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Abstract

Pythagorean hesitant fuzzy sets play a vital role in decision-making as it permits a set of possible elements in membership and
non-membership degrees and satisfy the condition that the square sum of its memberships degree is less than or equal to 1.
While aggregation operators are used to aggregate the overall preferences of the attributes, under Pythagorean hesitant fuzzy
environment and fuzzy measure in the paper we develop Pythagorean hesitant fuzzy Choquet integral averaging operator,
Pythagorean hesitant fuzzy Choquet integral geometric operator, generalized Pythagorean hesitant fuzzy Choquet integral
averaging operator and generalized Pythagorean hesitant fuzzy Choquet integral geometric operator. We also discuss some
properties such as idempotency, monotonicity and boundedness of the developed operators. Moreover, we apply the developed
operators to multi-attribute decision-making problem to show the validity and effectiveness of the developed operators. Finally,

a comparison analysis is given.

Keywords Pythagorean hesitant fuzzy sets -

Generalized Pythagorean hesitant fuzzy Choquet integral averaging

(GPHFCIA) operator - Generalized Pythagorean hesitant fuzzy Choquet integral geometric (GPHFCIG) operator -
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1 Introduction

Fuzzy set introduced by Zadeh (1965a,b) is one of the
batter tools to deal with uncertainty and hesitancy. Many
researchers applied the concept of fuzzy set to pure and
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applied mathematics. To obtain the exact and numerical solu-
tion of fuzzy Fredholm—Volterra integro-differential equa-
tion, Arqub (2017) proposed the reproducing kernel Hilbert
space method. Arqub et al. (2017) proposed the analytic
and approximate solutions of second-order, two-point fuzzy
boundary value problems based on the reproducing kernel
theory under the assumption of strongly generalized differ-
entiability. Arqub et al. (2016) developed a new method for
solving fuzzy differential equations based on the reproduc-
ing kernel theory under strongly generalized differentiability.
The notion of intuitionistic fuzzy set was first introduced by
Atanassov (1986, 1999), as a generalization of fuzzy set.
Intuitionistic fuzzy set is more suitable to deal with uncer-
tainty and fuzziness. The notion of intuitionistic fuzzy set is
broadly applied by many authors in decision-making prob-
lems (Beg and Rashid 2014; Boran et al. 2009; De et al. 2001;
Li2005). Torra (2010) introduced another extension of fuzzy
set, said to be hesitant fuzzy set. Hesitant fuzzy set permits
the condition that the membership degree has a set of prob-
able values. Based on hesitant fuzzy set, many researchers
solved group decision-making problems (Liu and Sun 2013;
Xia et al. 2013; Xu and Zhang 2013; Yu et al. 2011; Zhang
2013). Based on fuzzy measure (Sugeno 1974) and Choquet
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integral (Choquet 1954), Yu et al. (2011) developed hesitant
fuzzy Choquet geometric (HFCG) operator. Wei et al. (2012)
developed generalized hesitant fuzzy Choquet ordered aver-
aging (GHFCOA) operator and generalized hesitant fuzzy
Choquet ordered geometric (GHFCOG) operator.

Yager (2013, 2014) introduced the notion of Pythagorean
fuzzy set (PFS) by generalizing the concept of intuitionistic
fuzzy set, such that the sum of square of membership degree
and non-membership degree is < 1. Yager and Abbasov
(2013) discuss the relation among Pythagorean member-
ship degrees and complex numbers. Under the Pythagorean
fuzzy set environments, Yager (2014) developed a series of
aggregation operators. Zhang and Xu (2014) developed a
method for order preference by similarity to a best solution
to solve MCDM problem with Pythagorean fuzzy informa-
tion. Peng and Yang (2015) introduced some new operations
in Pythagorean fuzzy set and discussed superiority and infe-
riority ranking method to deal with multi-attribute group
decision-making (MAGDM) problems with Pythagorean
fuzzy environment. Based on Choquet integral, Peng and
Yang introduced the concept of Pythagorean fuzzy Cho-
quet integral (PFCI) operators and applied to multi-attribute
decision-making problems (Peng and Yang 2016). Khan
etal. (2018a,b) developed interval-valued Pythagorean fuzzy
Choquet integral geometric (IVPFCIG) operator to deal with
MADM problems.

Generalizing the concept of hesitant fuzzy set with intu-
itionistic fuzzy set, Qian et al. introduced the notion of
generalized hesitant fuzzy set HFSs (Qian et al. 2013), which
is an extension of the elements of HFSs from a real number
to IFNs. Zhu et al. (2012) proposed the idea of dual hesitant
fuzzy set (DHFS) and investigated some basic properties and
operations. Peng et al. (2014) introduced a MCDM approach
with hesitant interval-valued intuitionistic fuzzy sets (HIV-
IFSs), which are an extension of dual IVHFSs. However, dual
HFSs are defined in terms of sets of values, as opposed to pre-
cise numbers, for the membership degrees of IFSs. By using
the concept of fuzzy cross-entropy in Peng et al. (2014), the
authors deal with group decision-making (GDM) problems
under intuitionistic hesitant fuzzy set (IHFS) environment.
Generalizing the concept of IHFS, Khan et al. (2017) intro-
duced the concept of Pythagorean hesitant fuzzy set (PHFS)
and developed Pythagorean hesitant fuzzy weighted aver-
aging (PHFWA) operator and Pythagorean hesitant fuzzy
weighted geometric (PHFWG) operator for multi-attribute
decision-making problem. Khan et al. (2018a,b) introduced
Pythagorean hesitant fuzzy ordered weighted averaging
(PHFOWA) operator and Pythagorean hesitant fuzzy ordered
geometric (PHFOWG) operator for multi-attribute decision-
making problems. In group decision-making problems,
aggregation of decision-makers’ opinions is very important
to appropriately perform evaluation process. To overcome
this limitation of above aggregation operator in this paper
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based on the Choquet integral (Choquet 1954; Denneberg
1994) with respect to fuzzy measure (Sugeno 1974), we
propose two Pythagorean hesitant fuzzy Choquet integral
operators, namely Pythagorean hesitant fuzzy Choquet inte-
gral averaging (PHFCIA) operator and Pythagorean hesitant
fuzzy Choquet integral geometric (PHFCIG) operator and
their generalizations under Pythagorean fuzzy multi-attribute
decision-making environment, where interactions phenom-
ena among the decision-making problem are considered.
In order to demonstrate this, the remainder of the paper is
arranged as follows.

In Sect. 2, we briefly review some fundamental definitions
and properties of PHFS. In Sect. 3, we develop Pythagorean
hesitant fuzzy Choquet integral averaging (PHFCIA) opera-
tor, Pythagorean hesitant fuzzy Choquet integral geometric
(PHFCIG) operator, generalized Pythagorean hesitant fuzzy
Choquet integral averaging (GPHFCIA) operator and gener-
alized Pythagorean hesitant fuzzy Choquet integral geomet-
ric (GPHFCIG) operator. We also discuss some properties of
the developed operators such as boundedness, monotonic-
ity and idempotency. In Sect. 4, we develop a multi-attribute
decision-making based on the developed operators. In Sect. 5,
we give a numerical example to illustrate the effectiveness of
the developed approach. Finally, we compare the proposed
method with the existing methods. Section 6 concludes the

paper.

2 Preliminaries

In this section, we briefly explain some basic definitions such
as fuzzy measure, Choquet integral, Pythagorean hesitant
fuzzy sets. Throughout the paper, we denote a fuzzy measure
by &, Pythagorean hesitant fuzzy set by Py and Pythagorean
hesitant fuzzy number by h.

2.1 Fuzzy measure and Choquet integral

The notion of fuzzy measure (nonadditive measure) intro-
duced by Sugeno (1974) has only monotonicity instead of
additivity property. The assumption that attributes are inde-
pendent of one another does not need and is used as a useful
tool for molding interaction phenomena in decision-making.
In the Choquet integral model (Choquet 1954; Denneberg
1994), where attributes can be dependent, to define a weight
on each combination of attributes a fuzzy measure is used,
thus making it possible to model the interaction present
among attributes. In this subsection, fuzzy measure, A-fuzzy
measure, discrete Choquet integral are defined as follows:

Definition1 Let X = {xi, x2, ..., x,} be a universe of dis-
course and P (X) be the power set of X. A fuzzy measure &
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on X is a set function &
following conditions:

P(X) — [0, 1], satisfying the

1. §(¢) =0,6(X) = L.
2.IfS,T eP(X)and S € T, then £(S) < &(T).

Even though it is necessary to add the axiom of conti-
nuity when X is infinite, it is enough to consider a finite
universal set in actual practice. £({x1, x2, ..., x,}) can be
considered as the grade of subjective importance of decision
attribute set {xy, x2, .. ., x,}. Thus, with the separate weights
of attributes, weights of any combination of attributes can
also be defined. Intuitively, we could say the following about
any pair of attributes sets S, Te P(X), SNT = ¢:Sand T are
considered to be without interaction (or to be independent)
if
E(SUT) =§(S) +&(T) ey
whichis called an additive measure. S and T exhibit a positive

synergetic interaction between them (or are complementary)
if

§(SUT) > §(8) +&(T) @

which is called a superadditive measure. S and 7 exhibit a
negative synergetic interaction between them (or are redun-
dant or substitutive) if

§(SUT) < §(8) +&(T) (€)

which is called a sub-additive measure.

Since it is difficult to determine the fuzzy measure accord-

ing to Definition 1, therefore, to confirm a fuzzy measure in
MAGDM problems, Sugeno (1974) presented the following
A-fuzzy measure:
E(SUT) = &§(S) +&(T) + 16(5)E(T) “)
re[—1, 00), SNT = ¢. The parameter A determines interac-
tion between the attributes. In Eq. (4), if A = 0, A-fuzzy mea-
sure reduces to simply an additive measure. And for negative
and positive A, the A-fuzzy measure reduces to sub-additive
and superadditive measures, respectively. Meanwhile, if all
the elements in X are independent, and we have

£(5) =) &(lxi)). )

If X is a finite set, then U?_, {x;} = X. The A-fuzzy mea-
sure & satisfies Eq. (6).

E(X) =& {xi )

%(]ﬂ[ 1+)»E(xl]—1) ifA#£0
= nl: ’ (6)
Z A=0

where x;Nx; = ¢ foralli, j =1,2,...,nandi # j.Itcan

be noted that £(x;) for a subset with a single element x; is

called a fuzzy density and can be denoted as & = £ (x;).
Especially for every subset Se P(X), we have

%(ﬁlﬂs(m]—l) i3 £0
£ =] = ™

N .
2 if A =0

Based on Eq. (7), the value A can be uniquely determined
from £(X) = 1, which is equivalent to solving

x+1=]‘[[1+xgi]. (®)

i=1
It should be noted that A can be uniquely determined by
£§X) =1

Definition2 Let f be a positive real-valued function on X
and £ be a fuzzy measure on X. The discrete Choquet integral
of f with respect to £ is defined by

> fowlE(Asiy) — E(Ao—1)]. ©)

i=1

Culf) =

where o (i) indicates a permutation on X such that f5 1) >
fa(2) Z e Z fd(}’l)? A(T(l) = {1’ 25 T l}’ AO’(O) = ¢‘

It is seen that the discrete Choquet integral is a linear
expression up to a reordering of the elements. Moreover, it
identifies with the weighted mean (discrete Lebesgue inte-
gral) as soon as the fuzzy measure is additive. And in some
conditions, the Choquet integral operator coincides with the
OWA operator.

2.2 Pythagorean hesitant fuzzy sets

In this subsection, we define some basic definitions and prop-
erties of Pythagorean hesitant fuzzy sets (Khan et al. 2017).

Definition 3 (Khan et al. 2017) Let X be a fixed set. By
a Pythagorean hesitant fuzzy set abbreviated as PHFS, we
mean a structure Py in X of the form.

Py = {(x. Ap, (x). Tpy (x) |xeX)}, (10)

where Ap, (x) and I'p, (x) are mappings from X to
[0, 1], denoting a possible degree of membership and
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non-membership degree of element xeX in Py, respec-
tively, and for each element xeX, Vhp, (x) €Ap, (x),
3hp, (x) €lpy (x) such that 0 < b, (x) +hp (x) < 1,
and ¥ ', (x) €lpy (x), Fhp, (x) €Ap, (x) such that 0 <
h%, () +hp (x) <1.

Moreover, PHFS(X) denotes the set of all elements of
PHEFSs. If X has only one element, (x, Ap, (x), I'py, (x)) is
said to be Pythagorean hesitant fuzzy number and is denoted

by h = (A F;l) for convenience. We denote the set of all
PHFNs by PHFNS.

~

Definition 4 (Khan et al. 2017) Let i = (A;, I3}, h1 =

<Aﬁ , Fﬁ >, fzz = (A; , Fﬁ > are three PHFNs, and A > 0,
1 1 2 2

then their operations are defined as follows:

1.ﬁluﬁz:(max{/\];],Aﬁz},min{Fﬁl,Fﬁz}), (1)
Z.leﬂﬁg:(min{Aﬁl,Aﬁz},max{Fﬁl,Fﬁz}>, (12)
3.0 = (I}, A;), 13)

U,
h el"hl hh e]"h2

R R h | EAG, i, €4 { h2 +h 2 zlhiz}
4. h @ hy = . (14)
fn ﬁz
Uhﬁ]eAﬁ i, €44, {hﬁlhﬁz} > (15)
2 2 21,2
Uh eI‘hl h/ EF { hhl +h _hhlhh }

6. M?=<Uh,,eA,, [ (1 —(hﬁ)z)x},uh/ep =(hh)k}>

5.fl]®flz=<

1> 0, (16)
7. h* <Uh A {hh} U, erh{ 1_<1_(h’ﬁ>2>x}>
A= 0. (17)

To compare the PHFNs, Khan et al. (2017) introduced
score function and accuracy degree between PHFNs. The
authors compare and rank among PHFNSs as follows:

Definition 5 Let iy = (47, B, ) (i = 1,2) be two PHFN,

S (fll), S (ﬁz) be the score of le, fzz, respectively, defined
by
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1;2 hy

ando (fl 1) , o0 (fQ) be the deviation degree ofﬁl s ftz, respec-
tively, defined by

2
()= (o X 15 0)

hy =y

where lhi, , lhhA represent the number of elements in le s fzz,
1 2

respectively. Then,

(a). Ifs(ﬁl) <S
(b). Ifs(ﬁl) _
©. If S (121) s
Q). IfE(fu) <7 ﬁz) _then hy < hy.
(if). IfE(h1> )
(ii). If& (h1> —7 (h2> then Ay ~ ho.

Based on the operation developed in Definition 4, Khan

et al. (2017) introduced the following Pythagorean hesitant
fuzzy weighted aggregation operators.

Definition 6 (Khanetal.2017)Leth; = (4, I}, ) (i = 1,2,
3,...,n)beacollectionofall PHFNsand w = (wy, ws, ...,
w,,)T be the weight vector of ﬁi (i=1,2,3,...,n) with
w; >0 =1,2,3,...,n)wherew;€ [0, 1]and ) /_, w; =
1. Then, the aggregation result using PHFWA operator is also
a PHFN and

PHEWA (ﬁl,ﬁz,...,ﬁn> =

(18)
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Definition 7 (Khanetal.2017) Leth; = <A,;,,
3,...,n)beacollectionofal PHFNsand w = (wy, wa, ...,
w,,)T be the weight vector of h;(i=1,2,3,
Ln)ywithw; >0G =1,2,3,...,n)wherew; € [0, 1]and
n
> w; = 1. Then, the aggregation result using PHFWG oper-

i=1
ator is also a PHFN, and

Uh};]EA hthA ..... hﬁneAfln
n w;
A
PHFWG(hl,hz,...,hn)z N
h eF h EF ..,hh”eFﬁn
n 2 wi
1- 1] (1 — K )
(19)
Definition 8 (Khanetal. 2018a,b)Letﬁl-=<A r,;,)a =1,

2,3, ...,n) be a collection of all PHFNs fzg(i) be the largest
in them and w = (wq, wo, ..., w,) be the weight vector
of hy (i=1,2,3,...,n) withw; >0 (G =1,2,3,....n)
such that w;€ [0, 1] and ) "_, w; = 1. Then, the aggrega-
tion result using PHFOWA operator is also a PHFN, and

PHFOWA (hlhzh,,>

hp €A e eAr ., h €Ay
hoy ~ e (1) ha(2> he 2y’ hony =" hom)

n wi
\/1 —II <1 —h? > } ,
i=1 ho

U (20)
’35(1)epf’ﬁ(l)’hﬁa(z)61—};0(2)""'h’35(n)erﬁrr(n)
’ wi
K.
i=1 \ ho®
Definition 9 (Khan et al. 2018a, b) Letfz,-=<A r,;_>(i=1,

2,3,...,n) be a collection of all PHFNs, fta(,-) be the
largest in them, w = (w1, wy, ..., wy,) be the weight vector
of hy i =1,2,3, ...n)withwi >0@G=1,2,3,...,n)

such that w; € [0, 1] and Z w; = 1. Then, the aggregation
result using PHFOWG operator is also a PHFN, and

PHFOWG (ﬁl,flz,...,ﬁn)

h; Ay h; A Ll Az
ha(l)e ho (1)’ ha(2>E hg@2y hcr(n)e ho (n)

{ilj (hﬁ°(i)>wi } 7

= U ’ / ’ 3 . (21)

F . erl; U erl;
a(l) he (1) hg(2) he(2) e (n) he (n)

hfim,))

Fﬁi>(i =1,2,

3 Pythagorean hesitant fuzzy Choquet
integral aggregation operators

In this section, we develop some aggregation operators for
Pythagorean hesitant fuzzy numbers and investigate some of
its properties.

Definition 10 Let i = (A;. 13, )(i = 1.2.3,...,
collection of all PHFN’s and & be a fuzzy measure on X.
Then, Pythagorean hesitant fuzzy Choquet integral average
(PHFCIA) operator of dimension # is a mapping PHFCIA :
2" — §2 such that

n) be a

PHECIA (i1, iz, .. ) = (6(Ag (1)) = §(Ag()) o (1))

@E(As2) — f(Aa(l)))(fla(z)) @D EAcm)
—£(As(n-1)) (hom)) s (22)
where {o(l) a(2),. a(n)}lsapermutatlon of (1,2,...,n)

such that ho‘(l) > hg(z) > {xa(z)|l =<
k} for k > 1 and hg(()) ¢.

> ha(n), o) =

From the above definition, we deduce four cases.

1. If Eq. (22) satisfies, then §({xo(;)}) = &(Asq)) —
&(Asi-1))( = 1,2,...,n) which shows that Eq. (22)
reduces to PHFWA operator.

2. If£(A) = Z‘A‘l w;, for all A€ X where |A| is the num-
ber of elements in A, w; = §(As)) — E(Asi-1))( =
1,2,...,n) where w = (wi,wa,...,wy)T , with
Z?:] w; = 1. This shows that Eq. (22) reduces to
PHFOWA operator.

3. If£(A) = 1, forall A€ X, then PHFCIA (hl,hg,.. h, )
= max(h1 hz, ey h ) = hg(l)

N

4. IfE(A) = 0, forall A€ X, then PHFCIA (121, ha, ..., izn)

= min(le, flz, ey /’Aln) = };o'(n).

Theorem 1 Letﬁ,- = <A,;,, F;li>(i =1,2,3,...
lection of all PHFNs. Then, the aggregation result using
PHFCIA operator is also a PHFN and

,n) beacol-

PHFCIA (le,ﬁz,...,fzn)

UhﬁleAf:]’hszeAflz ,,,,, h/;nEAiln
n E(As (i) —E(As(i-1)
-h0-R) |
= = ’ (23)

Uh/ eF h Eth h;] el‘ﬁn

n E(Arm)) §(Ag(i-1))
{‘Hl (hh> }

i= 1
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where{o (1),0(2), ...,0n)}isapermutationof (1,2, ..., n) 2\ §(A2)—(Ao (1))
such that ho (1) = ho@) = -+ = ho@w), Aoty = (Xomli < Uiy, 1y (1 - (hﬁm)) ) ’
k} fork > 1 and hs (o) = ¢. ®

, E(Ay2)—E(As(1))
U,/ h.
ki, €00y ( ha@))

Unj, €4, by, €4y,

( 5 E(As1)—E(As(0) E(As2)—E(As(1))
1—(1—=nh +1-—
o)

1—h2

=

o(2)

h
_ E(As1))—E(As(0) E(As2)—E(Asq1) ’
— (1—h% ) (1—h% )
ho (1) hq(2)

, §(As(1)—5(As(0) , §(As2)—5(Ac1))
U / ha h.
R s €1y €y < ha(l)) ( ha(Z))

)E(A(r(i))—S(Aa(il))}

’

2
’thEAﬁz {\/1 - H (1 - hﬁa(i)

2 , E(Asi)—6(Asii-1))
U, h-
o 1 (5,

Proof First part of the theorem directly follows from Def- Thus, Eq. (23) is true for n = 2. Assume that Eq. (23)
inition 10. Next, by mathematical induction we prove that ~ holds forn = k. i.e.,

Eq. (23) holds for all . For this, first we show that Eq. (23)

holds for n = 2. Since

PHFCIA (ﬁl,fzz, izk)
(A1) — E(Aa(0)) 11

Up. - he N N .
hhl eAh1 ’thEAhz""’hthAhk

U | | h 2\ (Ao )=¢(400) k E(As (i) —E(Asii-1))
hiy €45, B B ( ’A'O(l)) ’ 1-1] <1 — h}% _ ) ,
= i=1 o (i)
, E(Az1))—E(As(0) =1lu, ,
Uhi Effl (hﬁg(l)> hh eFﬁl,hﬁzeFﬁ h EFhk
o Ko/ ECha) (A1)
and I <hfz )
i=1 o
(5(Ae) — E(Ac)) B2
2\ §(As2)—E(As (1)) We show that Eq. (23) holds forn =k + 1. 1.e.,
Ui, ea b= (1 - (hfla(z)) > ’
B L\ EWe@)—E(Aeq) - .
U,/ h. PHFCIA (hy, ho, ..., h
hi, €, ( ha&)) ( 2 "“)
) U/’lhIGA h];ZGAI;Z,N.,hh*kGAhk
k §(Ac(i))—§(Acii-1))
o \/11_[(1}1;_) Q) (1)}’
PHFCIA (hl, hz) _ =i ;
. . Uy ;’ erh1 hh ery, o <
= (6(Ac() = E(Ac ) 1 @ (E(Ac2) — §(Ae(1))) h2 { k é(Aaw A 1>>}
h/

2\ § (A1) —§(As(0)
Ui e 1y 1T (1 B <hﬁam> ) ’ , EAwr1)—E(Ag )
- , - Uh’;k+l A - (1 B hﬁa(ku)) ’

E(As(1))—§(As(0)) o
Uh}lerﬁ: (hi’cm) , E (Ao 1) ~E(An(t)
l : n.
e e < h”“‘*“)
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Uhﬁl EAfll ’hﬁz EAflz """ hhk EA’lk Uhﬁkﬂ EAflk+l
k E(As (i) —E(Asi-1)) E(As (k1) —E(As k)
1= (1—=nr2 +1—(1-n2
im1 he (i) ho(k+1)
5 E(As (i) —E(As(i-1)) 5 E(Ask+1)—E(As ) ’
_ —1- 1 — h% 1—1(1—nhxz
= 1-1;[1 ( ha(i)) ( h"("'“))
U / / s U ’ .
hﬁlefﬁl,hilzel" A AGF hﬁk+1 Fth
k , (Ao (i) —E(As(i-1)) , E(As k1) —E(Ac )
h. h.
il;[1< hrr(i)) ( hn(k+1)>
k+1 5 §(As(i))—§(As(i-1))
iy €47 hiy € ey €4 YT i]:[l <1 - hﬁam) :
= k+1/ E(Ag(i))—E(Ao(i-1)
U, ’ . H (hA )
h thl . EI"2,...hf,k+lel’hk_H i i)

Thus, Eq. (23) is true forn = k
holds for all n.

In the following, we present some properties of the PHF-

CIA operator.

Theorem 2 Leth; = <Afl,~’ Fﬁi> i=
lection of all PHFN's, and {o (1
permutatlon of (1,2, ...,n) such tha
hom) Aoy = {xa(z)|l < k} fork =

(1) (Idempotency) If all fz,- = <A

are equal, i.e., ﬁi (i=12,3,...,

= h.

PHFCIA (fz] o, fzn)
(2) (Boundedness)

h~ < PHFCIA

in)

A

where h™ =

(i 7
(- h*)
Uneay, min; (A,

W = Unea, max{h;} . h™ =
1 1

at

(3) (Monotonicity) Ifﬁi > fzf then

=U, max
hiel‘ﬁi i

PHFCIA (ﬁl, ha. ..., ﬁ,,) < PHFCIA (“{, AN

+ 1. Hence, the result
O

Proof (1) From Theorem 1, we have

PHFCIA (ﬁl,ﬁz,...,

\/ L\ A —E i)
- €A 1-— (1—]%»)
1,2,3,...,n)beacol- e N h;“é)m )
n , o)) —E(Ag(i-1)
),0(2),....,0(n)} is a U er 11 (hﬁgm)
the(y = ho@) =+ > S
1 and hU(O) o. n 5 E(Ag(i))—E(Ag(i-1))
) ) 1- 1 — h?
_ h”rf(i)EA”a(i) l-l;ll ha i)
. N nos o\ EAe)—§(Aoi-1)
F;l_>(t=1,2,3,...,n) o AT (n
l A Wiy €Ty |izm \ o
n) = h, then
5 ZE(A(W)) E(Ag(i-1)
] ) 1—(1-n2 )=
(24) fioi) o) ( ha(i))
|\ )6 (i)
U,/ h. =
h%merf’um ( h”(’)>
<ht (25)
. n
Since Y 7 £(As(i)) — £(As(i—1)) = 1, we have
- <h+, h—’>, he o= o .
PHFCIA (hl, ha .. h,,)

:<U,,56Aﬁ{ 1_(1_h;)},u

. ’ + er: |"h
Uhl’.er,;i miln{hi},h hh
= <Uhﬁ6Aﬁ {h;l} ) Uhlﬁel}, {h};}> = h.
(2) Since
~ .
h, Uh““’)EAﬁam mim {ha(i)} < Uha(,-)eA,;g(i) {ha(i)}
(26)

S Uha(,')el\ﬁa([_) miax {hG(l)} (27)
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and

U

h el;

el mm{h()}<u ’
@ 0!

oS h,

<, ]
o(i)

oo

(I(l

(28)

from Eq. (27) we have

. 2
< Uha(i)EAf,“(.) min {h?r(i)} = Uhuue/‘f,{,(.) {(ht’(i)) }

i

—_——

( 2
how { o)
2
0 l—max{(hg(,-)) }
o(i) i
1= {(t0)’}
h(,(l) ”(l)
; 1 — min {(ha(,)) }
to (i) i
2
= Uhrr(l)e/‘/, o 1-— miax (ho‘(i))
E(As(i))—E(As(i-1))
= Unygeq; o 1 - { o) })

) §(As (i) —E(As(i-1))
(1 —m1n ha(l)) })

= Uho'(() €A

& Ungiyea;

0(1

=< U/’l,,(,) €Ay

})S(Aa(i))—E(Aa([l))

< UII(,(,) €A

&

ho (i)
n ) E(As(i))—E(As(i-1))

& Uha(i)eA,;Um l_[ (l - miax {(hu(i)) })

i=1

n 21\ §(Ac (i) —E(Asii-1))
= Uh”(’)EAh o (i) (1 N {(ha(i)) }>

i=1

n ) E(As (i) —6(As(i-1))
< Uhﬂ(l)eAh - <1 — mim {(/’ZU(,’)) })

i=1

5 .ZIE(AU(I))_E(AU(Ifl))
& Uh{,(,-)eA,;“(i) (1 - miax {(hg‘(i)) })l_

§(As(i))—E(Ag(i-1))
o) 1_[ (1 — {(ha(i))ZD (i) (i—1)

i=1

=

< Uha<,) SV

< Uho(l

0(1') i

1— m[.j:lx {(h[,(,-))2}

1 21\ (Ao @) —E(Aci-1))
< Yhowea; ) 1_[ (1 B {(h"(i)) D

i=1

1 = min {(ho(i))z}

. 2
& Uha(i)é/\/;“(i) \/—1 + mim {(ha(i)) }

)Z E(Ag (i) —E(As(i-1))
i=1

(1 — min {(ham)z}

< Uneeq, -

< Uh0<,-)eA,;U(1)
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Ti

E(As(i))—E(As(i-1))
Uh(,(,)eAh() ( { o(z) })

i=1

2
Uha(x)e/\;, ()\/*1 + miax {(ho'(i)) }

3

. 2
< Uh{,([)eAé o) \/1 -1+ m;n {(/’la(,‘)) }

n
21\ §(Ac (i) —§(Api-1))
= Ungeq; ()J - l_[ - {(ham) })

2
a<, 1—1+ mlax {(ha'(i)) }
2
< UhU(,)EA min { a(l) }
i
n
21\ (A (i) —E(Agi-1))
< Uha(: ot 1 - l_[ (1 — {(ho'(i)) })
' i=1
2
= Uha(,‘)eA max U(l) }

< UIIU(,‘)EAE

< Uh(,(i)eA J
m
(i)

< Uhg(,) EA

o, min {0}

2})5(1“10«))*&(1‘10(,‘71))

- {(hau))

ax hoi) }
Now, from Eq. (28) we have

U,/ mln {h } < U /
ha(l)e o) o (i) h, iy €l;

[t
)

o(i

!
< U, max{h . }
ha(l) Ffzg(i) i O-(l)

. , E(As (i) —E(As(i-1))
< Uy ol ml_m (hg(i)>
o(i o (i)

, E(Ao (i) —E(As(i-1))
{(ho'(i)> }
o (i)

-U (h/)S(Aam)—S(Aa(i—l))
’ max :
T e €l i !
, E(A(i)—§(As(i-1))
Tiog Hmm ( a(i))
n
/ E(As (i) —E(As(i-1)
Uy er o H {(hom) }

=1

— hn(i)el“

& U,/
h(T(l)

/ E(As(i))—E(As(i-1))
< Uh’()erh Hmax{( O(i)) }
o(i o (i)
. ’ ZS(AGU)) E(Ao(: 1))
< Uy weli mim (ho(z))
o(i o (i)

n r\E(Aei)—E(Asi-1)
=Yy er )ll (ham)
i

o(i) -1
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( , )Z (Ao (i) —E(As(i-1))

/ )E(Av(i))_E(A(r(i—l))}

According to the score function, we have PHFCIA (fz] , ﬁz,
.hy) = h~ with equality if and only if the A~ =
PHFCIA(h).

Similarly, PHFCIA (iz] s fzn) < i, with equality
if and only if the PHFCIA(ﬁ) is the same as A™T. Hence,
h~ < PHFCIA (ﬁl,ﬁz, . fzn) < it

(3) If h; > h*, then PHFCIA (hlhzh,,) <
PHFCIA (ff;, . iz;;). Since Ag (i) S Ag(i—1y AMAa())

— AMAgi-1)) = 0. For all i, Aﬁ:(i) > Afla(i)’ Filo(i)

I—';l*() If A o) < Afz*(.)’ then Uha(i)GA,; o {hg(,')} <
2
Uh;(i)eA,;;(l_) {hi(i)} < Ungpea; {(ha(i)) } <

he (i)

N4 Uhn(,)EA

Ate0)} < i e

2
<Uh0“)eAh() { (r(t) }

21\ §(Ac(i)—§(An(i-1))
U(A)EAh* (l i( ‘7(1)) })

21\ é Qs i) —(Ag(i-1))
< Uhc“)eAh ()\/(1 — {(hn(i)) })

n 21\ §(Aci))—§(Ag(i-1))
< th;(,)eA,; ® (1 - {(hj;(i)> })

i=1

n
21\ Qo)) —§(Ag(i-1))
< Ungiyea; ""J (1 - {(l’lo(i)) })

{00}

g“)eAh*

i=1

n
= Uhg(,)eAh ()J ( {

i=l1
"(I)J l:]

E(Ag(i))—E(As(i-1))
h3 0 € 1_ a(z)) }) - @)

})E(Aam)—E(An(z—l))

B

Now, if Fﬁ >
(i)

U {h* , }
hg(l) .) o (i)

, (Ao (i) —§(As(i-1)
o, [600)

*/ (Ao (i) —E(As(i-1))
= Ui er . (a(i))

n
/ E(As (i) —E(As(i-1)
o) o) {H(ha(i)) }

& Uy
i=1

n
r \§Aoi)—E(Ai-1)
*
= Uhio)epﬁ*(,) {l_[ ( "(i)) } - G0

i=1

I; then U,
Z(t) a(z)er o (i)

Pow] =

Let h = PHFCIA (ﬁl, ha, .. h) and h* = PHECIA
(AT, A;, e ﬁ;) Then, from Egs. (29) and (30) we have

S(h) < S(h*).
It S(A) < S(h*). then PHFCIA (ﬁl,ﬁz,...,ﬁ,,) <

PHFCIA (7, i3, ... h;) . 1f S() = S(i*), then

5 2
1 " 1 i
Ih e, L h
h hjea; h €l h%efﬁ
2 2
ol Freri S I Pl SR
n EAjx gy " lh*/ ey "
h* hiy € A A NS e
) 2
1 1
— > | =1; >
hi€4i hea, Wi €00 ht e A
2 2
1 *
and . /Z hi| = zh*, Z hi.
iShon.er; D h* el
h h
1
= ] h;l = Z h
h; eAh] eA h eAh* h* eAh*
|
and ; ,Z hy =1 > h
W h W.el; < T h* €l
. h h
Since
2
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2
+| S-S (h)
hflerﬁ h;;EFhA
2
| .
=; n:, — S (h*)
hZ*EA,;* hZ*EAﬁ*
2
T ! S onl-s (h*)
l *

!
h% er;
h*

s
n* hz*e[‘ﬁ*
- E(/%*),

PHFCIA (ﬁl, - ﬁ,,) —  PHFCIA
(A is. iz, O

Therefore,

Definition 11 Let /i, = (4;. 13, =1.2,3,....m) be
a collection of all PHFN’s and A be a fuzzy measure on
X. Then, Pythagorean hesitant fuzzy Choquet integral geo-

metric (PHFCIG) operator of dimension n is a mapping
PHFCIG : 2" — £2 such that

PHECIG (fi, ha, .. i) = (o)) €470 000
®(fla(2))(E(Aaa))—E(Aa(l)))

® N ® (]:;U(n))(S(Aa(n))_S(Ao(n—l))) (31)

where {o (1), 0(2), ..., o (n)}isapermutationof (1, 2, ..., n)

such that /15(1) > ho2) = -+ = ho@m), Ask) = {Xoi)]i =
k}fork > 1 and hs ) = .

From the above definition, we deduce four cases.

1. If Eq. (31) satisfies, then §({xo(h}) = &(Asu)) —
£(Asi-1))( = 1,2,...,n) which shows that Eq. (31)
reduces to PHFWA operator.

2. 1f£(A) = Y14 wy, for all AeX where |A] is the num-
ber of elements in A, w; = §(Aq()) — E(Asi—1)( =
1,2,...,n)wherew = (wy, wa, ..., w,) T, with Y7, w,
= 1. This shows that Eq. (31) reduces to PHFOWG oper-
ator.

3. If(A) = 1, forall Ae X, then PHFCIG (/21, ha, h,,)

= IIlaX(ill, flz, ey hn) = fla(l).
4. IfE(A) = 0, forall A€ X, then PHFCIG (ﬁl, ha, ..., fzn)

= min(fu, ﬁz, cen fln) = ﬁa(ﬂ)'

Theorem 3 Leth; = (4. I}, ) ( = 1,2,3,.....n) beacol-

lection of all PHFNs. Then, the aggregation result using
PHFCIG operator is also a PHFN and

@ Springer

PHFCIG (ﬁl,ﬁz,...,ﬁ,z)

.....

hﬁ(r N GA/A’G(I) ’hﬁn(Z) EA’A'n(z)' he () €Ai’a(n)
n (Ao (i) —§(As(i-1)

1 (m,,,)

i o (i)

i=1

= U

El

/ / / 32)
hle Erﬁl ,hill GFﬁz,...hﬁn Erﬁn

n , E(As (i) —E(As(i-1))
1—1]] (1 —nZ )
i=1 hotiy

where{o (1),0(2), ..., o0(n)}isapermutationof{1,2, ..., n}
such that ho(1y = ho@) = -+ = ho@m), Aoy = {Xo(i)li <
k} fork > 1 and hy ) = ¢.

Proof First part of the theorem directly follows from Def-
inition 11. Next, by mathematical induction we prove that
Eq. (32) holds for all n. For this, first we show that Eq. (32)
holds for n = 2. Since

EE(AU(I))*E(AU(O))

o (1)
E(As1))—6(As(0))
Uh/;n(l)EAi’a(l) {(hﬁtf(l)) } ’
= - E(As(1)—E(As(0)
U, 1—(1—h;
hﬁau)gr‘;au) ( h“(”)
and
ﬁS(Aa(Z))—S(Aa(l))

(2)

)

A E(As2)—E(As(1))
UhEG(Z) eAf’a(Z) ( ﬁ”@))

U, 1—(1-n?
R €0 2) < ho )

he(2)

)S(Aaa))—f(f\a(l)) s

7 T ~E(Ay —£(As ~E(Ay —£(As
PHECIG (hl»h2) _ hi((])(l)) £(Aq(0)) ®hi((2) @) —E(As1))

U n E(As1))—E(As(0)
hﬁa(l)EAf'a(l) ( fla(n) ’

= ' §(As1))—§(As(0))
U, 1—(1—nh;
hﬁau)er‘;au) < hf’(‘))

)é(Az;(z))—S(Aa(l))}

3

Un.  ea ( .
hha(z)EA"aa){ ho(2)

®
U, 1— (1 —h?
h;",a(z) erh(,(z) he(2)

)E(Aa(z))—E(Aam)
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Un.  eA; b eA:
”(r(l)e he (1)’ hn(z)e he (2

U /

N EI_',; ,/’lc EF;[
ho(l) a(l) ha(2) o(2)

£E(As1))—E(As(0) £(As2)—E(As (1))
(h,\ ) (h,\ )
he 1) he @)

’

U /

~ AA N AA
hhome hU(l)’hhn(Z)e o (2)
2 E(As (i) —E(Asii-1))
[1 (h;, ) ,
ol o(i)

’
N el e el
ho@y 0@ heoy T No@)

)E(Aa(i))—é'(Aa(i—l))

, §(As(1)—§(As(0)
= 1—(1—-h? +1
he (1)
' £(As2)—5(Ac(1)
—|1—=h¢
ho(2)

1y E(As1)—§(As(0) ' £(As2)—E(Ac(1)
— 1—h¢ 1—h¢
< h”(”) ( h0(2)>

Thus, Eq. (32) is true for n = 2. Assume that Eq. (32) holds
forn =k, i.e.,

PHFCIG (ﬁl,ﬁz,...,ﬁk)

Un,  eA; h; ea: h:  €A;
hrr(l)e ho(1y’ ’1{7(2)6 he@)’” hrr(k)e he (k)

k E(As i) —E(Asi-1))
{ I (n,,,) }

i=1
== Uh/ ’ ’

. 61_';’ e Grﬁ venhs EFhA
hoy o) hg(2) o (2) hogy Mok

k ) §(As (i) —§(As(i-1)
1-T1 (1 —h? )

i=1 ho i)

)

We show that Eq. (8) holds forn =k + 1.

PHFCIG (ﬁl, by fzk+|)

h; €A Jhy €A h; €A
he(h) " he(1) e 2) T e 2) oy~ o k)

k E(As(iy)—E(Agii-1))
{ I <hﬁa(i)) } ’

i=1
Tl Y en o en b en
hey o) hg(2) a(2) hoy — Mok)

k , E(Asi))—6(As(i-1)
1-T1] (1 —h? )
i=1 ho

)E(Au(k+1))—€(Aa(k))}

B

o e (s
L Do (k1)

U, 1—(1-n?
h Fl%o(kﬂ) < ho (1)

. €
ho (k+1)

® )E(Ao(k+1))—§(Aa(k))

h; €A Jhiy €A P €A h; eA;
ho(1) = he (1) e 2) T e 2) hoty = Chowy” " Mhotert) = e (et

k E(As(iy)—E(Agii-1)) EAok+1)—E(As) ]
{ H <hﬁa(iJ) (hi'o(kﬂ)) }

i=1

U,/ ’ ’ ,U s

. r. r. I . el;
hd(])e hoy’ hg(z)e ho2) hm)e ho ) s i
k , E(Aq))—E(Agii-1))
1—T1(1=r? +1
= i=1 ho iy

(Ao k+1)) = (A k)

k , §(Ag(i))—E(Ag(i-1))
1-J](1=h? )
i=1 ho

, E(As k1) —E(As k)
1— (1 —n? )
hokt1)

,,,,,,

hp eA; Jhy €A 2 eA;
ho 1y S oy Mo @) S e ) Moty S g (g

k+1 E(Asi))—E(Asii-1))
.1_[1 (hﬁam) } ’

i=
=\ Y er, K. el ..h er;
hg (1) o) hy) o(2) g (k+1) o (k+1)

k+1 , E(As i) —E(As(i-1))
1- 11 (1 —h? )
i=1 ha

Thus, Eq. (32) is true for n = k + 1. Hence, the result holds
for all n. O

|
TN
—_
|
}‘\
0
=
ot
\—/
o

A

Theorem 4 Let i = (A7, I ) =1,2.3,....m) be a
collection of all PHFN'’s and {o (1), q(Z), SO (n)}is aper-
mutation of {1, 2, ..., n} such that hy1y > he) > -+ =
ho s Asy = (Xo@li < k) fork = 1and hy o) = ¢. Then,
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1) (Idempolency)lfallfz,- = ( % )(1 =1,2,3,...,n)
n) = h, then

are equal i.e., ft,- (i=1,2,3,...,
PHFCIG (hlhzh) —h. 33)

2) (Boundedness)

A~ < PHFCIG (ﬁ], hy o b

>
—
IA
=
.+
—
(98]
&
N

where h= = <h_, h+/>, ht

U/’liEA/;. minl’ {hl }»

ht = UhieAi,. max {h;}, h—/ =U, mjn {h/} , h+/
i i i

’
= Uyger;, max {11}
1

3) (Monotonicity) If h; > fl;", then

PHFCIG (izl, ha, ..., fz,,) < PHFCIG (AT, A h*) .

(35)
Proof Proof of the theorem follows from Theorem 2. O
Definition 12 Let h; — <A r,;_) (=1,2,3,...,n) bea

collection of all PH FN's and A be a fuzzy measure on X.
Then, Pythagorean hesitant fuzzy Choquet integral average
(PHFCIA) operator of dimension n is a mapping PHFCIA
2" — §2 such that

GPHFCIA (f1, 2. .. o) = (6(Ao (1) = EAg @) o 1))”
BEAo@) ~ Ao (@)’ & ® E(Aem)
(Ao (1)) o)) (36)

where £ > 0, {o(1), 0(2) o(n)} is a permutatlon of
(1,2,...,n) suchthathg(l) > hg(z) > > ha(n)’ Ag(k) =
{.xg(i)|l <k} fork > 1 and hg(()) ¢.

Theorem 5 Letf = (47, I} ) ( = 1,2.3,....m) beacol-

lection of all PHFNs. Then, the aggregation result using
GPHFCIA operator is also a PHFN and

GPHFCIA (fn,fzz, . fzn)
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Uhj, €4y, hjy €47 by, €45,

1
n E(Aoi)—E(Aai-1) | °
=11 (1-n2) ,
‘<\/ i=1 hi

! !
h thl hh el“h7 h Fh”

0 5\ E ) —E A1)\ 3
1—(1-11 (1—(1—@%))
i=1 B

(37)

where § > 0, {o(1),0(2),...,0(n)} is a permutation of
(1,2,...,n)suchthaths(1y > he@) = -+ > ho@), Agk) =
{xa(i)|i < k}fOl’k > 1 and ho‘(O) = ¢

Proof Easy to prove. O

Definition 13 Let h; = <A F;l_>(i —1,2.3,...n) bea

collection of all PHFN’s and A be a fuzzy measure on
X. Then, Pythagorean hesitant fuzzy Choquet integral geo-
metric (PHFCIG) operator of dimension n is a mapping
PHFCIG 2" — §2 such that

Y P,

GPHFCIG (hl, ha, ..., h) = g(5(ha(l))@(Aa(n)—smm))
®6 (/:\15(2))(S(AU(Z))f)‘(Ao(I)))

R ® 8(l’Alﬂ(n))(E(A“("))_E(Aﬁ(n—l)))) (38)

where § > 0, {0(1),0(2),...,0(n)} is a permutation of
(1,2,....,n)suchthaths 1y > hg2) > - -
{xa(i)|i < k}fork > 1 and hg(o) = ¢.

> ho@m)s Aoy =

Theorem 6 Leth; = (4. I} )G =1,2.3, ..,
lection of all PHFNs. Then, the aggregation result using
GPHFCIG operator is also a PHFN and

n) be a col-

GPHFCIG (ﬁl,ﬁz,.l.,hn)

’
h thI hh Eth"“hﬁ E]“,;"

1
n L\ EAe ) —EAgi—n) ) °
1—J](1=h?

where 5§ > 0, {o(1), 0(2) o(n)} is a permutanon of
(1,2,...,n)such l‘hathg(1) > hg(z) > > ha(n)a Ag(k) =
{x,,(i)|l <k} fork >1and hg(o) ¢.

(39)

Proof Easy to prove. O
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4 Decision-making based on Pythagorean
hesitant fuzzy information

In this section, we apply the Pythagorean hesitant fuzzy
aggregation operators to multi-attribute decision-making
with anonymity. Suppose that there are n alternatives X =
{x1,%2, ..., x,} and m attributes A = {A} Az, ..., Ay} to
be evaluated having weight vector w = (wy, wa, ..., wm)T
such that w;€[0, 1], j = 1,2,...,m and ZT:] wj = 1.
To evaluate the performance of the alternative X; under
the attributes A ;, the decision-maker is required to provide
not only the information that the alternative X; satisfies the
attributes A ;, but also the information that the alternative X;
does not satisfy the attributes A ;. These two part information
can be expressed by A;; and I3; which denote the degrees
that the alternative X; satisfies the criterion A ; and does not
satisfy the criterion A ;; then, the performance of the alterna-
tive X; under the criteria A; can be expressed by an PHFN
hij = (A;j, Ii;) with the condition that for all h;j€A;;, 3

, /N2
hijely such that 0 < (hyj)* + (k)" = 1, and for all

/’l,’jEF,'j, 3 h;jGA,'j such that 0 < (h,’j)z + (h;j>2 <1,
i=12,...n,j=12,....mandk =1,2,...1.

To obtain the ranking of the alternatives, the following
steps are given:

Step 1. In this step, we construct the Pythagorean hesitant

fuzzy decision matrices C = (hi j) for decision where
mxn

hij= (A, ) (= 1,2,..,n3 j = 1,2,...,m).

If the attribute has two types, such as cost and benefit
attributes, then the Pythagorean hesitant decision matrix can
be converted into the normalized Pythagorean hesitant fuzzy
decision matrix.

Dy = (yij)mxn’ where y;;

hij  if the attribute is of benefit type
hfj if the attribute is of cost type

where 7§ = (Ajj, Ij) (i = 1,2, ..on; j =1,2,...,m). If
all the attributes have the same type, then there is no need to
normalize the decision matrix.

Step 2. Confirm fuzzy density & of each attribute. Accord-
ing to Eq. (8), parameter A of attributes can be determine.

Step 3. Utilize the developed aggregation operators to
obtain the PHFN fzi (i = 1,2,...,n) for the alternatives
X, that is, the developed operators to derive the collective
overall preference values fli (i =1,2,...,n) of the alterna-
tive X;.

Step 4. By using Definition 5, we calculate the scores
S(ﬁi) (i =1,2,...,n) and the deviation degree (fz,) (i=

1,2, ..., n) of all the overall values fz,- i=12,...,n).

Step 5. Rank the alternatives X; (i = 1,2,...,n) and
then select the best one.

5 Numerical example

In order to illustrate the developed method in this sec-
tion, we present a numerical example to show the poten-
tial evaluation of emerging technology commercialization
with Pythagorean hesitant fuzzy information. Suppose the
decision-makers select four possible attributes to evaluate
the emerging technology enterprises:

A1 is the technical advancement;

Aj is the potential market and market risk;

Aj isthe industrialization infrastructure, human resources
and financial conditions;

Ay is the employment creation and the development of
science and technology.

The five possible emerging technology enterprises X; (i =
1,2,3,4,5) are to be evaluated using the Pythagorean hes-
itant fuzzy numbers by the decision-maker under the above
four attributes and the decision matrices C = [fzi il5x4 as
follows (Table 1):

Step 1. We construct the Pythagorean hesitant fuzzy deci-
sion matrix as shown in Table 1.

Step 2. We determine the fuzzy density & of each attribute
and its A parameter. Suppose that £(A1) = 0.25, £(A) =
0.35,£(A3) = 0.3, £(Ay) = 0.4, then A = —0.54.

Now, £(Ay, A2) =0.55,6(A1, A3) =0.67,£(A1, Ag) =
0.59, £(Az, A3) = 0.60, £(Az, Ag) = 0.51, £(A3z, Ay) =
0.64, £(A1, Ay, A3) = 0.83, £&(A1, A2, Ay) = 0.76,
E(A1, A3, Ay) = 0.87,6(A2, A3, Ay) = 0.80,6(A1, Az, A3,
Ag) = 1.

Step 3. Utilized Pythagorean hesitant fuzzy Choquet inte-
gral averaging (PHFCIA) operator to derive the collective
overall preference values fzi (i =1,2,...,n) of the alterna-
tive X;. We get

hi = ({ 0.5620, 0.5692, 0.5895, 0.5816, 0.5875, 0.6065,
0.6058, 0.6112, 0.6287, 0.6064, 0.6117, 0.6293, 0.6224,
0.6275, 0.6441, 0.6435, 0.6482, 0.6635, 0.6115, 0.6167,
0.6340, 0.6273, 0.6322, 0.6485, 0.6479, 0.6525, 0.6676,
0.6484, 0.6530, 0.6681, 0.6622, 0.6666, 0.6809, 0.6804,
0.6844, 0.6978 }, { 0.5428, 0.5523, 0.5635, 0.5734, 0.5775,
0.5877, 0.5995, 0.6100, 0.6086, 0.6193, 0.6318, 0.6429,
0.5740, 0.5840, 0.5958, 0.6063, 0.61067, 0.6214, 0.6340,
0.6450, 0.6435, 0.6548, 0.6680, 0.6797, 0.6007, 0.6113,
0.6236, 0.6345, 0.6392, 0.6503, 0.6635, 0.6751, 0.6735,
0.6853, 0.6992, 0.7114 })

hy = ({ 0.6313, 0.6608, 0.6830, 0.6392, 0.6678, 0.6895,
0.6522, 0.6794, 0.7001, 0.6595, 0.7071, 0.7062, 0.6812,
0.7056, 0.7242, 0.6877, 0.7115, 0.7297, 0.7205, 0.7413,
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Table 1 Pythagorean hesitant

. . Az
fuzzy decision matrix -
C = [hijlsx4 X {0.7,0.8}, {0.4,0.5,0.6}, {0.3,0.4,0.6}, {0.6,0.7},
! {0.4.0.5,0.6) {0.7,0.8) (0.7, 0.8} {0.5, 0.6, 0.7}
X {0.6,0.7,0.8}, {0.8, 0.9}, (0.4, 0.6, 0.7}, {0.3,0.4},
2 (0.5, 0.6} {0.2,0.3,0.4) (0.5,0.7) {0.7,0.8, 0.9}
X {0.3,0.4}, {0.5, 0.6, 0.7}, (0.5, 0.6}, {0.6,0.7,0.8},
3 {0.7,0.8, 0.9} (0.6, 0.7} {0.6,0.7,0.8} (0.5, 0.6}
X {0.5,0.6, 0.7}, {0.7,0.8), (0.6, 0.7, 0.8}, {0.8,0.9},
4 (0.7, 0.8} {0.4,0.5, 0.6} (0.5, 0.6) {0.2,0.3, 0.4}
X {0.7,0.8,0.9}, {0.6,0.7,0.8), (0.4, 0.5, 0.6}, {0.7,0.8),
s (0.3, 0.4} (0.5, 0.6} {0.7,0.8) {0.4,0.5, 0.6}

0.7572, 0.7261, 0.7463, 0.7619, 0.7352, 0.7547, 0.7696,
0.7404, 0.7747, 0.7741, 0.7559, 0.7736, 0.7873, 0.7606,
0.7780, 0.7913 },{ 0.3894, 0.4221, 0.4005, 0.4341, 0.4105,
0.4450, 0.4039, 0.4378, 0.4153, 0.4503, 0.4448, 0.4615,
0.4488, 0.4865, 0.4615, 0.5003, 0.4731, 0.5129, 0.4654,
0.5046, 0.4787, 0.5189, 0.5126, 0.5319, 0.4963, 0.5380,
0.5104, 0.5533, 0.5232, 0.5672, 0.5147, 0.5580, 0.5294,

0.5739, 0.5669, 0.5883 })

h3 = ({ 0.5180, 0.5291, 0.5489, 0.5589, 0.5301, 0.5408,
0.5598, 0.5694, 0.5466, 0.5567, 0.5747, 0.5839, 0.5761,
0.5852, 0.6016, 0.6100, 0.5860, 0.5949, 0.6107, 0.6188,
0.5997, 0.6081, 0.6232, 0.6310, 0.6471, 0.6542, 0.6670,
0.6736, 0.6548, 0.6617, 0.6742, 0.6806, 0.6655, 0.6721,
0.6841, 0.6902 },{ 0.5753, 0.5908, 0.6049, 0.6016, 0.6179,
0.6326, 0.6253, 0.6422, 0.6576, 0.5851, 0.6009, 0.6153,
0.6119, 0.6284, 0.6434, 0.6360, 0.6532, 0.6688, 0.6188,
0.6355, 0.6507, 0.6471, 0.6646, 0.6804, 0.6726, 0.6908,
0.7073, 0.6294, 0.6464, 0.6618, 0.6581, 0.6760, 0.6921,

0.6841, 0.7026, 0.7194 })

hs = ({ 0.6987, 0.7100, 0.7254, 0.7216, 0.7319, 0.7459,
0.7529, 0.7618, 0.7739, 0.7123, 0.7230, 0.7375, 0.7340,
0.7438, 0.7570, 0.7636, 0.7721, 0.7836, 0.7770, 0.7848,
0.7956, 0.7930, 0.8003, 0.8102, 0.8152, 0.8216, 0.8303,
0.7865, 0.7940, 0.8042, 0.8018, 0.8087, 0.8181, 0.8229,
0.8290, 0.8373 },{ 0.3617, 0.3715, 0.3814, 0.3917, 0.3707,
0.3807, 0.3908, 0.4014, 0.3782, 0.3884, 0.3987, 0.4095,
0.4254, 0.4369, 0.4485, 0.46006, 0.4360, 0.4478, 0.4596,
0.4721, 0.4448, 0.4568, 0.4690, 0.4817, 0.4773, 0.4902,
0.5032, 0.5168, 0.4891, 0.5024, 0.5157, 0.5297, 0.4991,

0.5126, 0.5261, 0.5404 })

= ({ 0.6257, 0.6386, 0.6557, 0.6520, 0.6637, 0.6793,
0.6878, 0.6980, 0.7116, 0.6665, 0.6776, 0.6923, 0.6891,
0.6993, 0.7128, 0.7202, 0.7291, 0.7410, 0.6650, 0.6762,
0.6910, 0.6878, 0.6980, 0.7116, 0.7190, 0.7280, 0.7400,
0.7004, 0.7101, 0.7230, 0.7202, 0.7291, 0.7410, 0.7475,
0.7554, 0.7660, 0.7243, 0.7331, 0.7448, 0.7422, 0.7503,
0.7611, 0.7670, 0.7742, 0.7838, 0.7522, 0.7599, 0.7702,
0.7680, 0.7751, 0.7847, 0.7899, 0.7963, 0.8048 },{ 0.4502,
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0.4648, 0.4712, 0.4865, 0.4771, 0.4926, 0.4993, 0.5156,
0.5002, 0.5165, 0.5236, 0.5406, 0.4838, 0.4995, 0.5063,
0.5228, 0.5126, 0.5293, 0.5366, 0.5540, 0.5375, 0.5550,
0.5626, 0.5809 })

Step 4. By Using Definition 5 the score values of the
alternatives are given in Table 2.

Step 5. Ranking of the alternatives are given in Table 2.

Next we utilize the Pythagorean hesitant fuzzy Choquet
integral geometric (PHFCIG) operator to obtain the overall
Pythagorean hesitant fuzzy preference values. For this we
proceed as follows:

Step 1'. Step 1’ is same as step 1 above.

Step 2. Step 2’ is same as step 2 above.

Step 3'. Utilize Pythagorean hesitant fuzzy Choquet inte-
gral geometric (PHFCIG) operator to derive the collective
overall preference values fti (i =1,2,...,n) of the alterna-
tive X;. We get

hi = ({ 0.5087, 0.5281, 0.5567, 0.5415, 0.5621, 0.5925,
0.5698, 0.5916, 0.6236, 0.5361, 0.5565, 0.5866, 0.5706,
0.5924, 0.6244, 0.6005, 0.6234, 0.6571, 0.5260, 0.5460,
0.5756, 0.5599, 0.5812, 0.6127, 0.5892, 0.6116, 0.6447,
0.5543, 0.5754, 0.6065, 0.5900, 0.6125, 0.6456, 0.6209,
0.6446, 0.6794 },{ 0.5842, 0.6087, 0.6344, 0.6549, 0.6131,
0.6352, 0.6587, 0.6774, 0.6498, 0.6692, 0.6899, 0.7065,
0.5997, 0.6229, 0.6475, 0.6670, 0.6271, 0.6482, 0.6706,
0.6885, 0.6621, 0.6806, 0.7004, 0.7163, 0.6202, 0.6417,
0.6647, 0.6830, 0.6457, 0.6654, 0.6864, 0.7032, 0.6784,
0.6958, 0.7144, 0.7294 })]

ha = ({ 0.5205, 0.5737, 0.5953, 0.5529, 0.6094, 0.6324,
0.5368, 0.5916, 0.6139, 0.5702, 0.6285, 0.6522, 0.5513,
0.6077, 0.6306, 0.5856, 0.6455, 0.6698, 0.5424, 0.5978,
0.6204, 0.5762, 0.6350, 0.6590, 0.5594, 0.6165, 0.6398,
0.5942, 0.6549, 0.6796, 0.5745, 0.6332, 0.6571, 0.6103,
0.6727, 0.6980 }, { 0.4959, 0.5591, 0.5469, 0.6009, 0.6222,
0.6643, 0.5191, 0.5780, 0.5666, 0.6173, 0.6374, 0.6773,
0.5098, 0.5704, 0.5587, 0.6107, 0.6313, 0.6721, 0.5320,
0.5886, 0.5776, 0.6265, 0.6460, 0.6847, 0.5295, 0.5865,
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Forking of alteeatics by sing R, As As ___ Ranking

GPHFCIA operator GPHFCIA, 00114 02942  —0.0467 03981 02590 Xa> X2 > Xs> X; > X3
GPHEFCIA; 0.2539 0.5063 0.2022 0.5812 0.4683 X4>Xo>X5> X1 > X3
GPHFCIA5 0.3066 0.5665 0.2535 0.6143 0.5093 X4>Xo>X5> X1 > X3
GPHFCIA o 0.3670 0.6241 0.3041 0.6523 0.5569 X4>X2>Xs5> X1 > X3

-rr;r?]:ie;g o?‘C;;i:rziltlil\?;alr)l}(fi using A A2 A3 A4 As Ranking

GPHFCIG operator GPHFCIG;  —00919  0.0439 —0.1675 02439  0.1287 X4> X5 > X2 > X| > X3
GPHFCIG, —0.3261 —0.2399 —0.3851 —0.0191 —0.1370 X4>Xs5>Xo>X1 > X3
GPHFCIGs; —0.3764 —0.3547 —0.4354 —0.1224 —0.2251 X4>Xs5>Xo> X1 > X3
GPHFCIG o —0.4395 —0.4583 —0.5005 —-0.1976 —0.3183 X4>Xs>Xo>X1 > X3

0.5754, 0.6247, 0.6443, 0.6833, 0.5503, 0.6037, 0.5933, Table 4 Pythagorean fuzzy decision matrix

0.6398, 0.6583, 0.6953 }) " ™ p» »

h3 = ({0.4856, 0.5144, 0.5120, 0.5423, 0.4954, 0.5248,

0.5223, 0.5533, 0.5039, 0.5338, 0.5313, 0.5627, 0.5165, X1 (0.75,0.50) (0.50,0.75)  (0.43,0.75)  (0.65,0.60)

0.54707, 0.5445, 0.5423, 0.5269, 0.5582, 0.5556, 0.5533, X»  (0.70,0.55) (0.85,0.30)  (0.57,0.60)  (0.35,0.85)

0.5360, 0.5677, 0.5651, 0.5627, 0.5448, 0.5771, 0.5744, X3  (0.35,0.80) (0.60,0.65)  (0.55,0.70)  (0.70,0.55)

0.5423, 0.5559, 0.5888, 0.5860, 0.5533, 0.5654, 0.5988, X4  (0.60,0.75) (0.75,0.50)  (0.70,0.55)  (0.85,0.30)

0.5961, 0.5627 },{ 0.5902, 0.6263, 0.6820, 0.6244, 0.6565, X5  (0.80,0.35) (0.75,0.55)  (0.50,0.75)  (0.75,0.50)

0.7066, 0.6697, 0.6969, 0.7398, 0.6037, 0.6381,
0.6363, 0.6671, 0.7152, 0.6798, 0.7059, 0.7473,
0.6554, 0.70570, 0.6538, 0.6826, 0.7280, 0.6946,
0.7584, 0.6352, 0.6661, 0.7144, 0.6645, 0.6922,
0.7037, 0.7274, 0.7653 })

ha = ({ 0.6602, 0.6847, 0.7061, 0.6904, 0.7160, 0.7384,
0.7176, 0.7160, 0.7676, 0.6699, 0.6948, 0.7166, 0.7006,
0.7266, 0.7493, 0.7282, 0.7266, 0.7789, 0.6920, 0.7177,
0.7402, 0.7237, 0.7505, 0.7740, 0.7522, 0.7505, 0.8046,
0.7023, 0.7283, 0.7511, 0.7344, 0.7616, 0.7855, 0.7634,
0.7616, 0.8165 },{ 0.5623, 0.5688, 0.5781, 0.5890, 0.5949,
0.6035, 0.5698, 0.5761, 0.5852, 0.5959, 0.6016, 0.6100,
0.5800, 0.5860, 0.5949, 0.6051, 0.6107, 0.6188, 0.6365,
0.6417, 0.6487, 0.6572, 0.6618, 0.6685, 0.6423, 0.6471,
0.6542, 0.6625, 0.6670, 0.6736, 0.6501, 0.6548, 0.6617,
0.6698, 0.6742, 0.6806 })

his = ({ 0.5889, 0.6213, 0.6491, 0.6120, 0.6457, 0.7000,
0.6328, 0.6676, 0.6975, 0.6097, 0.6432, 0.6720, 0.6337,
0.6685, 0.7247, 0.6552, 0.6912, 0.7221, 0.6089, 0.6424,
0.6711, 0.6328, 0.6676, 0.7238, 0.6543, 0.6903, 0.7212,
0.6304, 0.6651, 0.6948, 0.6552, 0.6912, 0.7493, 0.6774,
0.7147, 0.7466, 0.6271, 0.6616, 0.6912, 0.6517, 0.6876,
0.7454, 0.6738, 0.7109, 0.7427, 0.6492, 0.6849, 0.7156,
0.6747, 0.7119, 0.7717, 0.6976, 0.7360, 0.7689 }, {0.5109,
0.5659, 0.5383, 0.5888, 0.5315, 0.5831, 0.5571, 0.6047,
0.5581, 0.6055, 0.5816, 0.6255, 0.5250, 0.5777, 0.5512,
0.5997, 0.5447, 0.5942, 0.5692, 0.6150, 0.5702,0.6158,
0.5927,0.6351 })

0.6916,
0.6232,
0.7192,
0.7359,

Step 4. By using Definition 5 the score values of the
alternatives are given in Table 3.
Step 5'. Ranking of the alternatives are given in Table 3.

5.1 Comparison analysis

In this subsection, we compare our approach to the existing
methods of PFNs, introduced by Yager (2013), and HFNS,
introduced by Torra (2010), which are the special cases of
PHENs to verify the validity and effectiveness of the pro-
posed approach.

5.1.1 A comparison analysis with the existing MCDM
method with PFNs

PFNs can be considered as a special case of PHFNs
when there is only one element in membership and non-
membership degree. For comparison, the PHNs can be
transformed to PFNs by calculating the average value of the
membership and non-membership degrees. After transfor-
mation, the Pythagorean information is given in Table 4.
Now, we calculate the comprehensive evaluation val-
ues using the Pythagorean fuzzy Choquet integral average
(PFCIA) operator and the Pythagorean fuzzy Choquet inte-
gral geometric (PFCIG) operator (Peng and Yang 2016).
The score values and the ranking of the alternatives using
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Table 5 Hesitant fuzzy decision

matrix A1 Az A3 Ay

X {0.7, 0.8} {0.6,0.7} {0.4,0.5, 0.6} {0.3,0.4, 0.6}

X, {0.8,0.9} {0.6,0.7, 0.8} {0.4,0.6,0.7} {0.3,0.4}

X3 {0.6,0.7, 0.8} {0.5, 0.6, 0.7} {0.5, 0.6} {0.3,0.4}

X4 {0.8, 0.9} {0.7, 0.8} {0.6,0.7, 0.8} {0.5,0.6, 0.7}

X {0.7,0.8, 0.9} {0.7,0.8) {0.6,0.7,0.8) (0.4,0.5,0.6)
Table 6 Comparison analysis with existing methods

X1 X2 X3 X4 X5 Ranking
PHFCIA 0.0114 0.2831 —0.0467 0.3981 0.2590 X4> X2 > X5> X1 > X3
PHFCIG —0.0919 0.0105 —0.1651 0.2439 0.1287 X4 >Xs5>X2>X1>X3
PFCIA (Peng and Yang 2016) —0.0009 0.2849 —0.0575 0.3821 0.2407 X4>X2>Xs5> X1 > X3
PFCIG (Peng and Yang 2016) —0.0784 0.0453 —0.1413 0.5245 0.4454 Xq4>Xs5>X2>X1>X3
HFCIA (Wei et al. 2012) 0.6259 0.7107 0.5988 0.7703 0.7168 X4 >X2>Xs5> X1 > X3
HFCIG (Wei et al. 2012) 0.5888 0.6225 0.5473 0.7333 0.6792 X4>Xs>X2> X1 > X3

PFCIA operator and PFCIG operator are given in Table 6,
respectively, which are the same as the proposed approach.
But PHFSs are more flexible than PFSs because they con-
sider the situations where decision-makers would like to use
several possible values to express the membership and non-
membership degrees.

5.1.2 A comparison analysis with the existing MCDM
method with HFNs

HFNs can be considered as a special case of PHFNs when
decision-makers only consider membership degrees in eval-
uation. For comparison, the PHFNs can be transformed to
HFNs by taking only the membership degrees, and the hesi-
tant fuzzy information is represented in Table 5.

Now, we calculate the comprehensive evaluation values
using the hesitant fuzzy Choquet integral average (HFCIA)
operator and the hesitant fuzzy Choquet integral geometric
(HFCIG) operator (Wei et al. 2012). The score values and
the ranking of the alternatives using HFCIA operator and
HFCIG operator are given in Table 6, which are the same
as the proposed approach. But PHFSs are more flexible than
HFSs because they consider the situations where decision-
makers would like to use several possible values to express
the membership and non-membership degrees.

6 Conclusion

Pythagorean hesitant fuzzy sets fulfill the condition that the
square sum of its memberships degrees is less than or equal

@ Springer

to 1, which is more flexible than Pythagorean fuzzy sets and
hesitant fuzzy sets. Under the Pythagorean hesitant fuzzy
set environments, in this paper, we developed Pythagorean
hesitant fuzzy Choquet integral averaging (PHFCIA) opera-
tor, Pythagorean hesitant fuzzy Choquet integral geometric
(PHFCIG) operator, generalized Pythagorean hesitant fuzzy
Choquet integral averaging (GPHFCIA) operator and gener-
alized Pythagorean hesitant fuzzy Choquet integral geomet-
ric (GPHFCIG) operator. We also discussed some of its prop-
erties of the developed operators such as idempotency, mono-
tonicity and boundedness. Moreover, we apply these opera-
tors to multi-attribute decision-making problem. Finally, we
compare our developed approach with the existing methods.
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