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Abstract
In this paper, we discuss the fuzzy portfolio selection problems in multi-objective frameworks. A comprehensive model for
multi-objective portfolio selection in fuzzy environment is proposed by incorporating mean-semivariance model and data
envelopment analysis cross-efficiency model. In the proposed model, the cross-efficiency model is formulated within the
framework of Sharpe ratio; bounds on holdings, and cardinality constraints are also considered. The nonlinear constrained
multi-objective portfolio optimization problem cannot be efficiently solved by using traditional approaches. Thus, a multi-
objective firefly algorithm is developed to solve the relevant model. Finally, an example verifies the validity of the proposed
approaches.

Keywords Fuzzy portfolio selection ·Data envelopment analysis ·Cross-efficiency evaluation · Sharpe ratio ·Multi-objective
firefly algorithm

1 Introduction

The mean-variance (M–V ) model proposed by Markowitz
(1952) has made tremendous contribution to the modern
portfolio selection theory, in which return is quantified
as the mean and risk as the variance. Since then, many
researchers have improved and expanded the M–V model
based on different risk measurements, see for instance,
mean-semivariancemodels (Markowitz 1959; Grootveld and
Hallerbach 1999), mean absolute deviation (MAD) model
(Konno and Yamazaki 1991), mean semiabsolute deviation
models (Speranza 1993; Ogryczak and Ruszczynski 1999),
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mean absolute deviation skewnessmodel (Konno et al. 1993),
etc.All above researches are basedon the probabilistic frame-
work where the returns of securities are regarded as random
variables with probability distributions. However, because
the financial markets are complex, and we sometimes lack
enoughhistorical data, it is difficult to obtain the precise prob-
ability distributions of the security returns. With the help of
fuzzy set theory proposed by Zadeh (1965), a number of
scholars have studied portfolio selection problems in fuzzy
environment, for instance, Carlsson et al. (2002), Gupta et al.
(2008), Wang et al. (2011), Liu and Zhang (2013), Chen
(2015), Chen et al. (2018), Vercher and Bermúdez (2015),
Mehlawat (2016) and Liagkouras and Metaxiotis (2018).

Data Envelopment Analysis (DEA) approach proposed by
Charnes et al. (1978) is a mathematical programming-based
approach for measuring relative efficiency of decision-
making units (DMUs) that have multiple inputs and outputs.
Subsequently, it turns out that DEA is a worthy tool for
evaluating performance in a wide range of fields, such as
the interesting applications in health care (Sherman 1984),
education (Avkiran 2001), environment (Fried et al. 2002),
banking (Grigorian and Manole 2006), energy (Hu and Kao
2007). In addition to above applications, in recent years,
DEAmethod has been applied to portfolio performance eval-
uation. Murthi et al. (1997) first applied DEA method to
portfolio performance evaluation and concluded that the pro-
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posed approach is consistent with traditional Sharpe index
(Sharpe 1966) and Jesnen Index (Jensen 1968). Joro and
Na (2006) developed a portfolio performance measure in
a mean-variance-skewness framework by utilizing a non-
parametric DEA method. Branda (2013) introduced new
efficiency tests, in which deviation and return measures were
regarded as the inputs and outputs, respectively. Lim et al.
(2014) presented a DEA cross-efficiency method and pro-
posed a newmodel calledDEAM–V cross-efficiencymodel.
Liu et al. (2015) evaluated the efficiency of portfolios by
constructing DEA models and proved that the DEA fron-
tiers can approximate the real frontier of portfolios with big
enough sample size. More recently, Gouveia et al. (2017)
used the value-based DEAmethod to assess the performance
of Portuguese mutual fund portfolios. Zhou et al. (2018) pro-
posed aDEA frontier improvement approach under theM–V
framework. Later, Zhou et al. (2018) presented a segmented
DEA approach based on data segment points, and proved that
the approach was effective and practical in evaluating the
cardinality constrained portfolio performance. Tarnaud and
Leleu (2017) presented an idea that performance measure-
ment of portfolios with DEA should not rely on a technology
defined through a production process that assimilates risk to
an input generating some return. Zhou et al. (2018) proposed
a multi-objective evolutionary algorithm based on decompo-
sition andDEAapproach for portfolio optimization. It should
be noted that above researches are based on the assumption
that security returns are random variables instead of fuzzy
variables. At present, few researchers have applied the DEA
approach to fuzzy portfolio evaluation problems. Chen et al.
(2018) presented three kinds of DEA-based fuzzy portfolio
efficiency evaluation models in different risk measures.

Note that, all above-mentioned researches focus either
on developing different portfolio selection models, or on
presenting various portfolio performance evaluation mod-
els. But, no research has yet been carried out from both
above aspects. Recently, Mashayekhi and Omrani (2016)
proposed a fuzzy multi-objective portfolio selection model
based on M–V model and DEA cross-efficiency models to
simultaneously consider return, risk and the efficiency of the
portfolio. To the best of the authors’ knowledge, except for
the above one work, there is few research on constructing
fuzzy portfolio evaluation model by integrating M–V model
and DEA cross-efficiency model. Especially, when return
distributions of securities are asymmetric, using variance as
risk measure leads to an unsatisfactory prediction of port-
folio behavior. This lack of works has motivated this work.
In this paper, we will develop a comprehensive model for
fuzzy multi-objective portfolio selection by incorporating
fuzzy mean-semivariance model and DEA cross-efficiency
model. It should be noted that the cross-efficiency model is
formulated within the framework of Sharpe ratio.

With the introduction of some practical constraints includ-
ing cardinality constraint in multi-objective frameworks, the
multi-objective portfolio selection problem has become pop-
ular; and the complexity of computation makes it be the
NP-hard problems (Shaw et al. 2008). Several researchers
have attempted to solve this problem by a variety of tech-
niques, but exact solution methods may fail to obtain an
optimal solution in reasonable time; and the computation
time grows rapidly with the problem size. Using meta-
heuristics in this case is imperative. At present, several
scholars have applied metaheuristic optimization techniques
including evolutionary algorithms (EAs) for multi-objective
portfolio optimization problem, such as Krink and Paterlini
(2011), Anagnostopoulos and Mamanis (2011), Bermúdez
et al. (2012), Lwin et al. (2014), Saborido et al. (2016) and
Liagkouras and Metaxiotis (2018). In 2008, a new biologi-
cally inspired metaheuristic algorithm, known as the firefly
algorithm (FA), was developed by Yang (2008). Since the
introduction of FA, it has been successfully applied to var-
ious optimization problems, see the survey by Fister et al.
(2013) and Yang and He (2013). However, to our knowl-
edge, few researchers have applied FA for solving fuzzy
multi-objective portfolio optimization problems with com-
plex realistic constraints. In addition, the basic FA was
developed for unconstrained issues and exhibits some defi-
ciencieswhen solving the constrainedmulti-objectivemodel.
Therefore, a multi-objective FA is developed for the fuzzy
multi-objective portfolio optimization model.

In summary, this paper discusses the fuzzy portfolio selec-
tion problem, in which return, risk, and the efficiency of
the portfolio are considered simultaneously. The main con-
tributions of this paper are as follows: (1) we propose a
comprehensive model for fuzzy multi-objective portfolio
selection by incorporating fuzzy mean-semivariance model
and DEA cross-efficiency model. Especially, inspired by the
ideas of Sharpe ratio (SR), the cross-efficiency model is for-
mulated within the framework of SR; and (2) we develop a
multi-objective firefly algorithm (MOFA) to solve the pro-
posed multi-objective portfolio optimization model.

The rest of the paper is organized as follows. Section 2
presents the proposed fuzzy multi-objective portfolio com-
prehensive model. In Sect. 3, the multi-objective firefly
algorithm is introduced. After that, an example is given to
verify the validity of the proposed approaches in Sect. 4.
Finally, the conclusion of the paper is summarized in Sect. 5.

2 Model formulation

2.1 Possibilistic mean-semivariance portfolio model

Similar to Carlsson et al. (2002) and Chen (2015), we assume
that the returns of assets are trapezoidal fuzzy numbers. Let
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security return ri be a trapezoidal fuzzy number with toler-
ance interval [ai , bi ], left width αi and right width βi , i.e.,
ri = (ai , bi , αi , βi ) with γ− level sets [ri ]γ = [ai − (1 −
γ )αi , bi + (1 − γ )βi ], i = 1, 2, . . . , n.

Carlsson and Fullér (2001) introduced the notions of crisp
possibilistic mean and crisp possibilistic variances of fuzzy
numbers. Easily seen that if ri = (ai , bi , αi , βi ) is a trape-
zoidal fuzzy number then

E(ri ) = ai + bi
2

+ βi − αi

6
, (1)

and

Var(ri ) =
(
bi − ai

2
+ αi + βi

6

)2

+ (αi + βi )
2

72
. (2)

Furthermore, the possibilistic mean of the return associ-
ated with the portfolio (w1, w2, . . . , wn) can be obtained as

E

( n∑
i=1

riwi

)
=

n∑
i=1

(
ai + bi

2
+ βi − αi

6

)
wi , (3)

and the possibilistic variance of return associated with the
portfolio (w1, w2, . . . , wn) as

Var

( n∑
i=1

riwi

)
=

( n∑
i=1

1

2

[
(bi − ai ) + αi + βi

3

]
wi

)2

+ 1

72

[ n∑
i=1

(αi + βi )wi

]2
, (4)

where wi is the proportion of security i, i = 1, 2, . . . , n.

Taking the possibilistic mean of portfolio return as return
measure and the possibilistic variance as the risk measure,
several researchers have proposed various types of fuzzy
portfolio models in the mean-variance framework, such
as Carlsson et al. (2002) and Liagkouras and Metaxiotis
(2018). However, when return distributions of securities are
asymmetric, using variance as riskmeasure leads to an unsat-
isfactory prediction of portfolio behavior. Therefore, some
scholars employed semivariance as an alternative risk mea-
sure to qualify the portfolio risk, see for instance Markowitz
(1959), Ballestero (2005), Zhang et al. (2012) and Liu and
Zhang (2015). In this paper, we employ the lower possi-
bilistic semivariance to measure the risk of portfolio. Based
on Carlsson and Fullér (2001), and Saeidifar and Pasha
(2009), Zhang et al. (2012) presented the definition of the
lower possibilistic semivariances of fuzzy number A with
[A]γ = [a(γ ), ā(γ )] (γ ∈ [0, 1]), as follows,

Var−(A) =
∫ 1

0
2γ (E(A) − a(γ ))2dγ. (5)

Besides, the lower possibilistic semivariance of return related
with the portfolio (w1, w2, . . . , wn) can be expressed by

Var−
( n∑

i=1

riwi

)
=

[
n∑

i=1

wi

(
bi − ai

2
+ αi + βi

6

)]2

+ 1

18

(
n∑

i=1

wiαi

)2

. (6)

In the following, we use the possibilistic mean of portfolio
return as return measure and the lower possibilistic semi-
variance as the risk measure. Furthermore, the possibilistic
mean-semivariance portfolio model can be formulated as the
following bi-objective programming problem:

max E

( n∑
i=1

riwi

)
=

n∑
i=1

(
ai + bi

2
+ βi − αi

6

)
wi

min Var−
( n∑

i=1

riwi

)
=

[
n∑

i=1

wi

(
bi − ai

2
+ αi + βi

6

)]2

+ 1

18

(
n∑

i=1

wiαi

)2

s.t.
n∑

i=1

wi = 1, (a)

n∑
i=1

zi = m, (b)

εi zi ≤ wi ≤ δi zi , i = 1, 2, . . . , n, (c)

zi ∈ {0, 1}, i = 1, 2, . . . , n, (d)

wi ≥ 0, i = 1, 2, . . . , n. (e)

(7)

Constraint (7)(a) denotes the budget constraint, namely,
all the money available should be invested. Constraint (7)(b)
denotes the cardinality constraint which imposes a limit on
thenumber of assets in the portfolio.Constraint (7)(c) ensures
that if any of security i is held (zi = 1) its proportionwi must
lie no less than εi and no more than δi while if no security
i is held (zi = 0), its ratio wi is zero. Constraint (7)(d) is
the integrality constraint. Constraint (7)(e) ensures that short
selling is not allowed.

2.2 A comprehensivemodel for fuzzy
multi-objective portfolio selection

Nowadays, the DEA cross-efficiency model, developed by
Doyle and Green (1994), has applied to the fuzzy portfolio
selection problems, see for example Ruiz and Sirvent (2017)
and Mashayekhi and Omrani (2016). However, there are
two shortcomings for cross-efficiency evaluation in portfolio
selection. The first one is the lack of portfolio diversification
and the second one is the ‘ganging-together’ phenomenon
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(Tofallis 1996). To address this issue, Lim et al. (2014)
proposed a DEA M–V cross-efficiency model by taking
the cross-efficiency into the M–V framework. Mashayekhi
and Omrani (2016) presented an integrated fuzzy multi-
objective Markowitz-DEA cross-efficiency model. In this
paper, we will propose a comprehensive model for fuzzy
multi-objective portfolio selection by incorporating fuzzy
mean-semivariance model and DEA cross-efficiency model.
It should be noted that, in Mashayekhi and Omrani (2016),
the integrated model was formulated within the framework
ofMarkowtiz’smean-variance. However, in this paper, based
on the Sharpe ratio (SR) (Sharpe 1966), the cross-efficiency
model is formulated within the framework of SR. For a
DMU (decision-making unit) l, returns and risks are replaced
by the means and variances of the cross-efficiency scores,
respectively. The proposed DEA cross-efficiency model is
expressed as follows:

max θSharpe =
∑n

i=1 wi ei√∑n
i=1

∑n
j=1 wiw jcov(ei , e j )

s.t.
n∑

i=1

wi = 1,

wi ≥ 0, i = 1, 2, . . . , n,

(8)

where ei is the cross-efficiency score of DMU i , cov(ei , e j )
is the covariance between DMU i’s cross-efficiencies (ei )
and DMU j’s cross-efficiencies (e j ).

To solve the model (8), cross-efficiencies (e j ) should be
first obtained. The basic steps of obtaining e j are summarized
as shown in below.

Step 1. Because of the existence of negative values in
inputs and outputs, this paper uses the additive variable
returns to scale (VRS) DEA model with a range-adjusted
measure (RAM) of inefficiency. The additive model with a
range-adjusted measure (RAM) of inefficiency is as follows:

max
n∑

k=1

s∑
r=1

prk yrk −
n∑

k=1

m∑
i=1

qik xik + εk

s.t.
s∑

r=1

prk yr j −
m∑
i=1

qik xi j + εk ≤ 0, ∀ j, k,

prk ≥ 1

(m + s)R+
r

, ∀ r , k,

qik ≥ 1

(m + s)R−
r

, ∀ i, k,

j = 1, 2, . . . , n,

(9)

where qik and prk represent the cost of input i and the price of
output r for DMU k, respectively. n,m and s are the numbers
of DMUs, inputs and outputs, respectively. xi j and yr j are the
amount of the i th input and the r th output for the j th DMU,

respectively. And εk is a positive infinitesimal value. The
model (9) maximizes DMU’s efficiency score and optimizes
theweight for all DMUs simultaneously. The directional vec-
tors R−

i and R+
r can be defined as:

R−
i = max

j=1,2,...,n
{xi j } − min

j=1,2,...,n
{xi j }, i = 1, 2, . . . ,m,

R+
r = max

j=1,2,...,n
{yr j } − min

j=1,2,...,n
{yr j }, r = 1, 2, . . . , s.

Step 2. Let ∗ represent the optimal solution of model (9).
The efficiency score of other DMUs are obtained by using
the weights that DMU k has chosen. The cross-efficiency of
DMU l with the weights of DMU k (ekl ) can be expressed as
follows:

e∗
kl =

s∑
r=1

p∗
rk yrl −

m∑
i=1

q∗
ik xil + εk .

Step 3.Amatrix of cross-efficiencies are obtained as E =
(ekl), (k, l = 1, 2, . . . , n),where ekl is the cross-efficiency
of DMU l evaluated by DMU k. The cross-efficiency score
of DMU l can be calculated as the average of lth column:

el = 1

n

n∑
k=1

e∗
kl .

Based on above discussions, we incorporate fuzzy mean-
semivariance model and SR-based DEA cross-efficiency
model to construct a comprehensive model for fuzzy multi-
objective portfolio selection, which is formulated as follows:

max E

( n∑
i=1

riwi

)
=

n∑
i=1

(
ai + bi

2
+ βi − αi

6

)
wi

min Var−
( n∑

i=1

riwi

)
=

[
n∑

i=1

wi

(
bi − ai

2
+ αi + βi

6

)]2

+ 1

18

(
n∑

i=1

wiαi

)2

max θSharpe =
∑n

i=1 wi ei√∑n
i=1

∑n
j=1 wiw jcov(ei , e j )

s.t.
n∑

i=1

wi = 1,

n∑
i=1

zi = m,

εi zi ≤ wi ≤ δi zi , i = 1, 2, . . . , n,

zi ∈ {0, 1}, i = 1, 2, . . . , n,

wi ≥ 0, i = 1, 2, . . . , n.

(10)
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3 Multi-objective firefly algorithm

3.1 The basic FA

The firefly algorithm (FA), which was inspired by the social
and flashing activity of fireflies, was proposed by Yang
(2008). The FA follows the three rules:

1. Fireflies are attractive to each other regardless of the
sex.

2. Attractiveness is based on brightness. So a less bright
firefly moves toward a brighter firefly. The attractiveness and
brightness are inversely proportional to distance.

3. The landscape of the objective function value is the
brightness of fireflies.

Let wi be the i th firefly in the population, where i =
1, 2, . . . , SN , and SN is the population size. The attractive-
ness between two fireflies wi and w j can be calculated as
follows:

β(ri j ) = β0e
−γ r2i j ,

ri j = |wi − w j | =
√√√√ D∑

k=1

(wi,k − w j,k)2,
(11)

where D is the dimension of the problem, ri j is distance
betweenwi andw j , andwi,k andw j,k are the kth component
element of wi and w j , respectively. Further, the parameter
β0 denotes the attractiveness at the distance r = 0, and γ is
the light absorption coefficient. By the suggestions of Yang
(2008), γ is set to 1/Γ 2, where Γ is the length scale for
designed variables.

In the FA, the firefly with less brightness is attracted to
the firefly with more brightness. The movement equation of
firefly i moves to firefly j can be stated as:

wt+1
i = wt

i + β0e
−γ r2i j (wt

j − wt
i ) + αt ∈t

i , (12)

where αt is randomization parameter, and ∈t
i is a vector of

random numbers from uniform distribution. Equation (12)
consists of three terms. The first term is the current position
of a firefly. The second term is the form of attractiveness
function which is a monotonically decreasing function. The
third term is the randomization.

3.2 The proposedMOFA

3.2.1 Initialization

At the initialization step, followingBacanin andTuba (2014),
FA generates SN random populations using

wi, j = ε j + rand(0, 1)(δ j − ε j ), (13)

where rand(0, 1) is a random number uniformly distributed
in [0, 1].

3.2.2 Constraint handling

(1) Boundary constraint. If the initially generated value for
the j th parameter of the i th firefly does not fit in the scope
[ε j , δ j ], it is being modified:

if wi, j > δ j , then wi, j = δ j ,

if wi, j < ε j , then wi, j = ε j .
(14)

(2) Cardinality constraint. Decision variables zi, j (i =
1, 2, . . . , SN , j = 1, 2, . . . , n) are generated randomly by
applying

zi, j =
{
1, if φ < 0.5,
0, if φ ≥ 0.5,

(15)

where φ is random real number between 0 and 1.
(3) Budget constraint. For the constraint

∑n
i=1 wi = 1,we

setψ = ∑n
i=1 wi, j and putwi, j = wi, j/ψ for all assets that

satisfy j = 1, 2, . . . , n. The same approach for satisfying
this constraint was used in Cura (2009).

3.2.3 Firefly movement

(1) For a dominated firefly i , the movement of the firefly
toward firefly j that dominates itself is calculated as in the
original FA implementation (Yang 2008):

wt+1
i = wt

i + β0e
−γ r2i j (wt

j − wt
i ) + αt ∈t

i . (16)

The position of each individual can be updated sequen-
tially, by computing the fitness of each particle and updating
them during every iteration of the cycle.

(2) For a non-dominated firefly, each value of objectives
is defined a weight vector to calculate the integrated best
solution gt∗. The gt∗ minimizes a combined objective via the
weighted sum

ψ(ω) =
3∑

k=1

ωk fk,
3∑

k=1

ωk = 1, (17)

whereωk is a random number uniformly distributed between
0 and 1. fk is the kth objective. To ensure the sum ofωk equal
to 1, the weight is normalized that ω′

k = ωk/
∑3

k=1 ωk . To
maintain a diverse set of non-dominated solutions along the
Pareto front, for each iteration, ωk should be regenerated
randomly.
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Algorithm 1 The multi-objective firefly algorithm (MOFA).

1: Set objective functions fk where k = (1, 2, 3)T

2: Randomly generate SN fireflies wi (i = 1, 2, . . . , SN )

3: while (t < tmax )

4: for i, j = 1 → n do
5: if i 	= j and the constraints criterion fulfilled then
6: Evaluate Pi (Pareto front) and Pj
7: if Pj dominates Pi then
8: Update firefly wi → w j by Eq. (16)
9: Generate a new firefly if the constraints criterion not

fulfilled
10: end if
11: if non-dominated solution fulfilled then
12: Define random weights vector ωk (k = 1, 2, 3)
13: Select gt∗, the minimum of ψ by Eq. (17)
14: Update non-dominated solution by Eq. (18)
15: end if
16: end for
17: Rank and find the Pareto solutions
18: Set t → t + 1
19: end while

Then, the firefly moves by

wt+1
i = gt∗ + αt ∈t

i , (18)

Table 2 Inputs and outputs

Type Parameter Perspective

Inputs Receivable turnover Asset utilization

Inventory turnover

Asset turnover

Current ratio Liquidity

Quick ratio

Debt to equity ratio

Leverage ratio Leverage

Solvency ratio-I

Solvency ratio-II

Outputs Return on equity Profitability

Return on assets

Net profit margin

Earnings per share (EPS)

Revenue growth rate Growth

Net income growth rate

Earnings per share growth rate

Table 1 Trapezoidal fuzzy
returns of 52 stocks

No. ai bi αi βi No. ai bi αi βi

1 0.127 0.159 0.208 0.432 2 − 0.012 0.036 0.118 0.177

3 − 0.126 − 0.036 0.620 0.229 4 − 0.030 0.009 0.377 0.250

5 − 0.002 0.035 0.157 0.207 6 0.038 0.052 0.159 0.084

7 0.071 0.135 0.162 0.291 8 0.003 0.022 0.164 0.257

9 0 0.039 0.344 0.322 10 − 0.014 0.041 0.368 0.267

11 0.014 0.026 0.142 0.161 12 − 0.050 − 0.003 0.618 0.136

13 0.022 0.055 0.233 0.079 14 0.006 0.069 0.159 0.354

15 0.068 0.106 0.181 0.400 16 − 0.012 0.058 0.112 0.423

17 0.067 0.111 0.133 0.226 18 0.051 0.082 0.208 0.179

19 0.072 0.082 0.138 0.393 20 0.009 0.056 0.213 0.325

21 − 0.014 0.072 0.247 0.268 22 0.056 0.068 0.110 0.143

23 0.043 0.074 0.196 0.322 24 0.025 0.030 0.162 0.405

25 − 0.002 0.029 0.256 0.089 26 − 0.005 0.005 0.080 0.024

27 0.059 0.096 0.128 0.220 28 − 0.136 0.093 0.540 1.671

29 0.010 0.088 0.208 0.374 30 0.031 0.047 0.175 0.171

31 0.149 0.188 0.371 0.463 32 0.089 0.102 0.309 0.441

33 0.042 0.099 0.176 0.629 34 0.014 0.020 0.317 0.266

35 0.094 0.188 0.094 0.938 36 0.011 0.080 0.267 0.324

37 0.043 0.090 0.144 0.113 38 0.011 0.078 0.155 0.448

39 0.190 0.212 0.445 0.617 40 0.191 0.206 0.382 0.720

41 0.040 0.047 0.276 0.454 42 0.002 0.089 0.368 0.639

43 − 0.025 0.049 0.102 0.223 44 − 0.104 0.063 0.598 0.339

45 0.104 0.150 0.154 0.276 46 0.061 0.093 0.305 0.277

47 0.101 0.109 0.298 0.258 48 0.128 0.168 0.283 0.467

49 0.073 0.107 0.224 0.465 50 0.059 0.117 0.059 0.585

51 − 0.007 0.028 0.143 0.354 52 0.040 0.123 0.234 0.921
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where gt∗ is currently the best position achieved by the given
set of ωk . And we use

αt = α00.9
t , (19)

where α0 is the initial randomness factor.
Finally, the implementation procedure of MOFA is

described as Algorithm 1.

4 Numerical experiments

We consider an example introduced by Mashayekhi and
Omrani (2016). In this example, the data source is taken from
52firms of the stock exchangemarket in Iran. The trapezoidal
fuzzy return of 52 securities are shown in Table 1. In addition,
the data required for inputs and outputs of DEA are obtained
from the latest financial statements which are published by
the firms (period 21 March 2013 to 21 December 2013). As
in Mashayekhi and Omrani (2016), 16 financial input/output
parameters are employed, which are presented in Table 2.
Solving the model (9), the cross-efficiency scores of firms
are presented in Table 3.

Table 3 Cross-efficiency score of firms

No. ei No. ei No. ei No. ei

1 − 1.278 14 − 10.055 27 −1.547 40 − 0.493

2 − 5.325 15 − 1.059 28 −4.289 41 − 171.857

3 − 1.901 16 − 0.887 29 −0.442 42 − 2.537

4 − 0.893 17 − 1.077 30 −1.097 43 − 15.187

5 − 0.0785 18 − 0.184 31 −1.568 44 − 0.427

6 − 48.893 19 − 0.367 32 −0.054 45 − 0.888

7 − 0.250 20 − 0.744 33 −0.755 46 − 0.296

8 − 0.237 21 − 0.246 34 −2.389 47 − 0.045

9 − 0.348 22 − 0.441 35 −0.431 48 − 1.019

10 − 0.529 23 − 11.388 36 −0.605 49 − 0.072

11 − 0.426 24 − 7.558 37 −0.232 50 − 1.995

12 − 0.316 25 − 15.631 38 −0.467 51 − 0.533

13 − 1.215 26 − 0.585 39 −0.993 52 − 0.989

4.1 Algorithm experiment

The parameters of the MOFA are set as follows: the max
generation is set to 100, SN = 50, α0 = 0.5, β0 = 0.2,

Fig. 1 Approximate efficient frontier in the case of m = 8. a GA, b PSO, c FA, d MOFA
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Table 4 Performance comparisons of different algorithmswhenm = 8

GA PSO FA MOFA

Return Max 0.1974 0.1717 0.1979 0.2018

Min 0.0755 0.0274 0.0282 0.0415

Mean 0.1472 0.1073 0.1125 0.1199

SD 0.0237 0.0272 0.0334 0.0347

Risk Max 0.0494 0.0497 0.0556 0.0483

Min 0.0130 0.0078 0.00825 0.0069

Mean 0.0243 0.0201 0.0202 0.0186

SD 0.0051 0.0077 0.0077 0.0073

Sharpe ratio Max − 0.2463 − 0.2987 − 0.2376 − 0.2368

Min − 3.5110 −4.0675 − 3.8631 − 3.4850

Mean − 1.1357 − 0.9374 − 0.8898 − 0.9326

SD 0.6891 0.5926 0.6425 0.6633

Table 5 Some Pareto optimal solutions when m = 8

Portfolio Return Risk Sharpe ratio

1 0.1789 0.0299 −0.2965

2 0.1507 0.0245 −0.3438

3 0.1439 0.0220 −0.3704

4 0.1056 0.0140 −0.2542

5 0.0956 0.0187 −0.3183

6 0.0853 0.0111 −0.3547

7 0.1145 0.0152 −0.4208

8 0.1269 0.0184 −0.3183

9 0.1649 0.0280 −0.5427

10 0.1321 0.0169 −0.5471

γ = 1. Moreover, εi and δi are set to 0.05 and 0.2, i =
1, 2, . . . , n. Other values of control parameters employed for
genetic algorithm (GA), particle swarm optimization (PSO)
and basic FA are presented below.

GA settings: The crossover probability pc and the muta-
tion probability pm are set to 0.9 and 0.1, respectively. The
selection method is roulette wheel and the crossover method
is one-point crossover.

PSO settings: The inertia weight factor ω is 0.8, the learn-
ing factors, c1 and c2 are both set to 1.5.

Basic FA settings: The values of parameters are the same
as those of MOFA.

In addition, a total of 20 runs for each experimental setting
are conducted.

Given the cardinality m = 8, the performance indicator
parameters such asmaximum,minimum,mean, and standard
deviation (SD) of the three objectives using different algo-
rithms are tabulated in Table 4. The best results are marked
in bold. From Table 4, it can be easily observed that, in most
cases, the minimum, maximum, and mean results obtained

Table 6 Some Pareto optimal solutions when m = 10

Portfolio Return Risk Sharpe ratio

1 0.1775 0.0429 −0.9279

2 0.1258 0.0181 −0.5832

3 0.1453 0.0249 −0.3096

4 0.1590 0.0239 −0.5904

5 0.1089 0.0155 −0.3332

6 0.1148 0.0161 −0.3021

7 0.1346 0.0241 −0.3039

8 0.0975 0.0153 −0.2614

9 0.1210 0.0167 −0.2637

10 0.0889 0.0140 −0.2442

Table 7 Some Pareto optimal solutions when m = 12

Portfolio Return Risk Sharpe ratio

1 0.1720 0.0362 −0.5842

2 0.1127 0.0147 −0.3004

3 0.1423 0.0190 −0.4463

4 0.1236 0.0175 −0.2785

5 0.1368 0.0184 −0.2758

6 0.0846 0.0095 −0.3411

7 0.1715 0.0358 −0.2522

8 0.0912 0.0118 −0.5726

9 0.1575 0.0331 −0.3102

10 0.1047 0.0130 −0.2602

by the MOFA are better than those listed for the other algo-
rithms. That is, the proposedMOFA ismore accurate solution
than some of the other standard heuristic algorithms. More-
over, we find that the values of SD obtained by the MOFA is
higher than those obtained by GA and PSO, indicating that
the MOFA leads to the diversity of solution.

The approximate efficient frontiers produced at random
by GA, PSO, FA and MOFA in the case of m = 8 are shown
in Fig. 1. It is obvious that among the four algorithms, the
distribution of the MOFA is the best, while that of the other
three algorithms are more concentrates. Additionally, we can
see that, in most cases, the solutions by MOFA have large
return, small risk and better Sharpe ratio of efficiency.

4.2 Model experiment

For the proposed model (10), given m = 8, 10, 12 and
15 respectively, some Pareto solutions are presented in
Tables 5, 6, 7 and 8. First, we present the diversity of portfolio
regarding mentioned criteria. For example, in Table 5, there
are portfolios with return ranging from 0.0853 to 0.1789,
and the Sharpe ratio of efficiency is between −0.2542 and
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Table 8 Some Pareto optimal solutions when m = 15

Portfolio Return Risk Sharpe ratio

1 0.1552 0.0244 −0.4620

2 0.1176 0.0136 −0.2163

3 0.1214 0.0207 −0.2505

4 0.1303 0.0176 −0.3844

5 0.1477 0.0248 −0.2051

6 0.1042 0.0138 −0.3169

7 0.1530 0.0199 −0.7039

8 0.0993 0.0123 −0.2518

9 0.1280 0.0196 −0.7546

10 0.1093 0.0172 −0.4934

−0.5471 among the solutions of the proposed model. More-
over, decision makers can weigh their preferences between
mentioned criteria in choosing portfolios from Pareto solu-
tions which are calculated from the model (10). For instance,
in Table 7, there are portfolios which have return (0.1720 →
0.1715), Sharpe ratio of efficiency (−0.5842 → −0.2522)

and nearly risk (0.0362→ 0.0358). If the decision maker are
more effect-oriented, he/she can choose the seventh port-
folio, whereas if he/she wants higher returns, he/she can
choose the first portfolio. Similarly, the fourth portfolio and
the fifth one have nearly Sharpe ratio of efficiency (−0.2785
→ −0.2758) with different return (0.1236 → 0.1368) and
risk (0.0175 → 0.0184). Then, risk avoiders can choose the
former portfolio, while risk suitors can choose the latter.

Moreover, approximate efficient frontiers are shown in
Fig. 2 in the case of m = 8, 10, 12 and 15. From Fig. 2, it
also can be found that the portfolios are well-diversified and
the investor can choose the satisfying portfolio based on the
preferences between three investment objectives.

Finally, in order to illustrate the effectiveness of the pro-
posed model (10), given m = 6, under δ = 0.2, 0.4 and
0.6, respectively, we compare the results with those obtained
by the possibilistic mean-semivariance portfolio model, i.e.,
model (7). Three objective function values, i.e., return, risk
and SR, are given in Table 9. From Table 9, it can be eas-
ily observed that, in most cases, the proposed model (10)
increases the portfolio efficiency at nearly identical returns.
In addition, we can find that the Sharpe ratio of efficiency

Fig. 2 Approximate efficient frontiers in the case of m = 8, 10, 12 and 15. a m = 8, b m = 10, c m = 12, d m = 15
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Table 9 Some Pareto solutions
obtained in the case of m = 6

Portfolio Model (7) Model (10)

Return Risk SR Return Risk SR

δ = 0.2 1 0.2085 0.0327 −2.2679 0.1981 0.0336 −0.4364

2 0.0971 0.0112 −0.7136 0.0901 0.0144 −0.2906

3 0.1795 0.0265 −0.8446 0.1778 0.0288 −0.5413

4 0.1654 0.0196 −1.8538 0.1672 0.0293 −0.3761

5 0.1368 0.0161 −2.6160 0.1349 0.0178 −0.3975

6 0.1162 0.0120 −1.4702 0.1159 0.0143 −0.6920

7 0.1230 0.0154 −1.6770 0.1207 0.0221 −0.3428

8 0.1512 0.0194 −1.8946 0.1551 0.0191 −0.4412

9 0.0788 0.0079 −0.8161 0.0778 0.0112 −0.7092

10 0.1716 0.0223 −1.6799 0.1738 0.0390 −0.3692

δ = 0.4 1 0.2322 0.0399 −1.8290 0.2289 0.0412 −0.5840

2 0.0933 0.0075 −0.5237 0.0967 0.0149 −0.4403

3 0.1158 0.0095 −1.9191 0.1157 0.0129 −0.5890

4 0.1228 0.0103 −2.9177 0.1201 0.0176 −0.7979

5 0.1077 0.0094 −2.1036 0.1007 0.0128 −0.5541

6 0.1772 0.0200 −2.8817 0.1721 0.0287 −0.2574

7 0.2059 0.0285 −2.0491 0.1966 0.0363 −0.2573

8 0.1569 0.0151 −2.3290 0.1515 0.0230 −0.4200

9 0.0798 0.0061 −2.9544 0.0863 0.0113 −0.4895

10 0.1794 0.0237 −2.0332 0.1813 0.0390 −0.3149

δ = 0.6 1 0.2387 0.0390 −3.0334 0.2209 0.0388 −0.5637

2 0.1655 0.0169 −2.2683 0.1628 0.0279 −0.8501

3 0.0931 0.0074 −1.9094 0.1065 0.0111 −0.7641

4 0.1870 0.0223 −2.2626 0.1949 0.0286 −0.2512

5 0.2053 0.0269 −2.7307 0.2003 0.0335 −0.7004

6 0.1495 0.0154 −1.5205 0.1421 0.0216 −0.9284

7 0.1066 0.0083 −0.8793 0.1080 0.0132 −0.7460

8 0.1597 0.0168 −3.6335 0.1531 0.0232 −0.4714

9 0.1730 0.0200 −2.6254 0.1756 0.0336 −0.4550

10 0.1341 0.0115 −2.0666 0.1296 0.0143 −0.3172

obtained by the proposed model is better than those obtained
by the possibilistic mean-semivariance portfolio model.

5 Conclusion

This paper presented a comprehensive model for fuzzy
multi-objective portfolio selection model based on mean-
semivariance and DEA cross-efficiency models. Inspired by
the ideas of Sharpe ratio, a novel cross-efficiency model
was presented. Furthermore, we formulated a comprehensive
model simultaneously considered return, risk, the efficiency
of the portfolio, bounds on holdings, and cardinality. More-
over, the multi-objective firefly algorithm (MOFA) was
developed to solve the proposed model. In order to illus-
trate the proposed approach, a case study involving 52 firms

were considered. The numerical results showed that there are
good diversity of objectives between Pareto solutions of the
proposed model for investors to trade-off.

For future research, some other variant objectives or real-
istic constraints can be added to the proposed model (e.g.,
skewness, kurtosis, and liquidity). In addition, some widely
adopted metrics, such as generation distance (GD), spacing
(S), diversity metric (
), can be used to evaluate the perfor-
mance of the MOFA.
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