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Abstract
This paper presents a multi-objective planning approach for the optimal placement of distributed generation (DG) units in

unbalanced radial distribution systems using a hybrid differential evolution (DE) and cuckoo search algorithm (CSA). In

this planning optimization, the objective functions formulated are the minimization of: (i) total real power loss, (ii)

maximum average voltage deviation index, (iii) total neutral current, and (iv) total cost. The total cost includes the cost of

energy purchased from the grid and the capital investment and operational cost of DG units. These objective functions are

aggregated using max–max and max–min analogies. Fuzzy set theory is used to model the uncertainties in load and

generation of renewable DG units. Hence, these objective functions are found to be fuzzy sets. An appropriate defuzzi-

fication approach is used so as to compare and rank different solutions. A modified three-phase forward–backward sweep-

based load flow algorithm including the DG model is used as the support subroutine of the proposed solution algorithm

using the hybrid DE–CSA. The simulation results show that significant improvements in power loss, maximum average

voltage deviation, system unbalance, and total annual energy cost are obtained due to the DG integration in unbalanced

distribution networks. The results obtained with fuzzy-based modeling of load and generation are found to be superior as

compared to the deterministic load and generation.

Keywords Unbalanced radial distribution system planning � Fuzzy set � Distributed generation � Differential evolution

algorithm � Cuckoo search algorithm

List of symbols
NBR Total number of branches/lines/feeder

segments

NB Total number of buses

NG Total number of DG units

RM(.) Removal function

Superscript

(woDG)

Without DG

Superscript

(wDG)

With DG

Superscript * Fuzzy quantity

Superscript - Phasor quantity

Superscript

a, b, c

Phases a, b, c

ILðIÞ Load (branch) current

V Bus voltage

P Qð Þ Active (reactive) power demand by the

load

1 Introduction

The optimal integration of distributed generation (DG) into

distribution networks provides significant economical and

operational benefits, such as the deferral in investment for

building new lines, reduction in energy purchase from the

grid, reduction in network power loss, improvement in bus

voltage, peak load shaving, improvement in system sta-

bility and reliability (El-Khattam and Salama 2004; Bayod-

Rújula 2009). A recent state-of-the-art review on the
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approaches for DG integration is available in Adefarati and

Bansal (2016). Moreover, the practical distribution net-

works are usually unbalanced because of unequal loading

among the phases and the high mutual inductance between

the distribution lines which are seldom transposed. The

proper placement of DG units can reduce the unbalancing

of a network. Hence, the distributed generation allocation

planning is a multi-objective optimization problem for the

optimization of various objective functions under certain

technical constraints.

There are various optimization techniques have been

used (Abu-Mouti and El-Hawary 2011; Al Abri et al. 2013;

Shaaban et al. 2013; Hejazi et al. 2013; Hung and Mithu-

lananthan 2013; Kroposki et al. 2013; Doagou-Mojarrad

et al. 2013; Sheng et al. 2015; Kim et al. 2014; Jabr and Pal

2009; Haghifam et al. 2008; Ramana et al. 2010; Hien et al.

2013; Niknam 2008; Ganguly and Samajpati 2015; Gan-

guly et al. 2013; Nasiraghdam and Jadid 2012; Soroudi and

Ehsan 2011; Jamian et al. 2014; Sanjay et al. 2017;

Gkaidatzis et al. 2017; Hassan et al. 2017; Kansal et al.

2017; Nguyen and Vo 2018; Coelho et al. 2018) in the

literature to solve this planning optimization problem. This

includes classical approaches such as analytical approaches

(Hung and Mithulananthan 2013; Kroposki et al. 2013),

mixed integer programming (Al Abri et al. 2013; Melgar

Dominguez et al. 2018), optimal load flow (Moreti et al.

2018) and exhaustive search (Kim et al. 2014; Ramana

et al. 2010), ordinal optimization approach (Jabr and Pal

2009), sensitivity analysis (Moreti et al. 2018), and meta-

heuristic algorithms such as genetic algorithm (GA)

(Shaaban et al. 2013; Sheng et al. 2015; Haghifam et al.

2008; Ganguly and Samajpati 2015; Hassan et al. 2017),

differential algorithm (DE) (Hejazi et al. 2013), hybrid

shuffled frog leap algorithm and DE (Doagou-Mojarrad

et al. 2013), particle swarm optimization (Hien et al. 2013;

Kansal et al. 2017), hybrid particle swarm optimization

(PSO) and ant colony optimization (ACO) (Niknam 2008;

Gkaidatzis et al. 2017), adaptive genetic algorithm (AGA)

(Ganguly and Samajpati 2015), modified non-dominated

sorting GA (NSGA) (Soroudi and Ehsan 2011), gravita-

tional search algorithm (Jamian et al. 2014), hybrid grey

wolf optimizer (Sanjay et al. 2017), stochastic fractal

search algorithm (SFSA) (Nguyen and Vo 2018), War

Optimization (Coelho et al. 2018), hybrid teaching–learn-

ing-based optimization (Quadr et al. 2018). There are

numerous objective functions formulated for the determi-

nation of optimal locations and sizes for DG units in dis-

tribution networks. These are:

(i) The minimization of system upgradation cost

(Shaaban et al. 2013; Kim et al. 2014),

(ii) The cost of supply interruption (Shaaban et al.

2013),

(iii) The maximization of profit of a distribution

company (Hejazi et al. 2013),

(iv) The minimization of power/energy loss (Shaa-

ban et al. 2013; Hung and Mithulananthan

2013; Doagou-Mojarrad et al. 2013; Sheng

et al. 2015; Kim et al. 2014; Jabr and Pal

2009; Haghifam et al. 2008; Ramana et al.

2010; Hien et al. 2013; Ganguly and Sama-

jpati 2015; Ganguly et al. 2013; Jamian et al.

2014; Sanjay et al. 2017; Gkaidatzis et al.

2017; Hassan et al. 2017; Kansal et al. 2017;

Coelho et al. 2018; Quadr et al. 2018),

(v) Maximizing benefit of DG integration in terms

of reduced power loss, network upgrade

deferral, environmental value, etc. (Kroposki

et al. 2013),

(vi) Minimization of pollutant emission (Doagou-

Mojarrad et al. 2013; Soroudi and Ehsan

2011; Melgar Dominguez et al. 2018),

(vii) Minimization of voltage deviation (Sheng

et al. 2015; Ganguly and Samajpati 2015;

Jamian et al. 2014; Sanjay et al. 2017; Quadr

et al. 2018),

(viii) Maximization of voltage stability margin

(Sheng et al. 2015; Quadr et al. 2018),

(ix) Minimization of cost of energy not supplied

(Kim et al. 2014),

(x) Maximization DG penetration (Jabr and Pal

2009),

(xi) Minimization of investment and operational

cost of DG units (Haghifam et al. 2008;

Melgar Dominguez et al. 2018),

(xii) Maximization of network loadability due to

the DG placement (Hien et al. 2013),

(xiii) Minimization of cost of power generation by

DG units and by distribution companies

(Niknam 2008),

(xiv) Minimization of total installation and opera-

tional cost and minimization of risk factor

(Ganguly et al. 2013).

In most of the DG planning approaches, the distribution

systems are assumed to be balanced (Abu-Mouti and El-

Hawary 2011; Al Abri et al. 2013; Shaaban et al. 2013;

Hejazi et al. 2013; Hung and Mithulananthan 2013; Kro-

poski et al. 2013; Doagou-Mojarrad et al. 2013; Sheng

et al. 2015; Kim et al. 2014; Jabr and Pal 2009; Haghifam

et al. 2008; Hien et al. 2013; Niknam 2008; Ganguly and

Samajpati 2015; Ganguly et al. 2013; Nasiraghdam and

Jadid 2012; Soroudi and Ehsan 2011; Jamian et al. 2014;

Sanjay et al. 2017; Gkaidatzis et al. 2017; Hassan et al.

2017; Kansal et al. 2017; Nguyen and Vo 2018; Coelho

et al. 2018; Quadr et al. 2018; Melgar Dominguez et al.
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2018; Moreti et al. 2018). The planning of DG in unbal-

anced radial distribution systems has been reported only in

Ramana et al. (2010). In most of the works, the planning

has been done by considering the deterministic load

demand, except in Ganguly and Samajpati (2015), in which

the load and generation uncertainties are modeled by fuzzy

set. In recent years, valuable researches have been carried

out in the field of fuzzy set. In Amin et al. (2017), the

concept of triangular linguistic hesitant fuzzy set and tri-

angular linguistic hesitant fuzzy set and the concept of

triangular cubic linguistic hesitant fuzzy sets are explained.

The application of triangular cubic fuzzy numbers is

explained in Fahmi et al. (2017a). In Fahmi et al. (2017b),

the authors have proposed the cubic TOPSIS method and

grey relational analysis set. The application of triangular

cubic fuzzy hybrid aggregation concept is explained in

Fahmi et al. (2018a). The use of triangular cubic linguistic

hesitant fuzzy number in decision making is well explained

in Fahmi et al. (2018b). In Fahmi et al. (2018c), the

application of trapezoidal cubic fuzzy number Einstein

hybrid weighted averaging operators is discussed. The

concept of cubic fuzzy Einstein aggregation operators is

described in Fahmi et al. (2018d). The authors in Al-Janabi

(2017, 2018), Al-Janabi and Alwan (2017), Ali (2012), Al-

Janabi et al. (2018) have proposed different pragmatic

approaches for solving complex optimization problems. It

is observed that integration of DG is only carried out in

balanced distribution networks for load and generation

uncertainties. However, in Samal et al. (2016), a planning

approach for unbalanced distribution networks is reported.

But, DG is not included in the planning model considering

load and generation uncertainties. Hence, there is no work

reported in the literature for the integration planning of DG

in unbalanced networks considering load and generation

uncertainties, as per the best knowledge of the authors.

In the proposed planning approach, the optimal number,

locations, and sizes for DG units are determined by opti-

mizing four objective functions. They are minimization of

(i) power loss reduction index, (ii) maximum average

voltage deviation index, (iii) neutral current reduction

index, and (iv) cost reduction index. All these indices are

ratio of the respective quantity with DG to that without

DG. For example, the cost reduction index is a ratio of the

cost of energy with DG to that without DG; the cost of

energy with DG includes the energy purchase cost from the

grid and the investment and operational cost of DG units.

These objective functions are aggregated using two

approaches: (a) fuzzy max–max analogy and (b) fuzzy

min–max analogy. The results obtained with both the

approaches are compared. The load and generation uncer-

tainties are modeled by triangular fuzzy membership

function (Ganguly and Samajpati 2015). A hybrid differ-

ential evolution and cuckoo search algorithm (DE–CSA) is

used as a solution strategy for this planning optimization.

In the proposed hybrid DE–CSA approach, the trial vector

for crossover of the chromosomes is generated by follow-

ing either the DE (Price et al. 2006) or the CSA (Yang and

Deb 2009) scheme. A three-phase forward–backward load

flow algorithm for unbalanced distribution systems

including DG model is used as the support subroutine of

the proposed planning approach. A 19-bus and a 25-bus

unbalanced radial distribution networks are used to

demonstrate the work. The contributions of this works can

be summarized as:

• Formulation for a fuzzy multi-objective planning model

for the integration of DG units in unbalanced radial

distribution networks considering the uncertainties in

load and generation

• Proposal of a hybrid DE–CSA as the solution strategy

• Performance comparison among DE, CSA, and hybrid

DE–CSA

This paper is organized as follows: fuzzy multi-objective

planning problem is described in Sect. 2. In Sect. 3, the

proposed planning approach using hybrid DE–CSA is

provided. Sections 4 and 5 provide the computer simula-

tion results and conclusion of the work.

2 Fuzzy multi-objective planning problem

The section provides the formulation of the fuzzy multi-

objective planning problem for the integration of DG units

in unbalanced distribution networks considering load and

generation uncertainties.

2.1 Modeling of load and generation
uncertainties

The uncertainties in load demand and generation of DG

units are modeled by triangular fuzzy membership function

as in Ganguly and Samajpati (2015). Both the load demand

in a distribution network and the power generation of the

renewable DG units vary in different time of a day and in

different seasons depending on the wind speed, solar

radiation, etc. These variations do affect the bus voltage,

current flowing through network branches, and power

production. This may lead to violation of various technical

constraints of a network. The triangular fuzzy membership

functions used to represent the uncertainties associated

with the load demand and the DG power generation are

shown in Fig. 1.

The load demand is described as a fuzzy number, as

shown in Fig. 1a, in which Lmin and Lmax are the lowest

possible and the highest values of load demand. The load

demand corresponding to the membership value 1, i.e.,

A fuzzy pragmatic DE–CSA hybrid approach for unbalanced radial distribution system planning… 12319

123



Lnom specifies the value with the highest possibility of

existence. Similarly, the power generated by the DG units

is a fuzzy number, as represented in Fig. 1b, where PGmin

and PGmax represent minimum and maximum DG power

generation, respectively. The objective functions do appear

as fuzzy numbers, since they are functions of the load

demand and the power generation. Hence, this needs a

defuzzification approach so as to compare/rank the solu-

tions on the basis of the objective functions.

2.2 Defuzzification approach

The total distance criterion (TDC)-based defuzzification

approach is used as described in Ganguly and Samajpati

(2015). It finds out the average of the sum of areas under

the left and right sides of the fuzzy membership function

for a particular a-level. For a triangular fuzzy number, the

removal {RM (~f n)} for a fuzzy function corresponding to

a-cut is obtained as:

fRMð~f nÞg ¼ fna1 þ 2fn2 þ fna2ð Þ=4 ð1Þ

where [fna1, fna2] is the defuzzified value for the fuzzy

function ~f n obtained corresponding to a-cut and fn2 is the

point at which membership value attains unity.

2.3 Objective function formulation

Four objectives are aggregated in a multi-objective plan-

ning framework. They are: (i) power loss reduction index

(ii) maximum average voltage deviation index, (iii) neutral

current reduction index, and (iv) cost reduction index. The

first two parameters/objective functions are important in

energy efficiency and power quality of a power distribution

network. It is a well-known fact that as the power system

loss reduces the energy efficiency improves. The mini-

mization of the second objective function improves the

voltage profile of a network. The third objective function,

i.e., neutral current reduction index is formulated so as to

reduce system unbalance, since the most of the loads of a

distribution network are of single-phase and unbalanced

(different loading at different phases). When the neutral

current which is the summation of three-phase current

becomes higher, the system becomes highly unbalanced.

Hence, minimization of neutral current reduces the system

unbalance. The fourth objective, i.e., cost reduction index

is used to minimize the cost of energy purchase of the

utilities. These four objective functions fairly describe the

optimization model. Moreover, these also articulate the

benefits of DG integration in unbalanced distribution net-

works. These indices are mathematically expressed as:

(i) Power loss reduction index (PLRI) The power loss

reduction index is defined as the ratio of maximum

power loss in any branch with DG integration to the

total network power loss without DG.

PLRI ¼ max
RMð~PLwDG

i Þ
RMðT ~PLwoDGÞ

� �
i¼1;...;NB

ð2Þ

The power loss in a branch i is computed as evaluated in

Samal et al. (2016).

Where TPL is the total power loss in kW.

(ii) Maximum average voltage deviation index

(MAVDI) The average voltage deviation (AVD) is

computed as:

AVDi ¼
Va

sub � RMð ~Va
i Þ þ Vb

sub � RMð ~Vb
i Þ þ Vc

sub � RMð ~Vc
i Þ

� �
=3

ð3Þ

The maximum AVD among all the buses is the

ratio of the maximum AVD with DG integration to

AVD without DG as given below.

MAVDI ¼ max
RM A ~VDwDG

i

� �
RM A ~VDwoDG

i

� �
( )

i¼1;...;NB

ð4Þ

1

Lmin Lnom Lmax

µL

PGmaxPGnomPGmin

µPDG

(a) (b)

1

Fig. 1 Fuzzy representation of:

a load demand and b DG power

generation
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In which Vsub represents the substation voltage; ~Va
i , ~Vb

i ,

and ~Vc
i denote the magnitudes of the phase voltage of

phases a, b, and c, respectively.

(iii) Neutral current reduction index (NCRI) The total

neutral current reduction index is defined as the

ratio of the maximum neutral current in any

branch due to the DG integration to the sum total

of neutral current of the network without DG.

NCRI ¼ max
RM ~NCwDG

i

� �
RMðT ~NCwoDGÞ

( )
i¼1;...;NBR

ð5Þ

where; TNC ¼
X

p2a;b;c

XNBR

i¼1

I
p
i ð6Þ

where I
p
i represents branch current of phase p of

the ith branch.

(iv) Cost reduction index (CRI) The cost reduction

index is defined as the maximum ratio of the sum

total of the investment and operational cost of any

DG unit and the energy purchase cost from the

grid to the energy purchase cost of the distribution

network without DG.

CRI ¼ max
RM ~CwDG

i

� �
RM ~CwoDG

� �
( )

i¼1;...;NG

ð7Þ

~C ¼ ~Csub þ
XNG

i¼1

~Ci ð8Þ

where C represents total cost of energy in a year which

includes the cost of energy purchased from the grid and

cost of energy produced by DG units (if any). This cost

function consists of two parts. They are: (a) annual cost of

energy purchased from the grid (Csub) and (b) the capital

investment and operational cost of DG units (Ci). Without

DG, Csub is computed as:

~Csub ¼ ksubLF
XNB

i¼1

~di8760 ð9Þ

where LF represents load factor of the system, d represents

the load demand at ith bus in kW and ksub represents cost of

electric energy purchased from the grid in $/kWh,

respectively. With DG, it is computed as:

~Csub ¼ ksubLF
XNB

i¼1

~Li8760 �
XNG

i¼1

CFiP ~DGidghri
� �

365

ð10Þ

where CFi represents the capacity factor of the ith DG unit;

PGi is the power generated by the ith DG unit; dghri
denotes the number of operating hours for the ith DG unit.

The capital investment and operational cost of DG units is

computed as given below.

~Ci ¼ ai þ bi ~PGi ð11Þ

a ¼ Captial costð$=kWÞ � Rated capacity � Gr

Life timeðyearÞ � 365 � 24 � CF
ð12Þ

where the price of DG power generation of unit i, is

denoted as Ci ($/kWh) (Nasiraghdam and Jadid 2012); Gr

denotes the annual rate of benefit and CF represents the

capacity factor of DG units. The term bi is for the annual

operation and maintenance cost for the ith DG unit.

Two approaches are used to aggregate all the objectives

as:

Approach #1: max–max analogy:

fit1 ¼ max PLRIð Þ; MAVDIð Þ; ðNCRIÞ; ðCRIÞf g ð13Þ

Approach #2: min–max analogy:

fit2 ¼ min PLRIð Þ; MAVDIð Þ; ðNCRIÞ; ðCRIÞf g ð14Þ

The fitness function (FT) assigned to each chromosome

representing a potential solution in the proposed DE–CSA

is as follows:

Maximize FT ¼ 1=ð1 þ fitÞ ð15Þ

This fitness function is maximized under the following

constraints:

(i) Voltage constraint The voltage in each bus should lie

within a given upper and lower limits.

Vmin
s �RMð ~Vabc

s Þ�Vmax
s ð16Þ

(ii) Thermal constraint The current flowing through

each branch must be less than the respective

thermal limit of the conductor.

RM(~Iabcj Þ� Imax
j ð17Þ

(iii) DG power generation constraint

PDGmin\RM(P ~DGiÞ\PDGmax ð18Þ

3 Proposed planning approach using hybrid
DE–CSA

The DG integration technique using hybrid DE–CSA

consists of several subroutines, such as fuzzy three-phase

load flow algorithm, an encoding/decoding technique for
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the chromosome of the hybrid DE–CSA, etc. These are

described in detail in the following subsections.

3.1 Three-phase fuzzy forward–backward sweep
load flow algorithm incorporating DG model

The three-phase forward–backward sweep load flow algo-

rithm, as proposed in Samal and Ganguly (2015), is used in

this work. It consists of two steps. In the first step, the

backward sweep is executed to find out the branch currents.

Firstly, the load current in each phase in each bus of an

unbalanced radial distribution is calculated. Then, the

forward sweep is executed to obtain the bus voltages. The

load flow algorithm (Samal and Ganguly 2015) is modified

by considering fuzzy load and generation model as in

Ganguly et al. (2013).

3.1.1 Incorporation of DG model in load flow

The DG model is incorporated by modifying the active and

reactive power demand at the bus at which a DG unit is

placed, say, at bus i, as:

PDG
Dip

¼ Pbase
Dip

� PDG
ip

QDG
Dip

¼ Qbase
Dip

� QDG
ip

ð19Þ

where PDG
Dip

and QDG
Dip

are the active and reactive power

demand for pth phase of ith bus with a DG unit and Pbase
Dip

and Qbase
Djp

are the active and reactive power demand for pth

phase of ith bus of the base-case network; PDG
ip is the active

power generated by the DG unit placed at pth phase of ith

bus.

3.2 Proposed planning approach using
the hybrid DE–CSA

A brief overview on DE and CSA is provided in the fol-

lowing subsections followed by the pseudocode of the

planning approach using DE–CSA.

3.2.1 Differential evolution (DE) algorithm: an overview

DE is a meta-heuristic algorithm (Price et al. 2006) like

GA. It performs with basic GA operator, such as selection,

crossover, and mutation. It has several improved versions.

They can be categorized using the notation: DE/k/h/j; in

which the method for the selection of the parent chromo-

some for crossover operation is indicated by k, single or

multi-point crossover is indicted by h, and the crossover

process to be followed is denoted by j. In this work, DE/

rand/1/bino is used. The bino indicates that the crossover

operation is performed by a series of binomial experiments.

It starts searching for the best solution with some m-di-

mensional initial chromosomes which are randomly cho-

sen. Then, they are iteratively generated according to the

basic GA operation. The jth chromosome in iteration it is

given by:

xjðitÞ ¼ ðxj1ðitÞ; xj2ðitÞ; . . .; xjnðitÞÞ ð20Þ

A vector is created in every iteration for mutation by

using the vector difference from two randomly selected

chromosomes. Then, trial vectors are generated for cross-

over and selection. The fitter chromosomes are selected for

the next iteration. A brief discussion on mutation, cross-

over, and selection processes is provided below.

Mutation For a randomly chosen target chromosome, a

vector is generated for mutation in iteration it as given

below.

mjðit þ 1Þ ¼ xrn1ðitÞ þ Gðxrn2ðitÞ � xrn3ðitÞÞ ð21Þ

where indices rn1, rn2, rn3 2 [1, gpop] are generated ran-

domly, G 2 ½0; 2� is a scale factor, by which the mutation

size is controlled, and gpop is the size of the population.

Crossover For crossover, firstly, a trial chromosome is

generated in iteration it as:

UjðitÞ ¼ ðUj1ðitÞ;Uj2ðitÞ; . . .;UjnðitÞÞ ð22Þ

Ujkðit þ 1Þ ¼ mjk

�
ðit þ 1Þ randjk½0; 1� �CR or k 6¼ krnd

ð23Þ

where CR is a parameter of DE in the range [0, 1], and krnd

is a random integer number in the range of [1, gpop] to

ensure that the trial vector Uj can get at least one element

from the mutant vector.

Selection The selection process is for selecting the fitter

chromosome from the parent and the trial/child chromo-

some, and it is done as:

xjðit þ 1Þ ¼ Ujðit þ 1Þ FTFðUjðit þ 1Þ[ FTFðUjðitÞÞ
xjðtÞ FTFðUjðit þ 1Þ\FTFðUjðitÞÞ

�

ð24Þ

where FTF (.) is the fitness function to be maximized as

given in Eq. (15).

3.2.2 Cuckoo search algorithm (CSA): an overview

Cuckoo search algorithm (CSA) was developed by Xin-She

Yang and S. Deb by observing the intelligent egg laying

strategy of cuckoos, which lay their eggs in a randomly

chosen host nest for their survival. If the host bird identifies

cuckoo eggs, it will either throw away their eggs or build a

new nest somewhere else. The nest in the CSA algorithm is

same as the population, which is used in particle swarm

optimization. Each egg in the nest represents the possible

12322 P. Samal et al.
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Fig. 2 Pseudocodes for the proposed planning approach using the hybrid DE–CSA
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solution or decision variable for the optimization problem.

The CSA follows three rules (Yang and Deb 2009) as:

• Each cuckoo lays one egg at a time and abandons in a

random nest;

• The better-quality eggs (good solutions) move to the

next generations;

• A host bird can discover an alien egg with a probability

pa = [0, 1] and either builds a new nest at a new

location or completely abandons its own nest or throws

the eggs away.

CSA generates random host nest using levy flight for the

new solution. The solution (xtþ1
i ) is updated in iteration

(t ? 1) as:

xtþ1
i ¼ xti þ a� LevyðkÞ ð25Þ

LevyðkÞ ¼
Cð1 þ kÞ � sin p�k

2

� �
C 1þk

2

� �
� k� 2

k�1
2

�����
�����

1
k

ð26Þ

where a [usually equal to 1 (Yang and Deb 2009)] and k
[lies (El-Khattam and Salama 2004; Adefarati and Bansal

2016)] are the parameters of CSA.

3.2.3 Proposed planning approach: pseudocodes

In the proposed approach, unlike DE, the trial vector for

each chromosome is generated by using the updating

equations of both DE and CSA. The pseudocodes for the

planning approach using hybrid DE–CSA is shown in

Fig. 2.

3.3 Encoding/decoding strategy
of the chromosomes

A chromosome for the hybrid DE–CSA represents a can-

didate solution which consists of the following three

decision variables.

(i) The first one, i.e., NG represents the number of

DG units connected to the system. In this work,

maximum six DG units are considered.

(ii) The second variable (b) encodes the information

of the location of DG units in a distribution

network. The locations appearing in the first three

entries are considered to be photovoltaic type, and

rest are wind-turbine-type DG units.

(iii) The third decision variable represents DG power

generation in each location.

where PDG
ia ;PDG

ib ;PDG
ic are the DG capacities

located in the three phases in ith bus and NG is the

number of DG units.

A pictorial representation of a chromosome is shown in

Fig. 3.

Since it is a type of direct encoding process, the

decoding of a chromosome is straightforward. If the loca-

tion/number is appearing as fractional number it is con-

verted to its immediate integer number.

NG β1 β2 … βNG P1a
DG P1b

DG P1c
DG … PNGa

DG PNDGb
DG PNGc

DG

Power generated by DG unitsNumber of DG units Locations of DG unit

Fig. 3 Encoding strategy for a chromosome in DE–CSA

Table 1 Optimal parameters

used in DE, CSA, and DE–CSA
Parameters DE (Price et al. 2006) CSA (Yang and Deb 2009) DE–CSA

gpop 100 100 100

max_it 150 150 150

Individual parameters CR = 0.8 k = 1 CR = 0.8, k ¼ 1

G = 1.0 – G = 1.0

Table 2 Comparison of MET among DE, CSA, and DE–CSA for

Case D planning with max–max approach for the 25-bus system

Algorithm MET (s)

DE (Al-Janabi 2018) 304

CSA (Al-Janabi and Alwan 2017) 323

DE–CSA 215
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4 Simulation study: results and discussion

The computer simulation study for the proposed planning

approach is carried out in MATLAB R2012 environment

using two test systems, i.e., 19-bus and 25-bus unbalanced

radial distribution systems. The computer specification is

Intel� CoreTM i3-2330M processor with a speed of

2.2 GHz and RAM of 2 GB. The load and line data are

available in Ramana et al. (2010) and Samal et al. (2016)

for the 25-bus and 19-bus systems, respectively. The base

voltage and base MVA are 11 kV, 1 MVA and 4.16 kV, 30

MVA for the 19-bus and for the 25-bus systems, respec-

tively. The total active and reactive power demand for the

19-bus system are 365.94 kW and 177.27 kVAR, respec-

tively. For the 25-bus system, they are 3240 kW and 2393

kVAR, respectively. The DE, CSA, and hybrid DE–CSA

parameters are optimized by taking repetitive simulation

runs, and the optimal parameters are shown in Table 1. The

DG penetration level, i.e., the ratio of total DG active

powers to total active power demand is considered to be

0.4 and 0.5 for 19-bus and 25 bus system, respectively. A

hybrid renewable DG system comprising of photovoltaic

(PV) and wind turbine (WT) units is considered in the

planning. For a bus, maximum three DG units are to be

placed in three different phases. The cost parameters of DG

such as Gr, CF, and other parameters are taken from

(Nasiraghdam and Jadid 2012). The maximum sizes of DG

units are considered to be 30 kW and 400 kW for 19-bus

and 25-bus system, respectively. The DG units are assumed

to be operated at unity power factor. Four different plan-

ning optimization cases are used as in Ganguly and

Samajpati (2015). They are:

• Case A: The load and generation are modeled by peak

load demand and maximum generation, respectively.

• Case B: The load is modeled by fuzzy set and the

generation is modeled by the maximum generation.

• Case C: The load is modeled by peak load demand and

the generation is modeled by fuzzy set.

• Case D: Both the load and generation are modeled by

fuzzy set.

For fuzzy modeling, the load demand L
�

= (0.5, 1, 1.3) p.u.

of the peak load demand and generation as (0.3, 1, 1.5) of

the nominal generation are used.

It is observed that hybrid DE–CSA converges at a faster

rate as compared to the DE and CSA. It seems that the

algorithms are quickly converged or being trapped into

local optimal with the min–max approach. However, no

conclusion can be made from the result of single run of any

heuristics-based algorithm. Thus, multiple simulation runs

are carried out and the results are shown in the following

subsection. Table 2 shows the comparison of mean exe-

cution time (MET) in seconds among DE, CSA, and DE–

CSA for Case D planning with max–max for the 25-bus

systems.

It can be observed from the above table that DE–CSA

takes less execution time than DE and CSA for Case D

planning with the max–max approach. A comparison of

mean fitness values of the population as obtained with

hybrid DE–CSA, DE, and CSA for the 19-bus system is

shown in Fig. 4.

4.1 Results of Approach #1: max–max analogy

Firstly, quantitative performance comparison of the hybrid

DE–CSA with DE and CSA with the results of 25 runs is

(a) (b)

Fig. 4 Comparison of fitness value among DE–CSA, DE and CSA for a 19-bus system considering Case D using: a max–max and b min–max

approach
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shown in Table 3. The mean values of the objective

function for the solutions obtained with the hybrid DE–

CSA are found to be better than those obtained with DE

and CSA. The results obtained with the hybrid DE–CSA

are also found to be superior to those obtained with DE and

CSA in view of the standard deviation of the solutions of

25 runs. Hence, hybrid DE–CSA is used as the solution

strategy to show the performance comparison among dif-

ferent planning cases in Table 4. All the indices formulated

as the objective functions are significantly improved with

DG placement. The network is found to be relatively bal-

anced with the DG placement because the neutral current is

significantly reduced. The results obtained with the plan-

ning Case D are found to be better than those obtained with

the planning Cases A–C. In Table 5, the locations, types,

and sizes of the DG units for the best solutions as obtained

with the hybrid DE–CSA are provided. It is found that the

buses 9 and 10 are found to be the effective locations for

the PV type of DG unit. Similarly, the buses 13 and 14 are

effective locations for the WT type of DG integration.

4.2 Results of Approach #2: min–max analogy

A similar simulation experiment is performed with Ap-

proach #2, i.e., min–max analogy. The comparative results

among different algorithms and different planning cases

are given in Tables 6 and 7, respectively. The results are

slightly different as compared to those obtained with the

Approach #1. But, they show similar trends as explained

above. In Table 8, the locations, types, and sizes of the DG

Table 4 Comparisons among the different objective functions solutions for different planning cases for 19-bus and the 25-bus systems using

hybrid DE–CSA using the max–max approach

Objective function 19-bus system 25-bus system

Without DG With DG Without DG With DG

Case A Case B Case C Case D Case A Case B Case C Case D

TPL (kW) 13.470 4.8298 4.8302 4.8281 4.1621 150.12 70.7518 62.2578 71.0012 62.0917

MAVDI (p.u.) 0.0494 0.0244 0.0243 0.0244 0.0221 0.0689 0.0370 0.0348 0.0367 0.0345

TNC (p.u.) 2.384 1.4570 1.4556 1.4558 1.3601 0.6375 0.4839 0.4601 0.4845 0.4578

TC ($/yr) 116,685.09 71,331.7 71,324.2 71,295.6 65,461.1 1,033,119.36 908,847 845,678 892,391 841,151

Table 3 Comparison of the

results as obtained with DE–

CSA, DE, and CSA for Case D

planning for 19-bus and the

25-bus systems using the max–

max approach

System Solution strategy TPL (kW) MAVDI (p.u.) TNC (p.u.) C ($/yr)

Mean SD Mean SD Mean SD Mean SD

19 bus DE–CSA 4.1621 0.0357 0.0221 0.0001 1.3601 0.0349 65,461.1 0.0004

DE 4.3181 0.0364 0.0224 0.0005 1.3861 0.0354 66,557.8 0.0005

CSA 4.3262 0.0454 0.0226 0.0011 1.3877 0.0359 66,894.1 0.0006

25 bus DE–CSA 62.0917 0.3044 0.0345 0.0001 0.4578 0.0031 841,151 0.0005

DE 67.0643 0.4638 0.0355 0.0003 0.4758 0.0032 883,188 0.0006

CSA 67.2414 0.5165 0.0360 0.0011 0.4761 0.0033 883,961 0.0010

Table 5 Comparison among location, type of DG, and power gen-

erated by DG in kW for the best solution obtained with the different

planning cases with hybrid DE–CSA using the max–max operation

Distribution

network

Case Location Type of

DG

Power generated by

DG units (kW)

19 bus A 13 PV 27.5 19.8 30.0

14 WT 21.6 27.4 19.8

B 13 PV 30.0 23.1 30.0

14 WT 18.0 27.1 17.9

C 10 PV 30.0 30.0 27.3

14 WT 19.9 16.1 22.8

D 10 PV 29.9 30.0 30.0

14 WT 17.2 20.5 18.5

25 bus A 9 PV 189.8 166.8 264.4

13 WT 323.1 400.0 275.6

B 10 PV 187.0 180.4 215.0

13 WT 325.0 366.9 345.0

C 10 PV 194.5 200.9 236.4

13 WT 400.0 256.7 331.2

D 11 PV 220.0 176.9 154.0

13 WT 318.6 352.6 397.7
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units for the best solutions as obtained with the hybrid DE–

CSA are provided. The results show that the locations,

sizes, types of DG units are different in various planning

cases. Thus, it can be said that the optimal locations, types,

and sizes of DG units vary with type of load and generation

modeling. These are also found to be different as compared

to those obtained with Approach #1. More number of

locations are found to be the potential locations for DG

integration in Approach #2. It is also observed that the best

solution consists of DG units in all the three phases in a

location with unequal sizes. This basically reduces the

system unbalance.

Table 6 Comparison of the

results as obtained with DE–

CSA, DE, and CSA for Case D

planning for 19-bus and the

25-bus systems using min–max

approach

System Solution strategy TPL (kW) MAVDI (p.u.) TNC (p.u.) TC ($/yr)

Mean SD Mean SD Mean SD Mean SD

19 bus DE–CSA 4.1632 0.0358 0.0222 0.0001 1.3602 0.0351 65,477.3 0.0005

DE 4.3198 0.0365 0.0225 0.0006 1.3869 0.0355 66,561.7 0.0006

CSA 4.3271 0.0456 0.0227 0.0012 1.3881 0.0361 66,902.8 0.0007

25 bus DE–CSA 63.0981 0.3048 0.0346 0.0001 0.4581 0.0032 841,155 0.0006

DE 68.0348 0.4641 0.0357 0.0004 0.4761 0.0033 883,197 0.0007

CSA 68.1358 0.5170 0.0361 0.0012 0.4764 0.0034 883,976 0.0011

Table 7 Comparisons among the different objective functions solutions for different planning cases for 19-bus and the 25-bus systems using

hybrid DE–CSA using min–max approach

Objective function 19-bus system 25-bus system

Without DG With DG Without DG With DG

Case A Case B Case C Case D Case A Case B Case C Case D

TPL (kW) 13.470 4.8319 4.8316 4.8285 4.1632 150.12 70.8142 63.6412 71.0124 63.1651

MAVDI (p.u.) 0.0494 0.0245 0.0244 0.0245 0.0222 0.0689 0.0371 0.0349 0.0368 0.0346

TNC (p.u.) 2.384 1.4572 1.4559 1.4561 1.3602 0.6375 0.4840 0.4602 0.4847 0.4581

TC ($/yr) 116,685.09 71,336.5 71,328.6 71,298.5 65,477.3 1,033,119.36 908,851 845,684 892,402 841,155

Table 8 Comparison among

location, type of DG, and power

generated by DG in kW for the

best solution obtained with the

different planning cases with

hybrid DE–CSA using the min–

max approach

Distribution network Case Location Type of DG Power generated by DG units (kW)

19 bus A 10 PV 21.2 23.6 28.9

14 WT 27.8 23.3 21.2

B 13 PV 30.0 30.0 22.1

14 WT 19.6 16.7 27.7

C 10 PV 23.7 27.1 26.6

14 WT 25.0 20.2 23.5

D 10 PV 26.8 30.0 23.9

14 WT 22.6 19.5 23.3

25 bus A 10 PV 207.7 313.0 273.1

14 WT 305.4 251.6 269.0

B 10 PV 128.6 149.0 195.9

14 WT 400.0 400.0 346.3

C 10 PV 316.5 271.0 216.1

13 WT 201.5 272.6 342.1

D 9 PV 224.5 262.5 295.3

13 WT 324.8 261.1 251.4
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4.3 Decision of results

From the above discussions, it is found that best solutions

are obtained with max–max approach by using DE–CSA

hybrid approach for Case D planning for both 19- and

25-bus unbalanced distribution systems. Furthermore, it is

found that DE–CSA takes less execution time than DE and

CSA for Case D planning with the max–max approach. It is

also seen that with the application of only DE or CSA may

lead to entrapment into local optima. However, the DE–

CSA hybrid method provides more exploration and

exploitation of the solutions around local optima so that

better results can be found. Thus, the DE–CSA hybrid

approach is found to be a superior optimization algorithm.

The main limitations and advantages of the proposed

approach are discussed below.

The main limitation of the pragmatic method is the

variations in the final solutions in multiple simulation runs.

However, the advantages of the proposed DE–CSA hybrid

method are:

1. Better speed of convergence than DE and CSA.

2. Lesser execution time than DE and CSA.

3. Better final solution than DE and CSA.

4. Lower mean and standard deviations of the final results

than DE and CSA.

5 Conclusion

In this paper, a planning approach has been proposed to

determine the optimal locations, type, and sizes of DG

units in unbalanced radial distribution systems. Firstly, a

mathematical planning optimization model is formulated.

It consists of four objective functions. They are mini-

mization of the power loss, the maximum average voltage

deviation, the total neutral current, and the total cost of the

system which includes cost of energy purchased from the

grid and the capital investment and operational cost of DG

units. These objective functions are minimized so as to

determine the locations, type, and sizes for DG units. Two

types of renewable DG units, i.e., solar PV and wind tur-

bine, are considered to be placed into distribution net-

works. The load demand and power generation

uncertainties are modeled using fuzzy number. This yields

all the objective functions to be fuzzy numbers. Hence,

these are defuzzified so as to compare and rank different

solutions. The solution strategy used is the hybrid DE–

CSA, in which the trial vector for crossover of the chro-

mosomes is generated by following either DE or CSA

scheme. A forward–backward load flow algorithm

including the DG model is used in the planning approach.

The salient outcomes of the results obtained are:

• The proposed planning optimization approach using

hybrid DE–CSA provides the locations, sizes, and type

of DG units so as to obtain a distribution network with

significantly reduced power loss and better voltage

magnitude.

• The annual cost of energy is significantly reduced due

to DG placement because the energy demand from the

grid is significantly reduced.

• The network is also found to be relatively balanced with

the DG allocation, since the neutral current is signif-

icantly reduced.

• For a particular type of DG unit, some particular

locations are found to be suitable locations to get the

best/optimal solution. But, these locations are found not

to vary with the planning of different load and

generation models.

• The best solution is found to have DG units in all the

three phases in a location with unequal sizes.

• The optimal locations, types, and sizes of DG units are

found to vary with type of load and generation

modeling. The best result, however, is obtained with

the planning with fuzzy load and generation. The results

also depend on the type of aggregation of the objective

function.

• The performance of the hybrid DE–CSA is found to be

better and consistent as compared to individual algo-

rithms of DE and CSA in terms of mean and standard

deviation of the solution obtained with multiple runs.

• The hybrid DE–CSA is found to take lesser mean

execution time than DE, and CSA.

• The hybrid DE–CSA method is found to be superior

optimization algorithm than individual DE and CSA.

However, the theme of this approach is limited to the

investment planning for DG integration. A coordinated

investment planning and control can be a potential future

direction of research.
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