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Abstract
In this paper, a multi-objective model for two-stage fixed charge transportation planning problem is studied. The trans-

portation process is considered to occur from manufacturing plants to the distributers and then from distributers to the

customers. The availabilities at the manufacturing plants, capacities of the distributers and demand of the customers, all are

considered to be fuzzy numbers. The proposed model is formulated with three conflicting goals or objective functions. The

first objective is to minimize the total transportation cost involved in the whole transportation process. The second

objective is to maximize the total quantity of the products to be transported, whereas minimizing the total deterioration that

occurred during the transportation process is considered to be the third objective function. Fuzzy linguistic relations or

preferences among the three objective functions are studied. A linear membership function is used to represent the fuzzy

relative preferences between the objective functions. For solving the multi-objective problem, fuzzy goal programming

technique is adopted with some linear and nonlinear membership functions. Finally, the proposed model is illustrated and

solved for some simulated numerical data and some sensitivity analysis for the problem is also discussed. The best results

for the solved numerical problem are found when hyperbolic membership functions are considered to model the aspiration

levels for objective functions, whereas comparatively less significant results are found when linear membership functions

are used to model the aspiration levels for objective functions.

Keywords Fixed charge � Two-stage transportation problem � Fuzzy goal programming � Fuzzy linguistic preferences

1 Introduction

The classical transportation problem was discovered by

Hitchcock (1941) as a special type of LPP that involves

certain constrains. The main aim of solving the trans-

portation problem is to minimize the total transportation

cost that involves in the flow of commodity from whole-

salers to consumers in the presence of some restrictions in

the form of constraints. The constraints are generally

considered over two features: availability of the sources

and requirement of the consumer. In this highly competi-

tive era, the purpose of organizations is to forge ways for

creating and delivering values to customers. It has been

observed that sometimes in transportation problem (TP), an

additional cost is incurred along with the variable cost; this

additional cost is called set-up cost or fixed cost. The TP

that involves fixed cost is often referred to as fixed charge

transportation problem (FCTP).

In FCTP, the commodities can be supplied from each

origin to any destination at a shipping cost (unit cost of

shipping commodity from plant to consumer) plus a fixed

cost or set-up cost for opening that route or distribution

center. In FCTP, it is a matter of fact that the amount which

can flow by a particular route bears a fixed charge for that

particular route. Further, when the route is occluding, in

this case it is expressed by limiting its capacity to zero. In

general, the FCTP is formulated as a 0–1 integer pro-

gramming problems.
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Earlier, the practitioners consider FCTP as a single stage

problem, but with the need of time, it is extended to two-

stage FCTP and multistage FCTP. With all these

advancements in the formulation of FCTP, there arises a

need to develop adequate algorithms to solve these prob-

lems. These problems have immense assortment of clas-

sical applications that have been chronicle in scheduling

and facility location problem. Two of the most common

among these problems are

(1) In making plant location decision, where there is a

need for opening the facility.

(2) In transportation problems where there are fixed

charges associated with transportation costs for

transporting goods from source to destination.

The fixed charge includes toll charges on highways,

landing fees at the airport, set-up cost in production sys-

tems or construction cost of roads.

In such type of complex decision-making problems, the

available parameters for the system cannot be known

exactly due to inadequate information, depletion of evi-

dence and oscillating financial marketing conditions. For

example, the provided data of transportation systems such

as resources, demands and conveyance capacities may not

be always absolute. The cost of the transportation depends

on price of the fuel, charges of labor and taxes by gov-

ernment, and these factors vary with time. Fuzzy set theory

introduced by Zadeh (1963) is extensively used and pro-

gressively applied to deal with these kinds of uncertainties.

In this paper, we have studied a two-stage FCTP with

fuzzy demands, supplies and capacities. We have consid-

ered three objective functions (or goals), viz. minimization

of total cost involved in the whole transportation process,

maximization of the total quantity of items shipped and

minimization of the total deterioration that occurs during

the transportation. Fuzzy linguistic relations or preferences

among the goals are studied as fuzzy relations for the

transportation decision planning problem. We have used

the approach studied by Aköz and Petrovic (2007), for

dealing with the linguistic relations. An extension for the

approach is also proposed for some nonlinear membership

functions, i.e., exponential and hyperbolic membership

functions. The main contributions of this study are stated as

follows:

1. The two-stage FCTP with multiple objectives and

fuzzy parameters is studied for the first time consid-

ering linguistic preferences among the objective

functions.

2. For addressing the inequality relations among various

supply and demand constraints of the proposed trans-

portation problem, ranking fuzzy number approach is

applied.

3. The fuzzy linguistic relations for the proposed problem

is studied along with the application of some nonlinear

membership functions to model the aspiration levels

for the objective functions.

The rest of the paper is organized as follows: In Sect. 2,

a brief literature on the existing work is discussed and

research gap is identified. In Sect. 3, we have formulated a

two-stage fixed charge transportation problem with fuzzy

parameters. In Sect. 4, we have discussed solution

methodology for solving the proposed model. In Sect. 5, a

numerical experiment is conducted to show the validation

and effectiveness of the model. In Sect. 6, results are dis-

cussed and finally, in Sect. 7, conclusion about the study is

given.

2 Literature review

The FCTP is a distinctive case of fixed cost linear pro-

gramming problem, formally introduced by Hirsch and

Dantig (1968). It is also a special case of fixed charge

network optimization problems, which plays a vital role in

many distribution and network design problem (Nemhauser

and Wolsey 1988). FCTP is much more difficult to solve in

comparison with the linear problems. This is shown by

Guisewite and Pardalos (1990) that most of the mini-

mization network optimization problems with concave

objective function, which includes fix charge, are NP hard.

There are different solution approaches to solve these

problems, (Balakrishnan et al. 1997; Ghiani et al. 2004)

focuses on Branch and Bound, Lagrange relaxation and

heuristic approach. Some other NP hard problems such as

clustering problems also solved efficiently using the

heuristic approaches (Abualigah and Khader 2017;

Abualigah et al. 2017a, 2018c).

Several algorithms have been proposed for exact and

approximate solution of FCTP, but exact solution algo-

rithms are not useful in practical situations, because their

required computational time is usually excessive (Sun et al.

1998). Murty (1968) contributed to introduce the idea of

ranking extreme points in the establishment of general

fixed charge problems. Geoffrion and Graves (1974) were

the first to formulate the two-stage transportation problem

and they have applied the Bender’s decomposition

approach to solve the distribution problem.

Fixed charge solid transportation problem (FCSTP) has

been studied by Yang and Liu (2007); in this study, all the

quantities are taken as fuzzy numbers and different kind of

mathematical models have been constructed on the basis of

credibility theory. To solve these models they used tabu

search algorithm and fuzzy simulation technique. Yang and

Feng (2007) in their study presented a bi-criteria FCSTP
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and constructed three kind of goal programming models

(namely, expected value goal programming model, chance

constraint goal programming model and dependent chance

constraint goal programming model) and then, hybrid

algorithm was applied to solve these models. Jawahar and

Balaji (2009) proposed a genetic algorithm to solve two-

stage transportation problem, in which they have consid-

ered unit transportation cost along with the fix cost asso-

ciated with each route. The study of fuzzy uncertainty is

not limited to model decision planning models only. Some

authors have also studied the involvement of fuzzy

uncertainty in other complex mathematical problems such

as, uncertainty differential equations (Arqub et al. 2016),

fuzzy boundary value problems (Arqub et al. 2017), fuzzy

Fredholm–Volterra integrodifferential equations (Arqub

2017).

After the developments and advancements in meta-

heuristic techniques, it has been widely adopted to solve

FCTP. In their study, Gen and Li (1999) solved the bi-

criteria FCTP with the help of genetic algorithm based on

spanning tree representation. A solid transportation prob-

lem with discounted cost, fixed charge and vehicle cost was

studied by Ojha et al. (2010). They considered available

discount on items in the form of all unit discount or

incremental quality discount or combination of these two,

and the price depends upon the flow of commodity from

source to destination. A model was presented by Molla-

Alizadeh-Zavardehi et al. (2011) considering a two-stage

model for fixed charge capacitated transportation problem

(FCCTP). They have adopted artificial immune technique

and genetic algorithm with prufer numbers to solve their

model. Kundu et al. (2014) studied two types of FCTP with

type-2 fuzzy parameters, they applied CV- based reduction

method to convert type-2 fuzzy variables into type-1, and

for complete defuzzification, centroid method was used.

Giri et al. (2014) studied FCSTP, considering flow of

multiple items. In their study, two aspects of the problem

were covered by them. In first aspect, they considered fully

fuzzy fixed charge multi-item solid transportation problem

(i.e., direct costs, fixed charges, supply of plant, demand of

customer, capacity of conveyance and transported quanti-

ties are all fuzzy). In the second aspect, the decision vari-

ables (i.e., transported quantities) were considered as crisp

numbers. Pramanik et al. (2015) studied two-stage supply

chain network for FCTP with Gaussian type-2 fuzzy

numbers. Zhang et al. (2016) proposed a FCTP under

uncertain environment and discussed hybrid intelligent and

tabu search algorithm to solve their problem. They have

also compared their work with the existing methodologies

for solving uncertain FCTP. Sadeghi-Moghaddam et al.

(2017) proposed solution techniques for FCTP using two

different metaheuristic approaches (i.e., priority-based

representation and spanning tree-based prufer numbers).

Hajiaghaei-Keshteli et al. (2018) presented a new meta-

heuristic approach named as keshtel algorithm for solving

FCTP. Majumder et al. (2018) presented a multi-item

FCSTP involving some budget constraints.

3 Fuzzy multi-objective model for two-stage
FCTP

The FCTP formulated in this study is a two-stage trans-

portation decision planning problem. The problem initiates

with the establishment of the plants and the flow of com-

modities between plants to customers. The FCTP consist

two types of costs, direct cost and fixed cost. Direct costs

are unit transportation cost to transport product from source

to destination, while the fixed cost is associated with dif-

ferent routes. During the first stage, the flow of items is

considered from the manufacturing sites (plants) to the

distribution centers, whereas in the second stage, the

products are considered to be shipped from the distribution

centers to the customers.

For the formulation of the model, we have employed the

following nomenclature:

Nomenclature

Indices set

i Index of plants i ¼ 1; 2; . . .; p

j Index of distribution centers j ¼ 1; 2; . . .; q

k Index of customers k ¼ 1; 2; . . .; r

Parameters

Cij Cost per unit transportation from plant i to distribution

center j

Fij Fixed charge associated from plant i to distribution center j

Ajk Cost per unit of transportation from distribution center j to

customer k

Bjk Fixed charge associated with shipment from distribution

center j to customer k

gSUPi
Fuzzy supply available at plant i

gCAPj
Fuzzy capacity available at distribution center j

gDEMk
Fuzzy demand required by the customer k

Tij Total transportation time from plant i to distribution center j

Tjk Total transportation time from distribution center j to

customer k

Dij Per thousand numbers of items deterioration during the

transportation from plant i to distribution center j

Djk Per thousand numbers of items deterioration during the

transportation from distribution center j to customer k

Decision variables

Pij Quantity to be shipped from plant i to distribution center j

Qjk Quantity to be shipped from distribution center j to customer

k
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3.1 Model formulation

A multi-objective two-stage transportation problem

involving two types of transportation costs (viz. unit

transportation cost and fixed charge cost) is considered in

this study.

The first objective function is to minimize the total

transportation cost, second is to maximize the total product

transported during the whole transportation process, and

the third one is to minimize the total product deterioration

during the transportation process.

In this problem the supply of plant, the capacity of

distribution center and the demand of customers are all

assumed to be fuzzy quantities.

3.1.1 Objective functions

The first objective function (1) as discussed earlier, deals

with the minimization of the total cost incurred in the

whole transportation process. The objective function (1)

combines the varying and fixed costs for both the stages of

the transportation process

Min Z1 ¼
X

p

i¼ 1

X

q

j¼ 1

CijPij þ
X

p

i¼ 1

X

q

j¼ 1

Fijdij þ
X

q

j¼ 1

X

r

k¼ 1

AjkQjk

þ
X

q

j¼ 1

X

r

k¼
Bjkkjk

ð1Þ

The second objective function (2) is considered to be the

maximization of the total products shipped at both stages of

the transportation process. Since, the demand of the prod-

ucts should be less than or equal to the availability of the

products, the cost minimization models generally give

transportation scheme with a lot of products left at the

suppliers. To reduce the left over products at the suppliers,

the second objective function (2) is formulated as a con-

trasting or conflicting objective to objective function (1).

Max Z2 ¼
X

p

i¼ 1

X

q

j¼ 1

Pij þ
X

q

j¼ 1

X

r

k¼ 1

Qjk ð2Þ

Many times, transportation of the products leads to some

sort of deteriorations or defects in the products. The dete-

rioration majorly depends upon the selection of the mode

of transportation as well the route chosen for the trans-

portation. A good transportation scheme is the one that

minimizes the total defects during the transportation along

with optimizing the other factors. The third objective

function (3) is formulated so as to minimize the total

deterioration of the products during the transportation

process.

Min Z3 ¼
X

p

i¼ 1

X

q

j¼ 1

DijPij þ
X

q

j¼ 1

X

r

k¼ 1

DjkQjk ð3Þ

3.1.2 Constraints

The constraint (4) ensures that the quantity shipped from

plant i to distribution center j should be less than or equal

to the supply capacity of the plant i.

X

p

j¼ 1

Pij � gSUPi; i ¼ 1; 2; . . .; p ð4Þ

The constraint (5) ensures that the total amount received

by the distribution center should be equal to the demand of

the customers.

X

q

j¼ 1

Qjk ¼ gDEMk; k ¼ 1; 2; . . .; q ð5Þ

The constraint (6) ensures that the flow of commodity at

stage one takes place only if Pij [ 0. The amount

Pij � tijdij ð6Þ

Provide that tij ¼ minfgSUPi; gCAPjg

where, dij ¼
0 if Pij ¼ 0

1 otherwise

�

whereas, constraint (7) ensures that the flow of the

commodity at stage two should not exceed the minimum

possible amount of commodity available for the shipment.

Qjk ¼ Wjkkjk ð7Þ

Provided that Wjk ¼ min fgCAPj; gDEMkg

where, kjk ¼
0 if Qjk ¼ 0

1 otherwise

�

The constraint (8) represents the restriction that the

supply capacity at plant i must be greater than or equal to

the demand of the customer k.

X

p

i¼ 1

gSUPi �
X

r

k¼ 1

gDEMk ð8Þ

The constraint (9) ensures the flow conservation of the

system, i.e., amount shipped by the plant is equal to the

amount received by the customers.

X

p

i¼ 1

Pij ¼
X

r

k¼ 1

Qjk ð9Þ

The constraint (10) ensures the nonnegativity restriction

for the decision variables.

Pij � 0 and Qjk � 0 ð10Þ
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4 Solution methodology

4.1 Conversion of fuzzy constraints

In this study, we have adopted the method given by

Jiménez et al. (2007), proposed to deal with the linear

programming problems involving coefficients that are

fuzzy in nature. The method permitted the interactive

participation of decision maker at each step of the problem.

The decision makers are allowed to express their opinion in

the form of linguist terms. Dı́az-Madroñero (2014a, b)

extended this approach for material requirement problem

that involves integrity and equality conditions.

Let us consider the following multi-objective linear

programming problem with fuzzy parameters only in

constraints

Min Z ¼ f ðxÞ
sub to gðxÞ ¼ x 2 Rn=~aix� ~bi; i ¼ 1; 2; . . .;m; x� 0

� �

�

ð11Þ

where ~ai and ~bj represent fuzzy parameters involved in the

constraints.

For defining the possibility distribution of fuzzy

parameters, fuzzy trapezoidal number of the form

a1; a2; a3; a4ð Þ is taken into consideration for characteri-

zation. The expected interval of fuzzy trapezoidal number

is denoted by EIð~aÞ and it can be defined as

EIð~aÞ ¼ Ea
1; E

a
2

� �

¼ 1

2
a1 þ a2ð Þ; 1

2
a3 þ a4ð Þ

� �

ð12Þ

The expected value of a fuzzy number, denoted as

EVð~aÞ, is the half point of its expected interval (Heilpern

1992).

EVð~aÞ ¼ Ea
1 þ Ea

2

2
and ¼ 1

4
a1 þ a2 þ a3 þ a4ð Þ

ð13Þ

By applying the approach introduced by Jiménez (1996),

the fuzzy relation has been used to compare the fuzzy

numbers. The relationship for two fuzzy numbers ~a1 and

~a2, the degree a in which ~a1 is greater than ~a2 can be

defined as follows

lð~a1; ~a2Þ ¼

0 if Ea1
2 � Ea2

1 \0
Ea1
2 � Ea2

1

Ea1
2 � Ea2

1 � ðEa1
1 � Ea2

2 Þ if 0 2 Ea1
1 � Ea2

2 ;Ea1
2 � Ea2

1

� �

1 if Ea1
1 � Ea2

2 [ 0

8

>

>

<

>

>

:

ð14Þ

where in the above relation ½Ea1
1 ; Ea1

2 � and ½Ea2
1 ; Ea2

2 � are the
expected intervals for the given fuzzy numbers ~a1 and ~a2. If

l ~a1; ~a2ð Þ� a, it is said that ~a1 is bigger than or equal to ~a2
by at least a degree a and it can be represented as ~a1 � a~a2.

On applying approach discussed by Jiménez et al.

(2007) the multi-objective problem (11) can be easily

converted into crisp equivalent parametric problem as

follows:

Min Z ¼ f ðxÞ
sub to ð1� aÞEai

1 þ aEai
2

� �

x� aEbi
1 þ ð1� aÞEbi

2 ; i ¼ 1; 2; . . .;m;
x� 0 and a 2 0; 1½ �

8

<

:

ð15Þ

where a is the feasibility degree of the decision to which at

least all the constrains must be satisfied. Therefore, by

applying the above discussed approach to the two-stage

multi-objective fixed charge transportation problem for-

mulated in Sect. 3.1, and by considering trapezoidal fuzzy

numbers, we obtain the following parametric model in

which parameter a represents the degree of fulfillment of

fuzziness.

Equation (1)–(3)

subject to

X

q

j¼ 1

Pij �
a
2

SUPi1þ SUPi2

2
þ 1� a

2

	 
 SUPi3þ SUPi4

2

ð16Þ

Provided that Pij � ~tijdij
Where ~tij ¼ min fgSUPi; gCAPjg

X

q

j¼1

Qjk�
a
2

DEMk1þDEMk2

2
þ 1� a

2

	 
DEMk3þDEMk4

2

ð17Þ

Provided that Qjk �Wjkkjk
Where ~Wjk ¼ min fgCAPj; gDEMkg

X

p

i¼ 1

a
2

SUPi1þ SUPi2

2
þ 1� a

2

	 
 SUPi3þ SUPi4

2

� �

�
X

r

k¼ 1

a
2

DEMk1þ DEMk2

2
þ 1� a

2

	 
DEMk3þ DEMk4

2

� �

ð18Þ

and Eqs. (8)–(10)

4.2 Fuzzy goal programming

Fuzzy goal programming approach is a very widely used

technique to deal with the multi-objective optimization

problems. For the first time Zimmermann (1978) intro-

duced this technique. As its name indicates, fuzzy aspira-

tion levels for each objective function are established with

the help of decision makers’ preferences or some upper and

lower bounds. With the maximization of the aspiration

levels as objective function, a parameter or degree (say a)
is taken into consideration up to which the constraints are

fulfilled. So, the solution set which is achieved when all
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constraints fulfilled a degree a is represented as FaðxÞ.
Several values can be assigned for this, by keeping in mind

decision maker preferences, as;

a ¼ 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1f g ð19Þ

For formulating the fuzzy aspiration level for nth

objective function, upper and lower limits Zn and Zn are

considered by the DM. The membership function for the

fuzzy sets is given as follows

(a) Linear membership function

The elements in the linear membership functions follow

pattern of a linear function. The linear membership func-

tion is mathematically expressed as Eq. (20) and dia-

grammatically as Fig. 1.

wnðxÞ ¼

1 if Zn � Zn

Zn � Zn

Zn � Zn

if Zn � Zn � Zn

0 if Zn � Zn

8

>

>

<

>

>

:

ð20Þ

(b) Exponential membership function

The exponential membership function is expressed as in

Eq. (21) and is represented in Fig. 2.

wnðxÞ ¼
1 if Zn � Zn

e�hxnðxÞ � e�h

1� e�h
if Zn\Zn\Zn

0 if Zn � Zn

8

>

<

>

:

ð21Þ

where xnðxÞ ¼ Zn�Zn

Zn�Zn
; n ¼ 1; 2; . . .;N and h is a nonzero

parameter.

(c) Hyperbolic membership function

The mathematical function for the hyperbolic member-

ship function is denoted by Eq. (22) and represented as in

Fig. 3.

wnðxÞ ¼

1 if Zn � Zn

1

2
þ 1

2

efðZnþZÞ=2�Zngdn � e�fðZnþZÞ=2�Zngdn

efðZnþZÞ=2�Zngdn þ e�fðZnþZÞ=2�Zngdn
if Zn\Zn\Zn

0 if Zn � Zn

8

>

>

<

>

>

:

ð22Þ

where dn ¼ 6

Zn �Zn
The membership functions represented in (20), (21) and

(22) are used in this paper to establish the aspiration levels

for the objective functions.

4.3 Fuzzy linguistic relations among goals

After determining the fuzzy aspiration levels as given in

Sect. 4.2, the objective functions or goals are considered

with imprecise preference relations rather than with

weights (representing priority or importance of that goal).

Aköz and Petrovic (2007) introduced this approach of

establishing the preferences of the objective functions in

linguistic terms. This approach is quite realistic than

assigning some crisp values in the form of weights to

prioritize the objective functions. The fuzzy linguistic

approach is mainly developed to deal with two main dif-

ficulties that arises while using weighted fuzzy goal pro-

gramming approach

))(( xZKKµ

0

1

1
KZ

0
KZ )(xZK

Fig. 1 Representation of linear membership function

))(( xZKKµ

0

1

1
KZ

0
KZ )(xZK

Fig. 2 Representation of exponential membership function

( )n xµ

0

1

2
n nZ Z+ nZ

Fig. 3 Representation of hyperbolic membership function
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(1) The relation between solution and weights is not

same as expected.

(2) Difficulties arise at the time of assigning weights to

different goals.

A fuzzy binary relation ~Rðn;mÞ is used to define the

imprecise preferences among the goals by a membership

function. These membership functions define the degree of

satisfaction of fuzzy linguistic relations. To express these

fuzzy relations, linguistic terms may be use such as—
~R1ðn;mÞ as ‘nth goal is slightly important than mth goal’;
~R2ðn;mÞ as ‘nth goal is moderately important than mth

goal’; and ~R3ðn;mÞ as ‘nth goal is significantly more

important than mth goal.

The membership function related to these linguistic

terms are given as follows:

w ~R1ðn;mÞ ¼
wn � wm þ 1 if � 1�wn � wm � 0

1 if 0�wn � wm � 1

�

ð23Þ

w ~R2ðn;mÞ ¼
wn � wm þ 1

2
if � 1�wn � wm � 1 ð24Þ

w ~R3ðn;mÞ ¼
0 if � 1�wn � wm � 0

wn � wm if 0�wn � wm � 1

�

ð25Þ

In order to incorporate the preferences of the goals

assigned by the DM, a new function for the maximization

of achievement of the goals is defined. This achievement

function is the sum of satisfaction degree of the fuzzy

linguistic relations and fuzzy goals achievement degrees.

Hence, fuzzy hierarchy goal programming is formulated as

follows

Max g
X

K

n¼1

wn

 !

þ ð1� gÞ
X

K

n¼ 1

X

K

m¼ 1

bnmw ~Rðn;mÞ

 !

ð26Þ

wn � 1 8K ð27Þ
wm � 0 8K ð28Þ
wn � wm þ 1�w ~R1ðn;mÞ 8 bnm ¼ 1 ð29Þ

wn � wm þ 1

2
�wR2ðn;mÞ 8 bnm ¼ 1 ð30Þ

wn � wm �w ~R3ðn;mÞ 8 bnm ¼ 1 ð31Þ

0�w ~Rðn;mÞ � 1 ð32Þ

ax� b ð33Þ
x� 0 ð34Þ
g 2 ½0; 1� ð35Þ

where, bnm is a binary variable and takes value 1 if an fuzzy

linguistic relation is considered between nth and mth goals,

and 0 otherwise.

And wn is the membership functions (linear, exponential

and hyperbolic) of nth objective and w ~Rðn;mÞ the fuzzy

reference relation level between objectives n and m. Here,

g is a parameter that is allowed to take values between 0

and 1. With decrease in the value of g, fuzzy linguistic

preferences of the goal achieve more importance; there-

fore, more solutions can be obtained that satisfy these

preferences.

In the multi-objective two-stage FCTP problem formu-

lated in this paper, it is considered that second objective

function (2) is slightly more important than the third

objective function (3) (i.e., type 1 relationship ~R1 between

objectives 2nd and 3rd), first objective (1) is moderately

important than the second objective (2) (i.e., here exist

second type of relationship ~R2 between objective 2nd and

3rd), first objective function (1) is significantly more

important than third objective function (3) (i.e., here exist

type three relation between 1st and 3rd objective).

Hence, by assigning different values to a, as represented
in Eq. (19), we can obtain different models. Now for the

different values of parameter g, different solutions can be

obtained.

Based on the goal programming model (26)–(35),

equivalent model for the initial problem (1)–(10) can be

given as follows

Max g w1 þ w2 þ w3ð Þ þ ð1
� gÞ w ~R1ð2;3Þ þ w ~R2ð1;2Þ þ w ~R3ð1;3Þ

	 


ð36Þ

w1 � 1 ð37Þ
w2 � 1 ð38Þ
w3 � 1 ð39Þ
w1 � w3 þ 1�w ~R1ð2;3Þ ð40Þ

w1 � w2 þ 1

2
�w ~R2ð1;2Þ ð41Þ

w1 � w3 �w ~R3ð1;3Þ ð42Þ

0�w ~R1ð2;3Þ � 1 ð43Þ

0�w ~R2ð1;2Þ � 1 ð44Þ

0�w ~R3ð1;3Þ � 1 ð45Þ

Eq ð16Þ� 18ð Þ& Eq:ð9Þ � ð10Þ ð46Þ

4.4 Stepwise procedure for the problem

Step 1 A multiple objective two-stage FCTP is

formulated with fuzzy constraint parameters as

represented by (1)–(10)
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Step 2 For converting the fuzzy constraint equations to

their equivalent crisp form, the approach by

Jiménez et al. (2007) is adopted, as explained in

Sect. 4.1

Step 3 Fuzzy aspiration levels for the objective functions

are established in the form of linear, exponential

and hyperbolic membership functions,

represented by (20), (21) and (22), respectively

Step 4 Membership functions for the fuzzy linguistic

preferences are established as given by Eqs. (23),

(24) and (25)

Step 5 Final fuzzy goal programming model is

formulated as given by model (36)–(46)

Step 6 The model (36)–(46) is solved for different

membership functions and for different values of

g and a

5 Numerical illustration

In this section, we have studied a numerical problem to

show the efficiency of the proposed model. In this problem

we have considered a double-staged transportation scenario

where at the first stage, the products are shipped from the

suppliers to the distributers, whereas at the second stage,

the products are transported from the distributers and

finally reaches the customers. Three objective functions are

considered for the described numerical problem viz. min-

imization of total cost, maximization of the total items

transported and minimization of the total defects that occur

during the transportation.

Let us consider a logistic firm that deals with the

operation of transporting goods from the suppliers to the

customers. There are ten different suppliers that are ship-

ping the manufactured products to seven different dis-

tributers. Once the product reaches the distributers, they

deal with the further shipment of the products to fifteen

different customers. The associated unit fixed and varying

transportation costs for each possible routes at the first and

second stage is presented in Tables 1, 2, 3 and 4,

respectively.

The associated fixed and varying costs acts as coeffi-

cients for the first objective as explained in Sect. 3,

whereas the second objective involves only the decision

variables and no coefficients associated with it. The third

objective function deals with the minimization of total

Table 1 Fixed cost for the transportation of unit product from sup-

pliers to distributers

Source: suppliers Destination: distributers

1 2 3 4 5 6 7

1 24 19 12 14 10 16 18

2 30 27 22 15 18 24 14

3 28 23 14 17 23 16 28

4 15 16 21 18 13 29 20

5 24 19 29 31 29 12 27

6 16 18 17 26 29 14 23

7 24 16 13 30 14 28 20

8 24 13 30 29 15 13 15

9 18 15 14 17 30 14 26

10 22 20 20 27 17 27 31

Table 2 Fixed cost for the

transportation of unit product

from distributers to customers

Source: distributers Destination: customers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 36 34 33 38 38 37 43 31 23 26 31 29 28 23 30

2 31 33 35 41 36 37 25 22 22 22 32 39 31 33 27

3 41 37 26 33 36 40 24 36 38 43 27 41 37 36 38

4 30 22 38 40 33 41 23 23 36 41 38 28 26 29 39

5 39 29 33 31 40 26 38 27 41 33 40 37 28 33 34

6 22 32 37 23 41 37 37 25 41 34 26 24 39 29 31

7 23 40 42 27 37 30 21 29 26 31 28 41 24 43 36

Table 3 Varying cost for the transportation of unit product from

suppliers to distributers

Source: suppliers Destination: distributers

1 2 3 4 5 6 7

1 13 23 27 23 22 24 9

2 9 27 11 26 9 27 26

3 19 21 25 25 27 22 27

4 19 17 26 10 19 12 15

5 9 16 20 25 22 12 16

6 12 24 9 15 22 16 25

7 11 11 12 10 20 23 20

8 14 27 22 13 13 16 15

9 27 13 20 24 12 10 23

10 19 23 10 26 11 23 15
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defects that occur during transportation. Tables 5 and 6

show the number of defects per thousand products during

transportation at first and second stage, respectively.

The availability of products at the suppliers, capacities

at the distributers and demand of customers are all con-

sidered to be trapezoidal fuzzy numbers. All the data

Table 4 Varying cost for the

transportation of unit product

from distributers to customers

Source: distributers Destination: customers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 34 45 34 53 52 38 52 54 56 46 47 40 43 52 52

2 49 49 48 38 50 38 33 47 41 40 50 55 56 40 40

3 33 46 43 50 39 44 32 45 41 52 52 37 41 33 44

4 32 36 40 48 32 48 33 50 34 47 34 54 54 48 47

5 50 54 40 52 36 34 38 48 48 53 46 33 31 42 34

6 33 43 45 47 54 53 39 55 31 56 47 48 33 33 50

7 35 39 32 39 38 34 54 40 56 41 34 48 46 40 54

Table 5 Defect rate (per

thousand) in product transported

from suppliers to distributers

Source: suppliers Destination: distributers

1 2 3 4 5 6 7

1 0.076 0.101 0.025 0.113 0.061 0.127 0.076

2 0.149 0.102 0.187 0.073 0.129 0.066 0.068

3 0.079 0.154 0.039 0.049 0.178 0.199 0.134

4 0.056 0.188 0.136 0.160 0.206 0.005 0.032

5 0.095 0.039 0.120 0.189 0.040 0.011 0.044

6 0.183 0.113 0.207 0.195 0.140 0.096 0.186

7 0.008 0.178 0.148 0.156 0.131 0.205 0.146

8 0.181 0.041 0.161 0.209 0.017 0.039 0.021

9 0.147 0.035 0.023 0.009 0.166 0.167 0.185

10 0.047 0.166 0.207 0.009 0.071 0.093 0.105

Table 6 Defect rate (per thousand) in products transported from distributers to customers

Source: distributers Destination: customers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.010 0.177 0.110 0.096 0.032 0.090 0.127 0.161 0.149 0.266 0.263 0.168 0.012 0.251 0.007

2 0.127 0.077 0.201 0.019 0.133 0.178 0.101 0.081 0.135 0.098 0.188 0.207 0.266 0.025 0.000

3 0.231 0.078 0.262 0.020 0.077 0.040 0.036 0.067 0.047 0.073 0.004 0.262 0.185 0.010 0.150

4 0.250 0.119 0.007 0.071 0.042 0.092 0.139 0.171 0.213 0.035 0.081 0.142 0.097 0.109 0.174

5 0.139 0.139 0.189 0.222 0.255 0.266 0.125 0.074 0.051 0.241 0.222 0.126 0.043 0.029 0.151

6 0.138 0.238 0.049 0.266 0.179 0.178 0.083 0.062 0.008 0.007 0.100 0.007 0.184 0.076 0.241

7 0.183 0.047 0.098 0.239 0.206 0.072 0.113 0.121 0.243 0.133 0.032 0.087 0.046 0.075 0.196

Table 7 Fuzzy data for the availabilities at different suppliers

Suppliers 1 2 3 4 5 6 7 8 9 10

Availabilities (825, 826,

828,

829)

(795, 797,

798,

800)

(808, 811,

813,

814)

(802, 803,

805,

806)

(798, 800,

802,

804)

(807, 808,

809,

810)

(808, 810,

812,

813)

(806, 807,

808,

810)

(812, 815,

816,

818)

(828, 829,

830,

831)
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involved in the constraints are considered keeping in view

that it does not affect the flow of the products at the con-

secutive stages. Tables 7, 8 and 9 represent the availabili-

ties, capacities and demands at the three consecutive nodes,

respectively.

6 Result and discussion

The multi-objective decision planning model given by

Eqs. (36)–(46) is solved for the given data, the results are

explained and evaluated in this section. The nonlinear

problem obtained is coded in AMPL and solved by Knitro

10.3.0 solver through NEOS server. The results are

obtained for the different values of g and a that are

recorded and analyzed.

For the model with linear membership function, the

values of the objective function (Z) are given in Table 10.

It is clear from Table 10 that, the value of (Z) increases

with increase in the value of g, whereas there is no

Table 8 Fuzzy data for the capacities of the different distributers

Distributers 1 2 3 4 5 6 7

Capacities (974, 976,

978, 980)

(927, 928,

930, 932)

(891, 893,

895, 896)

(1024, 1027,

1026, 1027)

(1120, 1122,

1121, 1123)

(983, 985,

986, 988)

(1091, 1093,

1095, 1097)

Table 9 Fuzzy data for the demands of different customers

Customers Demand

1 (410, 411, 413, 415)

2 (392, 394, 396, 398)

3 (451, 453, 454, 456)

4 (415, 417, 419, 420)

5 (357, 358, 360, 362)

6 (438, 441, 443, 445)

7 (427, 429, 431, 433)

8 (394, 396, 398, 400)

9 (364, 367, 369, 370)

10 (439, 440, 442, 444)

11 (374, 376, 378, 380)

12 (368, 370, 371, 372)

13 (408, 411, 412, 414)

14 (435, 437, 439, 441)

15 (388, 390, 392, 393)

Table 10 Compromise value of Z for linear membership function

a

#
g

0.1 0.5 0.9

0.1 1.51779 1.72228 1.92671

0.3 1.51901 1.72333 1.9276

0.5 1.52031 1.72441 1.9285

0.7 1.52157 1.72548 1.92936

0.9 1.52441 1.72796 1.93149

Table 11 Compromise value of Z1 for linear membership function

a

#
g

0.1 0.5 0.9

0.1 274,246 274,238 274,238

0.3 274,300 274,292 274,292

0.5 274,347 274,346 274,346

0.7 274,408 274,410 274,418

0.9 274,493 274,490 274,490

Table 12 Compromise value of Z2 for linear membership function

a

#
g

0.1 0.5 0.9

0.1 12,254.5 12,254.5 12,254.5

0.3 12,243.5 12,243.5 12,243.5

0.5 12,232.5 12,232.5 12,232.5

0.7 12,221.5 12,221.5 12,221.5

0.9 12,210.5 12,210.5 12,210.5

Table 13 Compromise value of Z3 for linear membership function

a

#
g

0.1 0.5 0.9

0.1 1428.8 1426.87 1428.24

0.3 1426.61 1424.94 1425.32

0.5 1420.23 1422.67 1421.38

0.7 1426.22 1426.78 1427.01

0.9 1420.09 1419.08 1419.35
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significant change in values with increase in the values of

a. This increase is because of the increase in values of

associated weights (g), which is directly influencing the

values of the membership functions of the three objective

functions. Hence, value of the objective function (Z) is

highest for the highest value degree of feasibility (a) and
weights (g). For the compromise values of the first objec-

tive function (Z1), the cost decreases with increase in the

relative weight (g) and increases with the increase in the

feasibility degree (a) as given in Table 11. The best value

(minimum) for the first objective function is attained at the

a = 0.1 and a = 0.9. This trend is noticed because the

(a) Objective Function  (Z ) (b) First Goal ( 1Z )

(c) Second Goal ( 2Z ) (d) Third Goal ( 3Z )
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Fig. 4 Representation of

objective function and goals for

linear membership function

Table 14 Compromise value of

Z for exponential membership

function

a

#
g

0.1 0.5 0.9

0.1 1.43679 1.08798 1.8

0.3 1.43963 1.23273 1.8

0.5 1.4014 1.24763 1.8

0.7 1.44395 1.19081 1.8

0.9 1.44821 1.24943 1.8

Table 15 Compromise value of Z1 for exponential membership

function

a

#
g

0.1 0.5 0.9

0.1 271,665 272,703 381,656

0.3 271,431 279,024 381,307

0.5 278,109 271,198 380,859

0.7 271,204 303,220 380,584

0.9 271,012 271,012 380,203

Table 16 Compromise value of Z2 for exponential membership

function

a

#
g

0.1 0.5 0.9

0.1 12,254.5 12,254.5 12,254.5

0.3 12,243.5 12,243.5 12,243.5

0.5 12,232.5 12,232.5 12,232.5

0.7 12,221.5 12,221.5 12,221.5

0.9 12,210.5 12,210.5 12,210.5

Table 17 Compromise value of Z3 for exponential membership

function

a

#
g

0.1 0.5 0.9

0.1 1429.13 1428.25 1397.73

0.3 1419.7 1420.03 12,243.5

0.5 1422.71 1400 1400.17

0.7 12,221.5 1458.94 1391.98

0.9 1403.05 1422.22 1398.52
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increment in the assigned weight value (g) gives more

preference to the sum of the membership functions for the

objective functions and less importance to the degree of

feasibility. Similarly, Tables 12 and 13 represent the

compromise values of the second and third objective

functions, respectively. The second objective function (Z2)

is of maximization type and it remains unchanged with

change in the value of g, where its value decreases with

increase in the value of a. For the third objective function

(Z3), the best compromise value is obtained at a = 0.9 and

(a) Objective Function  ( Z ) (b) First Goal ( 1Z )
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Fig. 5 Representation of

objective function and goals for

exponential membership

function

Table 18 Compromise value of Z for hyperbolic membership

function

a

#
g

0.1 0.5 0.9

0.1 1.57616 1.8808 2.18543

0.3 1.57616 1.8808 2.18543

0.5 1.57616 1.8808 2.18543

0.7 1.57616 1.8808 2.18543

0.9 1.57616 1.8808 2.18543

Table 19 Compromise value of Z1 for hyperbolic membership

function

a

#
g

0.1 0.5 0.9

0.1 340,935 341,284 340,817

0.3 340,628 341,322 340,726

0.5 340,560 340,688 340,678

0.7 341,177 340,769 340,783

0.9 341,305 340,950 341,089

Table 20 Compromise value of Z2 for hyperbolic membership

function

a

#
g

0.1 0.5 0.9

0.1 12,184.1 12,173.7 12,185

0.3 12,189.7 12,181.1 12,189.5

0.5 12,194.1 12,191.7 12,193.8

0.7 12,198.6 12,197.8 12,198.4

0.9 12,202.4 12,202.7 12,203

Table 21 Compromise value of Z3 for hyperbolic membership

function

a

#
g

0.1 0.5 0.9

0.1 1313.15 1324 1325.64

0.3 1321.81 1318.87 1324

0.5 1319.69 1319.16 1317.5

0.7 1315.68 1318.56 1317.16

0.9 1327.75 1317.79 1320.91
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g = 0.5. Figure 4 represents the change in the values of

objective functions or goals at different values of g and a.
Table 14 represents the values of objective function (Z)

for the exponential membership functions. Similarly, the

values of first, second and third objective functions are

given in Tables 15, 16 and 17, respectively, for different

values of g and a. At g = 0.9, the value of Z becomes

stable for each value of a,whereas for other values of g, the
value of Z is not exactly stable, but almost unchanged for

any change in a. The compromise value of first objective or

goal (Z1) is minimum at g = 0.1 and a = 0.9, which is the

best value for that goal. With increase in g, the value of Z1
increases less significantly up to g = 0.5, and it increases

with a remarkable rate when g = 0.9. This pattern is seen

because of the involvement of exponential membership

function. The best value of Z2 is achieved at a = 0.9 and is

same for all the values of g. Similarly, the best compromise

value for the third objective (Z3) is obtained at g = 0.1 and

a = 0.7. The pattern of variation in the values of objective

functions for the exponential membership function is rep-

resented in Fig. 5.

For the hyperbolic membership function, the values of

the objective function and goals are, respectively, given in

Tables 18, 19, 20 and 21. The objective function value (Z)

is increasing with increase in the value of g where it is

unchanged with every change in the value of a. For the

minimization type objective function (Z1), the compromise

value is worst near g = 0.5 and best near g = 0.9, whereas

the value (Z1) not changing in a regular pattern with change

in the value of a. The compromise value of second

objective function (Z2) is increasing slightly with increase

in the value of a, while it is not in regular pattern with

respect to the change in the value of parameter g. Similarly,

the compromise value of third objective function (Z3) is not

following any pattern with increase and decrease in the

values of g and a. The diagrammatic representation of the

compromise values of the objective function and goals for

hyperbolic function is shown in Fig. 6.

7 Conclusion

In this paper, a transportation planning decision model with

fixed charge and two-stage is studied in formulating the

problem. The proposed model is formulated with three

objectives (or goals) that are to be considered simultane-

ously. The first objective function is for the minimization

of total transportation cost at both the stages. Maximization

of the total quantity of the products to be shipped from the

manufacturing plant to the distributers and from the dis-

tributers to the customers is considered as the second

objective function, whereas the minimization of the total

deterioration that may occur during the whole transporta-

tion process is taken as the third objective. The availabil-

ities, capacities and the demand are all assumed to be

uncertain and more specifically trapezoidal fuzzy numbers.

Fuzzy linguistic relations or preferences are also studied

and formulated between the three conflicting objective

functions. The fuzzy linguistic preferences are discussed in

details, and a fuzzy goal programming-based solution

technique is also studied. We have also studied the effect

on the optimal planning model when different linear and

(a) Objective Function  ( Z ) (b) First Goal ( 1Z )

(c) Second Goal ( 2Z ) (d) Third Goal ( 3Z )
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Fig. 6 Representation of

objective function and goals for

hyperbolic membership

function
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nonlinear membership functions (exponential and hyper-

bolic) are applied. The efficiency of the proposed model

and the solution methodology is tested by solving the

model carrying a simulated data set. A sensitivity analysis

is also done for the change in the various parameters of the

model. In this paper, we have used only linear membership

functions for the fuzzy linguistic relations; however, in

future the model could be extended by using nonlinear

membership functions for fuzzy relations among the

objectives. Also, some efficient heuristic and metaheuristic

approaches such as krill herd algorithm (Abualigah et al.

2017b, c, 2018a, b) could be used in future for obtaining

the compromise solution to the discussed problem.
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