 2008; Yeh 2009,
2011). Apart from the aforementioned applications, such
fuzzy numbers are very suitable in approximation as we
already discussed this in Introduction. Another subclass of
F(R), very useful and convenient especially in computer pro-
cessing, may be defined by considering fuzzy numbers with
piecewise linear sides. We consider a particular type of such
fuzzy numbers introduced in Báez-Sánchez et al. (2012) and
being referred there as polygonal fuzzy numbers. Consider
the following definition.

Definition 1 (see Definition 5 and Example 6 in Báez-
Sánchez et al. 2012) Fix n ∈ N0, and letAn = {(α0, α1, . . . ,

αn+1) ∈ [0, 1]n+2 : 0 = α0 < α1 < · · · < αn < αn+1 =
1)}, and Sn = {(s1, . . . , s2n+4) ∈ R

2n+4 : s1 ≤ · · · ≤
s2n+4}. Given α ∈ An and s ∈ Sn , an α-piecewise linear n-
knot fuzzy number (also known as polygonal fuzzy number
according to Báez-Sánchez et al. 2012) S(α, s) is defined by:

S(α, s)L(β) = si+1 + (si+2 − si+1)

β − αi

αi+1 − αi
, (2)

S(α, s)U (β) = s2n+4−i + (s2n+3−i − s2n+4−i )

β − αi

αi+1 − αi
, (3)

for some i ∈ {0, . . . , n} such that β ∈ [αi , αi+1
]
.

Please note that by the connection between the functions
lS(α,s), rS(α,s) and S(α, s)L , S(α, s)U , the membership func-
tion of S(α, s) is also piecewise linear in the case when s is
strictly monotone (as an example see Fig. 1).

Let Fπn(α)(R) denote the set of all α-piecewise linear n-
knot fuzzy numbers (for fixed n and α). It is worth noting

Fig. 1 Plot of an exemplary 3-knot piecewise linear
fuzzy number S(α, s), with α = (0.3, 0.5, 0.7) and s =
(1, 1.5, 2, 2.4, 2.5, 4, 5, 5.5, 6.5, 7)

that the class introduced in Definition 1 generalizes well-
known subfamilies of fuzzy numbers. Actually, for n = 0
and s1 = s4 we get “crisp” real numbers, for n = 0 and
s1 = s2, s3 = s4 we obtain “crisp” real intervals; if n = 0
and s2 = s3, we get triangular fuzzy numbers, assuming only
n = 0 we obtain trapezoidal fuzzy numbers, while for n = 1
we receive 1-knot piecewise linear fuzzy numbers, discussed
in Coroianu et al. (2013).

Further on we assume that two fuzzy numbers A and B
are equal (and denote it as A = B) if AL(β) = BL(β) and
AU (β) = BU (β) almost everywhere, β ∈ [0, 1].

Let A, B ∈ F (R), and λ ∈ R. We define the sum A + B
and the scalar multiplication λ · A (see, e.g., Diamond and
Kloeden 1994, p. 40) for every β ∈ [0, 1] as:

(A + B)β = Aβ + Bβ

= [AL (β) + BL (β) , AU (β) + BU (β)]

and

(λ · A)β = λAβ =
{
[λAL (β) , λAU (β)] if λ ≥ 0,
[λAU (β) , λAL (β)] if λ < 0.

In the case of α-piecewise linear n-knot fuzzy numbers
S′ = S(α, s′) and S′′ = S(α, s′′), we obtain

S′ + S′′ = S(α, s′ + s′′).

Moreover, we have

λS =
{
S(α, λs) if λ ≥ 0,
S(α, λ(s2n+4, s2n+3, . . . , s1)) if λ < 0.

Thus, F
πn(α)(R) is closed under these two extension

principle-based arithmetic operations.
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3 Some auxiliary results

Many papers show that the most suitable and commonly
usedmetric for fuzzy numbers approximation is an extension
of the Euclidean distance d defined by (see Grzegorzewski
1998)

d2(A, B) =
∫ 1

0
(AL(β) − BL(β))2dβ

+
∫ 1

0
(AU (β) − BU (β))2dβ. (4)

Let L2[0, 1] denote the space of square integrable func-
tions on [0, 1]. It is well known (cf. Yeh 2011) that we
can embed the space (F(R), d,+, ·) into the Hilbert space(
L2[0, 1] × L2[0, 1], d̃,⊕,�), such that for f = ( f1, f2),
g = (g1, g2) ∈ L2[0, 1] × L2[0, 1] we have

d̃2(f, g) =
∫ 1

0

(
f1(α) − g1(α)

)2 dα

+
∫ 1

0

(
f2(α) − g2(α)

)2 dα, (5)

and

A ⊕ B = A + B,

λ � A = λ · A

for any A, B ∈ F(R) and λ ∈ [0,∞), as (AL , AU ),
(BL , BU ) ∈ L2[0, 1] × L2[0, 1] (for the proof see, e.g., Yeh
2011). Because there is no risk of confusion, in all what
follows, we use + and · to define the addition and scalar
multiplication in the space L2[0, 1] × L2[0, 1], instead of ⊕
and �.

Note that the inner product which generates d̃ is given by
(see, e.g., Yeh 2008a)

〈f, g〉 =
∫ 1

0
f1(α) g1(α) dα +

∫ 1

0
f2(α) g2(α) dα. (6)

Assuming a fixed n and a fixed family of α-cuts α =
(α0, . . . , αn+1) ∈ An , let us define the following set of vec-
tors e1, . . . , e2n+4 ∈ L2[0, 1] × L2[0, 1], ei = (ei,1, ei,2),
i = 1, . . . , 2n + 4, such that for β ∈ [0, 1]:

– e1,1(β) = e1,2(β) = 1,
– for i = 2, . . . , n + 2:

ei,1(β) =

⎧
⎪⎨

⎪⎩

0 for β < αi−2,
β−αi−2

αi−1−αi−2
for β ∈ [αi−2, αi−1],

1 for β > αi−1,

ei,2(β) =1,

– en+3,1(β) = 0, en+3,2(β) = 1,
– for i = n + 4, . . . , 2n + 4:

ei,1(β) =0,

ei,2(β) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for β < α2n−i+4,
α2n−i+5−β

α2n−i+5−α2n−i+4
for β ∈ [α2n−i+4,

α2n−i+5],
0 for β > α2n−i+5,

The set of vectors defined above is extremely useful for a
reparametrization of piecewise linear fuzzy numbers, which
appears very convenient in further considerations. Namely,
given any piecewise linear n-knot fuzzy number S = S(α, s),
let δ = (δ1, . . . , δ2n+4) with δ1 = s1 and δi := si − si−1

for i = 2, . . . , 2n + 4. It can be seen that we have S =
∑2n+4

i=1 δi ei . From now on we use the notation Sd(α, δ) to
represent S in its new parametrization.

Lemma 1 The set {e1, e2, . . . , e2n+4} is linearly independent
in L2[0, 1] × L2[0, 1].
Proof First of all let us note that we have

F
πn(α)(R) =

{
2n+4∑

i=1

δiei : δ1 ∈ R, δ2, . . . , δ2n+4 ∈ [0,∞)

}

.

(7)

Therefore, to obtain the desired conclusion it suffices
to find 2n + 4 vectors in F

πn(α)(R) which are linearly
independent in L2[0, 1] × L2[0, 1]. Obviously such vectors
exist as for example Sd(α, ξ i ), i = 1, . . . , 2n + 4, where
{ξ1, . . . , ξ2n+4} is the canonical base of R2n+4. �

Now we are in position to present the main result of this
section.

Lemma 2 For any α ∈ An the set Fπn(α)(R) is a closed
convex subset of the space L2[0, 1]× L2[0, 1] endowed with
the topology generated by metric d̃.

Proof If we denote V = span{e1, e2, . . . , e2n+4} then let us
consider the linear bijective transformation i : R2n+4 → V,
i(x1, x2, . . . , x2n+4) =∑2n+4

i=1 xiei . We consider on V the
same metric d as on L2[0, 1] × L2[0, 1] (hence by (6)
V is an inner product space) and R

2n+4 is endowed with
the Euclidean topology. Since i and i−1 are linear trans-
formations between finite-dimensional normed spaces, it
is immediate that both are continuous and hence homeo-
morphisms. We observe that Fπn(α)(R) =i(�) where � =
{(x1, . . . , x2n+4) ∈ R

2n+4 : xi ≥ 0, i = 2, . . . , 2n + 4}.
Obviously � is closed in R

2n+4 (actually � is a polyhedral
subset of R2n+4 and all such sets are closed in R

2n+4) and
since i−1 is continuous it results that Fπn(α)(R) =i(�) is
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a closed subset of V. On the other hand, V is a finite lin-
ear subspace of L2[0, 1] × L2[0, 1] and hence V is closed in
L2[0, 1]×L2[0, 1] . By elementary topology, it easily results
now that Fπn(α)(R) is closed in L2[0, 1] × L2[0, 1].

As the convexity of Fπn(α)(R) is obvious, the proof is
complete. �
Remark 1 From the above proof, it follows that a sequence of
α-piecewise linear n-knot fuzzy numbers,
(Sd(α, δm))m=1,2,... with δm = (δm,i )i=1,...,2n+4, converges
to Sd(α, δ), where δ = (δi )i=1,...,2n+4 if and only if for any i
we have δm,i → δi , which is equivalent with ‖δm − δ‖ → 0
(here ‖·‖ denotes the Euclidean norm over the spaceR2n+4).

Remark 2 Lemma 2 can be deduced from Corollary 12 in
Báez-Sánchez et al. (2012). Although in Báez-Sánchez et al.
(2012), a different metric is employed one can easily prove
that this metric is equivalent with the Euclidean metric on
the span of Fπn(α)(R). However, we prefer the present proof
because it is more suitable to our forthcoming results. Espe-
cially, we refer here to the set {e1, e2, . . . , e2n+4} of linearly
independent vectors in L2[0, 1]×L2[0, 1]whichwill be used
to approach the main results of the paper.

4 The best approximation for fixed˛

In this section, we generalize the theoretical results from
paper Coroianu et al. (2013) concerning the existence,
uniqueness and characterization of the approximation aswell
as the properties of the derived approximation operator by
extending them to the case of piecewise linear n-knot fuzzy
numbers.

If membership functions of fuzzy numbers under study
are too complicated, we usually approximate them by some
simpler forms that are more useful for processing and easier
to interpret. In this section, we discuss how to approximate
an arbitrary fuzzy number by a piecewise linear n-knot fuzzy
number described by fixed α-cuts.

Hence, given a fuzzy number A ∈ F(R), fixed n, and a
fixed family of α-cuts α ∈ An , we are interested in finding
S∗
α(A) ∈ F

πn(α)(R) such that:

d(A, S∗
α(A)) = min

S∈Fπn (α)(R)
d(A, S). (8)

Using similar reasoning as in paper Coroianu et al. (2013),
one can prove that the above problem has a unique solution.
By showing this fact, we are able to define the approximation
operator �n

α : F(R) → F
πn(α)(R) which assigns to a fuzzy

number A its unique best piecewise linear approximator (for
given n and α).

Theorem 1 If A is anarbitrary fuzzy number, then there exists
the unique fuzzy number �n

α(A) ∈ F
πn(α)(R) satisfying (8).

Taking into account Lemma 2, we obtain the proof (we
omit this proof since it is identical with the proof of Theorem
8 in Coroianu et al. 2013).

Now let us denote with 	 = (φi, j )i, j=1,...,2n+4, the
Gram matrix associated with the set {e1, . . . , e2n+4}, i.e.,
φi, j = 〈

ei , e j
〉
. Since these vectors are linearly indepen-

dent, it follows that 	 is invertible. Moreover, for fixed A
let b = (b1, . . . , b2n+4) such that bi = 〈A, ei 〉.

We have the following characterization of the best approx-
imation (see, e.g., Yeh 2009, Fact 2.1). If (X , 〈·, ·〉) is a
Hilbert space, � is a closed convex subset of X , and x ∈ X ,
then x∗ ∈ � is the unique best approximation of x relatively
to the set� if and only if 〈x − x∗, y − x∗〉≤ 0 for any y ∈ �.
Note that the notation x∗ = P�(x) is often used to denote
that x∗ is the projection of x onto �.

Theorem 2 Letα ∈ An be fixed and let A denote a fuzzy num-
ber. Then�n

α(A) = Sd(α, δ∗), δ∗ ∈ R×R
2n+3+ , is the unique

best approximation of A relatively to the set Fπn(α)(R) with
respect to the Euclidean metric d, if and only if there exists a
vector z∗ ∈ R

2n+4 such that all the following requirements
hold

(i) 	 δ∗T − z∗T = bT ,
(ii) z∗1 = 0 and z∗i ≥ 0, ∀i > 1,
(iii) δ∗

i = 0 or z∗i = 0, ∀i > 1.

We omit the proof because it uses a similar reasoning as
the proof of Theorem 9 in Coroianu et al. (2013). Basically
the only difference is that now we have a Gram matrix of
dimension 2n + 4.

It turns out that our approximation operator has some very
important properties from the well-known list presented in
Grzegorzewski and Mrówka (2005).

Theorem 3 For any α ∈ An, the �n
α operator fulfills the

following properties:

(i) Identity, i.e., �n
α(A) = A, ∀A ∈ F

πn(α)(R);
(ii) Invariance to translation, i.e.,

�n
α(A + z) = �n

α(A) + z, ∀A ∈ F(R), ∀z ∈ R;
(iii) Scale invariance, i.e.,

�n
α(λ A) = λ �n

α(A)f, ∀A ∈ F(R), ∀λ ∈ R;
(iv) Lipschitz-continuity, i.e.,

d(�n
α(A),�n

α(B)) ≤ d(A, B), ∀A, B ∈ F(R).

The proofs are identical with those from the particular
case of piecewise linear 1-knot approximation (see Theorem
10 in Coroianu et al. 2013).
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5 Some remarks on convergence

For the piecewise linear approximation operator introduced
in the previous section, we can prove useful approximation
results. First of all we can find a rate of convergence for
the sequence of piecewise linear approximations by letting
n → ∞. Additionally, we can estimate the convergence
rate in the approximation of important characteristics asso-
ciated to fuzzy numbers such as the value, ambiguity and
expected interval, respectively. The key element in the pro-
cess of obtaining the convergence results is the use of the
well-known naïve approximator.

5.1 The naïve approximator

In what follows, we propose some convergence results for
sequences of piecewise approximations. However, firstly, for
given fuzzy number A, n ∈ N, and αn = (αn,0, αn,1, . . . ,

αn,n+1) ∈ An , let us consider a fuzzy number Nn
αn

(A) ∈
F

πn(α)(R) defined by

(
Nn

αn
(A)

)

L
(β) = AL(αn,i )

+ AL(αn,i+1) − AL(αn,i )

αn,i+1 − αn,i
(β − αn,i ),

(
Nn

αn
(A)

)

U
(β) = AU (αn,i )

+ AU (αn,i+1) − AU (αn,i )

αn,i+1 − αn,i
(β − αn,i )

for i = 0, . . . , n and β ∈ [αi , αi+1]. This is the so-called
naïve approximator of A, i.e., an n-knot piecewise linear
fuzzy number that interpolates both AL and AU at the knots
(it minimizes the L2 metric exactly at finite number of
points, while the approximator suggested in this paper min-
imizes the metric “globally” , i.e., at all alpha cuts). This
operator was also proposed in Báez-Sánchez et al. (2012)
where it was used as an approximator with respect to the
Hausdorffmetric.Wewill use this operator to obtain approxi-
mation results for the sequence

(
�n

αn

)

n≥1
with respect to the

Euclidean metric. Please note that the convergence results
can be deduced from Báez-Sánchez et al. (2012) using some
simple inequalities between the Hausdorff and Euclidean
metrics. However, we will use a direct approach which will
give us precise estimations for the error of approximation.
Clearly, Nn

α (A) preserves the support and core of A. Since
Nn

αn
(A) ∈ F

πn(α)(R) for any n ∈ N, let us find an esti-
mation for d(Nn

αn
(A), A) for some n ≥ 1. Let us choose

arbitrary β ∈ [0, 1]. Then there exists i ∈ {0, . . . , n} such
that β ∈ [αn,i , αn,i+1]. If

(
Nn

αn
(A)

)

L
(β) ≥ AL(β) then

∣
∣
∣
(
Nn

αn
(A)

)

L
(β) − AL(β)

∣
∣
∣ = (

Nn
αn

(A)
)

L
(β) − AL(β)

≤ (Nn
αn

(A)
)

L
(αn,i+1)−AL(αn,i ) = AL(αn,i+1)−AL(αn,i ).

On the other hand, if
(
Nn

αn
(A)

)

L
(β) < AL(β) then

∣
∣
∣
(
Nn

αn
(A)

)

L
(β) − AL(β)

∣
∣
∣ = AL(β) − (

Nn
αn

(A)
)

L
(β)

≤ AL(αn,i+1)−
(
Nn

αn
(A)

)

L
(αn,i )

= AL(αn,i+1) − AL(αn,i )

and therefore from the two inequalities we get

∣
∣
∣
(
Nn

αn
(A)

)

L
(β) − AL(β)

∣
∣
∣ ≤ ∣

∣AL(αn,i+1) − AL(αn,i )
∣
∣ .

By similar reasonings, we obtain

∣
∣
∣
(
Nn

αn
(A)

)

U
(β) − AU (β)

∣
∣
∣ ≤ ∣

∣AU (αn,i+1) − AU (αn,i )
∣
∣ .

This implies that in general, for β ∈ [0, 1], we have
∣
∣
∣
(
Nn

αn
(A)

)

L
(β) − AL(β)

∣
∣
∣

≤ max
i=0,...,n

∣
∣AL(αn,i+1) − AL(αn,i )

∣
∣ , (9)

∣
∣
∣
(
Nn

αn
(A)

)

U
(β) − AU (β)

∣
∣
∣

≤ max
i=0,...,n

∣
∣AU (αn,i+1) − AU (αn,i )

∣
∣ . (10)

Theorem 4 Let us consider a sequence (αn)n=1,2,..., αn ∈
An, where αn = (αn,i )i=0,...,n+1 for all n, and such that
‖αn‖ → 0. If A is a fuzzy number with continuous side
functions then lim(d)

n→∞ �n
αn

(A) = A. Moreover, the rate of
convergence is given by the inequalities

d(A,�n
αn

(A)) ≤ √
2 max
i=0,...,n

(max{∣∣AL(αn,i+1) − AL(αn,i )
∣
∣ ,

∣
∣AU (αn,i+1) − AU (αn,i )

∣
∣}). (11)

where n ≥ 1.

Proof We will use in our proof the naïve approximator
of A, introduced just above. Since functions

(
Nn

αn
(A)

)

L
,

(
Nn

αn
(A)

)

U
, AL and AU are all continuous, by the mean

value theorem for integrals there exists ξn ∈ [0, 1] such that

d2(Nn
αn

(A), A) =
((

Nn
αn

(A)
)

L
(ξn) − AL(ξn)

)2

+
((

Nn
αn

(A)
)

U
(ξn) − AU (ξn)

)2
,

which by relations (9)–(10) implies (for any n ≥ 1)

d(Nn
αn

(A), A) ≤ √
2 max
i=0,...,n

(max{∣∣AL(αn,i+1) − AL(αn,i )
∣
∣ ,

∣
∣AU (αn,i+1) − AU (αn,i )

∣
∣}).
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Since AL and AU are continuous and hence uniformly con-
tinuous and ‖αn‖ → 0, from the above inequalities it easily
results d(Nn

αn
(A), A) → 0.

Now let us prove that lim(d)
n→∞ �n

αn
(A) = A. Since

Nn
αn

(A) ∈ F
πn(α)(R) for any n ∈ N thus, by the definition of

�n
αn

(A), it follows that

d(A,�n
αn

(A)) ≤ d(A, Nn
αn

(A))

and as d(Nn
αn

(A), A) → 0, it is immediate now that

lim(d)
n→∞ �n

αn
(A) = A with the convergence rate given by

(11). �
Recall that if (X , d1) and (Y , d2) are metric spaces then a

function f : X → Y is called lipschitzian, if there exists a
real positive constant C such that

d2( f (x
′), f (x ′′)) ≤ C d1(x

′, x ′′), (12)

for all x ′, x ′′ ∈ X . It is well known that Lipschitz functions
are continuous (thus, the property (iv) in Theorem 3 also
implies the operator’s continuity).

Proposition 1 Let us consider a sequence (αn)n=1,2,..., αn ∈
An, whereαn = (αn,i )i=0,...,n+1. If A denotes a fuzzy number
such that AL and AU are Lipschitz functions with Lipschitz
constants C1 and C2, respectively, then we have

d(A,�n
αn

(A)) ≤ C ‖αn‖ ,

where C = √
2max{C1,C2} and n ∈ N.

Proof The hypothesis implies that

|AL(αn,i ) − AL(αn,i−1)| ≤ C1‖αn‖
|AU (αn,i ) − AU (αn,i−1)| ≤ C2‖αn‖.

for i ∈ {1, . . . n + 1}, which leads to the desired conclusion.
�

5.2 Equidistant knots

From the above theorem, we easily get some important
propositions for the case of equidistant knots.

Proposition 2 Let us consider a sequence (αn)n=1,2,..., where
αn ∈ An, αn,i = i

n+1 for all i = 0, . . . , n + 1. If A denotes
a fuzzy number with continuous sides, then for all n ∈ N we
have

d(A,�n
αn

(A)) ≤ √
2 max
i=0,...,n

(max{
∣
∣
∣AL

(
i+1
n+1

)
− AL

(
i

n+1

)∣
∣
∣ ,

∣
∣
∣AU

(
i+1
n+1

)
− AU

(
i

n+1

)∣
∣
∣}).

Fig. 2 Distance functions from Example 1. Note the logarithmic scale
on the y axis

Proof The proof is immediate by Theorem 4 and noting that
αn,i = i

n+1 for every i ∈ {0, 1, . . . n + 1}. �
Example 1 Consider a fuzzy number A with supp A =
[−5, 20], core A = [3, 6] and α-cuts given by

Aα =
[
−5 + 8qbeta(α; 0.4, 3), 6 + 14 (1 − α)4

]
,

where qbeta(α; a, b) denotes the quantile function of
the Beta distribution B(a, b), i.e., the inverse of F(x) =∫ x
0 t (a−1)(1 − t)(b−1) dt/β(a, b), where β(a, b) denotes the
Euler beta function.

In Fig. 2, we show the distance between A and the naïve
approximator, best-Euclidean approximator, and the theo-
retical upper bound given in Proposition 2, expressed as
functions of n. We see that the best-Euclidean one has the
fastest convergence rate. It is worth noting that the situation
illustrated in Fig. 2 is not unique but it shows a typical behav-
ior observed while studying many numerical examples. �

Corollary 1 Let us consider a sequence (αn)n≥1, αn ∈ An,
where αn = (i/(n + 1))i=0,...,n+1. If A denotes a fuzzy
number such that AL and AU are Lipschitz functions with
Lipschitz constants C1 and C2, respectively, then we have

d(A,�n
αn

(A)) ≤ C/(n + 1), n ∈ N,

where C = √
2max{C1,C2}.

Proof The proof is immediate by applying Proposition 1 and
noting that ‖αn‖ = 1/(n + 1) for any n ∈ N, n ≥ 1. �

Thus, we may conclude that in case of the fuzzy number
approximation using equidistant knots the convergence rate
is at most linear.

5.3 Convergence w.r.t. some important
characteristics

Another important consequence of Theorem 4 is the con-
vergence with respect to some important characteristics of a
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fuzzy number such as its value, ambiguity, expected interval
or expected value. Let us recall briefly their definitions.

The value of a fuzzy number A with respect to a non-
decreasing function c : [0, 1] → [0, 1], called reducing
function, where usually c(0) = 0 and c(1) = 1, is

Valc(A) =
∫ 1

0
c(β) (AL(β) + AU (β)) dβ,

and might be seen as a typical value of the magnitude rep-
resented by the fuzzy number A. The next index, called the
ambiguity, is given by

Ambc(A) =
∫ 1

0
c(β) (AU (β) − AL(β)) dβ,

and characterizes the vagueness of A. These two
characteristics were proposed for the first time by
Delgado et al. (1988) to simplify the representation of fuzzy
numbers.

The expected interval of a fuzzy number A is given by
(see Dubois and Prade 1987)

EI(A) =
[∫ 1

0
AL(β)dβ,

∫ 1

0
AU (β)dβ

]

while the expected value of A is just themiddle of its expected
interval, i.e.,

EV(A) = 1

2

(∫ 1

0
AL(β)dβ +

∫ 1

0
AU (β)dβ

)

.

It is worth noting that the invariance of the above-mentioned
characteristics applies a key role in the fuzzy number approx-
imation (see Grzegorzewski and Mrówka 2005). Hence, the
following result is of interest.

Theorem 5 Let us consider a sequence (αn)n=1,2,..., αn ∈
An, where αn = (αn,i )i=0,...,n+1 for all n, and such that
‖αn‖ → 0. If A denotes a fuzzy number with continuous side
functions and c : [0, 1] → [0, 1] is a continuous reducing
function, then we have

lim
n→∞Valc(�

n
αn

(A)) = Valc(A), (13)

lim
n→∞Ambc(�

n
αn

(A)) = Ambc(A), (14)

lim
n→∞EI(�n

αn
(A)) = EI(A), (15)

lim
n→∞EV(�n

αn
(A)) = EV(A). (16)

Proof Noting that 0 ≤ c ≤ 1 and making use of the Schwarz
inequality, we get

∣
∣
∣
∣

∫ 1

0
c(β)AL(β)dβ −

∫ 1

0
c(β)

(
�n

αn
(A)

)

L
(β)

∣
∣
∣
∣

≤
∫ 1

0

∣
∣
∣AL(β) − (

�n
αn

(A)
)

L
(β)

∣
∣
∣ dβ

≤
(∫ 1

0

(
AL(β) − (

�n
αn

(A)
)

L
(β)
)2

dβ

)1/2

≤ d(A,�n
αn

(A)).

Repeating the reasoning, we obtain

∣
∣
∣
∣

∫ 1

0
c(β)AU (β)dβ −

∫ 1

0
c(β)

(
�n

αn
(A)

)

U
(β)

∣
∣
∣
∣

≤
(∫ 1

0

(
AU (β) − (

�n
αn

(A)
)

U
(β)
)2

dβ

)1/2

≤ d(A,�n
αn

(A)).

By the last two inequalities, we easily observe that

max
{∣
∣Ambc(A) − Ambc(�

n
αn

(A))
∣
∣ ,

∣
∣Valc(A) − Valc(�

n
αn

(A))
∣
∣
} ≤ 2d(A,�n

αn
(A)).

which by Theorem 4 implies that (13) and (14) hold. More-
over, we have

max
{∣
∣Ambc(A) − Ambc(�

n
αn

(A))
∣
∣ ,

∣
∣Valc(A) − Valc(�

n
αn

(A))
∣
∣
}

≤ 2
√
2 max
i=0,...,n

(max{∣∣AL(αn,i+1) − AL(αn,i )
∣
∣ ,

∣
∣AU (αn,i+1) − AU (αn,i )

∣
∣})

for n ≥ 1. Hence, we easily obtain the convergence of the
expected interval and expected value, i.e., (15) and (16) hold,
respectively. �

6 Computer implementation and
applications

In this section, we propose an algorithm to compute the near-
est piecewise linear n-knot approximation. The reasonings
are inspired by the particular case studied in Coroianu et al.
(2013). Later on, we will show that best-Euclidean piece-
wise linear approximations are a better alternative than the
classical naïve approximation in the implementation of fuzzy
arithmetic on a computer.

6.1 Algorithm

Fixα. To perform the calculations,we should derive formulas
for the elements φi, j = 〈

ei , e j
〉
, i, j = 1, . . . , 2n + 4, of the

Gram matrix 	 = [φi, j ]. It might be seen that we have:
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φ1,1 = 2,

φi, j = 2 − (α j−1 + α j−2)/2 for i < j ≤ n + 2,

φ j, j = 2 − (2α j−1 + α j−2)/3 for j ≤ n + 2,

φi,n+3 = 1 for i ≤ n + 3,

φi, j = (α2n− j+4 + α2n− j+5)/2 for j ≥ n + 4, i < j

φ j, j = (2α2n− j+4 + α2n− j+5)/3 for j ≥ n + 4.

The 	 matrix is, of course, symmetric and—as already
stated—invertible. Note that the elements above the diagonal
do not depend on the row index i .
Fix A. Let w = (w1, . . . , w2n+3),w′ = (w′

0, . . . , w
′
2n+3) be

such that:

– w′
0 = 0,

– For i = 1, . . . , n + 1 do: wi := ∫ αi
αi−1

AL(β) dβ,

w′
i :=

∫ αi
αi−1

βAL(β) dβ − αi−1 wi

αi − αi−1
,

– wn+2 = w′
n+2 = 0,

– For i = n+3, . . . , 2n+3 do:wi := ∫ α2n−i+4
α2n−i+3

AU (β) dβ,

w′
i := α2n−i+4 wi − ∫ α2n−i+4

α2n−i+3
βAU (β) dβ

α2n−i+4 − α2n−i+3
.

It may be shown easily that b = (b1, . . . , b2n+4) such
that bi = 〈A, ei 〉, is determined by b1 := ∑2n+3

i=1 wi

and bi := bi−1 − w′
i−2 − wi−1 + w′

i−1 for i = 2, . . . ,
2n + 4.

Moreover, if A ≥ 0 (i.e., if inf supp A ≥ 0), then
wi ≥ w′

i and it follows b1 ≥ b2 ≥ · · · ≥ b2n+4 ≥ 0.
Note that b contains the whole information about A needed
to solve our approximation problem. Moreover, it may be
seen that for n = 1 the above derivations for 	 and b
are equivalent to those presented in our previous paper
(Coroianu et al. 2013), and for n = 0 with those obtained by
Ban (2009a).

Please note that if the solution to the system of 2n + 4
linear equations 	 δ̆T = bT is such that δ̆2, . . . , δ̆2n+4 ≥
0, then the problem of determining the nearest piece-
wise linear approximation is immediate: we have
δ∗ = δ̆.

Example 2 Consider a fuzzy number A with support [1, 4],
core [2, 3], and α-cuts given by Aα = [1 + √

α, 4 − α2].
Let us determine the best approximation of A by a piecewise
linear 3-knot fuzzy number with α = (0.25, 0.5, 0.75). We
have

w =
(
1

3
,
1 + √

2

6
,
3 − 2

√
2 + 3

√
3

12
,

11 − 3
√
3

12
, 0,

155

192
,
173

192
,
185

192
,
191

192

)

,

w′ =
(

0,
7

40
,
19 + 4

√
2

120
,
15 + 16

√
2 − 6

√
3

120
,

−11 + 12
√
3

40
, 0,

317

768
,
117

256
,
373

768
,
383

768

)

and thus

b =
(
16

3
,
207

40
,
599 − 16

√
2

120
,
565 + 16

√
2 − 36

√
3

120
,

407 + 36
√
3

120
,
11

3
,
2513

768
,
1855

768
,
379

256
,
383

768
)

)

.

Solving 	 δ∗T = bT we get

δ∗ =
(
145 − 84

√
2 + 54

√
3

105
,
6

35
(−2 + 14

√
2 − 9

√
3),

− 2

35
(38 + 70

√
2 − 81

√
3),

80

7
+ 4

√
2 − 342

√
3

35
,

− 2

35
(328 + 42

√
2 − 225

√
3),

12833 + 896
√
2 − 7488

√
3

1120
,

7

16
,
5

16
,
3

16
,
1

16

)

≥ 0,

and hence we directly obtain the desired approximator.
Here is the R code that calculates this result numerically

via thepiecewiseLinearApproximation()method
from the FuzzyNumbers Gagolewski (2015) package.

> # first, call install.packages(’FuzzyNumbers’)
> library(’FuzzyNumbers’)
> # a fuzzy number with power side functions:
> A <- PowerFuzzyNumber(1, 2, 3, 4, p.left=2,

p.right=0.5)
> # approximation with 3 equidistant knots:
> PA <- piecewiseLinearApproximation(A, knot.n=3,

verbose=TRUE)
b=(5.33333, 5.175, 4.8031, 4.37728, 3.91128, 3.66667,

3.27214, 2.41536, 1.48047, 0.498698)
d=(1.14035, 0.378948, 0.188638, 0.160815, 0.132255,

1.00941, 0.4375, 0.3125, 0.1875, 0.0625)
> distance(A,PA) # Euclidean distance
[1] 0.01363968

�

However, if δ̆i < 0 for some i > 1, thenwe have to find the
index set K ∗ ⊆ {2, . . . , 2n+4} corresponding to the optimal
solution. Intuitively, this set indicates between which knots
(left or right) α-cut bounds are constant functions. Generally,
there are 22n+3 possible selections of the index sets and we
know that at least one of them (as situation with δ∗

k = z∗k = 0
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is possible) leads to the solution fulfilling conditions from
Theorem 2). Thus, although theoretically correct, in practice
we cannot look for each possible K and check whether it
gives the desired result. Below we postulate an algorithm
that finds the solution in up to 2n + 4 steps.

First, please note that if Sd(α, δ̆) /∈ F
πn(α)(R) then, by

definition, we have 〈A, ei 〉 = 〈Sd(α, δ̆), ei 〉 = bi for all i .
Thus, finding the best linear approximation of A is the same
as approximating the object Sd(α, δ̆) (corresponding to a pair
of two square integrable piecewise linear functions).

Please note that it may be tempting to assume that as
n → ∞, then for all αi ∈ Ai such that αi ⊂ αi+1 we neces-
sarily approach the solution with z∗j,n = 0 for all j . This is,
unfortunately, not true, as a counterexample may easily be
constructed (see Example 3).

It may be noted that if the conditions in Theorem 2 hold
for a given index set K ∗, then z∗ and δ∗ may be obtained by
solving the following system of 2n+4 linear equations for x:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑2n+4
i=1

(
φ1,i 1i /∈K ∗ − 1i=1 1i∈K ∗

)
xi = b1

...
...

...
∑2n+4

i=1

(
φ2n+4,i 1i /∈K ∗ − 1i=2n+4 1i∈K ∗

)
xi = b2n+4

where 1p = 1 if p is true and 0 if p is false. This is done by
setting δ∗

i = xi 1i /∈K ∗ and z∗i = xi 1i∈K ∗ . The above system
of equations may be written as

	(K ∗) xT = bT ,

where the i-th column of 	(K ∗) is exactly the same as in
	 if i /∈ K ∗ and set to (0, . . . , 0, φ(K ∗)

i,i = −1, 0, . . . , 0)T

otherwise. Moreover, 	(K ∗) is always invertible.
The algorithm that finds the solution to the approximation

problem of our interest is of “greedy” type. It relies on adding
in each step to a temporary K set such index i > 1 at which
an intermediate solution xi has the smallest negative value.

Heuristic Algorithm for determining best piecewise linear
approximation of A given n and α (cf. Coroianu et al. (2013):

1. Calculate 	 and b (according to AL , AU , n, and α);
2. K (1) := ∅;
3. for i = 1, 2, . . . :

3.1. Solve 	 xT = bT for x;
3.2. m(i) := min{argmini=2,3,...,2n+4{xi }};
3.3. if (xm(i) ≥ 0):

3.3.1. δ∗ := (x1, x2 12/∈K (i) , . . . , x2n+4 12n+4/∈K (i) );
3.3.2. return Sd(α, δ∗) as result and stop;

3.4. φi,m := 0 for i �= m;
3.5. φm,m := −1;
3.6. K (i+1) := K (i) ∪ {m(i)}; �

Note that Sd(α, δ∗) = S(α,cumsum(δ∗)), where
cumsum(δ∗) = (δ∗

1 , δ
∗
1 + δ∗

2 , . . . , δ
∗
1 + δ∗

2 + · · · + δ∗
2n+4).

Moreover, an examplemay be constructed easily for which at
some stepm < 0,m > argmini=2,3,...,2n+4{xi } andm /∈ K ∗.

Example 3 Consider a fuzzy number A with support [1, 3],
core {2}, and α-cuts given by Aα = [1 + α0.2, 3 − α0.2].

Let us determine the best approximation of A by a piece-
wise linear 3-knot fuzzy number with α = (0.75, 0.8, 0.9).
The solution is obtained for K = {3, 4, 8, 9}. Here is the out-
put generated by the FuzzyNumbers Gagolewski (2015)
package.

> A <- PowerFuzzyNumber(1, 2, 2, 3, p.left=5,\
p.right=5)

> PA <- piecewiseLinearApproximation(A,knot.n=3,
knot.alpha=c(0.75,0.8,0.9), verbose=TRUE)

b=(4, 3.35679, 2.61124, 2.46423, 2.26633, 2.16667,
2.06633, 1.86423, 1.71124, 0.856793)

Pass 1: K={ },

x=(1.57431, 0.422722, -0.0502845, 0.0353607,
0.0166293, 0.00252386, 0.0166293, 0.0353607,
-0.0502845, 0.422722)

Pass 2: K={3},

x=(1.57937, 0.407535, 0.001732*, -0.0162737,
0.0338408, -0.0032133, 0.0166293, 0.0353607,
-0.0502845, 0.422722)

Pass 3: K={39},

x=(1.57937, 0.407535, 0.001732*, -0.0162737,
0.0338408, -0.00895046, 0.0338408, -0.0162737,
0.001732*, 0.407535)

Pass 4: K={389},

x=(1.57937, 0.407535, 0.001732*, -0.0162737,
0.0338408, -0.00249709, 0.0144807, 0.000697*,
0.002448*, 0.402485)

Pass 5: K={3489},

x=(1.58106, 0.402485, 0.002448*, 0.000697*,
0.0144807, 0.00395628, 0.0144807, 0.000697*,
0.002448*, 0.402485)

d=(1.58106, 0.402485, 0, 0, 0.0144807,
0.00395628, 0.0144807, 0, 0, 0.402485)

> dist(A,PA)
[1] 0.06169378

Please, note that adding more knots between 0.75 and 0.9
does not change the resulting piecewise linear fuzzy number
(in the sense of =). �

Remark 3 One can easily observe that the finding of the
piecewise linear n-knot approximation of a fuzzy num-
ber using Theorem 2 directly may be represented as an
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instance of the Boolean satisfiability problem (SAT) which
in general is NP-hard. The proposed heuristic algorithm
drastically simplifies the process. Note that if it converges,
the obtained solution is guaranteed to be optimal. Whether
it always converges is still an open question. However,
extensive simulation studies indicate that this is indeed the
case.

Also note that from the computer processing perspective,
calculating b is the most sensitive part of the procedure in
terms of numeric error, due to the fact that wi and w′

i have to
be obtained by some numerical quadratures, like the adap-
tive routine integrate() in the R language. This requires
the alpha-cut bounds to be well-behaving functions. Interest-
ingly, the trapezoidal rule of integration (the Newton-Cotes
formula of degree 1, without subdivisions) will lead us to
the naïve piecewise linear approximator (not optimal in gen-
eral), in which we just probe the alpha-cut bounds at points
in α.

6.2 Computing on piecewise linear FNs

Supposewehave a set of fuzzynumbers {A1, . . . , Ak} andwe
would like to compute a series of operations on them, obtain-
ing B = f (A1, . . . , Ak). Let each operation be defined using
the extension principle and rely on a proper transformations
of their α -cuts.

Most often such a task is performed numerically and not
symbolically. Thus, the side functions of the fuzzy numbers
must be discretized at a fixed, possibly large number of α-
cuts (see, e.g., Hanss 2005). Such a process involves nothing
else than taking a naïve approximation of Ai , i = 1, . . . , k.
Here, the values of membership functions at given α -cuts
(e.g., equidistant ones) are exact (of course, up to numeric
error involved in calculating the operations). Of course, the
larger the number of knots, the lower the computation speed
but higher the accuracy.

In practice,we are interested in finding a trade-off between
these two factors. An important question is whether, for fixed
n and α ∈ An , by considering the nearest-Euclidean approx-
imation we will obtain results of higher quality than in case
of a naïve approximation.

a) Experiment setup:
Let N = Nn

α ( f (Nn
α (A1), . . . , Nn

α (Ak))) and � =
�n

α( f (�n
α(A1), . . . ,�

n
α(Ak))) denote piecewise linear n-

knot fuzzy numbers determined by taking, respectively, the
naïve and nearest-Euclidean approximations of the input
fuzzy numbers and then applying f only at given α-cuts.
Moreover, let�-post = �n

α(B)denote the nearest-Euclidean
piecewise linear approximation of the exact result, B. To ver-
ify this, let us performa series of numerical experiments. First
of all, one should be interested in:
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Fig. 3 Results of the numerical experiment: d(B,�), d(B, N ),
d(B,�-post) (left subfigure) and d(�,�-post) (right subfigure)

– Comparing d(B, N ) and d(B,�) where d denotes the
Euclidean metric, i.e., determining whether it is better to
use the nearest-Euclidean or the naïve approximation,

– Calculating d(B,�-post) and d(�,�-post), to deter-
mine a possible “error”whichmight appear ifwe perform
computations directly on approximated fuzzy numbers.

To investigate these two issues, we performed a large
number of computer simulations involving the following ran-
domly generated types of fuzzy numbers:

– FNs with sides being power functions, i.e., α �→ α p,
where p is uniformly distributed on the interval (0, 10),
i.e., p ∼ U (0, 10);

– FNs with sides defined via quantile functions of a beta
distribution, α �→ qbeta(α, p, q), p, q ∼ U (0.1, 4).

Supports [a1, a4] and cores [a2, a3] were also generated
by (a1, a2, a3, a4) := sort(a′

1, a
′
2, a

′
3, a

′
4), with a

′
1, a

′
2, a

′
3, a

′
4

following the uniform distribution.

b) Distance between exact results and the results computed
on approximated fuzzy numbers:

As all the considered scenarios exhibited the same pat-
terns, belowwewill only present results for the scenario with
f (A1, . . . , A9) = (A1 + A2)A3 − A4(A5 − A6) log(A7) +
exp(A8)/2A9 , with M = 1000 Monte Carlo iterations,
and n = 3 equidistant knots. Figure 3 depicts the box-
plots of d(B,�), d(B, N ) and d(B,�-post), as well as
d(�,�-post). It is worth noting that d(B,�) < d(B, N ) in
each case. In other words, applying computations on nearest-
Euclidean approximated inputs leads to smaller errors (as
measured by the Euclidean distance) than for the naïve
approximations. Figure 4 depicts the difference between an
exemplary exact output and ones that are computed using
two types of piecewise linear approximations.

Next, Fig. 5 presents scatter plots for each pair of observa-
tions from {d(B,�), d(B, N ), d(B,�-post)}. Interestingly,
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Fig. 4 An exemplary result of applying f (A1, . . . , A9) = (A1 +
A2)A3 − A4(A5 − A6) log(A7) + exp(A8)/2A9 : the exact one, and
ones computed on best-Euclidean and naïvely approximated inputs
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Fig. 5 Scatter plots for d(B,�), d(B, N ), and d(B,�-post)

we observe high linear association between the errors (Pear-
son’s r > 0.99). Applying linear regression, we get the
following relationships for n = 3:

d(B,�) � 1.00544 d(B,�-post)

d(B, N ) � 3.31601 d(B,�-post)

d(B,�) � 0.30237 d(B, N )

which are quite nicely fitted (R2 > 0.99). Moreover, for
n = 10 equidistant knots we have

d(B,�) � 1.00474 d(B,�-post)

d(B, N ) � 2.29118 d(B,�-post)

d(B,�) � 0.43851 d(B, N ).

We see that the error induced by the nearest-Euclidean
approximation is more than 2–3 times smaller than that
accompanying the naïve approximation.

Moreover, in Table 1 we list basic summary statistics of
the L2 error measure between the exact solution and ones
obtained by means on acting on approximated fuzzy num-

Table 1 Basic summary statistics of the error measure between the
solution to f (A1, . . . , A9) = (A1 + A2)A3 − A4(A5 − A6) log(A7) +
exp(A8)/2A9 and one obtained by the two studied approximators for
different n (0 – trapezoidal, 1, 3, and 10)

Min Q1 Med Mean Q3 Max

d(B,�0) 96 207 308 439 618 1129

d(B,�1) 74 141 224 261 366 564

d(B,�3) 48 91 138 150 192 283

d(B,�10) 27 38 73 80 109 179

d(B, N 0) 443 838 1184 1393 1755 2690

d(B, N 1) 297 529 883 862 1081 1606

d(B, N 3) 146 296 407 459 615 949

d(B, N 10) 60 88 167 181 246 409

Table 2 Basic characteristics of the empirical distribution of
F1 = dM (supp B, supp�), F2 = dM (supp B, supp�-post), F3 =
dM (core B, core�) and F4 = dM (core B, core�-post)

Min Q1 Med Mean Q3 Max

F1 30 960 1674 2095 2865 10296

F2 28 959 1677 2094 2864 10202

F3 2 151 347 560 716 5098

F4 1 152 349 557 719 4995

bers. We see that with a large number of knots we get much
more precise results and that the best L2 approximator is far
better than the naïve one.

c) Preservation of fuzzy numbers’ characteristics:
Wemight be also interestedwhether the nearest-Euclidean

approximation preserves better some important characteris-
tics of the concerned fuzzy numbers. Of course, the support
and core of B and N are the same. Tomeasure the error for�
and �-post, we will use the Moore’s interval metric Moore
(1962), given by dM ([a, b], [c, d]) = max{|a − c|, |b − d|}.

Table 2 shows some basic summary statistics for those
measures of interest. We observe again the almost per-
fect correlation (r > 0.999) between dM (supp B, supp�)

and dM (supp B, supp�-post) as well as between dM (core
B, core�) and dM (core B, core�-post). Indeed

dM (supp B, supp�) �1.000676 dM (supp B, supp�-post)

dM (core B, core�) �1.007172 dM (core B, core�-post).

The above-mentioned results are very interesting especially
that the stability of the support and core is very important in
fuzzy number approximation (for more details we refer the
reader to Coroianu et al. 2014a).

Lastly, let us investigate the difference between B’s ambi-
guity, width, expected value, or value and the corresponding
characteristics of �, N , and �-post. The relevant boxplots
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Fig. 6 amb B − amb�, amb B − amb N , and amb B − amb�-post
(left subfigure) as well as width B −width�, width B −width N , and
width B − width�-post (right subfigure)
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Fig. 7 val B−val�, val B−val N , and val B−val�-post (left subfig-
ure) as well as ev B − ev�, ev B − ev N , and ev B − ev�-post (right
subfigure)

are depicted in Figs. 6 and 7. We see that the nearest-
Euclidean approximation preserves these fuzzy numbers
characteristics much better than the naïve approximation.
Although these characteristics are not ideally preserved, they
are reconstructed quite accurately.

7 Conclusions

The problem of fuzzy number approximation by the piece-
wise linear fuzzy numbers introduced in Báez-Sánchez et al.
(2012) was considered. In this paper, the nearest piecewise
linear approximation with respect to the Euclidean metric
was concerned.Theproperties of the approximator, including
the asymptotic ones, were investigated. The practical imple-
mentation of the approximation algorithm is available in the
FuzzyNumbers package for R by Gagolewski (2015) .

The results on convergence indicate some advantages of
the piecewise approximation. Let us recall that the general
idea is not only to approximate an arbitrary fuzzy number

by another fuzzy number with a simpler representation, but
to find such an approximation which also possesses some
interesting properties. For example, in the papers Ban (2008),
Coroianu (2011), Grzegorzewski andMrówka (2005, 2007),
Yeh (2008a), the trapezoidal approximation preserving the
expected interval is studied.Although this typeof approxima-
tion is important in some applications, the expected interval
invariance may imply that other important characteristics,
such as the value or ambiguity, are not generally preserved
there (see, e.g., Ban 2008). Additionally, in some cases as a
result of the trapezoidal approximation we obtain a degener-
ated triangular fuzzy number such that the output support and
core is relatively far from the input support and core, respec-
tively. Similarly, the trapezoidal approximation preserving
the ambiguity (see Ban and Coroianu 2012), trapezoidal
approximation preserving the ambiguity and value (see Ban
et al. 2011a) or the trapezoidal approximation preserving the
core (see Abbasbandy and Hajjari 2009b), entails the loss of
invariance of some other important characteristics of fuzzy
numbers.

When discussing about our best-Euclidean piecewise lin-
ear approximator, one may ask naturally whether it is really
better than the naïve approximator, i.e., an n-knot piecewise
linear fuzzy number that interpolates both AL and AU at the
knots. Although, as usually in such cases, there is no overall
champion, it is worth stressing that

– In the case of the best-Euclidean approximator, we have a
guarantee that the solution is the closest possible in terms
of the L2 metric, while there is no such a guarantee in the
naïve case.

– The best-Euclidean approximator has faster rate of
convergence than the naïve one. Convergence rate is
determined w.r.t. L2 metric, thus it is obvious that the
suggested approximator will be better in this case.

– One can easily observe that the finding of the piecewise
linear n-knot approximation of a fuzzy number using
Theorem 2 directly may be represented as an instance
of the Boolean satisfiability problem (SAT) which in
general is NP-hard. The proposed heuristic algorithm
drastically simplifies the process. Note that if it con-
verges, the obtained solution is guaranteed to be optimal.
Whether it always converges is still an open question.
However, extensive simulation studies indicate that this
is indeed the case.

– The algorithm proposed in Sect. 6 makes the computa-
tions as easy as in the naïve case (from the practitioner’s
perspective).However, practical computation on the best-
Euclidean approximations aremore exact (see simulation
study), especially if the series of arithmetic operations are
involved, while the naïve approximators lead to a great
error propagation.
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Many interesting problems related to the approximation
method suggested in this paper are still open. Firstly, a study
of the global uniform convergence of the functions�αn(A)L
and�αn(A)U which will imply the convergence with respect
to the support and core is strongly desired.

Next important problem is a comparison between different
methods that one can apply to approximate fuzzy numbers.
In particular, it would be interesting to compare our gen-
eral piecewise linear approximation and the approximation of
fuzzy numbers by using the F-transform (see Coroianu and
Stefanini 2016; Stefanini and Sorini 2012) or with approxi-
mation by the Bernstein operators of max-product kind (see
Coroianu et al. 2014b). Here we can discuss many issues
as, for instance, which method is easier to implement on the
computer. Then, of course, we could compare their conver-
gence rates (with respect to different kind of metrics such as
the Chebyshev or the Euclidean), and their errors in approx-
imating the important characteristics.

Finally, as it was mentioned above, the convergence of the
algorithm proposed in Sect. 6 is still an open question.
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