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Abstract
The great surge in the research of community discovery in complex network is going on due to its challenging aspects.
Dynamicity and overlapping nature are among the common characteristics of these networks which are the main focus of
this paper. In this research, we attempt to approximate the granular human-inspired viewpoints of the networks. This is
especially helpful when making decisions with partial knowledge. In line with the principle of granular computing, in which
precision is avoided, we define the micro- and macrogranules in two levels of nodes and communities, respectively. The
proposed algorithm takes microgranules as input and outputs meaningful communities in rough macrocommunity form. For
this purpose, the microgranules are drawn toward each other based on a new rough similarity measure defined in this paper.
As a result, the structure of communities is revealed and adapted over time, according to the interactions observed in the
network, and the number of communities is extracted automatically. The proposed model can deal with both the low and the
sharp changes in the network. The algorithm is evaluated in multiple dynamic datasets and the results confirm the superiority
of the proposed algorithm in various measures and scenarios.

Keywords Social network analysis · Dynamic community detection · Granular clustering · Evolutionary clustering

1 Introduction andmotivation

The widespread usage of various internet-based platforms
has provided new forms of social interaction and collabora-
tion,which contributes to the creationof virtual communities.
With rapid growth of online dynamic social networks, where
users’ joining in and withdrawing from communities is com-
mon, the study of recognizing dense group of entities is a
very valuable research topic and has triggered the interest
of a variety of groups from social scientists and economists,
to physicians and politicians. Recognizing niche markets for
targeted advertisements and detection of influential individ-
uals in politics are among a few applications of the “dynamic
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community detection” research domain, which is studied in
this paper.

In spite of the increased number of studies in the past
decade on dynamic communities (Cazabet and Amblard
2014), the field still requires the special attention of
researchers due to its challenging aspects. Today, people join
multiple groups introduced by the circle of their friends and
may stay for awhile or leave the groups soon thereafter. There
should be smooth changes in the discovered communities,
where many individuals stay for a long time while account-
ing for unforeseen dramatic shifts in these communities due
to external reasons. The desired approach to handle this task
should be computationally feasible and rapid, in order to
adapt to changes. Incremental dynamic community detec-
tion exploits the information of past time steps to estimate
the current community structure and helps to produce smooth
results. Evolutionary clustering is one dominant incremental
paradigm widely used which accounts for the historical data
of the network. The approach use the information of past
time steps to improve the clustering quality and also mini-
mize the community drift compared to previous time steps
to produce smooth results. A recent survey (Hartmann et al.
2016) studied the application of this paradigm with differ-
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ent approaches. However, optimization of these two criteria
together makes the evolutionary clustering suitable for the
network with small changes and prevents the application of
this method to abrupt changes. On the other hand, most of
these methods are designed for non-overlapping networks
(Hartmann et al. 2016). The requirement to specify the num-
ber of communities is another problem observed in most
studies (Chi et al. 2007; Tang et al. 2012). Finally, all the
methods requiring high amount of computation or space are
precluded in real dynamic community detection scenarios
(Xu et al. 2014).

The goal of our research is to present a novel incremental
approach for dynamic networks which can produce high-
quality communities while being able to handle the abrupt
changes in the network. On the other hand, the approach
should estimate the number of communities automatically
and functions locally. Finally, dealing with uncertainty in
categorization is another important aspect considered, which
is also considered in this study. For this, we take inspiration
from the following human behaviors:

1. Human beings have a granular view of the world, thus
prohibiting precise boundaries;

2. Human decision-making is mostly intertwined with
uncertainty and biased toward the circle of one’s friends;
and

3. They are able to categorize both the elements similar
to the previous patterns stored in their minds and also
allowing them to integrate with the new patterns by
their representative-based categorization model (Gross-
berg 2013).

Using these principles, we propose our novel community
detection algorithm called Granular-ARTISON to achieve
the above-mentioned goals. Shortly, the contribution of the
proposed algorithm can be listed as follows:

• It introduces a novel social network modeling based on
granular concepts.

• It presents a new procedure for dynamic incremental clus-
tering algorithms capable of detecting both low and abrupt
changes in the network.

• It provides an explicit novel formula for embracing uncer-
tainty in similarity matching process.

• It functions locally and is applicable to both weighted and
binary networks.

• It outperforms the existing dynamic state-of-the-art evo-
lutionary clustering algorithms in several experiments and
various internal/external measures.

To elaborate the functionality and the performance of
the proposed algorithm, the paper is outlined as follows. In
Sect. 2, we review several related methods and background

knowledge in two subsections of crisp dynamic and soft com-
munity detection algorithms. Section 3 explains our proposed
approach and Sect. 4 represents the experiments to evaluate
the proposed algorithm. Finally, we present our conclusions
and future directions in Sect. 5.

2 Related work

2.1 Crisp community detection in temporal
networks

The applicability of community detection in different
domains has stimulated this research domain during the past
decades. According to research papers on the static commu-
nity detection domain (Plantié and Crampes 2013), the main
categories are enumerated as follows: (1) partitioning meth-
ods, (2) hierarchical methods, (3) modularity optimization
methods, (4) inference-based algorithms, (5) spectral meth-
ods, and (6) label propagation methods.

Mainly, community detection algorithms in temporal net-
works follow two main lines of research (Cazabet and
Amblard 2014). In one prominent category, called indepen-
dent community detection approach, the community mining
process is performed in each snapshot of the network sep-
arately. Then, some correspondence with communities is
obtained using similarity/distance measures to determine the
relationship among them (Rosvall and Bergstrom 2010). The
best advantage offered in this approach is the possibility
of reusing traditional clustering methods in each snapshot.
However, since most algorithms are seed-based, the emer-
gence of unstable communities that differ drastically in
different snapshots is the main weakness of this approach.

In the other category, called incremental community detec-
tion, the algorithms incorporate the information obtained in
other snapshots for extracting communities of the current
time step. This approach improves the time and computa-
tional complexity compared to the independent community
detection approach (Takaffoli et al. 2011). An important
series of works proposed in this category are evolutionary
community detection algorithms, in which two potentially
contradicting criteria or cost functions in an additive equation
should be optimized (Chakrabarti et al. 2006). The first term
relates to the correspondence of clustering results to current
data as much as possible (clustering quality), and the second
involves keeping the shifts of the results between current clus-
tering and the previous time step as low as possible (history
quality) to allow for temporal smoothness between cluster-
ing results in consecutive time steps. A weighting parameter
α (0 < α < 1) (also known as smoothing factor) is used
to weigh the two potentially contradicting criteria (Eq. (1)).
Hence, the approach is best matched with networks with low
changes, because there is deteriorating clustering quality in
networks with rapid changes due to additive cost function.
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Costtotal � αSC(Gt ,Ct ) + (1 − α)TC(Ct−1,Ct ) (1)

where SC(Gt ,Ct ) (SC for snapshot cost) measures the qual-
ity of the communityCt and TC(Ct−1,Ct ) (TC for temporal
cost) measures the drift of the community discovered in two
consecutive time steps. Several improved frameworks like
AFFECT (Xu et al. 2014) are proposed, where the weight-
ing factor is estimated using a statistical method according
to the observed changes in the network.

Amendment of traditional static clustering models using
the incremental approach is introduced in the literature in
different categories of partitioning (Chakrabarti et al. 2006),
agglomerative hierarchical clustering such as modularity-
based clustering (Görke et al. 2013), spectral-based cluster-
ing (Xu et al. 2014), label propagation-based algorithms (Xie
et al. 2013), and inference-based algorithms (Lin et al. 2009).

2.2 Soft community detection

One can recognize two broad categories of node-based (Xie
et al. 2013) and link-based algorithms that address the
problemofmultiple belongingness of nodes to different com-
munities in social networks (Ding et al. 2016). In a more
detailed view (Xie et al. 2013), node-based methods are sub-
categorized into seed-based and local expansion algorithms
(Whang et al. 2016), clique expansion algorithms like CPM
(Palla et al. 2005) as the pioneer of overlappingdynamic algo-
rithms, label propagation methods like dynamic overlapping
SLPA (Xie et al. 2011) and other inherently dynamic and
overlapping algorithms such asAFOCS (Nguyen et al. 2011).
In the second main category, i.e., link communities, cluster-
ing is performed on links instead of nodes (Ahn et al. 2010).
Here, link communities are mapped to node communities by
finding nodes incidents to links within each community.

Further, there is an important class of soft clusteringmeth-
ods that utilize concepts specifically designed for vague and
uncertain situations related to our proposedmodel. Decision-
making under uncertain situation is identified as a basic
concept underlying the human conception (Zadeh 1997) and
also as a remarkable human ability to make rational deci-
sions with partial knowledge. Yager and Filev (1998) believe
that the “human has developed a granular view of the world”
and “objects with which mankind perceives, measure and
conceptualize and reasons are granular.” This is totally con-
sistent with the simplified representation of the real world by
humans in which the precision in different levels of a social
network is not a meaningful concept. Thus, the granulation
concept is heavily used to present the situations involving
uncertain and vague information. Here, instead of defining
exact entities, the granules are defined. Granules are the
clump of objects drawn together by some indiscernibility,
functionality or similarity function. The inter-relation and
intra-relation among granules are responsible for grouping

smaller granules into larger ones, or decomposing a large
granule into smaller units. Any method in this line such as
rough set and fuzzy sets is regarded as a subcategory of
granular computing (Peters and Weber 2016) with different
aggregation functions for the construction of the granules.
Application of fuzzy methods in decision-making is already
discussed in several papers (Fahmi et al. 2018; Oner and
Oztaysi 2018). Fuzzy set theory addresses graded knowledge
by fuzzy membership, and rough set theory defines knowl-
edge granulation by the interdisciplinary relation and two
sets of upper and lower bounds. A short description of these
techniques is presented in the following definitions.

Definition 1 (Fuzzy Set). Let X be a set of objects. A fuzzy
set A in X is a set of pairs A � {(x, μA(x))|x ∈ X} where
μA : X → M is called the membership function of x in
A mapping X into the membership space M (M � [0 , 1]).
Membership indicates the degree of similarity of an object x
to an imprecise concept characterized by the fuzzy set A. The
set of all elements having a positive membership in fuzzy set
A constitutes its support set, i.e.,

support(A) � {x |μA(x) > 0} (2)

Definition 2 (Rough Set). A granule in a rough set cor-
responds to a clump of objects drawn together by some
indiscernibility, functionality or similarity function. Let E
be such an equivalence relation on X . Any subset R ⊆ X in
the approximation space (X , E) is represented by its lower
and upper approximations. The lower approximation R is
the union of all the elementary sets that are subsets of X and
the upper approximation R is the union of all the elemen-
tary sets that have a non-empty intersection with X . Finally,
bnd(R) � R − R is the boundary region of A where hesitant
items lie; i.e.,

R(X ) � {x |x ∈ V , [x]R ⊆ X} (3)

R(X ) � {x |x ∈ V , [x]R ∩ X �� φ} (4)

Information granules in fuzzy clustering arise by min-
imizing an objective function which expresses the spread
of data X � {x1, x2, . . . , xn} around prototypes Q �
∑c

i�1
∑N

k�1 u
m
ik ||xk − ci ||2, where c stands for the number

of clusters. The clusters are described in terms of a family of
prototypes C � {c1, c2, . . . , cc}. Numerous research fall in
this category; however, most fuzzy-based methods require a
priori knowledge about networks, e.g., the number of com-
munities (Wang et al. 2013) or other fine-tuned parameters
such as probability threshold (Breve and Zhao 2013).

Liu et al. (2015) proposed a granular-computing-based
clustering algorithm where a granule is a subset of data with
similar features according to their distances. For a complete
review of methods in this category, please refer to Amelio
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and Pizzuti (2014). Kundu and Pal (2015) suppose granule
construction around a node with fuzzy boundaries. In this
approach, granules are constructed around each node with a
fuzzy boundary, which takes its membership degree accord-
ing to the following equation:

μc(v) �
{

0 for d(c, v) > r
1

1+d(c,v) otherwise

where the distance measure d(c, v) can be any metric, e.g.,
the weighted hop distance from node v to the center node c
as mentioned in the paper. For the application of clustering,
the authors find the granular embeddedness of all granules
in the network, where this value for a pair of nodes a and b
is defined as:

ε(a, b) � |Aa ∩ Ab|�
∑

v∈V
min(μa(v), μb(v)) (5)

where Aa and Aa are the fuzzy sets representing the granules
having the center nodes a and b. Then, it takes a hierar-
chical agglomerative approach and merges similar granules
together. Dillen and Chakraborty (2016) used the FGSN
framework to present their modularity-based community
detection algorithm. However, the algorithm is designed for
non-overlapping cases.

Granulation based on rough sets has found its applica-
tion to clustering. In this approach, granules are chunks of
objects drawn together by a similarity function. First, Lin-
gras and West (2004) used the rough set concept in k-means
clustering. Mean computation, assignment of objects to the
approximations, and checking the stopping criterion are the
three key features of rough k-means. The calculation of the
modified centroid in rough k-means is given by the following
equation:

ci �
{

ωlower ×
∑

x∈R(ci ) x

|R(ci )| + ωUpper ×
∑

x∈bnd(ci ) x
|bnd(ci )| (6)

where ωL + ωU � 1 and ωL and ωU correspond to the rela-
tive importance of the lower and upper bound. For assigning
the objects to the upper and lower bound of clusters, the
ratio of d(x, ci )/d(x, c j ), 1 ≤ i, j ≤ k is used, where
d(x, ci ) is the distance between any object x and the cen-
troid of cluster ci . Suppose thatd(x, ci ) � min1≤ j≤k d(x, c j )
and T � { j : d(x, ci )/d(x, c j ) ≥ threshold and i �� j}. If
T �� ∅,x ∈ R(c j ), x is not part of any lower bound. Other-
wise, if T � ∅,x ∈ R(c j ). This algorithm and its derivation
depend on the three parameters of ωL, ωU, and threshold.
All the derivation of k-means using soft methods inherits the
problems of k-means, including the requirement of passing
the number of communities to the algorithm, and their sen-
sitivity to initial seeds. Peters and Weber (2009) proposed a

preliminary idea of dynamic rough clustering based on rough
k-means (Lingras andWest 2004). The algorithm inherits the
same challenges of rough k-means, i.e., determining the opti-
mal number of clusters and approximation weights in each
snapshot. Gupta et al. (2016) used rough set concepts in their
clustering approach, where a granule is formed by using a
neighborhood connectedness around eachnode. Then, amea-
sure called relative connectedness of the neighborhood subset
is calculated for each node and all the nodes having the same
measure are merged together. A comparison of classical k-
means and its fuzzy/rough version is discussed in Peters et al.
(2013).

As the related work in this section explains, granular clus-
tering realized using the fuzzy set and rough set suffer from
the complexity and tuning of various parameter used in the
model. In the following, we explain our work which is able
to detect the number of communities automatically and has
fewer parameters compared to rough clustering method.

3 Proposedmodel: rough granular social
network community mining

Taking a human perspective of the social network in which
granulation is used to perceive, measure and conceptualize
objects in the world, we leverage the concept of granules
in different levels of nodes and communities to design our
adaptive community mining algorithm called “Rough Gran-
ular Social Network Community Detection Approach.” The
structure of the macrogranules incrementally emerges based
on the interaction of close- enough microgranules which are
joined together over time to construct the higher level mod-
ules of the network. This process involving vagueness and
rough concepts is used to model this uncertainty. The follow-
ing section describes some notation and definitions which
will be needed later to describe the mechanism of the con-
struction of the final macrogranules in temporal networks.

3.1 RGSN: model description

Let us consider a temporal weighted/unweighted net-
work by several static snapshots of the network � �
(G1,G2, . . . ,Gs). A snapshot of the network is represented
by Gt � (Xt , Et ) where Xt is the set of nodes available in
time step t and Et ∈ (Xt × Xt ) is the set of edges available.
The number of nodes may be changed in different time steps
allowing for insertion and deletion of nodes. The interaction
of nodes with each other can be represented in an adjacency
matrix Wt � (wt

i j )n×n where wt
i j � 1 denotes there is an

edge between node i and j and other values denotes their
weight of interaction.We denote the members of the network
in time step t as Xt � {x1, . . . , xn} where each member
includes its attribute including node id (vi ), timestamp (t)
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and weight of the interaction with their neighborhood Γ (xi )
where Γ (xi ) � {x j ∈ X |(xi , x j ) ∈ E}, i.e., (wi j ). Further,
Ω � {C1, . . . ,Ck} is a family of clusters classifying objects
into k communities.

A social network as an instance of a complex system can
be characterized by the interaction that occurs between two
levels of the network. From this viewpoint, the interaction
among the basic microcomponents of the network, i.e., the
nodes, allows for the creation of the some macrostructure of
the network, i.e., communities, at the higher level of the sys-
tem. This micro–macro mechanism is heavily discussed in
emergence theories and third wave of system theories, which
are well-linked to social sciences (Sawyer 2005). Inspired
by this mechanism, we model the network at both levels of
micro- and macrostructures as granules. Let a microgran-
ule be associated with each node, i.e., xi ∈ X be ϕ(xi ). In
addition, the final community structure be represented by
macrogranule structure Ω . Now, we model the network by a
rough granular framework represented by a pair S � (ϕ,Ω)
where ϕ is a finite set of rough microgranules around each
node, i.e., ϕ � {∪ϕ(xi )|xi ∈ X}, and Ω is a finite set of
rough macrogranules constructed over time by the interac-
tion of close-enoughmicrogranules. In the following section,
we present some definitions used in the proposed model.

3.1.1 Roughmicrogranule

Today, the importance of the environment within which
each individual lives has a tremendous effect on his/her
decision-making process. This is long discussed in different
modern social theories and is observed as de-facto. Taking
this viewpoint, we model each individual as a microgranule
represented together with his/her direct neighborhood. To
realize the granular structure of each individual, the rough
set concept is used. In the rough terminology, the members
of the set are splits into two parts, deterministic and indeter-
ministic, drawn together by similarity function. Thus, each
center node is placed in the lower approximation of micro-
granules, and other neighbors are associated with the granule
by a variation of similarity which is more highlighted if the
network is weighted (neighbors with higher volumes of inter-
action are more similar to the center node). Hence, we give
the following definition for rough microgranule:

Definition 1 (Rough microgranule). A microgranule around
a center node xi and annotated by ϕ(xi ) consists of the
attributes for the center node xi and its direct neighbor-
hood class Γ (xi ). Thus, the network can be represented
by a set of microgranules constructed around each node
(Gt � {ϕ(xi ), . . . , ϕ(xn)} for all vi ∈ V ). The attribute of
each node in the granule is related to the network properties

of these nodes. We have specified the following attributes for
each member of the microgranules:

ϕ(xi ) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕV (xi ) � {vi ∪ v j |(vi , v j ) ∈ E},
ϕW (xi ) �

{∑
wi j ∪ wi j | j ∈ Γ (xi )

}
,

ϕT (xi ) � t,

ϕμ(xi ) �
{

1 ∪ wi j
∑

j∈Γ (xi ) wi j

}
(7)

where

• ϕV (xi ) stores the vertex vector (V ) comprised of the node
ids for the center node xi and its neighbors;

• ϕW (xi ) stores the weight vector (W ) for each member of
vector V . For the neighbor node j ∈ Γ (xi ), this is equal
to the weight of each neighbor j connected to the center
node (wi j ) and for the center node (xi ), this will be the
sum of weights

∑
wi j .

• ϕT (xi ) records the time step that the nodes in the vector V
are observed.

• Finally, ϕμ(xi ) stores the participation vector (μ) for each
member of vector V derived by the calculation of the
weight value normalized by the sum of weights of the
center node. The center node gets the highest participa-
tion point of 1, and other members acquire some value less
than one proportional to their weight, i.e.,

wi j∑
j∈Γ (xi )

wi j
. The

attribute is similar to the membership degree in fuzzy set,
and is an implication of the belongingness of eachmember
to the microgranule. The graphical representation of this
structure is illustrated in Fig. 1.

3.1.2 Roughmacrogranule

Naturally, each community may hold members shared by
other communities producing an overlapping structure. The
belongingness degree of individuals to different communities
varies. Hence, we model each community in the framework
of rough sets. In this model, the members which are deter-
mined surely to belong to a community constitute the lower
approximation of the rough macrogranule intended to rep-
resent that community, and the members in the overlapping
region with other communities constitute its upper approxi-
mation.

Definition 3 (Rough macrogranule). Let Ω t (l) (l �
1, . . . , k) be the l’th community discovered in time step t
and the lower and upper approximation of this community
be Ω t

l and Ω
t
l , respectively. The lower approximation of

the rough macrogranule set are the members which are
determined to be definitely in the community Ωl . On the
other hand, the upper approximation set of the macrogranule
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Fig. 1 Microgranule structure of
vertex xi

l (Ω l ) is constituted of the members which are probably
inside the community. These members are in the overlapping
regions with other communities, and some of themmay later
be added to the lower approximation of the microgranule
l (Ω l ). This is mathematically expressed in the following
equations:

Ω t (l) � {x j |x j ∈ Support(Ω(xp) ∧ x j ∈ Support(ϕ(xq ));

∀Ω(xp) ∈ Ωi and ∀ϕ(xq ) ∈ Ω j ; i �� j}
(8)

Ω
t
(l) � {x |x ∈ Support(ϕ(xp));∀ϕ(xp) ∈ Ωi }. (9)

Both the lower and the upper approximation structure
of the macrogranules have similar attributes to the micro-
granules, i.e., Ω

t
(l) : {Ω t

V (l),Ω
t
W (l),Ω

t
μ(l)}. The values of

these attributes are updated from the microgranule structures
joined into the macrogranule structure. A detailed explana-
tion of each attribute is described in the update process.

3.2 Algorithm description

In this section, we outline how the final communities com-
prised of densely connected nodes are formed in temporal
context. Exploiting the granular model of social network as
stated in Sect. 3.1, we first present a general view of the
algorithm in a short step-by-step schema. Next, we provide
a detailed explanation of different steps. The high-level pro-
cedure of rough community detection method is represented
in Pseudo code 1.

Pseudo-code 1. High level description of the proposed algorithm

Input: Graph at 
tht  snapshot (

tG ) or streaming data

Step 1. Granule Initialization  

a. Initialization of macro granules (prototypes) using the previous macro 

granules (for 1t >  ) 

b. Initialization of the next micro granule by receiving new data entry and its 

available neighborhood information 

Step 2. Similarity calculation

a. Calculate the rough granule embeddedness of the micro granule into 

available macro granules 

b. Find the best candidate macro granule by the calculation of the maximum 

weighted rough granule embeddedness (Eq. 13) 

Step 3. Update community structure 

Step 4. Termination or Go back to Step 1. 

a. At the end of each time step, output the final disjoint/overlapping macro 

granules (communities) 

(Eq. 8 & Eq. 9)

(Eq. 10–12)
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Granular-ARTISON models the networks into granule
structure in both the node (micro) and the community (macro)
level, similar to human granular perceptionway of perceiving
nodes and communities in the network. Next, the microgran-
ules join the macrogranule structure which they find themost
similar. Group formation based on some similarity measure
is verified in different studies. This is the way that is already
followed by the representative or partitioning-based algo-
rithms. If there is not any similarly enough macrogranule
to join, a new one will be created. The process of the simi-
larity determination of each microgranule with the available
macrogranules is done through a two-step process, which
comprises of first selecting some candidate communities
(Eq. 11) and then refining the selection by finding the best
match (Eq. 14). The two-step process of determination is sim-
ilar to the way humans are involved in the decision-making
process (Grossberg 2013). The uncertainty is observed in
different stages of network modeling and decision-making.
For this reason, we incorporate the uncertainty in different
parts of the algorithm, specifically in the modeling of the
nodes and communities and the similarity measure designed.
The structure and nodes in the macrogranules are modi-
fied and tuned-based on the interactions of nodes observed.
In the end, the most probable members of each commu-
nity that have dense interactions with each other compared
to other members will be stored in the lower approxima-
tion of each macrogranule, and the other fringe items with
fewer interaction are stored in the upper approximation of the
macrogranule. Hence, there may be members with different
degree of memberships to a community. For the purpose of
disjoint communities, only the members with high proba-
bility of belongingness to each community are considered
(lower approximation members of each macrogranule) and
for the overlapping case, the members present in both the
lower and upper approximation are included. The members
with high participation ratio are considered as the core nodes,
and the other members in upper approximation construct the
overlapping region of each community. Throughout these
processes, the number of communities is gradually found
based on the interaction information. Having described a
total schema of the algorithm, we go through a detailed
explanation in the following sections. An illustration of the
algorithm’s components including microgranule and macro-
granule in two levels of node and community is depicted in
Fig. 2 and will be discussed in the following parts.

3.2.1 Initialization

First, the basic elements of the framework, i.e., the micro-
granules, are constructed iteratively according to the infor-
mation available (based on Eq. 6). After each microgranule
is created, it searches for the similar macrogranules (com-
munities) in which to be included, as discussed in the next

Fig. 2 A schema of the interactions observed in Granular-ARTISON
algorithm in two micro- and macro-level (microgranule observed in the
node level leads to the formation of macrogranules which are adapted
in different time steps)

Fig. 3 Node granulation concept using circle of connections

step. Further, at the beginning of each time step, the commu-
nity prototypes are initialized with the rough macrogranules
obtained in the previous time step to preserve the temporal
smoothness. Figure 3 shows the network structure composed
of microgranules.

3.2.2 Rough granular similarity calculation

Humans are always intertwined with decision-making in
uncertain situations. Here, we define a novel similarity mea-
sure that directly integrates the uncertainty of the decision-
making process in its formulation. In this way, we favor the
similarity obtained through sure level of rough set compared
to similarity obtained by unsure level. The similarity calcu-
lation process is illustrated in the following.
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Fig. 4 An example of the
construction of the first
macrogranule based on the first
microgranule. a Microgranule
graphical schema. b
Microgranule structure: ϕ(1). c
Lower macrostructure: C(1). d
Upper macrostructure: C̄(1)

First, we will determine for each node xi under examina-
tion, along with its neighbors Γ (xi ) constructing the micro-
granule ϕ(xi ), the most similar macrogranules Ω t (l)(l �
1, . . . , k) for incorporating the microgranule. Obviously, at
the beginning of the first timestamp, there is no macrogran-
ule available and the first macrogranule (Ω(1)) is constructed
based on the microgranule ϕ(xi ). In this case, the center node
xi is placed in the lower approximation set of the macrogran-
ule, since we are in search of the most similar macrogranule
for this center member and each member is surely a subset
of itself. The other neighbors of the center node (Γ (xi )) are
probably members of this community and are placed in the
upper approximation of this macrogranule. They resemble
some similarity with the sure member of the community (the
center node) through the neighborhood relation. An example
of microgranule is schematically represented in Fig. 4.

The appropriate similarity measure should be used to
assess the similarity of each microgranule against multiple
macrogranules. Notice that the macrogranules are presented
in rough concepts, i.e., some members surely belong to the
macrogranule (placed in the lower approximation), and some
others probably belong to this structure (upper approxima-
tion). Hence, it is rational to consider a rough granular
weighted similarity measure to differentiate between the
similarity values obtained from these two approximations
and assign a higher weight to the term that results from
the comparison with certain elements of the macrogranules.
The rough granular weighted similarity measure is formally
defined as follows:

Definition 4 For two given microgranule ϕ(xi ) and macro-
granule Ωq , the rough granular participation ratio denoted
as simμ(ϕ(xi ),Ωq ) is a weighted additive measure com-
posed of the rough granular lower participation ratio and

rough granular upper participation ratio measure linked by
two different weights of (α, β), where α > β; i.e.,

simμ(ϕ(xi ),Ω(q)) � α ∗ simμ(ϕ(xi ),Ω(q))

+ β ∗ sim
μ
(ϕ(xi ),Ω(q)). (10)

These two terms are derived from the similarity value
of the microgranule ϕ(xi ) in both the lower and the upper
approximation of the macrogranule Ω(q). How these two
similarity measures are calculated is explained as follows.

The rough granular lower (upper) participation ratio
measure for a given microgranule ϕ(xi ) and macrogranule
Ω(q) is defined as the ratio of the participation degree of
the microgranule ϕ(xi ) into the lower (upper) approximation
of the macrogranule Ω(q). This is calculated by the inter-
section of the participation ratio of the microgranule and the
lower (upper) macrogranule normalized by the value of this
attribute in the microgranule, i.e.,

simμ(ϕ(xi ),Ω(q)) �
∑

j∈ϕv(xi )∩Ω−
v
(q) ϕμ j (xi ) ∩ Ω−

μ j

(q)
∑

ϕμ(xi )
(11)

sim
μ
(ϕ(xi ),Ωq ) �

∑
j∈ϕμ(xi )∩Ω̄q (v) ϕμ j (xi ) ∩ Ω̄μ j (q)

∑
ϕμ(xi )

(12)

The microgranule is checked against all available macro-
granule structures to find the prototypes which have rough
granule participation ratio higher than a threshold value. The
threshold value is aminimal similarity levelwhich is required
for the inclusion of a microgranule into higher macrogranule

123



A novel granular approach for detecting dynamic online communities in social network 10347

structure. Obviously, if there is not any macrogranule sat-
isfying the threshold criterion, a new community should be
created to incorporate the microgranule. Otherwise, if there
are several communities higher than the threshold value, the
community which has the highest value of similarity is cho-
sen to incorporate the microgranule. The decision-making
process is translated into the following relation:

Ω∗ � max( simμ(ϕ(xp),Ω(q)) > ∂ ) (13)

In this way, the community that is most similar in terms of
both activeness and embeddedness is selected to incorporate
the microgranule members. We have chosen the threshold
value of 0.3 which gives good results in various datasets.

3.2.3 Updating scheme

After the selection of the macrogranule, which should inte-
grate the microgranule members, an update scheme should
take place to account for this assignment. The core node
of the microgranule is added to the lower approximation
of the selected macrogranule. Further, the neighbors of the
microgranule are added to the upper approximation of this
macrogranule. As described in Sect. 3.1.2, the macrogran-
ule structure has four fields of ids, weights, timestamp, and
participation ratio in both the lower and the upper approxi-
mationsΩ(l) : {Ω(l),Ω(l)}. Here, we give an explanation of
the update process in these fields related to the lower approx-
imation Ω t (l) : {Ω t

V (l),Ω
t
W (l),Ω t

μ(l)}:

• Id attribute: (Ω t
V (l)): this is the identity of each member

present in the lower approximation of the macrogranule l.
The other attributes are defined for each member of this
set (V ). In each update process, the center node is added
to the lower approximation of the macrogranule, and the
neighbors are added to the upper approximation (if not
already present).

• Weight (Ω t
W (l)): it indicates the sum of the weighted

interactions observed during different iterations of the
algorithm. The higher the weighted sum of a member is,
the more weighted connection it has till the present time
and is a better representative for that community. For the
nodes added to the lower or upper approximation of the
set, this attributewill be updated by adding previous values
and the values of the newly added microgranule members.
The final maximum value for eachmember will be the sum
of weights of the member in the network.

• Normalized participation ratio (Ω t
μ(l)): the attribute indi-

cates the participation grade of the microgranule members
in the macrogranule structure. The values of this attribute
get updated using the rough granular similarity measure
obtained for the higher the value of this attribute for amem-
ber, the higher is the interaction level of this macrogranule

in the; i.e., the node has the higher number of connections
with the other members of the community.

This community assignment scheme allows for an over-
lapping community structure. The certain members are in
the lower approximation of the macrogranule and overlap-
ping members in the upper approximation.

4 Experimental results

In this section, we represent the results of the experiments
carried out to assess the performance of the algorithm on sev-
eral evolving synthetic (Greene et al. 2010), and real datasets
(Zachary 1977;Lusseau et al. 2003; Steinhaeuser andChawla
2008; Lin et al. 2008). First, we describe different aspects of
evaluation including the introduction of datasets, algorithms
and measures used. Then, the results of the experiments on
synthetic and real datasets are investigated.

4.1 Experiment setup

4.1.1 Datasets

For synthetic dataset generation, we use the scenarios gen-
erated by the dynamic version of the frequently used LFR
generator (Greene et al. 2010), which is one of the best gen-
erators producing similar properties to real networks. The
availability of ground truth information makes these net-
works especially interesting for evaluation purposes. Each
experiment is executed for 50 time, and average values
are reported. Further, several famous benchmarks including
Zachary Karate club (Zachary 1977), Doubtful Sound Dol-
phins (Lusseau et al. 2003), and the Risk Game network
(Steinhaeuser and Chawla 2010) are used to evaluate the
accuracy of the algorithm. Finally, the performance of the
proposed algorithm in the evolving network dataset is also
examined by the NEC blog dataset (Lin et al. 2008). Our
programming environment is MATLAB.

4.1.2 Compared algorithms

Granular-ARTISON is placed in the representative-based
algorithm class, the best comparison is achieved by compar-
ing it to other representative-based algorithms. For this rea-
son, we choose two other evolutionary representative-based
algorithms especially designed for dynamic settings. We
use the state-of-the-art evolutionary framework called Adap-
tive Evolutionary Clustering (AFFECT (Xu et al. 2014)),
extended to the k-means and spectral algorithm, in which the
optimal smoothing factor is determined automatically using
a statistical approach. Both algorithms require an estimation
of the number of communities for each timestamp. For this
purpose, we use the well-known silhouette width criterion
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Table 1 Comparison of
proposed algorithm in synthetic
dataset with AFFECT k-means
and AFFECT spectral in mean
values in five measures of (a)
Rand Index, (b) NMI, (c) F1, (d)
modularity and (e) accuracy of
the no. of clusters

Network event Measure Granular-
ARTISON

AFFECT k-means AFFECT spectral

Birth and death
event

Rand Index 0.92 (±0.03) 0.46 (±0.39) 0. 87 (±0.01)

NMI 0.63 (±0.02) 0.31 (±0.23) 0.55 (±0.01)

F-measure 0.57 (±0.03) 0.25 (±0.21) 0.47 (±0.01)

Modularity 0.61 (±0.09) 0.32 (±0.29) 0.70 (±0.01)

No. of cluster
accuracy

0.51 (±0.01) 0.50 (±0.01) 0.50 (±0.01)

for automatic determination of the number of communities.
This measure determines how compact the distance of com-
munities is for a given time step. The maximumwidth of this
measure is used to assess the number of needed communities
in k-means. Since both algorithms are random-based, they
produce different results in experimental runs. Hence, the
average value of differentmeasures in these two algorithms is
reported in the experiments. Finally, we use two other meth-
ods in real dataset evaluation section. These algorithms are
in the category of modularity-based and label propagation-
based algorithms called Louvain (Blondel et al. 2008) and
SLPA (Xie et al. 2011). Both algorithms show high accuracy
and are selected as representative algorithms in their cate-
gory. We use the threshold value of δ � 0.3, which yield
good results using experiments.

For the evaluation of the proposed algorithm in overlap-
ping case, two highly used algorithms in overlapping com-
munity detection domain with available code are selected.
The first is Link-Clustering (Ahn et al. 2010) algorithm as
the pioneer link-based algorithm and the second is OCG
(Becker et al. 2011) which has several similar functionali-
ties to Granular-ARTISON. Specifically, OCG also uses a
local similarity-based algorithm where different segments of
the network are merged into each other to construct commu-
nities.

4.1.3 Compared measures

The standard approach for assessing the accuracy of commu-
nity detection results is to exploit the external measures that
compare the accuracy of detected communities with ground
truth communities. We use a range of measures including
the Rand Index, NMI and the F-measure to determine the
accuracy of the community detection algorithms in different
scenarios, as will be explained. The NMI measure indicates
how much knowing one of these communities helps predict
the structure of the other and reduce prediction uncertainty.
Thismeasure has proven to be a robust and accurate similarity
measure for many modalities. It is bounded in [0, 1] to verify
the complete sharing of the partitions found when the value
is equal to 1 and the complete dependence of the partitions

when it equals 0. The F-measure presents a harmonic means
of precision and recall measures, where precision is the ratio
of relevant objects (real community members detected) to
the total number of objects detected, and recall is the ratio of
relevant objects detected to the total number of objects based
on ground truth. All these measures reach their best at 1
and their worst at zero value. Further, the internal measure of
modularity is used to assess the quality of the communities in
real networks. We use the well-known modularity measure
for this purpose. In addition, when the functioning of the
algorithm in overlapping case is assessed, the overlapping-
NMI (McDaid et al. 2011) specificallymeasure is usedwhich
is designed to specifically assess the accuracy of clustering
in overlapping case. Another measure in this context is the
accuracy of the number of clusters each algorithm is able to
detect which is used in the evaluation of algorithms in this
category.

4.2 Artificial networks

To evaluate the performance of the algorithm in dynamic set-
tings, it is important to assess the algorithm on dynamic net-
works where ground truth information is available. Dynamic
network environments incorporate different events of birth,
merge and expansion/contraction sections. For this purpose,
we use the dynamic synthetic dataset generator introduced
by Greene et al. (2010), which is derived from the well-
known LFR benchmark network. The benchmark can create
different events in dynamic scenarios and inherits the basic
statistical properties of the real networks in heterogeneous
distributions of the degree and the community size. Differ-
ent parameters of this benchmark are tunable, which allows
for overlapping and dynamic network settings. These param-
eters include: size of the network N, size of the communities
(within Cmin to Cmax), and mixing parameter, i.e., the
overlap among communities (μ). The combination of these
settings helps to analyze the algorithm in detail.

In our experiments, 1000 nodes in five time steps undergo
different events to evaluate the performance of the algorithm.
The number of nodes may change during different events.
The generated scenarios follow standard settings for produc-
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(a) (b)

(c) (d)

(e)

Fig. 5 Performance comparison of Granular-ARTISON in the birth and death event of the synthetic data generator with AFFECT k-means and
AFFECT spectral in five measures of a Rand Index, b NMI, c F1, d modularity and e accuracy of the no. of clusters

ing power-low networks as used in Folino and Pizzuti (2014).
Events used in the experiments are: (1) birth and death; (2)
expansion and contraction; (3) merging and splitting and (4)
intermittent communities. The average andmaximum degree
is set to 20 and 50, respectively, and the minimum and max-
imum community size is 10 and 50 nodes, respectively. The

initial number of nodes is 1000 nodes, and the experiments
are averaged over repeated runs for consistency.

4.2.1 Birth and death event

In this experiment, 10% of new communities are created
by removing nodes from other existing communities, and
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(c) (d)

(e)

(a) (b)

Fig. 6 Performance comparison of Granular-ARTISON in the expansion and contraction event of the synthetic data generator with AFFECT
k-means and AFFECT spectral in five measures of a Rand Index, b NMI, c F1, d modularity and e accuracy of the no. of clusters

randomly removing 10% of the existing communities. The
results of the experiments are averaged in Table 1. The values
of measures obtained in each time step are also illustrated in
Fig. 5. The number of nodes decreases from 1000 nodes in
the beginning to 784 nodes in the last run of the algorithm.

This event is one of the hardest events to capture for
all algorithms. As illustrated in Fig. 5, the performance is
degraded in the NMI, F-measure and modularity measures.
AFFECT k-means encounters serious problems from the
third time step, and the performance in all measures dete-
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Table 2 Comparison of
proposed algorithm in synthetic
dataset with AFFECT k-means
and AFFECT spectral in five
measures of (a) Rand Index, (b)
NMI, (c) F1, (d) modularity and
(e) accuracy of the no. of
clusters

Network event Measure Granular-
ARTISON

AFFECT k-means AFFECT spectral

Expansion and
contraction event

Rand Index 0.97 (±0.01) 0.81 (±0.07) 0.91 (±0)

NMI 0.83 (±0.05) 0.63 (±0.05) 0.78 (±0.04)

F-measure 0.82 (±0.07) 0.60 (±0.09) 0.75 (±0.01)

Modularity 0.64 (±0.07) 0.55 (±0.09) 0.69 (±0.01)

No. of cluster
accuracy

0.82 (±0.0) 0.62 (±0.02) 0.63 (±0.01)

riorates. Meanwhile, Granular-ARTISON preserves high
differences with AFFECT k-means in all measures by an
average of 30%. Specifically, there is a 46% difference in
rand index, which measures correct assignment of nodes to
their communities. TheNMImeasure inGranular-ARTISON
shows 32% and 8% improvement over AFFECT k-means
and AFFECT spectral, respectively. The priority is kept on
F-measures, too. However, the modularity of the AFFECT
spectral is the only case where this algorithm stands higher
than Granular-ARTISON. The higher value of the Rand
index in Granular-ARTISON, which is the manifestation of
the correct assignment of the nodes to their communities,
compensates for this shortcoming. The number of clusters
assessed by all algorithms is similar.

4.2.2 Expansion and contraction event

In this event, 10% of communities are randomly selected and
expanded or contracted by 25% of their size. The number of
nodes varies from 1000 in the beginning to 970 in the last
run. The average values of measures are reported in Table 2,
and the results of each time step are illustrated in Fig. 6.
The average value of all measures in Granular-ARTISON
is higher than the rest. The Rand index values of all algo-
rithms are close to each other. AFFECT spectral stands in
second place and AFFECT k-means in last place. The aver-
age values of NMI and F-measure in Granular-ARTISON
show 20% and 8% improvement over AFFECT k-means and
AFECT spectral, respectively. Like the birth and death event,
the modularity value of AFFECT spectral is slightly higher
than Granular-ARTISON. Overall, it appears that the expan-
sion scenario is easier to capture in all algorithms.

4.2.3 Intermittent communities event

In this event, 10% of communities from the first time step
hide. The results of this experiment are shown in Fig. 7, and
the average value and standard deviations are reported in
Table 3.

The number of nodes in time steps is as follows: 1000,
892, 917, 909 and 927 nodes. In this experiment, Granular-

ARTISON is superior in all measures of the Rand Index,
NMI, F-measure and modularity by almost 20% and 10%
with respect to AFFECT k-means and AFFECT spectral,
respectively. Further, the number of correctly guessed com-
munities is also higher or equal to other algorithms in
different steps (Fig. 7e).

4.2.4 Merging and splitting event

In merging and splitting events, 10% of communities are
split, 10% of communities are chosen, and a couple of com-
munities are merged at each time step. The average values of
measures are reported in Table 4, and the results of each
time step are illustrated in Fig. 8. The number of nodes
is fixed, but various mergers and splits make the scenarios
rather difficult for evolutionary-based algorithms. However,
Granular-ARTISON results show its high performance com-
pared with the other two algorithms by almost 20% in NMI,
F-measure and modularity measures. Finally, the number
of communities derived by Granular-ARTISON is closer to
ground truth by achieving amean accuracy of 83% compared
to almost 60% of evolutionary-based algorithms.

We performed a two-tailed t test at a 0.05 level of sig-
nificance tests were performed after ensuring that the data
followed a normal distribution (by using the Kolmogorov–S-
mirnov test). The result of tests performed between the
average value of F-measure for Granular-ARTISON and the
two other evolutionary algorithms are reported in Table 5.
Results indicate that Granular-ARTISON preserves its dif-
ference with other algorithms in all events (<0.05). Hence,
the good performance of Granular-ARTISON compared to
other algorithm can be expected in other datasets, too.

4.2.5 Overlapping scenarios

When Granular-ARTISON is working in the overlapping
case, the upper bound members of each community are
considered as its overlapping members. In this case, the per-
formance of the algorithm is benchmarked against the other
overlapping algorithms. As the results in Fig. 9 illustrates,
Granular-ARTISON shows much better performance than
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(a) (b) 

(c) (d)

(e)

Fig. 7 Performance comparison of Granular-ARTISON in the hiding event of the synthetic data generator with AFFECT k-means and AFFECT
spectral in five measures of a Rand Index, b NMI, c F, d modularity and e accuracy of the no. of clusters

the other two overlapping algorithms in overlapping-NMI
measure.

In the best case of birth and death event, the algorithm
on average shows 24% and 34% higher value than Link-
Clustering and OCG algorithms, respectively. In all events
Link-Clustering algorithm stands in the second place and the

lowest overlapping-NMI value is for OCG algorithm. The
average and deviation values are reported in Table 6.

Another measure used to assess the accuracy of the algo-
rithms in the number of clusters found is to investigate the
number of clusters found by each algorithm and compare
the value to the ground truth value. Figure 10 illustrates the
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Table 3 Comparison of
proposed algorithm in synthetic
dataset with AFFECT k-means
and AFFECT spectral in five
measures of (a) Rand Index, (b)
NMI, (c) F, (d) modularity and
(e) accuracy of the no. of
clusters

Network event Measure Granular-
ARTISON

AFFECT k-means AFFECT spectral

Birth and death Rand Index 0.97 (±0.01) 0.76 (±0.15) 0.82 (±0.01)

NMI 0.86 (±0.05) 0.59 (±0.15) 0.71 (±0.02)

F-measure 0.85 (±0.05) 0.56 (±0.16) 0.69 (±0.02)

Modularity 0.67 (±0.05) 0.52 (±0.14) 0.63 (±0.01)

No. of cluster
accuracy

0.64 (±0.17) 0.56 (±0.08) 0.55 (±0.07)

Table 4 Comparison of
proposed algorithm in synthetic
dataset with AFFECT k-means
and AFFECT spectral in five
measures of (a) Rand Index, (b)
NMI, (c) F, (d) modularity and
(e) accuracy of the no. of
clusters

Network event Measure Granular-
ARTISON

AFFECT k-means AFFECT spectral

Merging and
splitting

Rand Index 0.95 (±0.02) 0.65 (±0.21) 0.75 (±0.20)

NMI 0.78 (±0.11) 0.49 (±0.16) 0.61 (±0.20)

F-measure 0.78 (±0.11) 0.45 (±0.19) 0.56 (±0.25)

Modularity 0.60 (±0.03) 0.40 (±0.20) 0.56 (±0.17)

No. of clusters
accuracy

0.82 (±0.16) 0.61 (±0.03) 0.63 (±0.01)

results of this experiment. Each experiment is executed for
50 times and average values are reported.

The high difference of the number of clusters found com-
pared to ground truth value in both Link-Clustering andOCG
value are verified in these experiments. This problem in is
reported in different papers (Ding et al. 2016) and demands
more attention. Obviously, Granular-ARTISON shows the
best performance in all scenarios of this experiment (Table
7). The average value of the number of clusters is reported
in Table 7.

4.3 Real dataset evaluation

In this section, we evaluate the performance of Granular-
ARTISON on several well-known benchmarks used heavily
for evaluation of community detection algorithms. Networks
studied are Zachary Karate club (Zachary 1977), Doubtful
Sound Dolphins (Lusseau et al. 2003), and the Risk Game
network (Steinhaeuser andChawla 2010). These benchmarks
assess the performance of the algorithms in static settings.
For the purpose of the evaluation in dynamic real networks,
we use the weighted blog dataset (Lin et al. 2008) provided
by NEC laboratory gathered during 15 months of monitor-
ing. The dataset was recently used in numerous studies of
dynamic community detection (Lin et al. 2008; Yang et al.
2011). For a comparison with the state-of-the-art algorithms
in different category of community detection, two other algo-
rithms, i.e., Louvain (Blondel et al. 2008) and SLPA (Xie
et al. 2011)/LabelRankT (Xie et al. 2013), are used. Louvain
is a modularity-based algorithm, and SLPA and LabelRankT
are placed in the label propagation-based category. In SLPA,

the probability of observing a label is interpreted as the
membership strength. This algorithm can determine the num-
ber of communities automatically and is applicable to both
weighted and directed versions. All algorithms can deal with
weighted networks. Further, LabelRankT, which is proposed
by the same author of the SLPA algorithm, is specifically
designed for dynamic settings and is added for comparison
with the dynamic NEC dataset. Table 8 gives a summary of
the statistics on the datasets used for the evaluation of our
algorithm in this paper.

4.3.1 Zachary Karate club

The well-known Karate club network shows the friend-
ship networks of Football College. The experiments on this
network split the network perfectly into two partitions with-
out any mismatch in different measures of Rand Index,
F-measure and NMI. Themodularity of Granular-ARTISON
is also higher than other algorithms. Finally, the number of
clusters is best assessed inGranular-ARTISONandAFFECT
spectral in common (Table 9, Fig. 11).

4.3.2 Dolphins

The other social network studied to test the accuracy of the
algorithm is a social network of frequent associations among
62dolphins in a community inDoubtful Sound (Lusseau et al.
2003). In this network, dolphins are represented as vertices,
and a link is attached between two nodes if the corresponding
dolphins are observed together more often than expected by
chance over a period of 7 years from 1994 to 2001. The
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(c) (d)

(e)

(a) (b)

Fig. 8 Performance comparison of Granular-ARTISON in the merging and splitting event of the synthetic data generator with AFFECT k-means
and AFFECT spectral in five measures of a Rand Index, b NMI, c F, d modularity and e accuracy of the no. of clusters

Table 5 T-test results of average
F-measure between
Granular-ARTISON and the
other evolutionary algorithm on
four dynamic events

Birth and death Expansion Hiding Merge and split

Granular-ARTISON and AFFECT
k-means

0.018344 8.11461E−05 0.00418 0.00128

Granular-ARTISON and AFFECT
spectral

0.000879 0.084382 0.00191 0.02585
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Fig. 9 Performance evaluation of Granular-ARTISON in overlapping mode in the four scenarios of a birth and death, b expansion and contraction,
c hiding and d merge and split event versus Link-Clustering and OCG algorithms in overlapping-NMI measure

Table 6 Average value and standard deviation value of Granular-ARTISON in overlapping mode in the four scenarios of (a) birth and death, (b)
expansion and contraction, (c) hiding and (d) merge and split events versus Link-Clustering and OCG algorithms in overlapping-NMI measure

Birth and death Expansion and
contraction

Hiding Merge and split

Granular-ARTISON 0.66 (±0.04) 0.56 (±0.07) 0.60 (±0.03) 0.56 (±0.03)

Link-clustering 0.40 (±0.03) 0.51 (±0.04) 0.38 (±0.03) 0.40 (±0.03)

OCG 0.31 (±0.01) 0.22 (±0.01) 0.23 (±0.01) 0.21 (±0.01)

groups of dolphins are mainly divided into the male ones
and female ones.

Our result is shown to be completely the same as the
ground truth. The two communities are marked by purple
and blue, respectively (shown in Fig. 12, Table 10).

4.3.3 Risk game network

The risk game network is recently used for assessing commu-
nity detection accuracy of the algorithms (Gupta et al. 2016).
It is a popular strategy game played on a board depicting a
political map of the Earth, divided into forty-two territories
which are grouped into six continents (Table 11).

4.3.4 NEC blog dataset

The temporal dataset is gathered over a 15-month period
by an in-house blog crawler of NEC laboratory (Lin et al.
2008). It contains information on 407 blogs which contribute
to 148,681 links to each other representing the interaction
among individuals, e.g., hyperlinks in blogs. These interac-
tions provide dynamic communities over time. Ground truth
information is available for this dataset. The results of the
experiment are illustrated in Fig. 13.

The results of this experiment on this large real network
show a very promising result. In addition to being superior in
almost all the measures, Granular-ARTISON preserves the
highest difference in the values of the measures compared
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Fig. 10 Performance evaluation of Granular-ARTISON in overlappingmode in the four scenarios of a birth and death, b expansion and contraction,
c hiding and d merge and split event versus Link-Clustering and OCG algorithms in the accuracy of the average number of clusters

Table 7 Average value and standard deviation value of Granular-
ARTISON in overlapping mode in the four scenarios of (a) birth and
death, (b) expansion and contraction, (c) hiding and (d)merge and split

events versus Link-Clustering and OCG algorithms in the accuracy of
the average number of clusters

Birth and death Expansion and contraction Hiding Merge and split

Ground truth 46.6 (±2.53) 43.0 (±2.98) 39.2 (±1.08) 46.5 (±2.98)

Granular-ARTISON 19.2 (±2.69) 14.2 (±3.23) 15.1 (±3.50) 15.0 (±2.63)

Link-clustering 1041.6 (±148.93) 985.9 (±115.16) 999.0 (±132.27) 1079.7 (±157.95)

OCG 248.6 (±13.25) 244.65 (±17.95) 228.7 (±2.51) 241.1 (±13.25)

Table 8 Statistics of the datasets
used for experiments Network dataset # Nodes # Edges Average degree

Karate 34 78 4.5

Risk 42 165 5.5

Dolphins 62 165 5.1

NEC Blog 407 148,681 8.3

with other algorithms. Louvain is the only algorithm which
has a higher value of modularity, which is expected from this
algorithm. The comparison among the four other algorithms

inferior to Granular-ARTISON is as follows: interestingly,
AFFECT k-means shows a better result than AFFECT spec-
tral. The results indicate that AFFECT k-means in most
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Table 9 Comparison of
Granular-ARTISON in Zachary
club football dataset with
AFFECT k-means, AFFECT
spectral, Louvain and SLPA in
mean value of five measures:
Rand Index, NMI, F, modularity
and the accuracy of the assessed
number of communities

Granular-
ARTISON

AFFECT
k-means

AFFECT
Spectral

Louvain SLPA

Rand Index 1 0.84 0.94 0.66 0.68

NMI 1 0.65 0.84 0.55 0.45

F-measure 1 0.69 0.84 0.49 0.44

Modularity 0.37 0.26 0.36 0.32 0.22

No. of clusters accuracy 1 0.2 1 0.25 0.75

Fig. 11 Community structure of
Zachary club football network
discovered by
Granular-ARTISON in two
cases of a disjoint clusters and b
overlapping clusters (purple
items are common in
overlapping regions of two
communities) (color figure
online)

Fig. 12 Community structure of
Dolphin network discovered by
Granular-ARTISON

Table 10 Comparison of Granular-ARTISON in dolphins’ network
dataset with AFFECT k-means, AFFECT spectral, Louvain and SLPA
in mean value of five measures: Rand Index, NMI, F, modularity and
the accuracy of the assessed number of communities

Granular-
ARTISON

AFFECT
k-means

AFFECT
Spectral

Louvain SLPA

Rand Index 0.74 0.69 0.74 0.73 0.94

NMI 0.65 0.49 0.71 0.56 0.55

F-measure 0.64 0.44 0.66 0.56 0.55

Modularity 0.38 0.34 0.38 0.24 0.40

No. of clusters
accuracy

0.88 0.75 0.75 0.75 0.75

measures is ranked second, and Louvain is in third place.
AFFECT spectral in NMI, F and modularity index is in
fourth place. The LabelRankT algorithm works worse than

all others in this dataset. For NMI and F-measures, Granular-
ARTISON always outperforms the dynamic k-means-based
algorithms. In particular, in the best-tuned measure for accu-
racy, which penalizes both false negative and false positive
results; i.e., F-measure, Granular-ARTISON shows its supe-
riority with regard to other algorithms by 40% in the worst
case and 60% in the best case. The average and slight varia-
tions in the results in this set of experiments are reported in
Table 12.

Finally, we experiment the effect of using incremental
community discovery in the proposed algorithm. As illus-
trated in Fig. 14 and Table 13, when the community structure
in each time step is initialized using the results derived from
the previous time step, the algorithm shows higher perfor-
mance and the changes of the results in the consequent
time steps are smoother (on average 16% improvement is
obtained).
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Table 11 Comparison of Granular-ARTISON in risk map dataset with
AFFECTk-means, AFFECT spectral, Louvain and SLPA inmean value
of five measures: Rand Index, NMI, F, modularity and the accuracy of
the assessed number of communities

Granular-
ARTISON

AFFECT
k-means

AFFECT
Spectral

Louvain SLPA

Rand Index 0.87 0.70 0.63 0.85 0.73

NMI 0.71 0.52 0.71 0.56 0.55

F1 measure 0.75 0.53 0.49 0.72 0.90

Modularity 0.60 0.43 0.39 0.43 0.62

No. of clusters
accuracy

0.92 0.75 0.67 0.58 1

5 Conclusion and future works

We have proposed a dynamic community detection algo-
rithm called Granular-ARTISON based on granulation con-
cepts and our previous human-inspired community detection
algorithm. Granular-ARTISON works using local informa-
tion and functions in dynamic/static and overlapping/non-
overlapping contexts. These features are particularly impor-
tant in real social networks and very few algorithms deal with
all of themsimultaneously. Like the incrementalmining algo-
rithms, Granular-ARTISON exploits the previously discov-
ered community prototypes for new community discovery

Fig. 13 Performance comparison of Granular-ARTISON in NEC blog dataset with AFFECT k-means, AFFECT spectral, Louvain and LabelRankT
in four measures of a Rand Index, b NMI, c F-measure and d modularity

Table 12 Comparison of the proposed algorithm in NEC dataset with AFFECT K-MEANS, AFFECT spectral, Louvain and fast modularity in
mean value of five measures: Rand Index, NMI, Precision and F and Modularity

Granular-
ARTISON

AFFECT
k-means

AFFECT
spectral

Louvain LabelRankT

Rand Index 0.87 (±0.04) 0.57 (±0.01) 0.59 (±0.03) 0.42 (±0.02) 0.59 (±0.02)

NMI 0.62 (±0.08) 0.62 (±0.14) 0.12 (±0.05) 0.35 (±0.02) 0.03 (±0.03)

F-measure 0.61 (±0.08) 0.11 (±0.05) 0.03 (±0.04) 0.24 (±0.02) 0.02 (±0.02)

Modularity 0.29 (±0.05) 0.17 (±0.05) 0.07 (±0.05) 0.56 (±0.10) 0.0 (±0.0)
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Fig. 14 Performance evaluation
of Granular-ARTISON in F1
measure where two scenarios is
considered: (a) no initialization
of the previous state of the
network is considered (blue
line) and (b) the algorithm is
initialized in each time step by
the network results obtained in
the previous time step (red line)
(color figure online)

Table 13 Average value of F-measure in two set of experiments evalu-
ating the forget factor presence and incremental initialization influence
in Granular-ARTISON algorithm

Incremental
initialization

No incremental
initialization

Average F-measure 0.53 (±0.09) 0.37 (±0.03)

to preserve temporal smoothness. However, the granulation
mechanism in both lower and higher levels of the algorithm
makes our representative-based algorithms unique in differ-
ent aspects. Specifically, the algorithm can deal with both
low and abrupt changes in the network while being able to
determine the correct number of communities automatically.
We used extensive evaluation to show the effectiveness of
our Granular-ARTISON model against state-of-the-art algo-
rithms on both real and synthetic datasets. In almost all cases,
the results of the experiments confirmed the superiority of
Granular-ARTISON in different measures. Meanwhile, sev-
eral improvements are being researched for this algorithm.
Designing proper meet operations among macrogranules to
split larger communities into smaller ones due to shrinkage
and deriving quantified membership degree for communi-
ties is under investigation. Finally, since the algorithm works
totally by local information, the experiments for running the
algorithm in the streaming mode are under study.
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