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Abstract
Nucleosome positioning played significant roles in various biological processes. With the development of high-throughput
techniques, many methods and software were developed for nucleosome positioning. Although results with high accuracy
(Acc) were obtained, the key factors for determining nucleosome positioning under less time complexity remain unresolved.
Therefore, combining generalized relative entropy with self-similarity of DNA sequences, a novel method of nucleosome
positioning was proposed for predicting nucleosome positioning in human, worm, fly and yeast genomes, respectively.
Experimental results showed that prediction Acc of nucleosome positioning in aforementioned datasets reached 87.78%,
87.98%, 83.36% and 100%, respectively. Furthermore, it was found that five-nucleotide and six-nucleotide sequences were
the determinant factors in nucleosome positioning.
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1 Introduction

Nucleosomes are the basic unit of eukaryotic chromatin, and
each one is constructed by a histone octamer that wrapped
tightly by a DNA sequence with 147 base pair (bp). Adja-
cent nucleosomes are connected by linker DNA. As shown in
Fig. 1, the histone octamer is constructed by two-molecular
H2A, H2B, H3 and H4. Due to the influence of H1 histone,
nucleosomes form a stable structure. Position of nucleosome
is related to various biological processes, such as DNA repli-
cation and RNA splicing (Yasuda et al. 2005; Berbenetz et al.
2010). Besides, position of nucleosome is always dynam-
ically changing in these processes. Therefore, nucleosome
positioning is necessary to have an in-depth understanding
about biological processes.

Earlier, Satchwell et al. (1986) found a 10-bp interval
repetition of AA/TT/TA that appeared in the region of core
DNA. Besides, some sequences of the core DNA appeared
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periodically (Ioshikhes et al. 1996, 2006). Afterward, it was
found that nucleosome deficiency appeared in poly (dA:dT)
fragments (Segal andWidom 2009).The above findings were
considered as important nucleosome positioning signal and
indicated that nucleosome positioning was sequence depen-
dent to some extent.

With the development of high-throughput techniques,
high-resolution nucleosome positioning maps of many
species have been obtained (Lee et al. 2007; Schones et al.
2008). Therefore, various methods and tools of nucleo-
some positioning were proposed. Many predictors were
constructed based on frequencies information of nucleotide
sequences combinations. Ioshikhes et al. (2006) analyzed
characteristics of TATA box that occurred in core DNA
and linker DNA, respectively and then applied these char-
acteristics to nucleosome positioning. Peckham et al. (2007)
predicted position of nucleosome based on the characteristics
of gene sequences in promoter regions. Afterward, Kaplan
et al. (2009) analyzed DNA encode of nucleosome organi-
zation in eukaryotic genome and then predicted position of
nucleosome based on it. Afterward, Xi et al. (2010) used
hidden markov model (HMM) in nucleosome positioning.
Polishko et al. (2012) applied a modified Gaussian mixture
model to nucleosome positioning. Struhl and Segal (2013)
predicted position of nucleosome based on characteristics of
gene sequences. Besides, Freeman et al. (2014) employed
molecular models of DNA and proteins to elucidate vari-
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Fig. 1 Nucleosomes are the basic unit of eukaryotic chromatin, and each
one is constructed by a histone octamer that wrapped tightly by a DNA
sequence with 147 base pair (bp)

ous aspects of nucleosome positioning. Recently, Chen et al.
(2016) have used deformation energy to analyze nucleosome
positioning in saccharomyces cerevisiae genomes and Tahir
and Hayat (2016) constructed a sequence predictor iNuc-
STNC for nucleosome positioning. CoreDNA sequences can
be identified based on the abovemodel; however, the key fac-
tors influencing nucleosome positioning remained unclear.

Afterward, Awazu (2017) constructed a linear regression
model based on incorporation of frequencies and distribu-
tions for nucleotide sequences with different length, and
applied it to nucleosome positioning. The position of nucleo-
some and the key factors influencing nucleosome positioning
can be determined. However, the variables of model were
chosen based on the stepwise forward selection method,
which took a lot of time. Zhang et al. (2018a, b) studied
nucleosome positioning using improved convolutional neu-
ral networks. Comparedwith othermethods,Acc obtained by
this method was higher than that obtained by other proposed
method. However, this method was based on deep learning,
which took a lot of time and required higher technical sup-
port.

Besides, combiningDNA sequence information andDNA
structural properties, some predictors were proposed. For
example, based on the information of DNA sequences and
physical structure, Chen et al. (2012) and Guo et al. (2014)
proposed predictors iNuc-PhysChem and iNuc-PseKNC,
respectively. Furthermore, Flores and Orozco (2011), Tol-
storukov et al. (2008) and Woo et al. (2013) developed some
tools for nucleosome positioning.

Information entropy is an abstract concept that is often
used to measure the degree of confusion of a system. It
includes relative entropy, cross-entropy and mutual infor-
mation and is widely used in various fields (Zhang and Wu
2008, 2011; Yudong et al. 2015). Relative Entropy (RE) is an
important method that described dissimilarity between two

different probability distributions, which is widely used in
various fields.

Based on RE, a new distance measure method to distin-
guish different gene sequences was proposed (Benson 2002;
Vernikos and Parkhill 2006). Besides, Magliery and Regan
(2005) applied RE to identify unconceived hypervariable
positions, and Wang and Samudrala (2006) applied RE to
search for conserved positions of gene sequences. Vacic et al.
(2007) developed a tool for discovery and visualization dif-
ferences of amino acid composition. Afterward, Astrovskaya
et al. (2011) proposed a method to infer viral quasispecies
spectra and utilized relative entropy to measure prediction
quality. Chen and Zhou (2012) proposed a relative entropy
approach in group decision making. Besides, Beigi and
Gohari (2014) achieved quantum achievability proof via col-
lision relative entropy. Gibb and Strimmer (2015) proposed
an approach for identifying differentially expressed proteins
using binary discriminant analysis based on relative entropy.
Recently, Sarosi and Ugajin (2016) have studied the relative
entropy and the trace square distance in two-dimensional
conformal field theories. Shao et al. (2017) studied quantum
coherence quantifiers based on α relative entropy.

Many predictors were proposed for nucleosome position-
ing in various species. However, the sequence predicted as
core DNA sequences in one species may be predicted as
linker DNA sequences in another species, which showed that
function of the gene sequence in assisting or inhibiting nucle-
osome formation was dependent on species. Besides, it took
a lot of time to find the key factors influencing nucleosome
positioning. Furthermore, biological common and unique
characteristics in nucleosome positioning were ignored in
these methods. Therefore, GRE method was proposed to
extract information of DNA sequences; meanwhile, the key
factors influencing nucleosome positioning were determined
based on random forest (RF).

The rest of paper was organized as follows. Section 2
introduces materials and methods, including sources of data
and construction of benchmark datasets, generalized rela-
tive entropy, construction processes of prediction model and
evaluation metrics of model performance; Sect. 3 introduces
detailed experimental processes and analyzed experimental
results; Sect. 4 summarizes the contents above.

2 Materials andmethods

2.1 Benchmark datasets of core DNA and linker DNA
sequences

In this paper, benchmark datasets of human, worm, fly
were constructed by Guo et al. (2014) and benchmark
dataset of yeast was constructed by Chen et al. (2015). In
order to construct benchmark datasets, entire genome data
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and nucleosome positioning data were provided. Detailedly,
benchmark dataset of human was constructed by Guo et al.
(2014), entire genome sequences were available at UCSC
genome database (http://hgdownload.cse.ucsc.edu), where
18hg version was used for human genome. Due to huge
data, chromosome 20 was extracted as entire genome data of
human (Liu et al. 2011). Nucleosome positioning data were
from Schones et al. (2008) Detailedly, data were available
from http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcell
nucleosomes.aspx. Each of DNA fragments was assigned a
nucleosome formation score to reflect its propensity to form
nucleosome. The higher the score was, the more likely the
fragment would be in forming a nucleosome. Thus, those
fragments with the highest scores were chosen as core DNA
sequences, while those with the lowest scores were chosen
as linker DNA sequences. In order to eliminate the influence
of redundant data on experimental results, the CD-HIT soft-
ware was used to remove data with high sequences similarity
and the threshold was set at 80% (Fu et al. 2012). Finally,
benchmark dataset of human was obtained.

Similarly, benchmark datasets of worm and fly were con-
structed by Guo et al. (2014). Entire genome sequences of
worm and fly were downloaded fromUCSC database (http://
hgdownload.cse.ucsc.edu), WS 170/ ce 4 version and BDGP
Release 5 version were used for worm and fly genomes,
respectively. Compared nucleosome positioning data were
available at http://hgdownload.cse.ucsc.edu and http://atlas.
bx.psu.edu, respectively. Detailedly, nucleosome positioning
data of fly were from Mavrich et al. (2008). Using the same
strategy as human, benchmark datasets of these species were
obtained.

Besides, Chen et al. (2015) constructed benchmark dataset
of yeast. Entire genome sequences of yeast were downloaded
from http://www.yeastgenome.org/ and compared nucleo-
some positioning data came from Lee et al. (2007). With
the same strategy, benchmark dataset of yeast was obtained.

Benchmark datasets are defined as Eq. 1

Sk � S+k + S−
k (1)

where k ranges from 1 to 4, and S1, S2, S3 and S4 represent
human, worm, fly and yeast benchmark datasets, respec-
tively. Dataset S+1 involves 2273 core DNA sequences, and
S−
1 involves 2300 linker DNA sequences; dataset S+2 involves

2567 coreDNAsequences, and S−
2 involves 2608 linkerDNA

sequences; dataset S+3 involves 2900 core DNA sequences,
and S−

3 involves 2850 linker DNA sequences; dataset S+4
involves 1880 core DNA sequences, and S−

4 involves 1740
linkerDNA sequences. The sequence length of human,worm
and fly genomes is 147 bp, and sequence length of yeast
genome is 150 bp. Benchmark datasets of S1,S2 and S3 are
given in supplementary data of references Guo et al. (2014),

and benchmark dataset of S4 is given in supporting informa-
tion of references Chen et al. (2016).

2.2 Generalized relative entropy

In probability theory, relative entropy is used to measure
dissimilarity for two kinds of distributions. The smaller the
relative entropy is, the more similar the two kinds of distri-
bution are. In particular, the relative entropy of two identical
distributions is zero. Relative entropy of discrete random
variable is defined as Eq. 2

RE(X ,Y ) �
s∑

i�1

px (i) · log px (i)

py(i)
(2)

where px (i) and py(i) denote two kinds of discrete proba-
bility distributions, s denotes the number of states in the state
space, i is a random variable in the state space, and the value
of i ranges from 1 to s.

Relative entropy is not a distance metric, and it does not a
finite upper bound. Tomeasure the differences of two vectors
in the high-dimensional space, GRE is proposed. It is defined
as Eq. 3

d(X ,Y ) �
s∑

i�1

(
px (i) · log k · px (i)

(k − 1)px (i) + py(i)

)

+
s∑

i�1

(
py(i) · log k · py(i)

px (i) + (k − 1)py(i)

)

+ r · log
(
1 +

1

k − 1

)2

(3)

where k ≥ 1, r � 0 when X � Y ; otherwise, r � 1 when
X �� Y . Parameter k denotes the weight of the probability of
occurrence of each state. The meaning of i and s is same as
that in Eq. 2.

The Markov model is a statistical model that can be used
to describe the Markov process. The generation of DNA
sequences can be seen as a Markov process. Assuming that
the sequence that appeared in the next state depends on the
previous state, herewe use a first-order 4 Short formof author
list Markov chain to represent the DNA sequence. Therefore,
the generation probability ofDNAsequence can be expressed
by Eq. 4

pn � p(s0) ∗ an−1
i j (4)

where pn represents generation probability ofDNAsequence
with length n, s0 represents initial state, p(s0) represents
occurrence probability of initial state, and n represents
sequence length of DNA. A single-nucleotide A C G T is
represented by 1 2 3 4, respectively. i and j are two ran-
dom variables, and the values range from 1 to 4. Therefore,
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 Converting DNA sequences into feature vectors using the GRE method
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Score>=100

 Obtain the key factors affecting nucleosome positioning

Fig. 2 Nucleosome positioning flowchart

ai j represents state transition probability between different
nucleotides.

Assuming that the length of the DNA sequence is m andm
is far less than n, the generation probability of DNA sequence
can be expressed by Eq. 5

pm � t ∗ p(s0) ∗ am−1
i j (5)

where t belongs to Q and Q represents rational number. If
DNA sequences have self-similarity, theremust be a constant
that satisfies Eq. 6
pn
pm

� k (6)

where k is a constant. Because the ratio of pn to pm is
an−m
i j /t , DNA sequences satisfy self-similarity. Based on
self-similarity of DNA sequences and GRE method, core
DNA sequences can be identified.

2.3 Predictionmodel

In order to predict nucleosome positioning, generalized
relative entropy (GRE) was proposed. The model was con-
structed by the following steps.

Step 1 Calculate all types of di-nucleotide frequency in
core DNA sequences and obtain their distribution X2 �

{x1, x2, . . . , x16}, and xi denotes frequency of the ith di-
nucleotide. Using the same methodology, calculate all types
of di-nucleotide frequency in linker DNA sequences and
obtain their distribution X ′

2 � {
x ′
1, x

′
2, . . . , x

′
16

}
.

Step 2 Similarly, calculate all types of di-nucleotide fre-
quency in all coreDNAsequences and linkerDNAsequences
and then obtain their distribution Y2 � {y1, y2, . . . , y16}.

Step 3 Calculate generalized relative entropy of each
DNA sequence according to Eq. 3, which constructs two-
dimensional feature vectors d2 � GRE

(
d+2 , d−

2

)
, where

d+2 � d(X2,Y2) and d−
2 � d

(
X ′
2,Y2

)
.

Step 4 Following steps 1 to 3, calculate the general-
ized relative entropy of other types of DNA fragments,
of which trinucleotide, four-nucleotide, five-nucleotide and
six-nucleotide. It constructs ten-dimensional feature vectors
d10 � GRE

(
d+2 , d−

2 , d+3 , d−
3 , d+4 , d−

4 , d+5 , d−
5 , d+6 , d−

6

)
.

Step 5 Calculate classification importance score based
on random forest and search for crucial feature vectors in
nucleosome positioning according to classification impor-
tance score.

Step 6 Put those feature vectors obtained in step 5 into
SVM to recognize core DNA sequences.

Step 7 Use jackknife test and tenfold cross-validation to
examine prediction performance of GRE method.

The detailed processing process of nucleosome position-
ing is shown in Fig. 2.

123



Nucleosome positioning based on generalized relative entropy 9179

2.4 Machine learning algorithm

Machine learning (ML) is a technology that studies the pro-
cess of making machines intelligent through learning of past
experience. In recent years, due to the development of arti-
ficial intelligence (AI), machine learning algorithms have
been widely used (Zhang et al. 2015; Petralia et al. 2015;
Ide et al. 2016; Lin et al. 2017; Ismail et al. 2017; Karlekar
and Gomathi 2018; Sinoquet 2018).

BP neural network can solve different classification prob-
lems by simulating the structure of human brain. However,
because BP neural network is an optimization method of
local search, the algorithm is easy to fall into the local opti-
mal solution, which can lead to training failure (Meng et al.
2018; Zhang et al. 2017).

Support vector machine (SVM) is amethod for both linear
and nonlinear data classifications, and the main idea of SVM
is to map nonlinear data in a low-dimensional space into
a high-dimensional space and then search for the optimal
hyperplane using a kernel function to separate data in one
class fromanother class. It has beenwidely used in the field of
bioinformatics (Bhasin and Raghava 2004; Wan et al. 2013).

Random forest (RF) is an important class cation algorithm
which can separate two different types of data; meanwhile, it
provides the importance scores of feature attributes for classi-
fication. It has been widely used in the field of bioinformatics
(Petralia et al. 2015; Ide et al. 2016; Zhang et al. 2016; Rah-
man et al. 2017; Taherzadeh et al. 2017; Ismail et al. 2017;
Sinoquet 2018; Fabris et al. 2018).

Therefore, in this paper, due to its powerful nonlinear
mapping capabilities, SVM was selected to be a classifier
to distinguish core DNA and linker DNA. Meanwhile, RF
was used to search for key factors in nucleosome position-
ing because it can provide the importance scores of feature
attributes for classification.

Besides, the software package LIBSVM 3.22 was used
to be as an implementation of SVM, which was available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Radial basis
function was selected as the kernel function. The parame-
ters c and g in the training model were determined by a grid
search approach.

2.5 Metrics for performance evaluation

In this paper, prediction performance of GRE model was
evaluated by jackknife test and tenfold cross-validation.
Detailedly, jackknife testwas used to examine prediction per-
formance of GRE model in human, worm and fly genomes.
Meanwhile, tenfold cross-validation was used to examine
prediction performance of GRE model in yeast genome.
These methods were widely applied to evaluate prediction
quality of the previously proposed model (Chen et al. 2012;

Guo et al. 2014; Chen et al. 2016; Tahir and Hayat 2016;
Awazu 2017).

Here, Eqs. 7–10 are defined to evaluate performance of
model. Detailedly, TP is defined as the number that core
DNA sequences correctly predicted coreDNA sequences, FP
is defined as the number that linker DNA sequences incor-
rectly predicted core DNA sequences, FN is defined as the
number that coreDNAsequences incorrectly predicted linker
DNA sequences, and TN is defined as the number that linker
DNA sequences correctly predicted linker DNA sequences.
Using jackknife test and tenfold cross-validation, the follow-
ing metrics are obtained:

Sn � TP

TP + FN
(7)

Sp � TN

TN + FP
(8)

Acc � TP + TN

TP + FP + FN + TN
(9)

Mcc � TP ∗ TN − FP ∗ FN√
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

(10)

where Sn, Sp,Acc and Mcc represent sensitive, specificity,
accuracy and Mathew’s correlation coefficient, respectively.

3 Results and discussion

3.1 Parameter optimization

As shown in Eq. 3, our proposedmethod is based on a param-
eter k, where k is the weight factor and reflects distributions
of core DNA sequences and linker DNA sequences in the
entire genome. Furthermore, an appropriate k can reflect dis-
tributions of core DNA and linker DNA in high accuracy
so that we can separate core DNA from linker DNA. Thus,
searching for the optimal values of parameter k is neces-
sary.

In order to record results of search, k∗
1 ,k

∗
2 and k∗

3 were
defined as the optimal parameter values obtained in the first,
second and third parameter optimizations, respectively, and
k∗ was defined as the optimal parameter values used to con-
struct GRE model. Due to k ≥ 1, in order to obtain the
optimal parameter values and, meanwhile, reduce computa-
tional time, the following strategy was adopted.

Step 1 Search for the optimal parameter values according
to Eq. 11:

2 ≤ k ≤ 10, with step � � 1
10 ≤ k ≤ 200, with step � � 10

(11)
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Table 1 The optimal parameter values in four species

Species k∗
1 k∗

2 k∗
3 k∗

Human 190 184 184.0 184.0

Worm 140 146 145.8 145.8

Fly 8 8.5 – 8.5

Yeast 60 70 80 90
100

– – 60 70 80 90
100

Step 2Based onEq. 11, k∗
1 was obtained. Then, the optimal

parameter values were searched according to Eq. 12.

2 ≤ k∗
1 ≤ 10, with step � � 0.1

10 ≤ k∗
1 ≤ 200, with step � � 1 (12)

Step 3Based onEq. 12, k∗
2 was obtained. Then, the optimal

parameter values were searched according to Eq. 13.

2 ≤ k∗
2 ≤ 10, with step � � 0

10 ≤ k∗
2 ≤ 200, with step � � 0.1

(13)

In Eq. 13, step with 0 meant that we stopped search and
obtained the optimal parameter values k∗.

In this paper, jackknife test was used to search for the
optimal parameter values in human, worm and fly genomes,
respectively. Similarly, tenfold cross-validation was used to
determine the optimal parameter values in yeast genome. In
our experiment, prediction accuracy of fly genome declined
obviouslywhen parameter k ranged from110 to 200. Thus, in
order to reduce computational time, optimal parameter val-
ues were searched in a range of 2 to 100. Besides, prediction
accuracy of yeast genome reached 1 when parameter k was
equal to 60, 70, 80, 90 and 100. Therefore, the optimal param-
eter values of yeast genomewere obtained. As for human and
worm genomes, the optimal parameter values were searched
in a range of 2–200.

Detailedly, the optimal parameter values were determined
by the method “shortening the interval length gradually” and
precision of the optimal parameter values was set at 0.1. In
the processes of searching for the optimal parameter values,
search was terminated when prediction accuracy reached 1
or precision of the optimal parameter values reached 0.1. The
processes of parameter optimization in human genome were
as follows.

Step 1 Calculate prediction accuracy when parameter k
varied from 2 to 200, respectively. Then, choose that param-
eter k with the highest prediction accuracy as k∗

1 . As shown
in Table 1, k∗

1 � 190.
Step 2 Search for those values adjacent to k∗

1 and choose
smaller value as starting point of the second parameter opti-
mization and bigger value as terminal point of the second
parameter optimization. Thus, the range of the second param-
eter optimization was determined. Then, prediction accuracy

was calculatedwhen parameter k varied from 180 to 200with
a step of 1. Among these k values, the parameter k with the
highest prediction accuracy was chosen k∗

2 , where k
∗
2 � 184.

Step 3 Determine the range of parameter optimization
using the same way as step 2. Then, search for the opti-
mal parameter values in the scope between 183 and 185
with a step of 0.1. Compared with different results obtained
by different parameters k, the parameter k with the highest
prediction accuracy was chosen as k∗

3 , where k∗
3 � 184.0.

The precision of the optimal parameter value reached 0.1.
Hence, the parameter value used to construct GRE model
was obtained, where k∗ � k∗

3 � 184.0.
Using the same strategy, the optimal parameter values of

worm, fly and yeast genomes were obtained. As shown in
Table 1, the optimal parameter values of four species were
obtained (k∗ � 184.0,� 145.8,� 8.5 and � 60,� 70,�
80,� 90,� 100 for human, worm, fly and yeast genomes,
respectively). In the second parameter optimization, the pre-
cision of the optimal parameter value in fly genome reached
0.1. Therefore, the optimal parameter value in GRE model
was obtained. Besides, prediction accuracy of yeast genome
reached 1, when k was equal to 60, 70, 80, 90 and 100.
As for yeast genome, the optimal parameter values were
obtained in the first parameter optimization. The parameter
optimization processes and the optimal parameter values of
four species are shown in Figs. 3, 4, 5, 6 and Table 1, respec-
tively. As shown in Table 1, k∗

1 ,k
∗
2 and k∗

3 represented the
optimal parameter values obtained in the first, second, third
parameter optimizations, respectively. k∗ was the optimal
parameter value in RGE model. “-” represented null value.
As for fly genome, the optimal parameter value was obtained
in the second parameter optimization. Therefore, the value
of k∗

3 was null value. Similarly, the optimal parameter values

k

0.86

0.88

0.9

A
cc

ur
ac

y

first parameter optimization

k

0.87

0.88

0.89

A
cc

ur
ac

y

second parameter optimization

0 20 40 60 80 100 120 140 160 180 200

180 182 184 186 188 190 192 194 196 198 200

183 183.2 183.4 183.6 183.8 184 184.2 184.4 184.6 184.8 185
k

0.88

0.885

0.89

A
cc

ur
ac

y

third parameter optimization

Fig. 3 Parameter optimization processes in human genome
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Fig. 4 Parameter optimization processes in worm genome

of yeast genome were obtained in the first parameter opti-
mization. Therefore, both k∗

2 and k∗
3 were null value.

In order to analyze the effect of k values on the accuracy
of SVM in different species, Table 2 is shown. In Table 2,
maximum and minimum were used to represent Acc under
the best case and the worst case, respectively. Meanwhile,
kmax and kmin were used to represent k values correspond-
ing to themaximum accuracy Nucleosome positioning based
on generalized relative entropy 7 and the minimum accuracy,
respectively. – represented null value.

In order to analyze the relation between parameter k and
distribution of core DNA and linker DNA, Figs. 7, 8, 9, 10
and 11 were provided. X-axis represented DNA sequences.
Detailedly, values ofX-axis represented coreDNAsequences
when 0 ≤ x ≤ 1779, and values of X-axis represented linker
DNA sequences when 1880 ≤ x ≤ 3619. Y-axis represented
the feature values obtained by GRE model. For simplicity,
2+, 2−, 3+, 3−, 4+, 4−, 5+, 5−, 6+and 6− in legend denoted

Fig. 5 Parameter optimization
processes in fly genome
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Fig. 6 Parameter optimization
processes in yeast genome
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Table 2 The effect of k value on accuracy in different species

Species kmax Maximum kmin Minimum

Human 184 0.8861 2 0.8695

Worm 145.8 0.8846 2 0.8622

Fly 8.5 0.8376 100 0.8219

Yeast 60 70 80 90
100

1 7 0.9986
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2-

0.03
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feature values distribution of tri-nucleotide
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3-
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4-
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0.04
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feature values distribution of five-nucleotide
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5-
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0 500 1000 1500 2000 2500 3000 3500 4000

0 500 1000 1500 2000 2500 3000 3500 4000

0 500 1000 1500 2000 2500 3000 3500 4000

0 500 1000 1500 2000 2500 3000 3500 4000
0.03
0.04
0.05

feature values distribution of six-nucleotide
6+

6-

Fig. 7 Feature values distribution (k �60)

positive di-nucleotide, negative di-nucleotide, positive trin-
ucleotide, negative trinucleotide, positive four-nucleotide,
negative four-nucleotide, positive five-nucleotide, negative
five-nucleotide, positive six-nucleotide and negative six-
nucleotide, respectively. As shown in Figs. 7, 8, 9, 10 and 11,
distributions of feature values obtained bypositive nucleotide
sequences and negative nucleotide sequences were different
in core DNA and linker DNA. Furthermore, the feature val-
ues obtained by positive nucleotide sequences were smaller
than those obtained by negative nucleotide sequences in
core DNA, while the feature values obtained by negative
nucleotide sequences were smaller than those obtained by
positive nucleotide sequences in linker DNA. Thus, distribu-
tions of feature values in core DNA and linker DNA were
different. Based on these, core DNA sequences can be rec-
ognized in high accuracy. The above results indicated that
prediction results obtained by GRE model were consistent
with the real distributions of core DNA and linker DNA in
yeast genome when the optimal parameter values were equal
to 60, 70, 80, 90 and 100. Therefore, the optimal parameter
values can reflect real distribution of core DNA and linker
DNA to some extent.
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Fig. 8 Feature values distribution (k �70)
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3.2 Feature selection

Random forest was an important classification algorithm. It
can separate two different types of data and, meanwhile, pro-
vide the importance of feature attributes for classification.
Therefore, random forest was used to find the crucial factors
in nucleosome positioning. First, two parameters needed to
be set, including the number of trees in forest and the number
of node split attributes. In this paper, the number of trees in
forest was set as 50, 100,150, 200, 250, 300, 350, 400, 450
and 500, respectively, because ten-dimensional feature vec-
tors were obtained based on GRE method and the number of
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Fig. 11 Feature values distribution (k �100)

node split attributes was generally set as root mean square of
the number of classification attribute. Therefore, the number
of node split attributes was set as 3. Next, under the optimal
parameters of GRE model, calculate the importance score of
ten feature vectors when the number of trees in forest was
set as 50, 100, 150, 200, 250, 300, 350, 400, 450 and 500,
respectively. The feature vectors whose score exceeded 100
are shown in Table 3. In Table 3, v1, v2, v3, v4, v5, v6, v7,
v8, v9 and v10 presented those feature vectors obtained by
positive di-nucleotide, negative di-nucleotide, positive trin-
ucleotide, negative trinucleotide, positive four-nucleotide,
negative four nucleotides, positive five-nucleotide, negative

Table 3 The optimal parameter values in four species

Species Value of k Feature vectors

Human 190 v10, v9, v5, v7, v8,
v3, v6

Worm 140 v10, v8, v4, v9, v6,
v7, v5, v3, v1

Fly 8 v10, v8, v9, v7, v5,
v6, v4, v3, v2, v1

Yeast 60 v10, v9, v8, v5, v7

Yeast 70 v10, v9, v8, v5, v7

Yeast 80 v10, v9, v8, v5, v7

Yeast 90 v10, v9, v8, v5, v7

Yeast 100 v10, v9, v8, v5, v7

five-nucleotide, positive six-nucleotide and negative six-
nucleotide, respectively. Then, set threshold of score as 100
to search for those feature vectors whose score threshold
exceeded 100. Finally, search for the common feature vectors
whose score threshold exceeded 100 in four species. Those
feature vectors were considered as the key factors affecting
nucleosome positioning. As shown in Table 3, v10, v9, v8,
v5 and v7 were the common feature vectors of four species.
Therefore, positive four-nucleotide, positive five-nucleotide,
negative five-nucleotide, positive six-nucleotide and negative
six-nucleotide sequences were considered as the key factors
affecting nucleosome positioning.

In order to analyze the effect of the number of trees on
Acc in different species, Table 4 was provided. As shown
in Table 4, maximum and minimum were used to represent
Acc under the best case and the worst case, respectively.
Meanwhile, treemax and treemin were used to represent the
number of trees corresponding to themaximum accuracy and
the minimum accuracy. Besides, - represented null value.

3.3 Prediction results for human, worm and fly
genomes

Using jackknife test, Sn, Sp, Acc and Mcc were obtained.
Acc (=0.8778,�0.8798 and�0.8336 for human, worm and
fly genomes, respectively) obtained by our proposed model
was higher than those obtained by iNuc-PseKNC (Guo et al.
2014) for human, worm and fly genomes, higher than those
obtained by iNuc-PseSTNC (Tahir and Hayat 2016) for
human and fly genomes, and higher than those obtained
by 3LS model (Awazu 2017) for worm genomes (Tables 5,
6, 7). Compared with those methods provided by Guo and
Tahir, our proposed method can find the key factors influ-
encing nucleosome positioning with lower time complexity.
Although the method proposed by Awazu can find key fac-
tors influencing nucleosome positioning, its time complexity
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Table 4 The effect of the
number of trees on accuracy in
different species

Species treemax Maximum treemin Minimum

Human 100 0.8662 200 400 0.8596

Worm 500 0.8611 50 0.8554

Fly 500 0.7847 400 0.78

Yeast 60 100 150 200 300
350 400 450 500

1 50 250 0.9997

Yeast 70 50 100 150 200 300
350 400 450 500

1 – –

Yeast 80 50 100 150 200
300 400 450 500

1 200 350 0.9997

Yeast 90 100 150 200 300
350 400 450 500

1 – –

Yeast 100 100 150 200 300
350 400 450 500

1 – –

Table 5 The prediction performance for human genome

Metrics Methods

GRE 3LS iNuc-
PseKNC

iNuc-
PseSTNC

Acc 0.8778 0.9001 0.8627 0.8760

Sn 0.9107 0.9169 0.8786 0.8931

Sp 0.8452 0.8835 0.8470 0.8591

Mcct 0.7573 0.8006 0.73 0.75

Table 6 The prediction performance for worm genome

Metrics Methods

GRE 3LS iNuc-
PseKNC

iNuc-
PseSTNC

Acc 0.8798 0.8786 0.8690 0.8862

Sn 0.8975 0.8654 0.9030 0.9162

Sp 0.8623 0.8921 0.8355 0.8666

Mcct 0.7602 0.7576 0.74 0.77

Table 7 The prediction performance for fly genome

Metrics Methods

GRE 3LS iNuc-
PseKNC

iNuc-
PseSTNC

Acc 0.8336 0.8314 0.7997 0.8167

Sn 0.8290 0.8407 0.7831 0.7976

Sp 0.8382 0.8274 0.8165 0.8361

Mcct 0.6672 0.6682 0.60 0.63

was high. Therefore, our proposed method was an effective
method in nucleosome positioning.

Table 8 The prediction performance for yeast genome

Metrics Methods

GRE TNS iNuc-
PhysChem

DNA
energy

Acc 1 1 0.967 0.981

Sn 1 1 0.972 0.982

Sp 1 1 0.943 0.980

Mcct 1 1 0.936 0.963

3.4 Prediction results for yeast genomes

Based on tenfold cross-validation, prediction results of yeast
genome was obtained (Acc�1, Sn �1, Sp �1 and Mcc�
1). As shown in Table 8, results obtained by GRE model
were same as results obtained by TNS model (Awazu 2017),
higher than those obtained by iNuc-PhysChem (Chen et al.
2012) (Acc�0.967), DNA energy (Chen et al. 2016) (Acc�
0.981). Besides, prediction accuracy of our model can reach
1 when parameter k was equal to 60, 70, 80, 90 and 100. It
was shown that the distribution of core DNA and linker DNA
obtained by GRE model was consistent with the real distri-
bution of core DNA and linker DNA. Compared with those
methods provided byChen, our proposedmethod can find the
key factors influencing nucleosome positioning with lower
time complexity. Although the method proposed by Awazu
can find key factors influencing nucleosome positioning, its
time complexity was high, and our proposed method was an
effective method in nucleosome positioning.

3.5 Analysis of factors affecting nucleosome
positioning

Using GRE model, core DNA of human, worm, fly and
yeast genomes can be recognized in high accuracy. Further-
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more, the crucial factors of nucleosome positioning have
been found.

Parameter k can reflect the distribution of core DNA and
linker DNA to some extent. Besides, compared to the distri-
bution of coreDNAand linkerDNAobtained by non-optimal
parameter values, the distribution obtained by the optimal
parameter values was more similar to the real distribution of
core DNA and linker DNA in the entire genome. It indicated
that parameter k played important roles in nucleosome posi-
tioning. Besides, the optimal parameter values were different
in human, worm, fly and yeast genomes. It indicated that fea-
tures of nucleosome positioning were species dependent.

Furthermore, GREmodels of four species contained com-
mon feature vectors (positive four-nucleotide, positive five-
nucleotide, negative five-nucleotide, positive six-nucleotide
and negative six-nucleotide sequences). Removing those
common feature vectors from ten-dimensional feature vec-
tors, Acc was 0.7881, 0.8400 and 0.7663 for human, worm
and fly genomes, respectively. Similarly, Acc was 0.9994,
0.9994, 0.9992, 0.9994 and 0.9994 in yeast genome when
parameter k equaled 60, 70, 80, 90 and 100, respectively.
It showed that Acc obtained by the common feature vec-
tors was higher than those obtained by those feature vectors
which were obtained by removing common feature vectors
from all feature vectors. Therefore, these common feature
vectors were key factors affecting nucleosome positioning.

Although the position of nucleosomes of four species
and crucial factors of nucleosome positioning can be deter-
mined based on our proposedmodel, some additional factors,
such as the flexibility of DNA fragments, can also influ-
ence nucleosome positioning (Sangaiah et al. 2017; Lu et al.
2017; Zhang et al. 2018a, b). Therefore, in the future, we
will combine the information of DNA sequences with their
physicochemical properties in nucleosome positioning.

From simulation results, we can get the following trends
in nucleosome positioning.

• Nucleosome positioning was species dependent.
• Some common factors, including five-nucleotide and six-
nucleotide,were important factors in nucleosomeposition-
ing of different species.

• The values of parameter k with the highest prediction Acc
were different in different species. It indicated that some
unique factors can also affect the position of nucleosomes
in different species.

3.6 Analysis of the significance of the parameter k

The parameter k reflected the weight of two different dis-
tributions and had important biological significance. For
searching for the significance of parameter, prediction results
obtained by RE and GRE methods were compared. Besides,

Table 9 Comparison results obtained by GRE and RE methods in the
human genome

Method Metrics

Acc Sn Sp Mcc

RE 0.8690 0.9094 0.8291 0.7406

GRE 0.8778 0.9107 0.8452 0.7573

Table 10 Comparison results obtained by GRE and RE methods in the
worm genome

Method Metrics

Acc Sn Sp Mcc

RE 0.8433 0.8781 0.8090 0.6885

GRE 0.8798 0.8975 0.8623 0.7602

Table 11 Comparison results obtained by GRE and RE methods in the
fly genome

Method Metrics

Acc Sn Sp Mcc

RE 0.7998 0.7686 0.8316 0.6012

GRE 0.8336 0.8290 0.8382 0.6672

Table 12 Comparison results obtained by GRE and RE methods in the
yeast genome

Method Metrics

Acc Sn Sp Mcc

RE 0.9978 0.9979 0.9977 0.9955

GRE 1 1 1 1

the optimal k value of the model was studied when a genetic
mutation occurred. Details were as follows.

In order to find out the importance of weight distribu-
tion, prediction results obtained by GRE and RE methods
were compared in human, worm, fly and yeast genomes,
respectively. The parameter k of GRE method was based
on the optimal k value. The comparison results are shown in
Tables 9, 10, 11 and 12.

As shown in Tables 9, 10, 11 and 12, we can draw a con-
clusion that the predictive performance of GRE method was
better than that of the REmethod. Therefore, in terms of pre-
diction accuracy, the adjustment of the weights of the two
distributions was very important. The parameter k played an
important role in weight adjustment.

Furthermore, the optimal parameters values in the GRE
model were studied when a gene mutation occurred at a cer-
tain site of the DNA sequences. In order to ensure that the
length of the DNA sequences was unchanged, the genemuta-
tion only considered the replacement of the base pair. It was
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found that the optimal parameters values in the GRE model
were stable. Therefore, the parameter k was conservative in
the same species.

4 Conclusion

In this paper, based on relative entropy, a novel nucleosome
positioning method was proposed. Using this method, core
DNA of human, worm, fly and yeast was recognized by
their sequences. In order to evaluate the quality of model,
different nucleosome positioning methods were compared
with same benchmark datasets. Experimental results showed
that our proposed model was an effective nucleosome posi-
tioning method. Besides, five-nucleotide and six-nucleotide
sequences were considered as crucial factor in nucleosome
positioning. Because some additional factors, such as the
flexibility of DNA fragments, can also influence nucleosome
positioning. Therefore, in the future, we will combine the
information of DNA sequences with their physicochemi-
cal properties in nucleosome positioning. Besides, we will
apply the generalized relative entropy to comparison of text
similarity, the allocation of weight indicators in multi-index
evaluation systems and pattern recognition.
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