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Abstract
In the life cycle of software product development, the software effort estimation (SEE) has always been a critical activity.
The researchers have proposed numerous estimation methods since the inception of software engineering as a research area.
The diversity of estimation approaches is very high and increasing, but it has been interpreted that no single technique
performs consistently for each project and environment. Multi-criteria decision-making (MCDM) approach generates more
credible estimates, which is subjected to expert’s experience. In this paper, a hybrid model has been developed to combine
MCDM (for handling uncertainty) and machine learning algorithm (for handling imprecision) approach to predict the effort
more accurately. Fuzzy analytic hierarchy process (FAHP) has been used effectively for feature ranking. Ranks generated
from FAHP have been integrated into weighted kernel least square support vector machine for effort estimation. The model
developed has been empirically validated on data repositories available for SEE. The combination of weights generated by
FAHP and the radial basis function (RBF) kernel has resulted in more accurate effort estimates in comparison with bee colony
optimisation and basic RBF kernel-based model.

Keywords Software effort estimation · Fuzzy analytic hierarchy process · Least square support vector machine

1 Introduction

Software engineering (SE) discipline has evolved since the
1960s and has garnered significant knowledge (Zelkowitz
et al. 1984). Academia and industry have invested in SE
research and development in past decades that resulted in
the development of improved tools, methodologies and tech-
niques. Over the years, there has been an intense criticism of
SE research as it advocatesmore than it evaluates (Glass et al.
2002). Many researchers have attempted to characterise SE
research, but they failed to present a comprehensive picture
(Jørgensen et al. 2009; Shaw 2002).
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Software effort estimation (SEE) is a critical component
that predicts the effort to accomplish development or main-
tenance tasks based on historical data. Accurate estimates
are critical to company and customers because it can help
the company personnel to classify, prioritise and determine
resources to be committed to the project (Nisar et al. 2008).
Since its inception, the problems and issues in SEE have been
addressed by researchers and practitioners. The researchers
have proposed numerous estimationmethods since the incep-
tion of SE as a research area (Jørgensen and Shepperd 2007;
Rastogi et al. 2014; Trendowicz et al. 2008). The applica-
tion of developed models has been found to be appropriate
for the specific types of the development environment. The
advances in the technology stack and frequent changing user
requirements havemade the process of SEE difficult. Numer-
ous approaches have been tried to predict this probabilistic
process accurately, but no single technique has performed
consistently. Even, few researchers have tried to employ a
combination of the approaches rather than a single approach.
The major reason for inaccurate estimates is that datasets of
past projects are usually sparse, incomplete, inconsistent and
notwell documented. Another reason for this is that SEE pro-
cess is dependent on multiple seen and unseen factors.
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Despite extensive research on it, the community is unable
to develop and accept a single model that can be applied
in diverse environments and which can handle multiple
environmental factors. Recently, multi-criteria decision-
making (MCDM) methods have emerged as well-qualified
approaches to handle multi-factored decision making. Also,
incorporation of machine learning (ML) approaches to the
primary estimation model has always enhanced the perfor-
mance. Thus, current paper is motivated to focus on the
development of hybrid model based on ML and MCDM.
Fuzzy analytic hierarchy process (FAHP) has been used
effectively for feature ranking. Ranks generated from FAHP
have been integrated into weighted kernel least square sup-
port vector machine (LSSVM) for effort estimation. The
model developed has been empirically validated on data
repositories available for SEE.

The paper has been divided into six sections. The follow-
ing section describes related work in detail. The third sec-
tion elaborates the methodology followed. Proposed hybrid
model is presented in fourth section. The fifth section pro-
vides the empirical validation of the proposed model. The
final section concludes the paper and provides directions for
future work.

2 Related work

Algorithmic SEE models have been studied for many years
(Jørgensen and Shepperd 2007). The application of ML
techniques to predict effort has gained significant momen-
tum from the year 2006. The most explored algorithmic
approaches such as “fuzzy logic” (Ryder 1998; Wong et al.
2009), “neural networks” (Attarzadeh and Ow 2009; Azzeh
and Nassif 2016; Dasheng and Shenglan 2012; Idri et al.
2006, 2002; Sheta et al. 2015) andgenetic algorithms (Ghare-
hchopogh et al. 2015; Milios et al. 2013; Oliveira et al.
2010) have been consistently used in every aspect of SEE.
Other areas identified are “nature inspired algorithms”which
focus on the use of algorithms based upon various natural
phenomena (Chalotra et al. 2015a, b; Dave and Dutta 2011;
Gharehchopogh et al. 2015; Idri et al. 2007; Madheswaran
and Sivakumar 2014; Reddy et al. 2010). “feature selection
in problem domain” (Kocaguneli et al. 2015; Liu et al. 2014),
“support vector regression” (Braga et al. 2007; Corazza et al.
2011) and “case-based reasoning” (Mendes et al. 2002).

Wen et al. (2012) investigated 84 primary studies of ML
techniques in SEE for finding out different ML techniques,
their estimation accuracy, the comparison between different
models and estimation contexts. Based upon this study, they
found that in SEE, eight types of ML techniques have been
applied and concluded that ML models provide more accu-
rate estimates as compared to non-ML models.

The effectiveness of support vector regression (SVR) for
web effort estimation using a cross-company dataset has
been investigated by Corazza et al. (2011). The analysis has
showed that different preprocessing strategies and kernels
can significantly affect the prediction effectiveness of the
SVR approach. It has also revealed that logarithmic prepro-
cessing in combination with the radial basis function (RBF)
kernel provides the best results. The estimation of software
effort has been performed by usingML techniques instead of
subjective and time-consuming estimation methods (Hidmi
et al. 2017). Models using two ML techniques, viz. sup-
port vector machine (SVM) and k-nearest neighbour (k-NN)
separately and combining those together using ensemble
learning, have been proposed.

SVM has been widely used in classification and non-
linear function estimation. However, the major drawback
of SVM is its higher computational burden for the con-
strained optimisation programming. This disadvantage has
been overcome by LSSVM, which solve linear equations
instead of a quadratic programming problem. LSSVM has
been employed in numerous applications including stock
market trend prediction (Marković et al. 2015), project risk
forecasting (Liyi et al. 2010) and analogy-based estimation
(ABE) (Benala and Bandarupalli 2016).

There may be numerous factors affecting software effort
estimates, but few dominate the given environment of soft-
ware development, and those must be identified. Effort
estimation can be understood as a problem that depends upon
multiple factors which are qualitative as well as quantitative.

Minku and Yao (2013) argued that SEE can be considered
as a multi-objective problem. Ferrucci et al. (2011) studied
the efficacy of multi-criteria genetic programming on effort
estimation and stated that effort estimation is an inherently
multi-criteria problem. Jiang andNaudé (2007) found project
size as the crucial factor in effort estimation.

Shepperd and Cartwright (2001) surveyed a company
and discovered that project managers rely on the parame-
ters namely count of programs, functionality, difficulty level,
personnel skill and sameness as past work for effort esti-
mation in a particular project. Morgenshtern et al. (2007)
considered the factors in mainly four dimensions, namely
project uncertainty, use of estimation development, esti-
mation management and the experience of the estimator.
Furulund and Molokken-Ostvold (2007) highlighted and
confirmed the importance of using experienced-based data
and checklists. Jiang and Naudé (2007) considered factors
for making a decision, viz. project size, average team size,
development language, computer-aided software engineer-
ing (CASE) tools, development type and computer platform.
They have also discussed that use of historical data can also
be used as a mean to increase SEE accuracy.

Liu et al. (2017) suggested newmethod based on LSSVM
and K -means clustering for ranking the optimal solutions
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for the multi-objective allocation of water resources. An
approach has been proposed using feature ranking and fea-
ture selection approach in combination with weighted kernel
LSSVMs. The feature weights obtained by the analytic hier-
archy process (AHP)method are used for feature ranking and
selection and usedwith the LSSVMs through aweighted ker-
nel (Marković et al. 2017).

3 Methodology

3.1 Multi-criteria decision-making (MCDM)

MCDM approaches qualify for SEE as they can combine
the historical data and expert judgement by quantifying sub-
jectivity in judgement. The MCDM method is the process
of making decisions in the presence of multiple criteria or
objectives. The criteria can be multiple and quantifiable or
non-quantifiable from which an expert is required to choose.
The solution of the problem is dependent on the inclination of
the expert since the objectives usually are contradictory (Bel-
ton and Stewart 2002). Further, the difficulty of developing a
selection criterion for precisely describing the preference of
one alternative over another is also a concern.MCDMmodels
include preference ranking organisation method for enrich-
ment evaluation (PROMOTHE), technique for the order
of prioritisation by similarity to ideal solution (TOPSIS),
AHP, elimination and choice expressing reality (ELECTRE),
VIKOR, each of which has a different algorithm to solve the
problems (Lee and Tu 2011).

AHP (Menzies et al. 2006) is the most explored MCDM
technique having characteristics of both model-based sys-
tems and expert judgement. AHP, developed by Saaty (2004),
is an MCDM technique which has been used in vast areas.
Further, it has also been identified as one of the prime
approaches that can be used for supporting the software
estimation planning. AHP has the capability of combining
historical data and expert judgement by quantifying sub-
jective judgement. The result of this method is to provide
a formal and systematic method of extracting, combining
and capturing expert judgements and their relationship to
similar reference data (Menzies et al. 2006). Despite being
a popular approach, there are certain issues which need to
be addressed. Firstly, as judgements given by experts are
relative, so any arbitrary change in the value of alterna-
tives may affect the weights of other alternatives resulting
in a problem known as rank reversal (Wang and Luo 2009).
Another issue with AHP is its subjectivity and imprecision
due to Saaty’s nine-point scale (Saaty 2008). These issues
can be handled by adding fuzziness to AHP, thus result-
ing in new approach called fuzzy analytic hierarchy process
(FAHP).

3.1.1 Fuzzy analytic hierarchy process (FAHP)

Fuzzy logic is a well-established approach for handling the
subjectivity of human judgements and vagueness of the data
(Zadeh 1988). The combination of fuzzy logic and AHP is
a hybrid approach for both qualitative and quantitative crite-
ria comparison using expert judgements to find weights and
relative rankings. Since most of multi-criteria methods suf-
fer from vagueness, FAHP approach can better tolerate this
vagueness as experts are always more confident while using
the intervals for estimates rather than fixed values (Mikhailov
and Tsvetinov 2004). The combination of fuzzy logic and
structural analysis generates more credible results than con-
ventional AHP (Liao 2011; Tang et al. 2005).

In FAHP, expert judgement is represented as a range of
values instead of single crisp values (Kuswandari 2004). The
range values can be given as optimistic, pessimistic ormoder-
ate. Triangular fuzzy number (TFN) is represented byEq. (1).
Here l,m, u are pessimistic, moderate and optimistic val-
ues, respectively. The difference between u− l describes the
degree of fuzziness of judgement.

ai j = (li j ,mi j , ui j ) (1)

Algorithm 1: Algorithm for FAHP.
Input: Comparison matrix, Fuzzy triangular number for finding

the relative importance of criteria, Linguistic fuzzy scale.
Output: Weight matrix, Optimal criterion
Result: Relative ranking of criteria using weight matrix.

1 Initialisation:
2 Decomposing a problem into decision hierarchy consisting of
interrelated decision elements, in which goal is at the top level
and lower levels consist of criteria and sub-criteria.

3 Load the linguistic scale for the fuzzy triangular number.
4 Perform the relative importance of criteria.
5 Compute the pairwise comparison matrix.
6 Compute the consistency of the matrix.
7 if Consistency ratio (CR) ≥ 0.1 then
8 Go to line 4
9 else

10 Compute the synthetic extent values.
11 Compute the degree of possibility for fuzzy numbers.
12 Compute the weight matrix for criteria.
13 Compute the normalised weighted decision matrix.
14 Compute the optimal solution.
15 end
16 return

There are various methods available to calculate the weig-
hts and prioritise ranking of the alternatives (Buckley 1985;
Chang 1992, 1996; Csutora and Buckley 2001; Kahraman
et al. 2003; Van Laarhoven and Pedrycz 1983). Naghadehi
et al. (2009) discussed these methods and recommended for
using the method suggested by Chang (1996). Thus, in this
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Table 1 Linguistic scale for FAHP

Linguistic scale for importance Fuzzy numbers for FAHP Membership function Domain Triangular fuzzy scale (l,m, u)

Just equal 1 (1.0, 1.0, 1.0)

Equally important 1 μM(x) = (3 − x)/(3 − 1) 1≤ x ≤ 3 (1.0, 1.0, 3.0)

Weak importance over each another 3 μM(x)= (x − 1)/(3 − 1) 1 ≤ x ≤ 3 (1.0, 3.0, 5.0)

μM(x) = (5 − x)/(5 − 3) 3 ≤ x ≤ 5

Essential importance over each other 5 μM(x) = (x − 3)/(5 − 3) 3 ≤ x ≤ 5 (3.0, 5.0, 7.0)

μM(x) = (7 − x)/(7 − 5) 5 ≤ x ≤ 7

Very strong importance over other 7 μM(x) = (x − 5)/(7 − 5) 5 ≤ x ≤ 7 (5.0, 7.0, 9.0)

μM(x) = (9 − x)/(9 − 7) 7 ≤ x ≤ 9

Extreme importance over other 9 μM(x) = (x − 7)/(9 − 7) 7 ≤ x ≤ 9 (7.0, 9.0, 9.0)

The value of second element in comparison with first would be by reciprocal of TFN given as (1/u1,1/m1,1/l1)

paper for finding the weights, the synthetic extent analysis
method given by Chang (1996) has been utilised. The objec-
tive of this method is to perform pairwise comparisons. TFN
provides an opportunity in deciding the weight of one alter-
native over the other.

Algorithm 1 describes the steps applied in FAHP. The
membership function used for creating the fuzzy set is given
in Eq. (2), where x is the weight of relative importance of
one criterion over another criterion.

μA(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x ≤ l
x−l
m−l for l ≤ x ≤ m
u−x
u−m for m ≤ x ≤ u

0 for x ≥ n

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2)

The modified Saaty’s scale using TFN (presented in
Table 1) has been used to construct the FAHP comparison
matrices. The reciprocal property for the TFN is generated
as a ji = (1/u ji , 1/m ji , 1/l j i ). The next step is to use
extent analysis method to calculate the relative ranking of
alternatives, and the synthetic extent values are obtained by
Eq. (3).

Si =
m∑

j=1

N j
ci ⊗

⎡

⎣
n∑

i=1

m∑

j=1

N j
ci

⎤

⎦

−1

(3)

The degree of possibility of N1 ≥ N2 is defined in Eq. (4).

V (N1 ≥ N2) = sup[min (μN 1 (x)) , μN 2 (y))] (4)

V (N2 ≥ N1) = hgt (N1 ∩ N2) = μN 1(d)

=
⎛

⎜
⎝

1 i f m2 > m1

0 i f l1 ≥ u2
l1−u2

(m2−l2)−(m1−l1)
, otherwise

⎞

⎟
⎠

(5)

In Eq. (5), d is representing ordinate of the highest intersec-
tion point between μN 1 and μN 2. The degree of possibility
for a convex fuzzy number is defined by Eq. (6).

V (N ≥ N1, N2, ..., Nk)

= [(N ≥ N1) , ..., (N ≥ Nk)] = min V (N ≥ Ni )
(6)

In order to normalise the weight vector, Eq. (7) is used.

WA = WT
∑

(WT )
(7)

After calculating the weights of criteria, the scores of alter-
natives with respect to each criterion are evaluated and
compositeweights of the decision alternatives are determined
by aggregating the weights through the hierarchy.

In a situation, where many pairwise comparisons are per-
formed, inconsistencies may typically arise. The effective
method for identifying the inconsistency is by comput-
ing consistency index (CI). It refers to the average of the
remaining solutions of the characteristic equation for the
inconsistent matrix A. This index increases in proportion to
the inconsistency of the estimates. The most often approach
used for calculating CI is given in Eq. (8).

CI = λmax − n

n − 1
(8)

whereλmax denotes themaximal eigenvalue of thematrix and
n is the number of factors in the judgement matrix. When the
matrix is consistent, then λmax = n and CI = 0.

CR is a measure of how a given matrix compares to a
purely random matrix in terms of their consistency indices.
Equation 9 is used for calculating CR.

CR = CI

RI
(9)
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Table 2 Random index N 3 4 5 6 7 8 9 10 11 12

RI(n) 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.54

Here, random index (RI) is the average CI of 100 ran-
domly generated (inconsistent) pairwise comparison matri-
ces. These values are tabulated in Table 2 for different values
of n. CR of less than 0.1 (“10% of average inconsistency”) of
randomly generated pairwise comparisons (matrices) is usu-
ally acceptable. If CR is not acceptable, judgements should
be revised.

This has been witnessed that the ranking in FAHP is still
based on the decisions of the expert. Further, from the lit-
erature, it has been witnessed that ML algorithm provides
promising results for labelled data. Thus, there is a need of a
hybrid model that can handle knowledge from past dataset,
while removing uncertainty in recall issue of the expert and
utilise judgement of the expert. To address these aspects,
the current research has proposed to merge the MCDM (for
handling uncertainty) andMLalgorithm (for handling impre-
cision), to create a robust hybrid method. The rankings of the
projects have been calculated using FAHP, and these weights
are further used to modify the weight of kernel. Themodified
kernel has been utilised by LSSVM algorithm for prediction.
In this work, RBF kernel has been applied, whereas the gen-
erated set of weights from FAHP can also be independently
incorporated into other kernel-based functions.

3.2 Support vector machine (SVM)

SVM is a discriminative classifier formally defined by a sep-
arating hyperplane as presented in Fig. 1. In other words,
given labelled training data (supervised learning), the algo-
rithm outputs an optimal hyperplane which categorises the
new examples. The hyperplane gives the largest minimum
distance to the training examples. Therefore, the optimal sep-
arating hyperplanemaximises themargin of the training data.

SVM is capable of handling and mapping nonlinear clas-
sification using kernel trick. The input data are mapped to
n-dimensional feature space using function, and then, the
linear model is applied in that space, as shown in Fig. 2.
Equation (10) describes the mapping function.

y = f (x) = sign[wTφ(x) + b] (10)

Here,w is the weight vector in the input space, φ is a non-
linear function providing the mapping from the input space
to a higher (possibly infinite)-dimensional feature space, and
b is a bias parameter. For data classification, it is assumed
that yk[wTφ(xk) + b] ≥, k = 1....N . The function f (xk)
is determined by solving the minimisation of Eq. (11), sub-
ject to yk[wTφ(xk) + b] ≥ 1 − εk, k = 1....N , where

X1

X2

Fig. 1 SVM as a binary classifier

εk ≥ 0, k = 1....N .

min Jp(w, ε) = 1

2
wTw + c

N∑

k=1

εk (11)

Based on this, the Lagrangian dual of the problem is
presented as in Eq. (13), which is a quadratic maximisa-
tion problem and hence requires the application of quadratic
programming methods. Thus, the quadratic maximisation
problem is given as in Eq. (13), subject to

∑N
k=1 αk yk = 0

and 0 ≤ αk ≤ c, k = 1, ....., N .

L(w, b, ε, α, v) = J (w, εk) −
N∑

k=1

αk yk[wTφ(xk) + b]

−1 + εk −
N∑

k=1

vkεk (12)

max Q(α) = −1

2

N∑

k,l

yk yl K (xk, xl)αkαl +
N∑

k=1

αk

(13)

Here, K (xk, xl) kernel function acts as a dot product to
map the input data into a higher-dimensional space, given as
K (xk, xl) = φ(xk)Tφ(xl). A detailed explanation of SVM
is given by Vapnik (2013).

3.3 Least squares support vector machines (LSSVMs)

LSSVMs are least squares versions of SVM, which are a
set of related supervised learning methods that analyse data

123



10886 S. K. Sehra et al.

X2 Φ2(X1,X2)

X1

Φ(x)

Φ1(X1,X2)

Fig. 2 Conversion of nonlinear data to linear in n-dimensional space

and recognise patterns, and which are used for classifica-
tion and regression analysis. Another synonym of standard
SVM is LSSVM algorithm. It adopts equality constraints
and a linear Karush–Kuhn–Tucker system, which has a more
powerful computational ability in solving the nonlinear and
small-sample problem using linear programming methods
(Suykens and Vandewalle 1999). However, the modelling
accuracy of a single LSSVM is not only influenced by the
input data source but also affected by its kernel function
and regularization parameters. LSSVM is a class of kernel-
based learningmethods. LSSVMs have been effectively used
for estimation and nonlinear classification problems. Ges-
tel Suykens et al. (2004) stated that standard SVM and
LSSVM perform consistently in a combination of tuned
hyperparameters. But, the advantage of using LSSVM is
1) less computational burden for the constrained optimi-
sation programming and 2) better for higher-dimensional
data.

In this paper, LSSVMhas been utilised to predict the effort
of software data, while learning from the past available data
of software projects. The function f (xk) is determined by
solving the minimisation of Eq. (14), subject to 1 − ek =
γk[wTφ(xk) + b], k = 1....N .

min Jp(w, e) = 1

2
wTw + γ

1

2

N∑

k=1

e2k (14)

A trade-off is made between the minimisation of the
squared error, e2k , and minimising the dot product of the
weight vectors,wTw, by an optimisation parameter γ . Based
on this, the Lagrangian of the problem is presented as in

Eq. (15), where αk is a Lagrangian multiplier.

1

2
wTw + γ

1

2

N∑

k=1

e2k −
N∑

k=1

αk(γk[wTφ(xk) + b] − 1 + ek)

(15)

The weighted kernel function is defined as K (θxk, θxl)
where θ represents a weight vector comprising of dataset
features. This weighted kernel function makes the LSSVM
as weighted LSSVM. The classification model of weighted
LSSVM is represented as in Eq. (16).

y(x) = sign

[
N∑

k=1

αk yk K (θxk, θxl) + b

]

(16)

At this point, the kernel function is applied which com-
putes the dot product in the higher-dimensional feature space
by using the original attribute set. Some of the kernel func-
tions are listed below:

– Linear: K (xk, xl) = xl T xk + c
– Polynomial : K (xk, xl) = (γ xl T xk + r)d > 0
– Multilayer perceptron: K (xk, xl) = tan h(γ xTl xk + r)

– Radial basis function: K (xk, xl) = exp(−||xk−xl ||2
σ 2 )

Here γ , σ , r and d are kernel parameters. Kernel-based esti-
mation techniques, such as SVMandLSSVM, have shown to
be powerful nonlinear classification and regression methods.
In this study, RBF kernel has been used since it is previously
found to be a good choice in case of LSSVM (Gestel Suykens
et al. 2004).
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4 Proposedmodel

A hybrid model has been developed by combining MCDM
approach FAHP and ML approach LSSVM. FAHP has
been used to generate feature weights, and a weighted ker-
nel (Wk) has been used to assimilate generated weights into
the LSSVM. Algorithm 2 describes the steps followed to
develop the model.

In this model, the criteria chosen have been effort and
lines of code (LOC). The alternatives chosen have been the
projects. The first step has been pairwise comparisons of the
projects based on the effort and LOC criteria. The weights
have been generated for the projects by using the FAHP
methodology as discussed in Sect. 3.1.1 and using the fuzzy
linguistic scale as described in Table 1. The weight vector
generated by FAHP has been used as input to LSSVMmodel.
The weight vector has been used to modify the kernel func-
tion as in Eq. (17) as discussed by Xing et al. (2009).

K (xk, xl) = exp
−||S(xk − xl)||2

σ 2 (17)

In the equation, ||(xk − xl)||2 may be recognised as the
squared Euclidean distance between the two feature vectors
and S = diag[θ1, θ2, ..., θn], where θ1, θ2, ..., θn are weight
vectors generated by FAHP. However, as discussed by Guo

Algorithm2:Algorithm used for development of hybrid
model for modified kernel using FAHP
Input: Comparison matrix, Fuzzy triangular number for finding

the relative importance of criteria, Linguistic fuzzy scale,
Measured effort, Tuning parameters (σ and γ )

Output: EFAH P−RBF−SV M , ERBF−SV M
Result: Compute and outputs the effort using LSSVM and

modified kernel LSSVM.
1 Initialisation:
2 Input the comparison matrix by the expert.
3 Compute the pairwise comparison matrix.
4 Compute the consistency of the matrix.
5 if consistency ratio ≥ 0.1 then
6 Go to line 2
7 else
8 Compute the synthetic extent values.
9 Compute the degree of possibility for fuzzy numbers.

10 Compute the weight matrix for criteria.
11 Compute the normalised weighted decision matrix.
12 end
13 Input the measured effort data of known projects for a given

environment.
14 Train the LSSVM models using optimal values of data σ and γ .

Here n-fold cross-validation has been used.

15 Compute RBF-SVM: K (xk , xl ) = exp(−||xk−xl ||2
σ 2 ) and

FAHP-RBF-SVM: K (xk , xl ) = exp −||S(xk−xl )||2
σ 2 .

16 Compute the weighted LSSVM and generate the predicted effort.
17 Plot the functions.
18 return

et al. (2008) and Xing et al. (2009), the components of fea-
ture weights subject to the conditions, viz. 0 ≤ θk ≤ 1 where
k = 1, ..., n and

∑n
k=1 θk = 1.

Further, LOC and effort values of the projects have been
used to train LSSVM model. An optimal combination of
parameters (γ ,σ ) has been considered where γ denotes the
relativeweights to allowed ek errors during the training phase
and σ is a kernel parameter. They have been tuned keeping
in consideration fitness value of the problem. In this case,
the fitness value to be optimised is MMRE (Eq. 19) and its
value should be minimum for making more accurate predic-
tions. For tuning of parameters, n-fold cross-validation has
been used. After tuning of parameters, the trained model has
been provided LOC as input and effort has been calculated.
The effort value has been calculated for both the methods,
viz. RBF kernel-based LSSVM (RBF-LSSVM) as given in
Eq. (18) and FAHP modified RBF kernel-based LSSVM
(FAHP-RBF-LSSVM) as in Eq. (17).

Table 3 Description of attributes of COCOMO dataset

Category Effort
multiplier

Description

Product attributes RELY Required software reliability

DATA Data base size

CPLX Process complexity

Computer attributes TIME Time constraint for CPU

STOR Main memory constraint

VIRT Machine volatility

TURN Turnaround time

Personnel attributes ACAP Analysts capability

PCAP Programmers capability

AEXP Application experience

VEXP Virtual machine experience

LEXP Language experience

Project attributes MODP Modern programing practices

TOOL Use of software tools

SCED Schedule constraint

Table 4 Statistical analysis of COCOMO dataset

LOC Actual effort

Minimum 1.98 5.9

1st Quartile 8.65 40.5

Median 25.00 98.0

Mean 77.21 683.3

3rd Quartile 60.00 438.0

Maximum 150.00 11400.0
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K (xk, xl) = exp

(

−||xk − xl ||2
σ 2

)

(18)

5 Empirical validation

For empirical validation of the algorithmic models, the data-
sets from the public repository and private vendor projects
data have been used. The dataset of COCOMO, Kemerer and
NASA is available in public domain (Menzies et al. 2012).
The private vendor dataset has been taken from Srivastava
et al. (2012).

5.1 Performancemeasures

The performance of different approaches has been evalu-
ated using different established performancemeasures, mean
magnitude of relative error (MMRE) and root-mean-square
error (RMSE) as depicted in Eqs. (19) and (20), respectively.
Here, the actual effort is taken from the dataset and predicted
effort is the effort calculated using the proposed technique.
These measures have been widely used by the research com-
munity.

MMRE = 1

N

N∑

i=1

Actual effort − Predicted effort

Actual effort
(19)

RMSE =
√
√
√
√ 1

N

N∑

i=1

(Actual effort − Predicted effort)2

(20)

5.2 COCOMO dataset

COCOMO dataset is most commonly used dataset for eval-
uating the performance of proposed techniques. This dataset
consists of 63 software projects, each of which is dependent
upon 17 cost drivers (independent features). The effort value
(dependent feature) is measured in person-months.

Table 3 presents the complete description of effort mul-
tipliers. Effort value (dependent feature) is measured in
person-months and is dependent upon LOC and 15 effort
multipliers. Each of the multipliers receives a rating on a six-
point scale that ranges from “very low” to “extra high” (in
importance or value).

The statistical analysis of COCOMO dataset is depicted
in Table 4. From statistical analysis, it is evident that LOC

Table 5 Comparison matrix of COCOMO dataset with respect to effort criterion

Project no. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 [1 1 1] [1 2 3] [3 4 5] [3 4 5] [5 6 7] [5 6 7] [8 9 9] [2 3 4] [3 4 5] [3 4 5]

P2 0 [1 1 1] [2 3 4] [2 3 4] [4 5 6] [4 5 6] [5 6 7] [1 2 3] [2 3 4] [2 3 4]

P3 0 0 [1 1 1] [1 1 1] [2 3 4] [2 3 4] [4 5 6] [1/4 1/3 1/2] [1/3 1/2 1] [1/3 1/2 1]

P4 0 0 0 [1 1 1] [2 3 4] [4 5 6] [1/4 1/3 1/2] [1/3 1/2 1] [1/3 1/2 1] [1 1 1]

P5 0 0 0 0 [1 1 1] [1 1 1] [2 3 4] [1/7 1/6 1/5] [1/4 1/3 1/2] [1/4 1/3 1/2]

P6 0 0 0 0 0 [1 1 1] [2 3 4] [1/7 1/6 1/5] [1/4 1/3 1/2] [1/4 1/3 1/2]

P7 0 0 0 0 0 0 [1 1 1] [1/8 1/7 1/6] [1/7 1/6 1/5] [1/6 1/5 1/4]

P8 0 0 0 0 0 0 0 [1 1 1] [2 3 4] [2 3 4]

P9 0 0 0 0 0 0 0 0 [1 1 1] [1 2 3]

P10 0 0 0 0 0 0 0 0 0 [1 1 1]

Table 6 Comparison matrix of COCOMO dataset with respect to LOC criterion

Project no. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 [1 1 1] [1/3 1/2 1] [1 1 1] [1 2 3] [4 5 6] [5 6 7] [5 6 7] [4 5 6] [4 5 6] [4 5 6]

P2 0 [1 1 1] [1 2 3] [3 4 5] [4 5 6] [8 9 9] [8 9 9] [5 6 7] [5 6 7] [5 6 7]

P3 0 0 [1 1 1] [1 2 3] [4 5 6] [5 6 7] [5 6 7] [4 5 6] [4 5 6] [4 5 6]

P4 0 0 0 [1 1 1] [2 3 4] [3 4 5] [3 4 5] [1 2 3] [1 2 3] [1 2 3]

P5 0 0 0 0 [1 1 1] [1 2 3] [1 2 3] [1 1 1] [1 1 1] [1 1 1]

P6 0 0 0 0 0 [1 1 1] [1 1 1] [1/3 1/2 1] [1/3 1/2 1] [1/3 1/2 1]

P7 0 0 0 0 0 0 [1 1 1] [1/3 1/2 1] [1/3 1/3 1] [1/3 1/2 1]

P8 0 0 0 0 0 0 0 [1 1 1] [1 1 1] [1 1 1]

P9 0 0 0 0 0 0 0 0 [1 1 1] [1 1 1]

P10 0 0 0 0 0 0 0 0 0 [1 1 1]
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Table 7 Normalised weights Project no. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Weight 0.191 0.289 0.191 0.096 0.045 0.026 0.026 0.046 0.046 0.046

Fig. 3 Hyperplane created by
using cross-validation and
tuning parameters such that
γ = 1.4221 and σ 2 = 2.399

values of the software projects are dispersed over a range
of values with minimum value as 1.98 and maximum value
as 150. Similarly, effort values also span a wide range with
minimum value as 5.9 and maximum value as 11400. Thus,
these data present the development of diverse projects.

The experts have an opinion of giving equal importance
to multiple criteria, viz. effort and LOC. Thus, based on the
fuzzy scale presented in Table 1, the comparisonmatrices are
constructed as given in Tables 5 and 6. Data of 10 projects
from the COCOMO dataset consisting of 63 projects have
been considered to represent themethodology used. It is con-
sidered that the matrix created would have been a complex
one if all the projects have been considered for the pairwise
comparisons. The comparison matrix has been created by
taking effort and LOC as the criteria and projects as alterna-
tives. The other parameters of the dataset have been taken as
constant and have not been used for analysis. The projects
have been relatively ranked based on the effort and LOC
values. In Table 5, the first row represents the relative rank-
ing of projects from P1 to P10 with reference to project P1.
Similarly, relative ranks for all other projects have been gen-
erated by using comparative judgements by considering the
effort as a criterion. In addition, the same methodology has
been used to construct the comparison matrix as depicted in
Table 6. The values of CR for the matrices based upon effort
and LOC are 0.088 and 0.049, respectively, which are less

Table 8 Effort comparison for RBF-LSSVM and FAHP-RBF-LSSVM
using COCOMO dataset

Project no. Actual effort RBF-LSSVM FAHP-RBF-LSSVM

1 2040 468.05 446.83

2 1600 697.51 1219.86

3 243 562.31 454.20

4 240 400.54 346.07

5 33 70.45 65.34

6 43 67.56 56.67

7 8 25.35 18.23

8 1075 330.58 371.68

9 423 329.83 396.74

10 321 341.76 340.27

than 0.1, and hence, these matrices are considered consistent
for weight calculations. The ranks generated have been used
for computing the weights by following the methodology of
FAHP as discussed in Sect. 3.1.1. The normalised weights
thus calculated are shown in Table 7.

The normalised weights thus obtained have been used to
modify RBF kernel as given in Eq. (17). Further, the modi-
fied kernel has been used in LSSVM model to generate the
effort values. As a numerical example, the value of effort
has been computed for LOC value as 30. For this purpose,

123



10890 S. K. Sehra et al.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Actual RBF-LSSVM FAHP-RBF-LSSVM

Project No.

E
ffo

rt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BCO RBF-LSSVM FAHP-RBF-LSSVM

Method

M
M

R
E

0

100

200

300

400

500

600

700

800

900

BCO RBF-LSSVM FAHP-RBF-LSSVM

Method

R
M

SE

(a)

(b)

(c)

Fig. 4 Empirical validation of hybrid model using COCOMO dataset.
a Effort comparison. b MMRE comparison. c RMSE comparison

the values of LOC and effort of remaining projects other
have been provided as training data. The normalised weights
obtained earlier have been given as the input to modify the
kernel function as represented in Eq. (17). Then, LOC value
of 30 has been provided as input and the values of γ and σ

Table 9 MMRE and RMSE comparison of BCO, RBF-LSSVM and
FAHP-RBF-LSSVM using COCOMO dataset

S. no. Method MMRE

MMRE

1 BCO 0.63

2 RBF-LSSVM 0.82

3 FAHP-RBF-LSSVM 0.57

RMSE

1 BCO 763.07

2 RBF-LSSVM 630.78

3 FAHP-RBF-LSSVM 569.43

Table 10 Statistical analysis of NASA dataset

DL ME Effort

Minimum 2.1 19 5

1st Quartile 8.275 26 9.325

Median 17.15 28.5 26.2

Mean 33.589 27.78 49.472

3rd Quartile 52.5 31 94.7

Maximum 100.8 35 138.3

have been tuned tominimiseMMRE. The values of γ and σ 2

have been tuned to 1.4221 and 2.399, respectively. The effort
value computed for LOC value of 30 is 329.83 and 396.74
formethods RBF-LSSVMand FAHP-RBF-LSSVM, respec-
tively. This has been presented in the form of a hyperplane
as illustrated in Fig. 3. The effort values for other projects
have been computed in the same manner. The effort values
obtained by modified RBF kernel and unmodified RBF ker-
nel are presented in Table 8 and Fig. 4a.

Table 9 depicts the MMRE and RMSE comparison val-
ues for RBF-LSSVM and FAHP-RBF-LSSVM with BCO.
MMRE and RMSE values for FAHP-RBF-LSSVM are 0.57
and 569.43, respectively, proving the outperformance of
FAHP-RBF-LSSVM over RBF-LSSVM and BCO. MMRE
and RMSE comparison is also depicted in Fig. 4b, c.

5.3 NASA dataset

NASA dataset is composed of 4 attributes out of which 2 are
independent attributes, viz. methodology (ME) and devel-
oped lines (DL). DL depicts program size including both
new source code and reused code from other projects. It is
presented in KLOC (thousands of lines of codes). The ME
attribute is related to the methodology used in the devel-
opment of each software project. The dataset consists of 1
dependent attribute; namely, effort is given in man-months.
The statistical analysis of NASA dataset is presented in
Table 10. DL attribute has minimum value as 2.1 and max-
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Table 13 Effort comparison of RBF-LSSVMand FAHP-RBF-LSSVM
using NASA dataset

Project no. Actual effort RBF-LSSVM FAHP-RBF-LSSVM

1 115.8 71.09 102.34

2 96 75.9 89.93

3 79 75.16 80.47

4 90.8 80.29 84.98

5 39.6 75.6 43.32

6 98.4 65.79 93.91

7 18.9 16.35 16.44

8 10.3 15.86 14.7

9 28.5 17.33 22.08

10 7 13.18 9.44

11 9 13.77 10.05

12 7.3 15.53 12.91

13 5 9.7 3.8

14 8.4 15.54 10.89

15 98.7 70.91 101.3

16 15.6 13.24 15.26

17 23.9 48.8 32.77

18 138.3 157.43 125.67

Table 14 MMRE and RMSE comparison of BCO, RBF-LSSVM and
FAHP-RBF-LSSVM using NASA dataset

S. no. Method MMRE

MMRE

1 BCO 0.21

2 RBF-LSSVM 0.5

3 FAHP-RBF-LSSVM 0.19

RMSE

1 BCO 9.9

2 RBF-LSSVM 19.74

3 FAHP-RBF-LSSVM 5.99

imum value as 100.8, and effort attribute spans the range
with minimum value as 5 and maximum value as 138.3. This
dataset is less diverse as compared to COCOMO dataset.

The projects of NASA dataset are compared on the basis
of effort and LOC values given in the dataset based on the
linguistic scale as given in Table 1. The comparison matrix
based on effort values is depicted inTable 11. CRvalue of this
matrix has been 0.097 which is less than 0.1; thus, this matrix
is considered as a consistent matrix. The comparison matrix
based on LOC values is depicted in Table 12. The value of
CR for this matrix has been 0.097 justifying the consistency
of the matrix.

The effort values have been computed using the RBF ker-
nel function and modified RBF kernel function by weight
vector generated using FAHP. The comparison of values
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Fig. 5 Empirical validation of hybrid model using NASA dataset. a
Effort comparison. b MMRE comparison. c RMSE comparison

obtained using RBF-LSSVM and FAHP-RBF-LSSVM is
presented in Table 13. Table 14 depicts the MMRE and
RMSE values, respectively, for NASA dataset. MMRE and
RMSE values for FAHP-RBF-LSSVM are 0.19 and 5.99,
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respectively. These are comparatively less thanRBF-LSSVM
and BCO technique. Thus, it clearly depicts that weighted
RBF kernel using FAHP performs better as compared to
othermethods. Figure 5a–c presents the comparison of effort,
MMRE and RMSE in pictorial form.

5.4 Kemerer dataset

Kemerer dataset consists of 15 software projects charac-
terised by 6 independent and 1 dependent attribute. Table 15
presents the description of the attributes. The independent
attributes include 2 categorical and 4 numerical features. The
categorical attributes are “Language” and “Hardware”, and
numerical attributes are “Duration”, “KSLOC”, “AdjFP” and
“RawFP”. Effort (dependent attribute) is measured by ’man-
months’.

The statistical analysis of Kemerer dataset is depicted in
Table 16. Numerical attributes have been analysed statisti-
cally, and KSLOC varies from 39 to 450. The effort value
spans the range from 23.2 to 1107.31. This dataset is of less
diverse projects that are compared to the previously discussed
datasets.

The comparison matrices have been obtained from effort
and LOC values of 15 projects of Kemerer dataset. The
matrices based upon effort and LOC values, respectively,
are presented in Tables 17 and 18. The values of CR for
the matrices based upon effort and loc are 0.096 and 0.067,
respectively. Since the values are less than 0.1, thus matri-
ces are considered as consistent matrices. The effort values
computed using FAHP-RBF-LSSVM and RBF-LSSVM are
presented in Table 19.

Table 15 Description of attributes of Kemerer dataset

Attribute Description

KSLOC Kilo lines of code

AdjFP Adjusted function points

RAWFP Unadjusted function points

Duration Duration of project

Language Programming language

Hardware Hardware resources

Table 16 Statistical analysis of Kemerer dataset

Duration KSLOC AdjFP RawFP Effort

Minimum 5 39 99.9 97 23.2

1st Quartile 9 55.1 599.1 581 83.25

Median 14 164.8 993 976 130.3

Mean 14.27 186.6 999.1 993.9 219.25

3rd Quartile 17.5 253.9 1342.5 1464.5 252.8

Maximum 31 450 2306.8 2284 1107.31

The comparison of MMRE and RMSE values for RBF-
LSSVM and FAHP-RBF-LSSVM is presented in Table 20
and Fig. 6a–c. The results clearly reveal that incorporation
of weight vector generated by FAHP -RBF-LSSVM has
resulted in better effort estimates. MMRE and RMSE val-
ues obtained for FAHP-RBF-LSSVM are 0.31 and 149.5,
respectively, showing the dominance over other methods.

5.5 Interactive voice response (IVR) dataset

The data in IVR dataset have been collected of IVR appli-
cation though survey from a software industry where IVR
application is developed with questionnaires directly to the
company’s project managers and senior software develop-
ment professionals (Srivastava et al. 2012). It consists of 4
attributes, viz. project no., KLOC, actual effort and actual
time.

The statistical analysis of IVR dataset is presented in
Table 21. From Table 21, it is evident that the values of the
attributes are not spread over a wide range. This reveals that
projects are of similar category.

The comparison matrix of IVR dataset has been obtained
by comparing the effort values of 10 projects from the dataset
as comparison matrix of 48 projects would have been a com-
plex matrix. The alternatives have been relatively ranked
based on multiple criteria, viz. LOC and effort value. Based
on the dataset, the expert has given equal importance to LOC
and effort for their relative ranking. The comparison matri-
ces thus created are depicted in Tables 22 and 23. It is found
that the created comparison matrices based upon effort and
LOC have the CR value as 0.039 and 0.045, respectively,
which is less than 0.1. Hence, the comparison matrices are
considered consistent for further calculations. Effort values
computed using RBF-LSSVM and FAHP-RBF-LSSVM are
shown in Table 25.

Figure 7a–c depicts the comparison of effort, MMRE and
RMSE values of RBF-LSSVM, FAHP-RBF-LSSVM and
BCO. Table 24 reveals the values of MMRE and RMSE as
0.07 and5.23 for FAHP-RBF-LSSVMwhich are less than the
values for RBF-LSSVM and BCO showing the dominance
of FAHP-RBF-LSSVM.

6 Conclusion and future scope

It has been identified that SEE acts as a base point for many
project management activities including planning, budgeting
and scheduling. Thus, it is crucial to obtain almost accurate
estimates. The researchers have proposed numerous estima-
tion methods since the inception of SE as a research area.
Further, it has been witnessed that SEE process depends
on multiple intrinsic and extrinsic factors. Despite extensive
research on it, the community is unable to develop and accept
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Table 19 Effort comparison for RBF-LSSVM and FAHP-RBF-
LSSVM using Kemerer dataset

Project no. Actual effort RBF-LSSVM FAHP-RBF-LSSVM

1 287 270.28 279.28

2 82.5 390.14 285.84

3 1107.31 376.62 631.52

4 86.9 383.23 312

5 336.3 563.44 338.11

6 84 65.61 82.99

7 23.2 85.57 98.84

8 130.3 101.33 115.46

9 116 101.07 112.56

10 72 83.63 98.32

11 258.7 185.1 179.89

12 230.7 175.37 181.5

13 157 202.87 180.07

14 246.9 213.43 222.83

15 69.9 92.56 89.63

Table 20 MMRE and RMSE comparison of BCO, RBF-LSSVM and
FAHP-RBF-LSSVM using Kemerer dataset

S.No. Method MMRE

MMRE

1 BCO 0.41

2 RBF-LSSVM 0.88

3 FAHP-RBF-LSSVM 0.31

RMSE

1 BCO 405.98

2 RBF-LSSVM 228.29

3 FAHP-RBF-LSSVM 149.5

Table 21 Statistical analysis of IVR dataset

KLOC Effort Time

Minimum 2.500 9.40 4.000

1st Quartile 5.305 23.07 6.000

Median 6.65 30.92 6.500

Mean 7.161 34.13 6.565

3rd Quartile 8.5 41.15 7.125

Maximum 18 97.19 9.500

a single model that can be applied in diverse environments
and which can handle multiple environmental factors.

Therefore, MCDM has been utilised for the process of
SEE. FAHP, an extension of AHP, has been proposed in the
current research for the purpose. It has been identified that
FAHP can handle subjectivity and uncertainty using fuzzy
numbers and CR.
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Fig. 6 Empirical validation of hybrid model using Kemerer dataset. a
Effort comparison. b MMRE comparison. c RMSE comparison

Further, to provide a robust method, a hybrid model has
been developed to combine MCDM (for handling uncer-
tainty) andML algorithm (for handling imprecision) approa-
ch to predict the effortmore accurately. The hybridmodel has
amalgamated MCDM approach (FAHP) and ML approach
(LSSVM). FAHP has been used to generate feature weights.
The weights have been calculated using effort and LOC as
the criteria. Theprojects havebeen considered as alternatives.
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Table 22 Comparison matrix of IVR dataset with respect to effort criterion

Project no. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 [1 1 1] [2 3 4] [1 2 3] [3 4 5] [6 7 8] [2 3 4] [1 2 3] [2 3 4] [1 2 3] [2 3 4]

P2 0 [1 1 1] [1/3 1/2 1] [1 1 1] [1 2 3] [1 1 1] [1/3 1/2 1] [1/3 1/2 1] [1/3 1/2 1] [1 1 1]

P3 0 0 [1 1 1] [1 2 3] [2 3 4] [1 2 3] [1 1 1] [1 2 3] [1 1 1] [1 2 3]

P4 0 0 0 [1 1 1] [1 2 3] [1 1 1] [1/3 1/2 1] [1/3 1/2 1] [1/3 1/2 1] [1 1 1]

P5 0 0 0 0 [1 1 1] [1/3 1/2 1] [1/4 1/3 1/2] [1/4 1/3 1/2] [1/4 1/3 1/2] [1/3 1/2 1]

P6 0 0 0 0 0 [1 1 1] [1/3 1/2 1] [1/3 1/2 1] [1/3 1/2 1] [1 1 1]

P7 0 0 0 0 0 0 [1 1 1] [1 1 1] [1 1 1] [1 2 3]

P8 0 0 0 0 0 0 0 [1 1 1] [1 1 1] [1 1 1]

P9 0 0 0 0 0 0 0 0 [1 1 1] [1 2 3]

P10 0 0 0 0 0 0 0 0 0 [1 1 1]

Table 23 Comparison matrix of IVR dataset with respect to LOC criterion

Project no. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 [1 1 1] [2 3 4] [1 2 3] [2 3 4] [3 4 5] [2 3 4] [1 2 3] [1 2 3] [1 2 3] [2 3 4]

P2 0 [1 1 1] [1/3 1/2 1] [1 2 3] [2 3 4] [1 1 1] [1/3 1/2 1] [1/3 1/2 1] [1/3 1/2 1] [1 1 1]

P3 0 0 [1 1 1] [2 3 4] [3 4 5] [1 2 3] [1 1 1] [1 1 1] [1 1 1] [1 2 3]

P4 0 0 0 [1 1 1] [1 2 3] [1/3 1/2 1] [1/4 1/3 1/2] [1/4 1/3 1/2] [1/4 1/3 1/2] [1/3 1/2 1]

P5 0 0 0 0 [1 1 1] [1/3 1/2 1] [1/4 1/3 1/2] [1/4 1/3 1/2] [1/4 1/3 1/2] [1/3 1/2 1]

P6 0 0 0 0 0 [1 1 1] [1/3 1/2 1] [1/3 1/2 1] [1/3 1/2 1] [1 1 1]

P7 0 0 0 0 0 0 [1 1 1] [1 1 1] [1 1 1] [1 2 3]

P8 0 0 0 0 0 0 0 [1 1 1] [1 1 1] [1 2 3]

P9 0 0 0 0 0 0 0 0 [1 1 1] [1 2 3]

P10 0 0 0 0 0 0 0 0 0 [1 1 1]

Table 24 MMRE and RMSE comparison for BCO, RBF-LSSVM and
FAHP-RBF-LSSVM using IVR dataset

S. No. Method MMRE

MMRE

1 BCO 0.11

2 RBF-LSSVM 0.17

3 FAHP-RBF-LSSVM 0.07

RMSE

1 BCO 10.03

2 RBF-LSSVM 8.15

3 FAHP-RBF-LSSVM 5.23

The ranks generated by FAHP have been utilised to modify
the kernel. A weighted kernel (Wk) has been used to assim-
ilate generated weights into the LSSVM. The performance
of the proposed model has been compared with BCO. The
combination of feature ranking by FAHP and the weighted
kernel has resulted in more accurate effort estimates.

Table 25 Effort comparison for RBF-LSSVM and FAHP-RBF-
LSSVM using IVR dataset

Project no. Actual effort RBF-LSSVM FAHP-RBF-LSSVM

1 86.1 67.32 79.34

2 24.02 24.12 23.68

3 36.05 24.25 29.09

4 20.74 22.09 21.05

5 12.85 18.76 16.2

6 23.3 23.42 23.38

7 31.72 25.13 29.32

8 29.59 24.06 27.6

9 33.88 26.06 31.68

10 24.34 23.83 24.26

Future work may focus on the development of hybrid
approach in which weights generated from other MCDM
techniques can be amalgamated into ML techniques. Also,
the prediction accuracy can be analysed by applying
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Fig. 7 Empirical validation of hybridmodel using IVR dataset. a Effort
comparison. bMMRE comparison. c RMSE comparison

other kernel-based functions modified by incorporating the
weights generated by MCDM approaches.
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