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Abstract
Yarn tenacity directly affects the winding and knitting efficiency as well as warp and weft breakages during weaving process
and therefore, is considered as the most important parameter to be controlled during yarn spinning process. Yarn tenacity is
dependent on fiber properties and process parameters. Exploring the relationship between fiber properties, process parameters
and yarn tenacity is very important to optimize the selection of rawmaterials and improve yarn quality. In this study, an efficient
monarch butterfly optimization-based neural network simulator called MBONNwas developed to predict the tenacity of siro-
spun yarns from some process parameters and fiber properties. To this end, an experimental dataset was obtained with
fiber fineness, yarn twist factor, yarn linear density and strand spacing as the input variables and yarn tenacity as the output
parameter. In the proposedMBONN, amonarch butterfly optimization algorithm is applied as a global searchmethod to evolve
weights of a multilayer perception (MLP) neural network. The prediction accuracy of the MBONN was compared with that
of a MLP neural network trained with back propagation algorithm, MLP neural network trained with genetic algorithms and
linear regression model. The results indicated that the prediction accuracy of the proposed MBONN is statistically superior
to that of other models. The effect of fiber fineness, yarn linear density, twist factor and strand spacing on yarn tenacity was
investigated using the proposedMBONN. Additionally, the observed trends in variation of yarn tenacity with fiber and process
parameters were discussed with reference to the yarn internal structure. It was established that higher migration parameters
result in increasing the siro-spun yarn tenacity. It was found that the yarns with higher migration parameters benefit from a
more coherent self-locking structure which severely restricts fiber slippage, thereby increasing the yarn tenacity.

Keywords Monarch butterfly optimization · Neural network · Siro-spun yarn tenacity · Twist factor · Strand spacing

1 Introduction

Different types of predictive models have been developed
to predict the yarn properties, such as strength, elonga-
tion, evenness, hairiness and weaveability. Among these,
the development of the yarn strength prediction models
from fiber properties and process parameters has long been
regarded as an importantly and controversially studied topic
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in the field of textile engineering. Since the relationship
between yarn strength and fiber properties and process
parameters is essentially nonlinear, the prediction of the yarn
tenacity is a complex issue. For a number of years, mathe-
matical, mechanistic and statistical models have primarily
been used to predict spun yarns strength. The pioneering
study on this subject was performed by Peirce (1946) who
presented the essence of his three-parameter mathematical
theory of spinning quality in 1946. Afterward, Hearle et al.
(1969), Guha et al. (2001), Frydrych (1992) and Zaghouani
et al. (2008), just to name a few, developed mechanistic
approaches for the prediction of spun yarns strength. The
accuracy of mathematical and mechanistic models is not
sufficiently good due to certain idealized assumptions or
simplifications in developing these models. Additionally, the
complexity of these models usually makes the mathematical
and mechanistic models difficult for practical applications.
Along with development of mathematical and mechanistic
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models, some researchers have used mechanistic approaches
coupled with statistical analyses, e.g., regression models
(Erbil et al. 2018;Guha et al. 2001), and others have proposed
statistical models for prediction of spun yarns strength. The
work of El-Mogahzy (1988) and Gharehaghaji et al. (2007)
can be mentioned in this regard. These models use piecewise
linear function as basic element of prediction model. Addi-
tionally, not only the functional form of the model has to
be specified by the user, but also it might take a lot of time
to experiment with different possible function relations and
algorithms to obtain proper models. The limitations and dis-
advantages of mechanistic and statistical models have been
described in detail in work of (Majumdar and Ghosh 2008;
Ramesh et al. 1995).

In recent years, many researches focused on develop-
ing intelligent prediction models such as artificial neural
networks (ANNs), adaptive neuro-fuzzy inference systems
(ANFISs) and genetic algorithms (GAs). This is due to the
fact that these models are flexible and can deal with nonlin-
ear problems which involve a large number of input variables
and are difficult to solve by classical methods such as linear
regression (Bansal 2014). According to the literature, intelli-
gent prediction techniques are superior to that of traditional
statistical approaches in dealing with complex problems.
This is mainly due to the fact that an underlying probability
model should be assumed for traditional statistical methods.
The more recently developed intelligent techniques can per-
form many tasks without this limitation and achieve better
performances than statistical approaches (Bansal et al. 2017a;
Huang et al. 2007; Pei and Yu 2011; Soltani and Johari 2013;
Soltani et al. 2013; Vadood and Semnani 2011).

In the last two decades, researchers have used intelligent
models for solving the problems related to the science and
engineering of textiles. Hence, applied soft computing has
emerged as one of the most sought-after research fields in
the domain of fibrous materials engineering (Dayik 2009;
Kanat and Özdil 2018; Kheirkhah Barzoki et al. 2016; Nur-
waha and Wang 2010; Özkan et al. 2014; Selvanayaki et al.
2010; Shahrabi et al. 2013; Soltani et al. 2012; Vadood
et al. 2017). Selvanayaki et al. (2010) proposed a super-
vised machine learning technique, support vector regression
(SVR), to predict the tensile strength of cotton yarns. The
predictive performance of the trained model was assessed
based on mean squared error and correlation coefficient. It
was established that the SVR model provided higher accu-
racy compared with the statistical regression model. Pei
and Yu (2011) investigated the capability of numerical sim-
ulation and ANNs for modeling the tensile properties of
vortex yarns. The predicted and measured tensile strengths
demonstrated a high correlation coefficient, indicating the
capability of ANN in providing accurate prediction results.
Gharehaghaji et al. (2007) predicted cotton-covered nylon
core yarns tensile properties by using two modeling method-

ologies namely, statistical regression and artificial neural
network. They reported that ANN algorithm enjoys higher
accuracy as compared with multiple linear regression. Nur-
waha and Wang (2010) applied ANFIS model for prediction
of cotton rotor-spun yarns tensile strength. They analyzed the
effect of some fiber properties such as fiber strength, upper
half mean length and uniformity index on the yarn strength.
Results demonstrated a nonlinear relationship between the
yarn strength and fiber properties. It was found that the yarn
tensile strength can be predicted with a good degree of accu-
racy using ANFIS model.

ANN is one of the strongest artificial intelligence mod-
els which can learn the complex and nonlinear relationships
between many variables. In developing an ANN model,
determining its parameters (number of input, hidden and
output neurons and training algorithm) is an important prob-
lem. Training weights of an ANN are usually considered
as a minimization of an error function, such as the mean
square error between predicted and actual targets averaged
over all training data by iteratively adjusting connection
weights. Most training algorithms, such as back propaga-
tion (BP) and conjugate gradient (CG), are based on gradient
descent. However, an important shortcoming of BP is that
it often gets trapped in a local optimum of multimodal and
non-differentiable error functions (Hadavandi et al. 2018;
Yao 1999). The mentioned issues, beside other problems,
have guided investigations toward employing evolutionary
algorithms (EAs) to find the best set of network weights.
Many studies have used genetic algorithm (GA) for train-
ing of neural networks, and the results demonstrated better
performances as compared with BPs (Hadavandi et al. 2010;
Vadood et al. 2011; Yao 1999).

There are wealth of evolutionary algorithms that can be
used for optimization problems (Bansal 2018; Bansal et al.
2017b). Monarch butterfly optimization (MBO) is a recently
developed EA which is inspired by the migration behavior
of monarch butterflies (Wang et al. 2015). The MBO is a
population-based optimizer that divides population into two
subpopulations and uses two main operators to change the
individuals.Wang et al. (2015) comparedMBOwith fiveEAs
over thirty-eight benchmark function. The results showed
the good performance of MBO in comparison with other
five EAs. Feng et al. (2017) applied a multi-strategy MBO
algorithm for solving knapsack problem. Better performance
of MBO in comparison with other global and local search
algorithms was reported. Yazdani and Hadavandi (2018)
developed a linearized version of MBO that uses a differen-
tial evolution (DE) mutation operator to improve exploration
of MBO. Their proposed algorithm which is a linearized
and hybrid version of MBO (LMBO-DE) was validated
by 18 benchmark functions in different dimensionality and
compared with other evolutionary algorithms. Experimental
results showed that the proposed algorithm significantly out-
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performs the original MBO and its improvement in terms of
solution quality and convergence rate.

Prior to the present study, some researchers have per-
formed research studies on physical and mechanical prop-
erties of siro-spun yarns and reported the advantages of
these yarns over the conventional ring-spun yarns. How-
ever, there has been no published report about prediction of
siro-spun yarns tenacity. This paper, as a first study in liter-
ature, proposes a new monarch butterfly optimization-based
neural network simulator called “MBONN” for prediction
of siro-spun yarn tenacity. In the proposed MBONN, a
MBO algorithm is applied as a global search method to
evolve weights of a multilayer perception neural network.
This hybridization adds more flexibility and outperforms the
weakness of BP-based neural networks (Hadavandi et al.
2011). Therefore, the implementation of theMBONNmodel
to the prediction of siro-spun yarns tenacity from some pro-
cess parameters and fiber properties is indicated for the first
time in this paper. In order to achieve the objectives of this
study, siro-spun yarnswith different linear densities and twist
factors are spun at four strand spacings from viscose fibers
with fineness of 1.2 and 1.6 den. Yarn internal structure is
investigated using fiber migration technique. Moreover, ten-
sile strength of yarns is measured using a uniaxial tensile
tester. The effect of fiber fineness, yarn linear density, twist
factor and strand spacing on yarn tenacity is investigated
using the proposed MBONN. Additionally, the observed
trends in variation of yarn tenacity with fiber and process
parameters are discussed with reference to the yarn internal
structure.

2 Experimental

2.1 Fiber properties

Viscose staple fibers with fineness of 1.6 and 1.2 den and
mean fiber length of 38 mmwere used for production of siro-
spun yarns. Fiber fineness wasmeasured according toASTM
D1577-79 using Lenzing Vibroscope (model 400, Austria).
For each set of experiments, 30 samples were tested. The
characteristics of fibers used in this study are given in Table 1.

2.2 Siro-spun yarns production

Siro-spinning is a new kind of modified ring spinning sys-
tem, inventedby theDivisionofTextile IndustryLaboratories
of the CSIRO and IWS. In the spinning process, as shown
in Fig. 1, two parallel fiber strands are fed separately and
simultaneously through the drafting zone at a predeter-
mined separation called strand spacing. The two fiber strands
emerge from the drafting zone and enter the nip of the front
roller. A primary twist is then applied to the fiber strands

Table 1 Characteristics of fibers

Parameter Unit Value

Fiber 1 Fiber 2

Mean fiber length mm 38 38

Fineness den 1.2 1.6

Single fiber tenacity cN /tex 23.76 22.86

Single fiber
elongation

% 13.74 13.66

Cross section – Circular Circular

Color – White and
black

White and
black

Fig. 1 Schematic of siro-spun yarns production

allowing a number of fiber binding mechanisms to operate
before the strands are twisted around each other. Finally, the
two strands are twisted, and a special spin-twisted yarn called
siro-spun yarn is produced (Liu et al. 2015). In comparison
with conventional ring-spun yarns, siro-spun yarn benefits
from higher breaking strength, higher evenness, less hairi-
ness and more abrasion resistance (Soltani and Johari 2012,
2013; Sun and Cheng 2000).
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Table 2 Sequence of machine used

Machines Characteristics

Blow room Two blade beater

Card doffer speed (Rieter) 21 rpm

Draw frame (Rieter) 2 passages

Roving frame (Rieter) 1300 rpm

Ring frame (Howa) 12,000 rpm

After opening and carding of viscose fibers containing 5%
black-dyed tracer fiber, the card slivers were subjected to two
passages of drawing to even out irregularities and produce a
drawn sliver of 2.4 ktex. The slivers were then fed into a flyer
machine to get rovings of 0.27 ktex. To study the effects of
fiber properties and process parameters, i.e., fiber fineness,
yarn linear density, yarn twist factor and strand spacing on
the siro-spun yarn tenacity, a series of siro-spun yarns were
spun on a laboratory ring spinning frame. Table 2 shows the
sequence of machinery used to produce siro-spun yarns.

The yarns were produced at different levels of twist factor,
namely 22, 28, 34 and 40 tpc× tex1/2. The effect of yarn
finenesswas investigated through using three linear densities,

namely 35, 25 and 15 tex. Moreover, to investigate the effect
of strand spacing, siro-spun yarns were produced at different
strand spacings, namely 3, 6, 9 and 12 mm. Totally, 96 siro-
spunyarn sampleswere produced.Tominimize the variations
among the samples, all the yarns were spun on the same
spinning position at standard conditions.

2.3 Yarn internal structure

Essentially, a coherent self-locking structure is achieved by
fiber lengthsmeandering from the outermost to the innermost
regions of the yarn body, throughout the yarn length, as they
are twisted to lie along the helix angle. This variation in fiber
position during spinning is called fiber migration (Lawrence
2003; Soltani and Johari 2011a).

In order to investigate yarn migration parameters and
spinning-in-coefficient, tracer fiber technique combinedwith
image analysis was utilized. Figure 2 shows the experimental
setup for the study of yarn inner structure. The yarns contain-
ing tracer fibers were passed through a U-shaped glass tube
containing a suitable immersion liquid, which was placed on
amicroscope stage. The immersion liquid (45% liquid paraf-
fin and 55% monobromonaphthalene) had substantially the

Fig. 2 Experimental setup for
the study of spun yarn inner
structure
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Fig. 3 Schematic illustration of
spun yarn and a tracer fiber

same refractive index as that of the viscose fibers. When the
yarns were observed under a microscope, the undyed fibers
almost were faded from view, leaving the path of each tracer
colored fiber to be clearly visible. Due to the high magni-
fication, obtaining a complete image from one tracer fiber
on a single image was impossible. Therefore, the image of
the tracer fibers was captured using a CCD camera in suc-
cessive 2–3 mm long sections of the yarns as the yarn was
drawn manually. The images were then stored in a laptop
and were processed through PhotoScape X Pro 2.4.1 to cre-
ate complete images of tracer fibers. The images were then
transferred toMatlabR2011a (TheMathworks,Natick,MA).
Using Image Processing Toolbox, the coordinates of yarn
boundaries, peak and troughs of tracer fibers were extracted
from the images and stored in the matrix form. The quanti-
ties of migration parameters were estimated using a specially
developed Matlab-based program as described in the follow-
ing section. In order to quantify fibermigration, themigration
parameters as suggested by Hearle et al. (1965) and migra-
tion factor as suggested by Huh et al. (2001) were calculated.
For each sample, 300 tracer fibers were tested and the mean
was taken.

2.3.1 Spinning-in-coefficient

In the yarn body, fibers are positioned in spirals paths with
variable radii; they sometimes become entangled, and even
protrude from the yarn body. Therefore, the total length
of the fiber does not contribute to the yarn strength. The
fiber spinning-in-coefficient (SIC), as introduced by Kas-
parek (1975), relates to the fiber length present in the yarn
and is calculated using Eq. 1:

SIC �
∑n

i�1
Li
n

L
� Lm

L
(1)

where Li is the individual fiber extent, Lm represents arith-
metic mean of the projected length of individual fibers along
the axis of the yarn, n is the number of observations and L is
the fiber length.

2.3.2 Mean fiber position

Mean fiber position (MFP) represents the overall tendency
of a fiber to be near the surface or center of the yarn and is
calculated from Eq. 2:

MFP � 1

L

L∫
0
y dz � 1

n

n−1∑

i�0

yi (2)

where yi is equal to [ri/Ri ]2, i � 0, 1, 2, . . . , (n − 1) is the
sequence number of observations, Ri � (ai − bi )/2 is yarn
radius at the ith observation, ri � [(ai − bi )/2 − ci ] denotes
helix radius at the ith observation, z is the length coordinates
along the yarn, L is the total yarn length observed and n is
the number of observations.

In order to quantify fiber migration, a, b, c and z were
measured at successive peaks and troughs of tracer fibers
as shown in Fig. 3. a0, a1, a2 . . . , an and b0, b1, b2 . . . , bn
are points at start and end of the body of tracer fiber image,
and z0, z1, z2 . . . , zn are the yarn axial distances between
adjacent indications of peaks and troughs of tracer fiber.

2.3.3 Meanmigration intensity

The rate of change in radial position of a fiber is called mean
migration intensity (MMI) and is given by Eq. 3:

MMI �
√
√
√
√1

n

n−1∑

i�0

(yi+1 − yi )2

(zi+1 − zi )2
(3)
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2.3.4 Amplitude of migration

The magnitude of deviations from mean fiber position is
called amplitude of migration (AM) and is given by Eq. 4:

AM �
√

1

L

∫
(
Y − Ȳ

)2
dz �

√
√
√
√1

n

n−1∑

i�0

(
yi − Ȳ

)2
(4)

2.3.5 Migration factor

Migration factor (MF) was obtained by multiplying ampli-
tude of migration (AM) andmeanmigration intensity (MMI)
values.

2.4 Yarn tensile properties measurement

The yarns were conditioned at 65±2% RH and 24±2 °C
for 24 h and subsequently tested for tensile properties. The
yarns were subjected to uniaxial loading on Zwick universal
testingmachine (model 1446,Germany) using a constant rate
of elongation (CRE) with gage length of 500 mm and strain
rate of 50 mm/min. Each bobbin was tested 40 times.

3 Methodology

In this paper, the MBONN is proposed by combination of
monarch butterfly optimization algorithm and a multilayer
perceptron (MLP) with one hidden layer as a typical ANN
for yarn tenacity prediction. Hidden neurons with hyperbolic
tangent (tanh) transfer function are used to process the infor-
mation received by the input neurons. The model can be
written as Eq. 5:

yt � g

(
s∑

k�1

γk f

(
m∑

i�1

βik xi + β0k

)

+ γ0

)

(5)

where m is the number of input neurons, s is the
number of hidden neurons and f (x) � exp(x)−exp(−x)

exp(x)+exp(−x) .{γk, k � 0, 1, . . . , s}, {βik, i � 1, 2, . . . ,m} are vector of
weights to be optimized.

General framework of the proposed simulation using
MBONN is shown in Fig. 4. The details of the proposed
MBONN model are presented in the following sections.

3.1 Monarch butterfly optimization for training
neural network

MBO is proposed based on the migration behavior of
monarch butterflies. MBO divides individuals into two sub-
populations (Land 1 and Land 2) based on their fitness. MBO
has two main operators: migration and adjusting. Migra-
tion operator was applied on Subpopulation 1 (Land 1) to
generate new Subpopulation 1 at each time. The migration
operator migrates an element from an emigrating individ-
ual which is probabilistically from Land 1 or Land 2 (Arora
and Singh 2018). The pseudo-code of the migration opera-
tor can be described in Algorithm 1, where NP1 is the size
of the monarch butterflies in Subpopulation 1 and equals to
ceil(p × N P),1 in which p is set to 5/12 that indicates the
ratio of monarch butterflies in Land 1 and NP is the total
number of individuals in the population. D is the number of
the elements in ithmonarch butterfly. Peri ismigration oper-
ator (peri � 1.2). xt+1i,k is the kth element of xi at generation

t + 1. xt+1r1,k
refers to the kth element of the individual xr1 at

generation t + 1. xt+1r2,k
is the kth element of xr2 at generation

t+1.

1 ceil(x) rounds x to the nearest integer greater than or equal to x .
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α

MBO applies adjusting operators on Land 2 to generate
new Subpopulation 2. Adjusting operator of MBO is shown
in Algorithm 1, where NP2 refers to the number of monarch
butterflies in Subpopulation 2. xt+1j,k refers to the kth element

of the individual x j at generation t + 1. Similarly, xt+1best,k
is the kth element of the best monarch butterfly in Land 1
and Land 2. xt+1r3,k

represents the kth element of the individ-
ual xr3 . BAR shows butterfly adjusting rate. dx indicates the
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Fig. 4 General framework of the proposed simulation using MBONN

walk step of the monarch butterfly j . ω which is called the
weighting factor controls the exploration and exploitation
ability. Smaller values for ω facilitate exploration. As the
value of ω increases, the influence of dx on xt+1j,k increases
and exploration ability of the MBO is improved. Smax shows
maximum walk step that a monarch butterfly individual can
move in one step. t indicates the current generation. Finally,
new population replaces the parents only if it has better fit-
ness. Algorithm 1 presents a brief study of the MBO (Wang
et al. 2015; Yazdani and Hadavandi 2018).

An individual in MBO is constructed from a series of
genes as shown in Fig. 5. In this figure, for a normal MLP
neural network that has three input variables (three input
neurons), two neurons in hidden layer and one neuron in
output layer, the first gene in the chromosome is the weight

between neuron 1 and neuron 4, i.e.,W14, the second gene is
the weight between neuron 1 and neuron 5, i.e., W15, and so
on.

As regards the fitness function, it is based on the root
mean square error (RMSE) over a training data set, which is
represented by Eq. 6:

RMSE
(
C j

) �
√
√
√
√ 1

N

N∑

i�1

(Yi − Pi )2 (6)

where Yi is the real value and Pi is the predicted value of
ith monarch individual. The Algorithm 1 shows the training
steps of the MLP network using MBO.
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Fig. 5 Neural network encoding
in MBO algorithm
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6 Yarn Tenacity

Table 3 Features description Attribute number Attribute name Domain Unit

1 Twist factor 22, 28, 34, 40 tpc × tex1/2

2 Strand spacing 3, 6, 9, 12 mm

3 Yarn linear density 15, 25, 35 tex

4 Fiber fineness 1.2, 1.6 den

5 Yarn tenacity (target variable) [10.87,16.8] cN /tex

The computational complexity of MBO when the max-
imum number of generation (MaxGen) is considered as
termination condition is O(MaxGen × N P), where NP is
number of population.

3.2 Performance comparison of themodels

To evaluate the proposed MBONN model, 90% of instances
were randomly chosen for the training. The remaining 10%
datasets were used to validate the model. For comparison
purposes, three common evaluation metrics are used. The
first metric is called mean absolute error (MAE) (Eq. 7),
the second is RMSE (Eq. 8), and the third is coefficient of
determination (R2):

MAE � 100 × 1

N

N∑

i�1

|Yi − Pi | (7)

R2 � 1 −
∑N

i�1

(
Pi − Ȳ

)2

∑N
i�1

(
Yi − Ȳ

)2 (8)

where Yi is the real value and Pi is the predicted value of
ith testing data obtained from the models, Ȳ is the mean of
actual values and N is the number of testing data. For the

models used in this study, normalization of data in a range
of [−1, 1] was used.

4 Results and discussion

The data consisting of 5 features are summarized in Table 3.
There are a total of 96 records in this study.

For developing MBONN model, the MBO algorithm was
used to evolve the weights of MLP neural network. Different
set of parameters (number of hidden neurons and parame-
ters of MBO) were used to find the best set with minimum
generalization error. The suitable values of parameters for
MBONN are shown in Table 4. The convergence trend of
MBO in training weights of the MLP neural network in the
proposed MBONN model is shown in Fig. 6.

Figure 7 shows the scatter plots of actual and predicted
yarn tenacity using MBONNmodel for the training and test-
ing data. It is obvious that there are favorable correlations
between the actual and predicted values of yarn tenacity by
the MBONN model indicating the desirable potential of the
MBONN model in simulating siro-spun yarns tenacity.
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Table 4 Parameter setting of MBONN model

Parameter Value

Population size 50

Maximum number of generation 200

Maximum step (Smax ) 1

Migration period (peri) 1.2

Migration ratio (p) 5/12

Number of hidden neurons 6

Activation function tanh

Fig. 6 Convergence trend of MBO in training weights of MBONN

4.1 Performance analysis of the MBONN

To evaluate the prediction accuracy of MBONN, the out-
comes were compared with some typical models including:

Table 5 Results of implemented models

Model MAE RSME R2

MBONN 0.12 0.141 0.990

MLP-BP 0.18 0.206 0.971

GA-NN 0.15 0.183 0.980

Linear regression 0.23 0.274 0.961

1. MLP neural network trained with BP algorithm (MLP-
BP): In this model, a single-layer neural network with
six hidden neurons and learning rate of 0.4 has the best
generalization error.

2. MLP neural network trained with GA (GA-NN) (Asadi
et al. 2012): The best parameters for GA (population size,
number of generations, cross over rate, mutation rate) are
set to 50, 200, 0.8 and 0.1, respectively.

3. Linear regression model obtained by least mean square
algorithm.

As shown inTable 5, the proposedMBONNhas the lowest
RMSE andMAE and highest R2 values as compared with the
other models.

In order to test the statistical significance among the pre-
diction errors of the implemented models, the Friedman test
(Luengo et al. 2009) was applied. In this paper, the num-
ber of models is 4. The experiment is designed in such a
way that statistical significance between square errors (SE)
of the models for all data is examined. To meet this purpose,
the tests are carried out on SE of all data obtained from 4
models. In Fig. 8, the results of applying the Friedman test
are shown in order to detect whether any differences exist
in the results. This test is applied with a level of confidence
α � 0.05.

The Friedman statistic (Chi-square with four degrees of
freedom) and P value computed by Friedman test are 17.38
and 0.00058, respectively. Friedman’s test shows the exis-
tence of significant differences in the results. Thus, a post hoc

Fig. 7 Scatter plots of actual and
predicted yarn tenacity using
MBONN model a training data,
b testing data

123



Amonarch butterfly optimization-based neural network simulator for prediction of siro-spun… 10531

Fig. 8 Average ranking of
Friedman test for proposed
models

Table 6 P-values obtained by applying Hochberg test over the results
of Friedman procedure for α �0.05

Hochberg MLP-BP GA-NN Linear
regression

P-value 0.0012 0.2 0.0012

statistical analysis is required, in which the best-performing
model (the MBONN with minimum average ranking) will
be chosen as the control model for comparison with the rest
of models. The results of the Hochberg test are shown in
Table 6. According to this table, the results of prediction by
MBONNmodel are statistically better than the MLP-BP and
linear regression and relatively better than GA-NN and have
outperformed them.

4.2 Effect of process parameters and fiber
properties on yarn tenacity

Figures 10, 11, 12 and13demonstrate variation of yarn tenac-
ity as a function of input parameters. As can be observed,
the simulated surfaces using MBONN model have realistic
magnitudes and reasonable geometries and evidently, these
surfaces are complex and highly nonlinear.

When spun yarns are subjected to uniaxial loading, the
resultant stress is distributed among the constituent fibers.
When the applied stress exceeds the strength of some of the
weaker fibers, they yield and yarn rupture process is initiated.
Yielding the fibers reduces the structural support to other
unbroken fibers, as a result of which the slippage of some
of unsupported fibers is accelerated due to the insufficient
inter-fiber frictional resistance. This mode of failure dras-
tically diminishes the load-bearing capacity of spun yarns.
The yarns with higher migration parameters benefit from a
more coherent self-locking structure which severely restricts
fiber slippage. The tensile deformation of such a yarn is pre-
dominantly due to the fiber breakage and seldom due to
the loss of coherency as a result of fiber slippage, thereby

Fig. 9 Variation of yarn tenacity with twist factor and strand spacing
when fiber fineness and yarn linear density are set to 1.4 den and 25 tex,
respectively

increasing yarn strength (Anandjiwala et al. 1999; Soltani
and Johari 2011b). As can be observed in Fig. 9, at low and
moderate strand spacings, as twist factor increases, there is
concomitant increase in yarn tenacity up to 35 tpc× tex1/2,
beyond which it can be considered almost constant. At low
and moderate strand spacings, the forces acting on the fibers
in the radial direction increase with the increase in the twist
level and hence, both the mean fiber position (MFP) and
migration factor (MF) increase which confirms the observed
variation in tenacity values of siro-spun yarns. For exam-
ple, for the siro-spun yarn produced at strand spacing of
3 mm with twist factor of 22 tpc × tex1/2, MFP and MF
are 0.241 and 0.196, respectively, while these values for the
yarns produced at the same strand spacing and twist fac-
tor of 40 tpc × tex1/2 are 0.327 and 0.409, respectively.
As previously stated, higher migration parameters mean the
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Fig. 10 Variation of yarn tenacity with twist factor and yarn linear den-
sity when strand spacing and fiber fineness are set to 8 mm and 1.5 den,
respectively

Fig. 11 Variation of yarn tenacity with twist factor and fiber fineness
when yarn linear density and strand spacing are set to 25 tex and 8 mm,
respectively

yarn forms a coherent self-locking structure in which fiber
slippage is restricted and hence, yarn tenacity increases. The
figure also indicate that at higher strand spacings, yarn tenac-
ity increaseswith increasing twist factor up to34 tpc×tex1/2,
beyond which it reduces. The results of fiber migration tests
indicate that at higher strand spacings, with increasing the
twist factor,MF increases up to twist factor of 35 tpc×tex1/2

and then reduces. For example, for the yarns produced at
strand spacing of 12 mm, and twist factor of 22, 28, 34 and

Fig. 12 Variation of yarn tenacity strand spacing andfiber finenesswhen
yarn linear density and twist factor are set to 25 tex and 31 tpc× tex1/2,
respectively

40 tpc × tex1/2, the values of MF are 0.301, 0.356, 0.433
and 0.419, respectively. Additionally, the reduction in yarn
tenacity may be attributed to the fiber breakage as a result of
excessive twist.

The results also indicate that at all levels of twist factor,
yarn tenacity increaseswith increasing the strand spacing and
then decreases. Increasing strand spacing raises the applied
tension on the strands and fibers, more slackness occurs in
the innermost layers, and hence, it results in increasing fiber
tendency tomove from different regions toward the yarn core
and increasing fiber migration. Further increase in strand
spacing leads to initiation of slippage of fibers over each
other as a result of strand tension. Therefore, individual fiber
tension reduces, which results in degrading fiber migration
and spinning-in-coefficient (SIC), consequently decreasing
yarn tenacity (Soltani and Johari 2012). For example, for
siro-spun yarns produced at twist factor of 28 tpc × tex1/2,
and strand spacings of 3, 6, 9 and 12 mm, the values of MFP
are 0.295, 0.341, 0.379 and 0.365, respectively. The values
of SIC for these yarns are 70.45, 75.84, 82.33 and 79.03%,
respectively.

Figure 10 depicts variation of yarn tenacity with twist fac-
tor and yarn linear density. Referring to Fig. 10, at all levels
of twist factor, as the yarn becomes coarser, the yarn tenac-
ity increases. This is attributed to the lower unevenness of
coarser yarns as compared to their finer counterparts. The
results also indicate that at low and moderate linear densi-
ties, yarn tenacity increases with increasing twist factor and
then remains unchanged. However, at higher linear densities,
a slight decrease in yarn tenacity is observed at higher twist
factors.
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Fig. 13 Profile plot obtained by MBONN model for simulation of siro-spun yarn tenacity

Figure 11 depicts variation of yarn tenacity with twist fac-
tor and fiber fineness, and Fig. 12 illustrates variation of yarn
tenacity with strand spacing and fiber fineness. The results
indicate that at all values of twist factor and strand spacings,
yarn tenacity increaseswith increasing the fiber fineness. The
tenacity of yarns made from finer fibers is more due to higher
inter-fiber frictional forces because of more number of fibers
in the yarns cross section. Also the twist at yarn formation
point could be expected to be less in coarser fibers because
of fewer fibers in the yarn cross section as compared to finer
fibers. Additionally, coarser fibers are less likely to migrate
due to lower flexural rigidity. This results in lower MFP, MF
and SIC and hence decreasing the tenacity of yarns made
from coarser fibers. For example, for siro-spun yarns made
form 1.2 den fibers at twist level of 28 tpc×tex1/2 and strand
spacing of 9 mm, the values of MFP, MF and SIC are 0.369,
0.491 and 86.22%, respectively. These values for the yarns
made from 1.6 den fibers at the same conditions are 0.288,
0.346 and 76.00%, respectively.

The profile plot obtained using MBONN that illustrates
traces for each input variable is shown in Fig. 13. The plot
can be used as a simulator for simulation of siro-spun yarn
tenacity (in real time) as the user changes the value of an
input variable. The vertical dotted line for each input vari-
able shows the current setting. By changing the input variable
value, the tenacity of newyarn can be predicted. The horizon-
tal dotted line shows the predicted yarn tenacity for the input
variables shown in red. The black lines show variation of the
predicted tenacity with changes in the value of an individual
input variable.

5 Conclusion

There is no doubt that strength is considered as a very
important yarn property that significantly influences its post-
processing performance and final fabric quality. Prediction
of yarn strength is one of the favorite topics of research
in the field of textile engineering. A monarch butterfly
optimization-based neural network simulator (MBONN)was

proposed to predict siro-spun yarns tenacity from some pro-
cess parameters and fiber properties. In order to prove the
proposed model, validation and verification were used. Vali-
dationwas conducted by investigating the performance of the
proposed model on testing data and also its comparison with
other models such as a MLP neural network trained with BP
algorithm, MLP neural network trained with GA and linear
regressionmodel. The results conclusively proved the superi-
ority of MBONN over neural networks and linear regression
models for prediction of siro-spun yarns tenacity from some
fiber properties and process parameters. The verification was
conducted by response surface simulation, and the trends
observed in yarn tenacity were justified by inner structural
parameters of yarns. The effect of fiber fineness, yarn linear
density, twist factor and strand spacing on yarn tenacity was
investigated using the proposed MBONN. It was found that
at low andmoderate strand spacings, as twist factor increases,
yarn tenacity increases up to twist factor of 35 tpc× tex1/2

and then, it remains almost constant. At higher strand spac-
ings, yarn tenacity increases with increasing twist factor up
to 34 tpc× tex1/2, beyond which it reduces. It was estab-
lished that at all levels of twist factor, yarn tenacity increases
with increasing the strand spacing and then decreases. It was
also found that at all levels of twist factor, as the siro-spun
yarn becomes finer, the yarn tenacity decreases. The results
indicated that at all values of twist factor and strand spacings,
yarn tenacity increaseswith increasing the fiber fineness. The
observed trends in variation of yarn tenacity with fiber and
process parameters were discussed with reference to yarn
internal structure, i.e., migration parameters and spinning-
in-coefficient. It was found that higher migration parameters
and spinning-in-coefficient result in increasing the siro-spun
yarn tenacity.
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