
Soft Computing (2020) 24:2543–2549
https://doi.org/10.1007/s00500-018-3611-1

FOCUS

Uncertain Gompertz regression model with imprecise observations

Zeyu Hu1 · Jinwu Gao2

Published online: 2 November 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Regression is widely applied in many fields. Regardless of the types of regression, we often assume that the observations
are precise. However, in real-life circumstances, this assumption can only be met sometimes, which means the traditional
regression methods can result in significant imprecise or biased predictions. Consequently, uncertain regression models might
provide more accurate and meaningful results under these circumstances. In this article, we provide the residual analysis of
uncertain Gompertz regression model, as well as the corresponding forecast value and confidence interval. Finally, we give a
numerical example of uncertain Gompertz regression model.

Keywords Regression analysis · Uncertainty theory · Uncertain variable · Residual · Confidence interval

1 Introduction

Regression is an important method in inference and predic-
tion problems. Since the invention of method of least square
by Legendre (1805), regression analysis is widely used to
investigate relationships between independent variables and
dependent variable. Statisticians also use method of maxi-
mum likelihood popularized by Wilks (1938) together with
the method of least square. With the development of regres-
sion analysis, t test (Student 1908) and F test (Fisher 1925)
were investigated to test the hypothesis of regression. Pro-
posed by Neyman and Pearson (1933), likelihood ratio test
also shows promising results in most cases. Furthermore,
starting with the linear regression (Galton 1885), mathemati-
cians also invented numerous nonlinear regression models
to fit different scenarios. Well-known examples of nonlinear
regressionmodels include logistic regressionmodel, polyno-
mial regression model, etc. This paper will analyze another
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important nonlinear regression model: Gompertz regression
model.

Gompertz regression model was invented by Benjamin
Gompertz in 1825 to elaborate his law of human mortality
(Gompertz 1825). Gompertz model has a “S-shape” feature
that enables it to be widely applied in many biological sys-
tems to determine the growth of population, because it can
accurately describe the process of a relatively low growth
rate in the early stage and late stage as well as a rapid growth
in the intermediate stage (Nguimkeu 2014). Although Gom-
pertz model shares similar properties with logistic model, it
is symmetricwhile Logisticmodel is not, so onemodelmight
outperform the other in some circumstances (Nguimkeu
2014). For instances, Laird usedGompertz model to describe
the growth of tumor (Laird 1964); Zwietering and other biol-
ogists investigated the bacterial growth curve based on the
Gompertzmodel (Zwietering et al. 1990). It is then important
to further analyze the property of Gompertz model to better
describe related biological feature.

Most of the time, statisticians consider observations as
precise data and ignore the fact that data points might be
acquired in non-random way, which might lead to inaccurate
inference or predictions. For instance, in a large biolog-
ical system, it is always impossible to precisely measure
the whole population. Scientists usually use the capture–
recapture method to estimate the whole population size,
which might result in biased estimation. In order to handle
scenarios like this, Tanaka et al. (1982) first proposed a fuzzy
linear regression model in 1982 and was later modified and
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improved by Corral and Gil (1984). In addition to themethod
proposed by Tanaka et al., uncertainty theory is shown to
provide more accurate and reliable results at some cases (Liu
2012). Uncertainty theory was proposed to investigate the
relationship between independent variables and dependent
variable with uncertain observed data.

In uncertainty theory, the unknown parameters in models
canbe estimatedby theprinciple of least squares (Yao andLiu
2018). Yang and Liu (2017) proposed uncertain time series
analysis and estimated the unknown parameters using the
principle of least squares. Besides, Lio and Liu have already
deduced the method to find unknown parameters, forecast
value, and confidence interval in several uncertain regres-
sion models (Lio and Liu 2018). In this article, we follow
their process to analyze the properties of uncertain Gom-
pertz regression model. In Sect. 2, we will introduce some
preliminary knowledge of uncertainty theory. In Sects. 3 and
4, we will provide the method to find unknown parameters
in the Gompertz regression model and its residual analysis.
In Sect. 5, the confidence interval of the uncertain Gompertz
regression models is provided. In Sect. 6, we will provide a
numerical example to illustrate the application of the uncer-
tain Gompertz regression model. Finally, some conclusions
are made in Sect. 7.

2 Preliminaries

According to Liu, many surveys showed that subjective
uncertainty cannot bemodeled by fuzziness and hence cannot
be processed by possibility theory (Liu 2009). In order to deal
with subjective uncertainty, Liu proposed uncertainty theory
to better capture the properties of imprecise observations that
rely on degrees of belief (Liu 2007). In this section, we will
provide some concepts and theorems of uncertainty theory
which will be useful in the following analysis of Gompertz
regression model.

Definition 1 (Liu 2007) LetL be a σ -algebra on a nonempty
set Γ . Then (Γ ,L) is a measurable space, and each element
Γ in L is called an event. An uncertain measure is a set
functionM : L → [0, 1] if it satisfies the following axioms:

Axiom 1 (Normality Axiom)M{Γ } = 1 for the universal set
Γ .

Axiom 2 (Duality Axiom)M{Λ}+M{Λc} = 1 for any event
Λ.

Axiom 3 (Subadditivity Axiom) For every countable
sequence of events Λ1,Λ2, . . . , we have

M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M{Λi }.

Let Γ be a nonempty set, letL be a σ -algebra over Γ , and
letM be an uncertain measure. Then the triplet (Γ ,L,M) is
called an uncertainty space. Furthermore, the product uncer-
tain measureM satisfies the following axiom:

Axiom 4 (Product Axiom) (Liu 2009) Let (Γk,Lk,Mk) be
uncertainty spaces for k = 1, 2, . . .. The product uncertain
measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k =
1, 2, . . ., respectively.

Definition 2 (Liu 2007) An uncertain variable ξ is a measur-
able function from an uncertainty space (Γ ,L,M) to the set
of real numbers, i.e., for any Borel set B of real numbers. The
set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ ) ∈ B}

is an event.

We define the uncertainty distribution Φ of an uncertain
variable ξ as Φ(x) = M{ξ ≤ x} for any real number x .
An uncertainty distribution Φ(x) is called regular if it is a
continuous and strictly increasing function with respect to x
where 0 < Φ(x) < 1, and

lim
x→−∞ Φ(x) = 0, lim

x→∞ Φ(x) = 1.

Let ξ be an uncertain variable with regular uncertainty dis-
tribution Φ(x). Then the inverse function Φ−1(α) is called
the inverse uncertainty distribution of ξ (Liu 2010).

Now we introduce some special uncertainty distributions.
An uncertain variable ξ is called linear, denoted by

L(a, b), if it has an uncertainty distribution

Φ(x) =
⎧⎨
⎩
0, if x ≤ a
(x − a)/(b − a), if a < x ≤ b
1, if x > b

where a and b are real numbers with a < b. The inverse
uncertainty distribution of L(a, b) is

Φ−1(α) = (1 − α)a + αb.

An uncertain variable ξ is called zigzag, denoted by
Z(a, b, c), if it has an uncertainty distribution

Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x ≤ a
(x − a)/[2(b − a)], if a < x ≤ b
(x + c − 2b)/[2(c − b)], if b < x ≤ c
1, if x > c
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where a, b and c are real numbers with a < b < c. Then the
inverse uncertainty distribution of Z(a, b, c) is

Φ−1(α) =
{

(1 − 2α)a + 2αb, if α < 0.5
(2 − 2α)b + (2α − 1)c, if α ≥ 0.5.

An uncertain variable ξ is called normal, denoted byN(e, σ ),
if it has an uncertainty distribution

Φ(x) =
(
1 + exp

(
π(e − x)√

3σ

))−1

, x ∈ �

where e and σ are real numbers with σ > 0. Then the inverse
uncertainty distribution of N(e, σ ) is

Φ−1(α) = e + σ
√
3

π
ln

α

1 − α
.

Definition 3 (Liu 2009) Uncertain variables ξ1, ξ2, . . . , ξn
are independent if

M

{
n⋂

i=1

(ξi ∈ Bi )

}
=

n∧
i=1

M {ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bn of real numbers.

Let ξ1, ξ2, . . . , ξn be independent uncertain variables with
regular uncertainty distributions Φ1, Φ2, . . . , Φn , respec-
tively. If f (x1, x2, . . . , xn) is a strictly monotonous function,
then the inverse uncertainty distribution of the uncertain vari-
able f (ξ1, ξ2, . . . , ξn) can be calculated by the following
theorem (Liu 2010).

Theorem 1 (Liu 2010) Let ξ1, ξ2, . . . , ξn be independent
uncertain variables with regular uncertainty distributions
Φ1, Φ2, . . . , Φn, respectively. If a function f (ξ1, ξ2, . . . , ξn)
is strictly increasing with respect to ξ1, ξ2, . . . , ξm and
strictly decreasing with respect to ξm+1, ξm+2, . . . , ξn, then
the uncertain variable ξ = f (ξ1, ξ2, . . . , ξn) has an inverse
uncertainty distribution

Ψ −1(α)

= f (Φ−1
1 (α), . . . , Φ−1

m (α),Φ−1
m+1(1 − α), . . . , Φ−1

n (1 − α)).

Definition 4 (Liu (2007)) Let ξ be an uncertain variable. The
expected value of ξ is defined as

E[ξ ] =
∫ +∞

0
M{ξ ≥ x}dx −

∫ 0

−∞
M{ξ ≤ x}dx

provided that at least one of the two integrals is finite.

Definition 5 (Liu 2007) Let ξ be an uncertain variable with
finite expected value e. The variance of ξ is

V [ξ ] = E
[
(ξ − e)2

]
.

Theorem 2 (Liu 2010) If ξ is an uncertain variable with reg-
ular uncertainty distribution Φ, then we have

E[ξ ] =
∫ 1

0
Φ−1(α)dα, (1)

E[ξ2] =
∫ 1

0
(Φ−1(α))2dα, (2)

V [ξ ] =
∫ 1

0
(Φ−1(α) − e)2dα. (3)

3 Uncertain Gompertz regressionmodel

Let (x1, x2, . . . , xp) be a vector of independent variables, and
let y be the dependent variable. If the relationship between
(x1, x2, . . . , xp) and y can be expressed by a function, f ,
then the model is generally expressed as

y = f (x1, x2, . . . , xp|β) + ε (4)

where β is a vector of unknown parameters, and ε is a dis-
turbance term. If we have a set of imprecisely observed data,

(x̃i1, x̃i2, . . . , x̃i p, ỹi ), i = 1, 2, . . . , n (5)

where x̃i1, x̃i2, . . . , x̃i p, ỹi are uncertain variableswith uncer-
tainty distributions Φi1, Φi2, . . . , Φi p, Ψi , i = 1, 2, . . . , n,
respectively. In order to perform prediction or inference, it is
necessary to find the vector of unknown parameters, β. Since
it is impossible to find the precise value of the parameters,
we are interested in obtaining an estimation of β, denoted by
β∗, based on the imprecisely observed data.

As proposed by Yao and Liu (2018), the least squares
estimate of β in the regression model (4) can be obtained by
solving the minimization problem below:

min
β

n∑
i=1

E[(ỹi − f (x̃i1, x̃i2, . . . , x̃i p|β))2]. (6)

If we denote the optimal solution of the minimization prob-
lem (6) as β∗, then the fitted regression model is given as

y = f (x1, x2, . . . , xp)|β∗). (7)

Definition 6 The Gompertz regression model is defined as:

y = β0 exp(−β1 exp(−β2x))+ε, β0 > 0, β1 > 0, β2 > 0

(8)

where β0, β1, β2 are parameters.

Gompertz regression model is widely used in the biological
system to determine the growth of population of a certain
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specie. It can accurately capture the characteristics of the
population growth in nature.

Theorem 3 Let (x̃i , ỹi ), i = 1, 2, . . . , n, be a set of impre-
cisely observed data, where x̃i , ỹi are independent uncertain
variables with regular uncertainty distributions Φi , Ψi , i =
1, 2, . . . , n, respectively. Then the least squares estimate of
β0, β1 and β2 in the Gompertz regression model is the opti-
mal solution of the following minimization problem:

min
β0,β1,β2

n∑
i=1

∫ 1

0(
Ψ −1
i (α) − β0 exp(−β1 exp(−β2Φ

−1
i (1 − α))

)2
dα. (9)

Proof By Eq. (6), the least squares estimate of β0, β1 and β2

in the Gompertz regressionmodel can be obtained by solving
the minimization problem

min
β0,β1,β2

n∑
i=1

E
[
(ỹi − β0 exp(−β1 exp(β2 x̃i )))

2
]
. (10)

Since the function

ỹi − β0 exp(−β1 exp(β2 x̃i )) (11)

is strictly increasing with respect to ỹi and strictly decreasing
with respect to x̃i for each i . According to Theorem 1, the
inverse uncertainty distribution of function (11) is

F−1
i (α) = Ψ −1

i (α) − β0 exp(−β1 exp(−β2Φ
−1
i (1 − α))).

Then according to Theorem 2, we have

E
[
(ỹi − β0 exp(−β1 exp(β2 x̃i )))

2
]

=
∫ 1

0

(
Ψ −1
i (α) − β0 exp(−β1 exp(−β2Φ

−1
i (1 − α))

)2
dα.

Thus the minimization problem (10) is equivalent to

min
β0,β1,β2

n∑
i=1

∫ 1

0(
Ψ −1
i (α) − β0 exp(−β1 exp(−β2Φ

−1
i (1 − α))

)2
dα.

The theorem is verified.

4 Residual analysis

In the regression model (4), there is always a disturbance
term, ε, because it is usually impossible for our model to
perfectly fit each observation point. The disturbance term
indicates the distance that dependent variable y may deviate

from the regression. Because of the nature of disturbance,
each observation has a different value of ε, and hence we are
only interested in finding an estimation of ε for the given set
of imprecisely observed data

(x̃i1, x̃i2, . . . , x̃i p, ỹi ), i = 1, 2, . . . , n. (12)

For each i , the difference between the observed value ỹi and
f (x̃i1, x̃i2, . . . , x̃i p|β∗) represents the distance of observa-
tion and our regression model and hence is the disturbance
term ε. Thus, we propose a definition of ε as follows:

Definition 7 (Lio and Liu 2018) Let (x̃i1, x̃i2, . . . , x̃i p,
ỹi ), i = 1, 2, . . . , n be a set of imprecisely observed data,
and let the fitted regression model be

y = f (xi1, xi2, . . . , xip|β∗). (13)

Then for each i (i = 1, 2, . . . , n), the term

ε̂i = ỹi − f (x̃i1, x̃i2, . . . , x̃i p|β∗) (14)

is called the i th residual.

In uncertainty theory, because the data are imprecisely
observed, the i th residual ε is also assumed to be an uncertain
variable. Because each observation has a different distur-
bance term, we use the average of the expected values of
residuals:

ê = 1

n

n∑
i=1

E[ε̂i ] (15)

to estimate the expected value of ε, and

σ̂ 2 = 1

n

n∑
i=1

E[(ε̂i − ê)2] (16)

to estimate the variance, where ε̂i are the i th residuals,
i = 1, 2, . . . , n, respectively.

Theorem 4 Let (x̃i , ỹi ), i = 1, 2, . . . , n be a set of impre-
cisely observed data, where x̃i , ỹi are independent uncertain
variables with regular uncertainty distributions Φi , Ψi , i =
1, 2, . . . , n, respectively, and the fitted Gompertz regression
model is denoted as

y = β∗
0 exp(−β∗

1 exp(−β∗
2 x)), β∗

0 > 0, β∗
1 > 0, β∗

2 > 0

(17)

Then the estimated expected value of ε is

ê = 1

n

n∑
i=1

∫ 1

0(
Ψ −1
i (α) − β∗

0 exp(−β∗
1 exp(−β∗

2Φ−1
i (1 − α)))

)
dα (18)
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and the estimated variance is

σ̂ 2 = 1

n

n∑
i=1

∫ 1

0(
Ψ −1
i (α) − β∗

0

exp(−β∗
1 exp(−β∗

2Φ−1
i (1 − α))) − ê

)2
dα. (19)

Proof Since the function

ỹi − β∗
0 exp(−β∗

1 exp(−β∗
2 x̃i )), β∗

0 > 0, β∗
1 > 0, β∗

2 > 0 (∗)

is strictly increasingwith respect to ỹi and strictly decreasing
with respect to x̃i for each i . According to Theorem 1, the
inverse uncertainty distribution of the function (∗) is

F−1
i (α) = Ψ −1

i (α) − β∗
0 exp(−β∗

1 exp(−β∗
2Φ−1

i (1 − α))).

By the definition of estimate of residuals and variance of
uncertain variables and Theorem 2, the theorem is proved
trivially.

5 Forecast value and confidence interval

The main purpose of regression is to make prediction given
a new observation of independent variables. Suppose x̃ p is a
new observation of independent variables, and x̃ p is a uncer-
tain dependent variable with regular uncertainty distribution
Φp. Since the model has been constructed by using previous
imprecisely observed data (x̃i , ỹi ), i = 1, 2, . . . , n, we can
then make predictions and derive the forecast value for the
new dependent variable ỹp.

For example, scientists want to investigate the popula-
tion of wild lions in a new plain. From previous imprecisely
observed data set, the scientists choose the area of the plain,
as independent variables, and the population of wild lions as
dependent variable. Then, an uncertain Gompertz regression
model can be constructed by these observations. By obtain-
ing the data from the new plain, we can then use the model
to predict the population of wild lions in the new plain.

Mathematically, we can denote the fitted uncertain Gom-
pertz regression model constructed by using previous obser-
vations as:

y = β∗
0 exp(−β∗

1 exp(−β∗
2 x)), β∗

0 > 0, β∗
1 > 0, β∗

2 > 0

(20)

and the residual ε has estimated expected value ê and
variance σ̂ 2, and is independent of x̃ p. Then the forecast
uncertain variable of y with respect to x̃ p is determined by

ŷ = β∗
0 exp(−β∗

1 exp(−β∗
2 x̃)) + ε. (21)

The intuitive attempt would be finding a point estimate for
the new y. The forecast value of y is defined as

μ = β∗
0 E[exp(−β∗

1 exp(−β∗
2 x̃))] + ê, (22)

or we can use the integral to express μ:

μ =
∫ 1

0
(β∗

0 exp(−β∗
1 exp(−β∗

2Φ−1(1 − α))))dα + ê. (23)

The forecast value of y represents the expected value of the
forecast uncertain variable ŷ. Assume that the disturbance
term ε has a normal uncertainty distribution N (ê, σ̂ ) with
inverse uncertainty distribution Φ−1(α), i.e.,

Φ−1(α) = ê + σ̂
√
3

π
ln

α

1 − α
. (24)

We can then derive the inverse uncertainty distribution of
ŷ:

Ψ̂ −1(α) = β∗
0 exp(−β∗

1 exp(−β∗
2Φ−1(1 − α))) + Φ−1(α)

(25)

Trivially, the uncertainty distribution, Ψ̂ , of ŷ can be
obtained by Ψ̂ −1.

The forecast value, μ, is a point estimation of y. How-
ever, we are more interested to find a range of values that y
might fall within. Hence, the confidence interval of uncer-
tain Gompertz regression model is proposed. Although we
might loss some precision or accuracy of prediction, but we
are more confident about the correctness of our prediction.
Let α denote the confidence level, which indicates the belief
degree of corresponding confidence intervals that contain the
true value of y.We can derive the confidence interval by find-
ing the minimum value b such that

Ψ̂ (μ + b) − Ψ̂ (μ − b) ≥ α. (26)

Since

M{μ − b ≤ ŷ ≤ μ + b} ≥ Ψ̂ (μ + b) − Ψ̂ (μ − b), (27)

it follows that M{μ − b ≤ ŷ ≤ μ + b} ≥ α. Thus the α

confidence interval of y can be represented as [μ−b, μ+b],
which can be simplified as

μ ± b. (28)

6 Numerical example

In this section, we will use an example to illustrate the
application of uncertain Gompertz regression model to make
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Table 1 Imprecisely observed data whereL(a, b) represents linear uncertain variable

i 1 2 3 4 5 6

x̃i L(4.8, 5.2) L(5.7, 6.2) L(6.6, 7.0) L(7.7, 8.1) L(8.9, 9.5) L(9.5, 10.5)

ỹi L(4.3, 5.0) L(4.9, 5.3) L(9.9, 11.2) L(14.5, 16.5) L(19.0, 21.0) L(28.5, 31.5)

i 7 8 9 10 11 12

x̃i L(11.0, 11.8) L(11.5, 12.4) L(14.6, 15.7) L(17.5, 18.5) L(20.0, 22.0) L(23.0, 25.0)

ỹi L(34.0, 38.0) L(40.0, 45.0) L(62.0, 66.0) L(74.0, 78.0) L(79.0, 82.0) L(83.5, 84.5)

i 13 14 15 16 17 18

x̃i L(25.5, 29.0) L(29.0, 31.5) L(31.0, 34.0) L(35.0, 37.0) L(39.0, 42.0) L(41.0, 45.0)

ỹi L(83.8, 84.6) L(83.8, 84.9) L(84.0, 85.1) L(84.8, 85.9) L(84.9, 85.8) L(85.5, 86.5)

prediction for a new independent data with imprecise obser-
vation. Furthermore, we will provide a confidence interval to
make stronger and more reliable prediction when compared
to the point estimation.

The data are originally about spores germination, where
the independent variable is the day from the beginning of
experiment and the dependent variable is the germination
rate. The data can only be imprecisely observed because
of the condition of experiment, and hence an uncertain
Gompertz regression model should be applied under this cir-
cumstance.

We use (x̃i , ỹi ), i = 1, 2, . . . , 18 to denote the set of
imprecisely observed data of spores germination, where
x̃i , ỹi are independent uncertain variables with linear uncer-
tainty distributions, Φi , Ψi , respectively. x̃i represents the
days and ỹi represents germination rate. The specific data
are provided in Table 1.

Wemay use uncertain Gompertz regressionmodel to fore-
cast the germination rate for any given day. The uncertain
Gompertz regression model is given as

y = β0 exp(−β1 exp(−β2x)) + ε. (29)

In order to obtain the least squares estimate of β0, β1 and
β2 in the Gompertz regression model, we need to solve the
minimization problem (6), i.e.,

min
β0,β1,β2

n∑
i=1

E
[
(ỹi − β0 exp(−β1 exp(β2 x̃i )))

2
]
, (30)

or equivalently,

min
β0,β1,β2

n∑
i=1

∫ 1

0(
Ψ −1
i (α) − β0 exp(−β1 exp(−β2Φ

−1
i (1 − α)))

)2
dα. (31)

From Theorem 3, we can obtain the least squares estimate

(β∗
0 , β∗

1 , β∗
2 ) = (86.0493, 11.9398, 0.2391). (32)

The fitted Gompertz regression model is then

y = 86.0493 exp(−11.9398 exp(−0.2391x)). (33)

From Eq. (18), i.e.,

ê = 1

18

18∑
i=1

∫ 1

0(
Ψ −1
i (α) − β∗

0 exp(−β∗
1 exp(−β∗

2Φ−1
i (1 − α)))

)
dα, (34)

we can obtain the estimated expected value of the disturbance
term ε, and from Eq. (19), i.e.,

σ̂ 2 = 1

18

18∑
i=1

∫ 1

0(
Ψ −1
i (α) − β∗

0 exp(−β∗
1 exp(−β∗

2Φ−1
i (1 − α))) − ê

)2
dα, (35)

we can obtain the variance of the disturbance term ε. The
estimated expected value and variance of ε are

ê = 0.0000, σ̂ 2 = 3.5725, (36)

respectively. Now suppose

x̃ p ∼ L(24.0, 26.0) (37)

is a new imprecisely observed data of a day. Assume the new
day x̃ p is independent of , ε, we can then obtain the forecast
uncertain variable of the dependent variable y

ŷ = 86.0493 exp(−11.9398 exp(−0.2391x̃ p)) + ε, (38)
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and the forecast value of y is 83.4837 which can be obtained
from Eq. (22), i.e.,

μ = β∗
0 E[exp(−β∗

1 exp(−β∗
2 x̃ p))] + ê. (39)

For the confidence level α = 95%, if we suppose that the
disturbance term ε is a normal uncertain variable, then

b = 5.7271 (40)

is the minimum value for Eq. (26), i.e.,

Ψ̂ (μ + b) − Ψ̂ (μ − b) ≥ 95%. (41)

Ψ̂ is the uncertainty distribution of ŷ and can be calculated
by

Ψ̂ −1(α) = β∗
0 exp(−β∗

1 exp(−β∗
2 (24(1 − α) + 26α))) (42)

where Φ−1(α) is the inverse uncertainty distribution of nor-
mal uncertain variableN(ê, σ̂ ). The 95% confidence interval
of dependent variable y is then

83.4837 ± 5.7271. (43)

7 Conclusion

This article introduced the uncertain Gompertz regression
model with the method to obtain estimate least square betas,
model’s forecast value and confidence interval, and residual
analysis of themodel.We also provided a numerical example
of spores germination to explain the application of the uncer-
tain Gompertz regression model in the real-life problem.
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