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Abstract
As an important information aggregation tool, the Maclaurin symmetric mean (MSM) can capture the correlation between
multiple input values and has recently become a hot topic in the field of academic research. Due to the importance of the fact
that attribute variables are often different, many weighted MSMs have been designed to deal with various fuzzy information
aggregation problems. However, these weighted form operators do not have the properties of idempotency, i.e., the weighted
average value of equivalent fuzzy numbers varies with their weights. In addition, when their weights are equal, the weighted
MSMs cannot reduce to the MSM, which means they do not have reducibility. To solve these problems, in this paper, we
introduce the reducible weighted MSM (RWMSM) and the reducible weighted dual MSM (RWDMSM), and we extend
them to aggregate intuitionistic fuzzy information. In order to better analyze and understand the operation mechanism of the
proposed weighted MSMs, we discuss several advantageous properties and special related cases of the proposed weighted
MSMs. The other objective of this paper is to investigate the practice application of the proposed weighted MSMs in decision
making under conditions of an intuitionistic fuzzy environment. A case study shows that the decision-making method based
on the intuitionistic fuzzy RWMSM and RWDMSM can flexibly capture the correlation and reflect the decision maker’s risk
preference.

Keywords Aggregation operator · Idempotency · Reducibility · Weighted Maclaurin symmetric mean · Intuitionistic fuzzy
number

1 Introduction

Multiple-attribute decisionmaking (MADM) refers to choos-
ing the most appropriate alternative or ranking the alterna-
tives based on the attribute characteristics of every alterna-
tive. It is the most important ingredient of decision-making
theory and has been widely applied in many fields, such
as financial risk management, production operations man-
agement, and graphics and image processing (Hwang and
Yoon 1981; Li 2018; Tzeng and Huang 2011; Shi and
Xiao 2017; Liu and Zhang 2017). Due to the ambiguity
of human thinking and the fact that decision-making situ-

Communicated by V. Loia.

B Minghua Shi
minghuashi@163.com

1 Business School, University of Shanghai for Science and
Technology, Shanghai, China

2 College of Finance and Mathematics, West Anhui University,
Lu’an, Anhui, China

ations become more and more complex, it is hard to describe
decision-making information byprecise values. The fuzzy set
(FS), which was put forward by Zadeh (1965), is an effec-
tive tool for decision-making information modeling. Later,
Atanassov (1989) presented an intuitionistic fuzzy set (IFS),
which is characterized by a membership degree and a non-
membership degree (which is an extension of FS). Xu and
Yager (2006) further introduced the intuitionistic fuzzy num-
ber (IFN) and its rules of operation. Because of the flexibility
and reliability of intuitionistic fuzzy theory in information
modeling, MADMunder an intuitionistic fuzzy environment
has consistently been the academic hot topic over the past
decade (Garg and Kumar 2018; He et al. 2017; Liu and Qin
2017; Qin and Liu 2014; Shi and Xiao 2018; Zeng et al.
2017).

One of the most popular tools to resolve MADM problem
is aggregation operators, which combine all the input individ-
ual arguments into a single argument. Therefore, it is always
a focus of research. Aggregation operators in the literature
can be classified into two groups: (1) one kind of aggregation
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operators set up on the hypothesis that the aggregated argu-
ments are independent of each other. The most commonly
used operators in this group are the weighted averaging
(WA) operator and the weighted geometric (WG) operator
(Hwang and Yoon 1981). In the past several decades, various
extensions of the WA operator and the WG operator have
been given, greatly enriching the contents of aggregation
operators. Some examples include the generalized induced
ordered weighted geometric (GIOWG) operator (Xu andWu
2004), the uncertain generalized OWA (UGOWA) opera-
tor (Merigó and Casanovas 2011), the uncertain induced
orderedweighted geometric (UIOWG) operator (Merigó and
Casanovas 2015), the power OWG (POWG) operator (Xu
and Yager 2010), and the linguistic generalized power OWA
(LGPOWA) operator (Zhou and Chen 2012). (2) The other
kind of operators considers that there is a correlation between
the aggregated arguments. This kind of operatormore closely
matches the actual decision-making circumstances, because
the arguments of most decision-making process are related.
Among them, the most representative operators are the Bon-
ferroni mean (BM) (Yager 2009) and the Heronian mean
(HM) (Xu 2012). At present, there are many extensions
and generalizations of them, such as the geometric Bonfer-
roni mean (GBM) (Xia et al. 2013), the geometric Heronian
mean (GHM) (Yu 2013), the intuitionistic fuzzy normalized
weighted BM (IFNWBM) (Zhou and He 2012), the gen-
eralized weighted HM (GWHM) (Liu and Shi 2017), and
the extended Atanassov’s intuitionistic fuzzy interaction BM
(EIFIBM) (He et al. 2016).

However, the abovementioned operators can only cap-
ture the correlation between a fixed number of arguments.
For example, the Heronian mean only captures the correla-
tion between two arguments. To increase the flexibility of
information aggregation, Maclaurin (1729) introduced the
Maclaurin symmetric mean (MSM), which can capture the
correlation between any number of arguments. Detemple and
Robertson (1979) further discussed the correlative proper-
ties and practical applications of the MSM. Qin and Liu
(2014) first introduced the MSM to the fuzzy information
aggregation field and proposed the weighted intuitionistic
fuzzy MSM (WIFMSM) for infusing the intuitionistic fuzzy
decision-making information. Li et al. (2016) applied MSM
to aggregate hesitant fuzzy information and definedweighted
hesitant fuzzy MSM (WHFMSM) for human resources
management. Ju et al. (2015) proposed the weighted intu-
itionistic uncertain linguistic MSM (WIULMSM) to solve
multiple-attribute group decision-making (MAGDM) prob-
lems in the financial investment field. Wang et al. (2016a, b)
investigated the simplified neutrosophic linguistic weighted
MSM (NWMSM) and discussed its related properties. Qin
and Liu (2015) developed dual Maclaurin symmetric mean
(DMSM) based on the MSM and geometric mean (GM)
and extended it to aggregate uncertain linguistic informa-

tion, introducing the uncertain linguistic weighted DMSM
(ULWDMSM).

Analyzing the present weighted MSM operators, we find
the following problems: (1) When wi � 1/n (i � 1,
. . . , n), theWHFMSM,WIFMSM,WIULMSM, NWMSM,
and ULWDMSM cannot reduce to the corresponding MSM,
which is a basic characteristic of the classically weighted
operators. For example, if w � (1/n, 1/n, . . . , 1/n), then
the WA operator reduces to the averaging operator. (2) All
of these weighted MSM operators do not have the prop-
erty of idempotency. It seems to be unreasonable to declare
that the weighted average value of n equivalent aggregated
arguments varies with their weights. So far, we have not
seen any report about the above questions. Therefore, to fur-
ther develop the MSM, we introduce the reducible weighted
MSM (RWMSM) and the reducible weighted dual MSM
(RWDMSM). Then, we use these proposed operators to
infuse intuitionistic fuzzy information and solve intuition-
istic fuzzy MADM problems.

The framework of this paper is as follows: Sect. 2 reviews
some basic concepts such as intuitionistic fuzzy number
(IFN), the binary relation of IFNs, theMSM, and theDMSM.
In Sects. 3 and 4, we design some reducible weighted MSM
operators and study someof their properties.Anewmethod to
solveMADMproblemswith intuitionistic fuzzy information
is presented in Sect. 5. In Sect. 6, the validity and feasi-
bility of this proposed approach are proved by a numerical
example. In Sect. 7, a comparative analysis with other aggre-
gation operators is provided. Finally, the study’s conclusions
and possible directions for future research are presented in
Sect. 8.

2 Preliminaries

2.1 Intuitionistic fuzzy values

In spite of many tools for modeling uncertain decision-
making information, intuitionistic fuzzy set is more prefer-
able because it expresses a decision maker’s preferences as
flexible and has a strictly mathematical theoretical basis.

Definition 1 (Atanassov 1989) Let X be a fixed set. Then, an
intuitionistic fuzzy set on X can be defined as

A � {< x , μA(x), υA(x) > |x ∈ X}

where μA(x) : X → [0, 1] and υA(x) : X → [0, 1] satisfy
the condition 0 ≤ μA(x) + υA(x) ≤ 1, ∀x ∈ X , μA(x)
and υA(x) represent the membership degree and the non-
membership degree of x to A.

To facilitate expressing and dealing with information, Xu
andYager (2006) calls the pair α � (μα , υα) an intuitionistic
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fuzzy number (IFN), where μα ∈ [0, 1], υα ∈ [0, 1], μα +
υα ∈ [0, 1]. They defined the operational laws for three IFNs
α, α1, and α2 as follows:

1. α1 ⊕ α2 � (μα1 + μα2 − μα1μα2 , υα1υα2 );
2. α1 ⊗ α2 � (μα1μα2 , υα1 + υα2 − υα1υα2 );
3. λα � (1 − (1 − μα)λ, υλ

α), λ > 0;
4. αλ � (μλ

α , 1 − (1 − υα)λ), λ > 0.

After that, Xu and Yager (2008) gave the binary relation
of the IFNs:

Definition 2 (Xu and Yager 2008) Let αi � (μαi , υαi ) (i �
1, 2), and α � (μα , υα) be three IFNs. sα � μα − υα is
called the score function of α, and hα � μα + υα is called
the accuracy degree function of α. Based on sα and hα , the
ordering method for two IFNs is defined as follows:

• If sα1 > sα2 , then α1 > α2;
• If sα1 � sα2 , then

(i) if hα1 � hα2 , then α1 � α2;
(ii) if hα1 > hα2 , then α1 > α2.

2.2 Some operators based on theMaclaurin
symmetric mean

The Maclaurin symmetric mean (MSM) was first proposed
by Maclaurin (1729) and has been investigated by many
scholars in the years since (Josip et al. 2005;Wen et al. 2014;
Zhang andXiao 2004). Until recent years, theMSMwas used
to aggregate fuzzy information in decision making. Qin and
Liu (2015) further proposed the dual Maclaurin symmetric
mean (DMSM)basedon theMSMandgeometricmean (GM)
operator.

Definition 3 (Qin and Liu 2014) Let ai (i � 1, 2, . . . , n) be
nonnegative real numbers, and let k � 1, 2, . . . , n. If

MSM(k)(a1, a2, . . . , an)

�
(∑

1≤i1<···<ik≤n
∏k

j�1 ai j
Ck
n

)1/k

,

thenMSM(k) is called theMaclaurin symmetric mean, where
(i1, i2, . . . , ik) traverses all the k-permutations of (1, 2, . . . ,
n), Ck

n � n!
k!(n−k)! .

Definition 4 (Qin and Liu 2015) Let ai (i � 1, 2, . . . , n) be
nonnegative real numbers and let k � 1, 2, . . . , n. If

DMSM(k)(a1, a2, . . . , an)

�
∏

1≤i1<···<ik≤n

(∑k
j�1 ai j

) 1
Ck
n

k
,

then DMSM(k) is called the dual Maclaurin symmetric mean
(DMSM).

3 Reducible weightedMaclaurin symmetric
means

In recent years, many researchers have focused on the
weightedMaclaurin symmetricmean in different fuzzy situa-
tions; examples include theweighted hesitant fuzzyMSM(Li
et al. 2016), the weighted intuitionistic uncertain linguistic
MSM (Ju et al. 2015), the simplified neutrosophic linguistic
weighted MSM (Wang et al. 2016a, b), the 2-tuple linguistic
weighted Maclaurin symmetric mean (Zhang et al. 2015).
However, the present weighted MSM operators do not have
idempotency and reducibility, and in this section, we propose
the reducible weighted MSM (RWMSM) and the reducible
weighted dual MSM (RWDMSM).

Definition 5 Let ai (i � 1, 2, . . . , n) be nonnegative real
numbers, and let W � (w1, w2, . . . , wn)T be a vector of
weights, where wi ∈ [0, 1] and

∑n
i�1 wi � 1. For any

k ∈ {1, 2, . . . , n}

RWMSM(k)(a1, a2, . . . , an)

�
⎛
⎝

∑
1≤i1<···<ik≤n

(∏k
j�1 wi j

) (∏k
j�1 ai j

)
∑

1≤i1<···<ik≤n
∏k

j�1 wi j

⎞
⎠

1/k

We call RWMSM(k) a reducible weighted MSM.

Theorem 1 Let ai (i � 1, 2, . . . , n) be nonnegative real
numbers, and let W � (w1, w2, . . . , wn)T be a vector of
weights, where wi ∈ [0, 1] and

∑n
i�1 wi � 1. If wi �

1
n (i � 1, 2, . . . , n), then

RWMSM(k)(a1, a2, . . . , an) � MSM(k)(a1, a2, . . . , an),

k � 1, 2, . . . , n. (1)
Proof

RWMSM(k)(a1, a2, . . . , an)

�
⎛
⎝

∑
1≤i1<···<ik≤n

(∏k
j�1 wi j

)(∏k
j�1 ai j

)
∑

1≤i1<···<ik≤n
∏k

j�1 wi j

⎞
⎠

1/k

�
⎛
⎝

∑
1≤i1<···<ik≤n

(∏k
j�1

1
n

)(∏k
j�1 ai j

)
∑

1≤i1<···<ik≤n
∏k

j�1
1
n

⎞
⎠

1/k
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�
⎛
⎝

∑
1≤i1<···<ik≤n

( 1
n

)k(∏k
j�1 ai j

)
∑

1≤i1<···<ik≤n

( 1
n

)k
⎞
⎠

1/k

�
⎛
⎝

( 1
n

)k ∑
1≤i1<···<ik≤n

(∏k
j�1 ai j

)
( 1
n

)k · Ck
n

⎞
⎠

1/k

�
(∑

1≤i1<···<ik≤n
∏k

j�1 ai j
Ck
n

)1/k

� MSM(k)(a1, a2, . . . , an)

Therefore, (1) holds. Equation (1) shows that ifW � (1/n,
1/n, . . . , 1/n), then the RWMSM reduces to the MSM.

It is easy to see that the RWMSM has the following prop-
erties:

(1) RWMSM(k)(0, 0, . . . , 0) � 0;
(2) If ai � a (i � 1, 2, . . . , n), then RWMSM(k)(a, a, . . . ,

a) � a, which means that the RWMSM has the basic
character of operator, etc., idempotency;

(3) If ai ≥ di (i � 1, 2, . . . , n), then RWMSM(k)(a1, a2,
. . . , an) ≥RWMSM(k)(d1, d2, . . . , dn), which means
that the RWMSM has rank preservation;

(4) min1≤i≤n{ai } ≤RWMSM(k)(a1, a2, . . . , an) ≤
max1≤i≤n{ai }, which means that the RWMSM satisfies
the boundedness condition.

Next, we investigate three special cases of the RWMSM
by changing the value of the parameter k as follows:

Case 1 If k � 1, then

RWMSM(k)(a1, a2, . . . , an)

�
⎛
⎝

∑
1≤i1<···<ik≤n

(∏k
j�1 wi j

)(∏k
j�1 ai j

)
∑

1≤i1<···<ik≤n
∏k

j�1 wi j

⎞
⎠

1/k

�
∑

1≤i1≤n wi1ai1∑
1≤i1≤n wi1

�
∑

1≤i1≤n

wi1ai1

which we call the weighted averaging operator (Xu and Cai
2012).

Case 2 If k � 2, then

RWMSM(k)(a1, a2, . . . , an)

�
⎛
⎝

∑
1≤i1<···<ik≤n

(∏k
j�1 wi j

)(∏k
j�1 ai j

)
∑

1≤i1<···<ik≤n
∏k

j�1 wi j

⎞
⎠

1/k

�
⎛
⎝

∑
1≤i1<i2≤n

(∏2
j�1 wi j

)(∏2
j�1 ai j

)
∑

1≤i1<i2≤n
∏2

j�1 wi j

⎞
⎠

1/2

�
(∑

1≤i1<i2≤n (wi1ai1 )(wi2ai2 )∑
1≤i1<i2≤n wi1wi2

)1/2

� IGWHM1, 1(a1, a2, . . . , an)

which we call the improved generalized weighted Heronian
mean (IGWHM) operator (for p � q � 1) (Zhou and He
2012).

Case 3 If k � n, then

RWMSM(k)(a1, a2, . . . , an)

�
⎛
⎝

∑
1≤i1<···<ik≤n

(∏k
j�1 wi j

)(∏k
j�1 ai j

)
∑

1≤i1<···<ik≤n
∏k

j�1 wi j

⎞
⎠

1/k

�
⎛
⎝

(∏n
j�1 wi j

)(∏n
j�1 ai j

)
∏n

j�1 wi j

⎞
⎠

1/n

�
⎛
⎝ n∏

j�1

a j

⎞
⎠

1/n

� IGWHM1, 1(a1, a2, . . . , an)

which we call the geometric operator (Xu and Cai 2012).

Definition 6 Let ai (i � 1, 2, . . . , n) be nonnegative real
numbers, and let W � (w1, w2, . . . , wn)T be a vector of
weights, where wi ∈ [0, 1] and

∑n
i�1 wi � 1. For any

k ∈ {1, 2, . . . , n},

RWDMSM(k)(a1, a2, . . . , an)

�

∏
1≤i1<···<ik≤n

(∑k
j�1 ai j

) ∑k
j�1 wi j∑

1≤i1<···<ik≤n
∑k

j�1 wi j

k

We call RWDMSM(k) a reducible weighted DMSM.

Theorem 2 Let ai (i � 1, 2, . . . , n) be nonnegative real
numbers, and let W � (w1, w2, . . . , wn)T be a vector of
weights, where wi ∈ [0, 1] and

∑n
i�1 wi � 1. If wi � 1

n
(i � 1, 2, . . . , n), then

RWDMSM(k)(a1, a2, . . . , an) � DMSM(k)(a1, a2, . . . , an),

k � 1, 2, . . . , n. (2)
Proof

RWDMSM(k)(a1, a2, . . . , an)

�

∏
1≤i1<···<ik≤n

(∑k
j�1 ai j

) ∑k
j�1 wi j∑

1≤i1<···<ik≤n
∑k

j�1 wi j

k

�

∏
1≤i1<···<ik≤n

(∑k
j�1 ai j

) ∑k
j�1

1
n∑

1≤i1<···<ik≤n
∑k

j�1
1
n

k
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�

∏
1≤i1<···<ik≤n

(∑k
j�1 ai j

) k
n∑

1≤i1<···<ik≤n
k
n

k

�

∏
1≤i1<···<ik≤n

(∑k
j�1 ai j

) k
n

k
n ·Ck

n

k
�

∏
1≤i1<···<ik≤n

(∑k
j�1 ai j

) 1
Ck
n

k

� DMSM(k)(a1, a2, . . . , an)

Therefore, (2) holds. Equation (2) shows that if W � (1/n,
1/n, . . . , 1/n), then the RWDMSM reduces to the DMSM.

The properties and particular forms of the RWDMSM are
similar to those of the RWMSM; therefore, they are omitted
here.

4 Intuitionistic fuzzy reducible weighted
Maclaurin symmetric means

The RWDMSM and RWMSM can only aggregate the
real numbers and cannot aggregate the intuitionistic fuzzy
numbers. In this section, we will extend the RWDMSM and
RWMSM to aggregate intuitionistic fuzzy information. We
will also propose an intuitionistic fuzzy reducible weighted
MSM, and an intuitionistic fuzzy reducible weighted dual
MSM.

4.1 Intuitionistic fuzzy reducible weightedMSM

Definition 7 Let αi � (μαi , υαi ) (i � 1, 2, . . . , n) be a
collection of IFNs, and let W � (w1, w2, . . . , wn)T be a
vector of weights, where wi ∈ [0, 1] and

∑n
i�1 wi � 1. For

any k ∈ {1, 2, . . . , n},

IFRWMSM(k)(α1, α2, . . . , αn)

�
⎛
⎝

∑
1≤i1<···<ik≤n

(∏k
j�1 wi j

)(∏k
j�1 αi j

)
∑

1≤i1<···<ik≤n
∏k

j�1 wi j

⎞
⎠

1/k

We call IFRWMSM(k) an intuitionistic fuzzy reducible
weighted MSM (IFRWMSM). Specifically, if w � (1/n,
1/n, . . . , 1/n)T , then IFRWMSM reduces to IFMSM (Qin
and Liu 2014).

Theorem 3 Let αi � (μαi , υαi ) (i � 1, 2, . . . , n) be a
collection of IFNs. Also, let W � (w1, w2, . . . , wn)T be a
vector of weights, where wi ∈ [0, 1] and

∑n
i�1 wi � 1. The

aggregated value by the IFRWMSM is also an IFN and

IFRWMSM(k)(α1, α2, . . . , αn)

�

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

k∏
j�1

wi j

⎞
⎟⎟⎟⎟⎠

1
k

,

1 −

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

k∏
j�1

wi j

⎞
⎟⎟⎟⎟⎠

1
k
⎞
⎟⎟⎟⎟⎟⎠,
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where

⎛
⎜⎜⎜⎝1 −

⎛
⎜⎜⎝ ∏

1≤i1<···<ik≤n

(
1 −

k∏
j�1

μαi j

) k∏
j�1

wi j

⎞
⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎠

1
k

represents the weighted MSM of membership values, and 1−⎛
⎜⎜⎜⎝1 −

⎛
⎜⎜⎝ ∏

1≤i1<···<ik≤n

(
1 −

k∏
j�1

(1 − υαi j
)

) k∏
j�1

wi j

⎞
⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎠

1
k

represents the weighted MSM of non-membership values.

Proof Using the operation rules for IFNs, one can show that

k∏
j�1

αi j �
⎛
⎝ k∏

j�1

μαi j
, 1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

and

⎛
⎝ k∏

j�1

wi j

⎞
⎠

⎛
⎝ k∏

j�1

αi j

⎞
⎠ �

⎛
⎜⎜⎜⎝1 −

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

,

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

Hence

∑
1≤i1<···<ik≤n

⎛
⎝ k∏

j�1

wi j

⎞
⎠

⎛
⎝ k∏

j�1

αi j

⎞
⎠

�

⎛
⎜⎜⎜⎝1 −

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

,

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

Then we have

∑
1≤i1<···<ik≤n

(∏k
j�1 wi j

)(∏k
j�1 αi j

)
∑

1≤i1<···<ik≤n
∏k

j�1 wi j

�

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

,

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

Therefore

IFRWMSM(k)(α1, α2, · · · , αn )

�
⎛
⎝

∑
1≤i1<···<ik≤n

(∏k
j�1 wi j

)(∏k
j�1 αi j

)
∑

1≤i1<···<ik≤n
∏k

j�1 wi j

⎞
⎠

1/k

�

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1−

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

,

1 −

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1−

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k
⎞
⎟⎟⎟⎟⎟⎠

Since μαi j
∈ [0, 1], υαi j

∈ [0, 1], μαi j
+ υαi j

∈ [0, 1],
we obtain that

0 ≤

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

≤ 1

and

0 ≤ 1

−

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

≤ 1

Furthermore, 1 − υαi j
≥ μαi j

⇒
k∏
j�1

(1 − υαi j
) ≥

k∏
j�1

μαi j

⇒ 1 −
k∏
j�1

(1 − υαi j
) ≤ 1 −

k∏
j�1

μαi j

⇒
⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

≤
⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⇒
∏

1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

≤
∏

1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⇒

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

≤

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j
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⇒ 1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

≥ 1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⇒

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

≥

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

⇒ 1 −

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

+

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

≤ 1

The theorem is proved.

Theorem 4 Let αi � (μαi , υαi ) (i � 1, 2, . . . , n) be a
collection of IFNs, and let W � (w1, w2, . . . , wn)T be a
vector of weights, where wi ∈ [0, 1] and

∑n
i�1 wi � 1. For

any k ∈ {1, 2, . . . , n}, the following properties are satisfied:
(1) (Commutativity) Let (α′

1, α′
2, . . . , α′

n) be any permu-
tation of (α1, α2, . . . , αn), and let W � (w′

1, w′
2, . . . , w′

n)
T

be a vector of weights. Then

IFRWMSM(k)(α1, α2, . . . , αn)

� IFRWMSM(k)(α′
1, α′

2, . . . , α′
n).

(2) (Idempotency) If α1 � α2 � · · · � αn � α, then

I FRWMSM (k)(α1, α2, . . . , αn) � α.

(3) (Monotonicity) Let βi � (μβi , υβi )(i � 1, 2, . . . , n)
be a collection of IFNs, μαi ≤ μβi , and υαi ≥ υβi (i � 1,
2, . . . , n). Then

IFRWMSM(k)(α1, α2, . . . , αn)

≤ IFRWMSM(k)(β1, β2, . . . , βn).

(4) (Boundedness) Let α− � (min1≤i≤n{μαi },
max1≤i≤n{υαi }), α+ � (max1≤i≤n{μαi }, min1≤i≤n{υαi }),
then

α− ≤ IFRWMSM(k)(α1, α2, . . . , αn) ≤ α+.

Proof (1)

IFRWMSM(k)(α1, α2, . . . , αn)

�
⎛
⎝

∑
1≤i1<···<ik≤n

(∏k
j�1 wi j

)(∏k
j�1 αi j

)
∑

1≤i1<···<ik≤n
∏k

j�1 wi j

⎞
⎠

1/k

�
⎛
⎝

∑
1≤i1<···<ik≤n

(∏k
j�1 w′

i j

)(∏k
j�1 α′

i j

)
∑

1≤i1<···<ik≤n
∏k

j�1 w′
i j

⎞
⎠

1/k

� IFRWMSM(k)(α′
1, α′

2, . . . , α′
n),

which means that the IFRWMSM are not affected by the
location of variables in the process of information aggrega-
tion.

(2) According to μαi ≤ μβi , υαi ≥ υβi (i � 1, 2, . . . , n),
we can easily get

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

≤

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μβi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

and

1 −

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υβi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

≤ 1 −

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k
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Thus

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μβi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

−

⎛
⎜⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υβi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k
⎞
⎟⎟⎟⎟⎟⎠

≥

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

−

⎛
⎜⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k
⎞
⎟⎟⎟⎟⎟⎠ (3)

Let α � IFRWMSM(k)(α1, α2, . . . , αn) and β �
IFRWMSM(k)(β1, β2, . . . , βn), and let sα (hα) and sβ (hβ )
be the score (accuracy degree) of α and β. Thus, Eq. (3) is
denoted as sβ ≥ sα .

(1) If sβ > sα , then by Definition 2, we have

IFRWMSM(k)(α1, α2, . . . , αn)

< IFRWMSM(k)(β1, β2, . . . , βn)

(2) If sα � sβ , then by μαi ≤ μβi , υαi ≥ υβi (i � 1, 2,
. . . , n), we have

1 −

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υβi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

� 1 −

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − υαi j
)

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

and

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μβi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k

�

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

μαi j

⎞
⎠

k∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<···<ik≤n

∏k
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
k
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Consequently, we obtain hα � hβ , and thus

IFRWMSM(k)(α1, α2, . . . , αn)

� IFRWMSM(k)(β1, β2, . . . , βn)

The above implies that

IFRWMSM(k)(α1, α2, . . . , αn)

≤ IFRWMSM(k)(β1, β2, . . . , βn),

which means that the IFRWMSM has rank preservation.
(3)

IFRWMSM(k)(α1, α2, . . . , αn)

�
⎛
⎝

∑
1≤i1<···<ik≤n

(∏k
j�1 wi j

)(∏k
j�1 αi j

)
∑

1≤i1<···<ik≤n
∏k

j�1 wi j

⎞
⎠

1/k

�
⎛
⎝

∑
1≤i1<···<ik≤n

(∏k
j�1 wi j

)(∏k
j�1 α

)
∑

1≤i1<···<ik≤n
∏k

j�1 wi j

⎞
⎠

1/k

�
(

αk ∑
1≤i1<···<ik≤n

∏k
j�1 wi j∑

1≤i1<···<ik≤n
∏k

j�1 wi j

)1/k

� α,

which means that the IFRWMSM has the basic character of
operator, etc., idempotency.

(4)Basedon themonotonicity and idempotency,weobtain

IFRWMSM(k)(α1, α2, . . . , αn)

≤ IFRWMSM(k)(α+, α+, . . . , α+) � α+

and

α− � IFRWMSM(k)(α−, α−, . . . , α−)
≤ IFRWMSM(k)(α1, α2, . . . , αn)

Thus

α− ≤ IFRWMSM(k)(α1, α2, . . . , αn) ≤ α+,

which means the boundary overstepping does not take place
in the process of information aggregation by the IFRWMSM.

This completes the proof of Theorem 4.
In what follows, we discuss some special cases of the

IFRWMSM by changing the value of the parameter k:

Case 1 If k � 1, the IFRWMSM reduces to an intuitionis-
tic fuzzy weighted averaging (IFWA) operator (Xu and Cai
2012):

IFRWMSM(1)(α1, α2, . . . , αn)

�

⎛
⎜⎜⎝

⎛
⎜⎝1 −

⎛
⎝ ∏

1≤i1≤n

(1 − μαi1
)wi1

⎞
⎠

1∑
1≤i1≤n wi1

⎞
⎟⎠

1
1

,

1 −
⎛
⎜⎝1 −

⎛
⎝ ∏

1≤i1≤n

(1 − (1 − υαi j
))wi1

⎞
⎠

1∑
1≤i1≤n wi1

⎞
⎟⎠

1
1
⎞
⎟⎟⎠

�
⎛
⎝1 −

∏
1≤i1≤n

(1 − μαi1
)wi1 ,

∏
1≤i1≤n

υ
wi1
αi j

⎞
⎠

� IFWA(α1, α2, . . . , αn)

Case 2 If k � 2, the IFRWMSM reduces to an intuition-
istic fuzzy improved generalized weighted Heronian mean
(IFGWHM) operator (Zhou and He 2012) (for p � q � 1:

IFRWMSM(2)(α1, α2, . . . , αn)

�

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<i2≤n

⎛
⎝1 −

2∏
j�1

μαi j

⎞
⎠

2∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<i2≤n wi1

wi2

⎞
⎟⎟⎟⎟⎠

1
2

,

1 −

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎝

∏
1≤i1<i2≤n

⎛
⎝1 −

2∏
j�1

(1 − υαi j
)

⎞
⎠

2∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<i2≤n wi1

wi2

⎞
⎟⎟⎟⎟⎠

1
2
⎞
⎟⎟⎟⎟⎟⎠

� IFGWHM1, 1(α1, α2, . . . , αn)

Case 3 If k � n, the IFRWMSM reduces to an intuitionistic
fuzzy geometric operator (Xu and Cai 2012):

IFRWMSM(n)(α1, α2, . . . , αn)

�

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎝

⎛
⎝1 −

n∏
j�1

μαi j

⎞
⎠

n∏
j�1

wi j

⎞
⎟⎟⎠

1∏n
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
n

,

1 −

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎝

⎛
⎝1 −

n∏
j�1

(1 − υαi j
)

⎞
⎠

n∏
j�1

wi j

⎞
⎟⎟⎠

1∏n
j�1 wi j

⎞
⎟⎟⎟⎟⎠

1
n
⎞
⎟⎟⎟⎟⎟⎠

�
⎛
⎜⎝

⎛
⎝ n∏

j�1

μαi j

⎞
⎠

1
n

, 1 −
⎛
⎝ n∏

j�1

(1 − υαi j
)

⎞
⎠

1
n
⎞
⎟⎠

� IFG(α1, α2, . . . , αn)
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4.2 Intuitionistic fuzzy reducible weighted dual
MSM

Definition 7 Let αi � (μαi , υαi ) (i � 1, 2, . . . , n) be a
collection of IFNs, and let W � (w1, w2, . . . , wn)T be a
vector of weights, where wi ∈ [0, 1] and

∑n
i�1 wi � 1. For

any k ∈ {1, 2, . . . , n},

IFRWDMSM(k)(α1, α2, . . . , αn)

�

∏
1≤i1<···<ik≤n

(∑k
j�1 αi j

) ∑k
j�1 wi j∑

1≤i1<···<ik≤n
∑k

j�1 wi j

k

We call IFRWDMSM(k) an intuitionistic fuzzy reducible
weighted DMSM (IFRWDMSM). Specifically, if w � (1/n,
1/n, . . . , 1/n)T , then IFRWDMSM reduces to IFDMSM
(Qin and Liu 2015).

Theorem 5 Let αi � (μαi , υαi ) (i � 1, 2, . . . , n) be a
collection of IFNs, and let W � (w1, w2, . . . , wn)T be a
vector of weights, where wi ∈ [0, 1] and

∑n
i�1 wi � 1. The

aggregated value by the IFRWDMSM is also an intuitionistic
fuzzy number, and

IFRWDMSM(k)(α1, α2, . . . , αn )

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛
⎜⎜⎜⎜⎜⎜⎝
1 −

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

(1 − μαi j
)

⎞
⎠

∑k
j�1 wi j∑

1≤i1<···<ik≤n
∑k

j�1 wi j

⎞
⎟⎟⎟⎟⎟⎟⎠

1
k

,

⎛
⎜⎜⎜⎝1 −

∏
1≤i1<···<ik≤n

⎛
⎝1 −

k∏
j�1

υαi j

⎞
⎠

∑k
j�1 wi j∑

1≤i1<···<ik≤n
∑k

j�1 wi j

⎞
⎟⎟⎟⎠

1
k
⎞
⎟⎟⎟⎟⎠,

where 1−

⎛
⎜⎜⎜⎜⎜⎝1 − ∏

1≤i1<···<ik≤n

(
1 −

k∏
j�1

(1 − μαi j
)

)
∑k

j�1 wi j∑
1≤i1<···<ik≤n

∑k
j�1 wi j

⎞
⎟⎟⎟⎟⎟⎠

1
k

represents the weighted DMSM of membership values, and⎛
⎜⎜⎝1 − ∏

1≤i1<···<ik≤n

(
1 −

k∏
j�1

υαi j

) ∑k
j�1 wi j∑

1≤i1<···<ik≤n
∑k

j�1 wi j

⎞
⎟⎟⎠

1
k

represents the weighted DMSM of non-membership values.

The proofs of Theorems 5 and 6 are similar to those for
Theorems 3 and 4; therefore, we omit the details.

Theorem 6 Let αi � (μαi , υαi ) (i � 1, 2, . . . , n) be a
collection of IFNs, and let W � (w1, w2, . . . , wn)T be a

vector of weights, where wi ∈ [0, 1] and
∑n

i�1 wi � 1. For
any k ∈ {1, 2, . . . , n}, the following properties are satisfied:

(1) (Commutativity) Let (α′
1, α′

2, . . . , α′
n) be any permu-

tation of (α1, α2, . . . , αn), and let w � (w′
1,w

′
2, . . . , w′

n)
T

be a vector of weights. Then

IFRWDMSM(k)(α1, α2, . . . , αn)

� IFRWDMSM(k)(α′
1, α′

2, . . . , α′
n).

(2) (Monotonicity) Let βi � (μβi , υβi ) (i � 1, 2, . . . , n)
be a collection of IFNs, μαi ≤ μβi , and υαi ≥ υβi (i � 1,
2, . . . , n). Then

IFRWDMSM(k)(α1, α2, . . . , αn)

≤ IFRWDMSM(k)(β1, β2, . . . , βn).

(1) (Idempotency) If α1 � α2 � · · · � αn � α, then

IFRWDMSM(k)(α1, α2, . . . , αn) � α

(2) (Boundedness) Let α− � ( min
1≤i≤n

{μαi }, max
1≤i≤n

{υαi }),
α+ � ( max

1≤i≤n
{μαi }, min

1≤i≤n
{υαi }), then

α− ≤ IFRWDMSM(k)(α1, α2, . . . , αn) ≤ α+.

In what follows, we discuss some special cases of the
IFRWDMSM by changing the value of the parameter k:

Case 1 If k � 1, the IFRWDMSM reduces to an intuitionis-
tic fuzzy weighted geometric (IFWG) operator (Xu and Cai
2012):

IFRWDMSM(1)(α1, α2, . . . , αn)

�

⎛
⎜⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎜⎝1 −

∏
1≤i1≤n

⎛
⎝1 −

1∏
j�1

(1 − μαi j
)

⎞
⎠

wi1∑
1≤i1≤n wi1

⎞
⎟⎟⎟⎟⎠

1
1

,

⎛
⎜⎜⎝1 −

∏
1≤i1≤n

⎛
⎝1 −

1∏
j�1

υαi j

⎞
⎠

wi1∑
1≤i1≤n wi1

⎞
⎟⎟⎠

1
1
⎞
⎟⎟⎟⎠

�
⎛
⎝ ∏

1≤i1≤n

μ
wi1
αi j

, 1 −
∏

1≤i1≤n

(1 − υαi1
)wi1

⎞
⎠

� IFWG(α1, α2, . . . , αn)

Case 2 If k � n, the IFRWMSM reduces to an intuitionistic
fuzzy averaging operator (Xu and Cai 2012):
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IFRWDMSM(n)(α1, α2, . . . , αn)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛
⎜⎜⎜⎜⎜⎜⎝
1 −

⎛
⎝1 −

n∏
j�1

(1 − μαi j
)

⎞
⎠

∑n
j�1 wi j∑n
j�1 wi j

⎞
⎟⎟⎟⎟⎟⎟⎠

1
n

,

⎛
⎜⎜⎜⎝1 −

⎛
⎝1 −

n∏
j�1

υαi j

⎞
⎠

∑n
j�1 wi j∑n
j�1 wi j

⎞
⎟⎟⎟⎠

1
n
⎞
⎟⎟⎟⎟⎠

�
⎛
⎝1 −

n∏
j�1

(1 − μαi j
)
1
n ,

n∏
j�1

υ
1
n
αi j

⎞
⎠

� IFA(α1, α2, . . . , αn).

Remark It should be noted that when k � 1 or k � n, neither
the IFRWMSM nor the IFRWDMSM can capture the corre-
lation among multiple input values. Both can only aggregate
arguments which are independent of each other.

5 Method of aggregating intuitionistic fuzzy
multicriteria information

In this section, wewill use the IFRWMSMand IFRWDMSM
tohandle theMADMproblems inwhich attribute is evaluated
by IFNs.

Let X � {x1, x2, . . . , xn} be a set of n alternatives, let
G � {g1, g2, . . . , gl} be a set of attributes, and letW � (w1,
w2, . . . , wl )T be a vector of weights, where wi ∈ [0, 1] and∑n

i�1 wi � 1. The evaluation value of the alternative xi ∈ X
with respect to the attribute g j ∈ G takes the form of an
intuitionistic fuzzy number, which is denoted by αi j � (μαi j ,
υαi j ). All αi j (i � 1, 2, . . . , n; j � 1, 2, . . . , l) construct
the intuitionistic fuzzy decision matrix H � (αi j )n×l .

Step 1 Transform the decision matrix H � (αi j )n×l into a
normalized decision matrix H̄ � (αi j )n×l , where αi j � αi j ,
for benefit criterion g j ; αi j � N (αi j )�(υαi j , μαi j ), for cost
criterion g j , i � 1, 2, . . . , n; j � 1, 2, . . . , l.

Step 2 Aggregate all the intuitionistic fuzzy normalized
evaluation values αi j ( j � 1, 2, . . . , l) of the alternative xi
(i � 1, 2, . . . , n) into the comprehensive evaluation value
αi by the IFRWMSM (or IFRWDMSM), i.e.,

αi � IFRWMSM(αi1, αi2 · · · , αil ), i � 1, 2, . . . , n.

or

αi � IFRWDMSM(αi1, αi2 · · · , αil ), i � 1, 2, . . . , n.

Step 3 Calculate the score values sαi of αi (i � 1, 2, . . . ,
n) by Definition 6; then, rank all the alternatives xi (i � 1,
2, . . . , n) according to sαi (i � 1, 2, . . . , n).

6 Numerical example

The absorption of international companies is a very impor-
tant factor in regional economic development (adapted from
Zhao and Wei 2013). Suppose a region wants to introduce a
foreign-funded enterprise from five possible alternatives:x1
is a smartphone company, x2 is a biopharmaceutical com-
pany, x3 is a computer company, x4 is an electric power
company, and x5 is a new material company. The decision
makers consider four criteria (the weighting vector is W �
(0.2, 0.1, 0.3, 0.4)T ) to decide which company to choose.
Here, g1 is financial risk; g2 is development prospects;g3 is
social influence; and g4 is environmental pollution. The alter-
natives xi (i � 1, 2, . . . , 5) with respect to the above criteria
g j ( j � 1, 2, 3, 4) are evaluated by the IFNs αi j � (μαi j ,
υαi j ). All αi j are contained in an intuitionistic fuzzy decision
matrix H � (αi j )5×4 (see Table 1).

Step 1 Since g1 and g4 are cost criteria, g2 and g3 are
benefit criteria; we transformed H � (αi j )5×4 into the nor-
malized intuitionistic fuzzy decision matrix H̄ � (αi j )5×4,
as listed in Table 2.

Take g1 for example. By translation formula αi j �
N (αi j )�(υαi j , μαi j ), we have:

ᾱ11 � N (α11) � (0.5, 0.4); ᾱ21 � N (α21) � (0.4, 0.6);

ᾱ31 � N (α31) � (0.5, 0.5); ᾱ41 � N (α41) � (0.2, 0.7);

ᾱ51 � N (α51) � (0.3, 0.5).

Step 2 Aggregate all the intuitionistic fuzzy normalized
evaluation values αi j ( j � 1, 2, 3, 4) of the alternative xi
(i � 1, 2, . . . , 5) into the comprehensive evaluation value αi

by the IFRWMSM and IFRWDMSM. The results are shown
in Tables 3 and 4, respectively.

Take x1 and IFRWMSM (k � 2) for example. The com-
prehensive evaluation value can be obtained as follows:

α1 � IFRWMSM(2)(ᾱ11, ᾱ12, ᾱ13, ᾱ14)

�

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝

∏
1≤i1<i2≤4

⎛
⎝1−

2∏
j�1

μᾱi j

⎞
⎠

2∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<i2≤4

4∏
j�1

wi j

⎞
⎟⎟⎟⎟⎠

1
2

,
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Table 1 Decision matrix
g1 g2 g3 g4

x1 α11 � (0.4, 0.5) α12 � (0.5, 0.4) α13 � (0.2, 0.7) α14 � (0.2, 0.5)

x2 α21 � (0.6, 0.4) α22 � (0.6, 0.3) α23 � (0.6, 0.3) α24 � (0.3, 0.6)

x3 α31 � (0.5, 0.5) α32 � (0.4, 0.5) α33 � (0.4, 0.4) α34 � (0.5, 0.4)

x4 α41 � (0.7, 0.2) α42 � (0.5, 0.4) α43 � (0.2, 0.5) α44 � (0.3, 0.7)

x5 α51 � (0.5, 0.3) α52 � (0.3, 0.4) α53 � (0.6, 0.2) α54 � (0.4, 0.4)

Table 2 Normalized decision
matrix g1 g2 g3 g4

x1 ᾱ11 � (0.5, 0.4) ᾱ12 � (0.5, 0.4) ᾱ13 � (0.2, 0.7) ᾱ14 � (0.5, 0.2)

x2 ᾱ21 � (0.4, 0.6) ᾱ22 � (0.6, 0.3) ᾱ23 � (0.6, 0.3) ᾱ24 � (0.6, 0.3)

x3 ᾱ31 � (0.5, 0.5) ᾱ32 � (0.4, 0.5) ᾱ33 � (0.4, 0.4) ᾱ34 � (0.4, 0.5)

x4 ᾱ41 � (0.2, 0.7) ᾱ42 � (0.5, 0.4) ᾱ43 � (0.2, 0.5) ᾱ44 � (0.7, 0.3)

x5 ᾱ51 � (0.3, 0.5) ᾱ52 � (0.3, 0.4) ᾱ53 � (0.6, 0.2) ᾱ54 � (0.4, 0.4)

Table 3 Comprehensive evaluation values obtained using the IFRWMSM

k x1 x2 x3 x4 x5

1 α1 � (0.424, 0.359) α2 � (0.566, 0.345) α3 � (0.421, 0.468) α4 � (0.484, 0.426) α5 � (0.444, 0.340)

2 α1 � (0.404, 0.429) α2 � (0.555, 0.365) α3 � (0.423, 0.470) α4 � (0.382, 0.467) α5 � (0.420, 0.363)

3 α1 � (0.397, 0.452) α2 � (0.545, 0.384) α3 � (0.424, 0.473) α4 � (0.353, 0.490) α5 � (0.400, 0.376)

4 α1 � (0.398, 0.458) α2 � (0.542, 0.391) α3 � (0.423, 0.477) α4 � (0.344, 0.499) α5 � (0.383, 0.384)

Table 4 Comprehensive evaluation values obtained using the IFRWDMSM

k x1 x2 x3 x4 x5

1 α1 � (0.380, 0.453) α2 � (0.553, 0.374) α3 � (0.418, 0.472) α4 � (0.362, 0.474) α5 � (0.409, 0.366)

2 α1 � (0.422, 0.408) α2 � (0.555, 0.365) α3 � (0.423, 0.473) α4 � (0.406, 0.463) α5 � (0.414, 0.369)

3 α1 � (0.432, 0.396) α2 � (0.556, 0.361) α3 � (0.425, 0.473) α4 � (0.430, 0.457) α5 � (0.411, 0.362)

4 α1 � (0.438, 0.387) α2 � (0.557, 0.357) α3 � (0.427, 0.473) α4 � (0.443, 0.453) α5 � (0.414, 0.356)

1 −

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝

∏
1≤i1<i2≤4

⎛
⎝1−

2∏
j�1

(1 − υᾱi j
)

⎞
⎠

2∏
j�1

wi j

⎞
⎟⎟⎟⎠

1∑
1≤i1<i2≤n

2∏
j�1

wi j

⎞
⎟⎟⎟⎟⎠

1
2
⎞
⎟⎟⎟⎟⎟⎠

� ((
1−(

(1−0.25)0.02(1−0.1)0.06(1−0.25)0.08(1−0.1)0.03

(1−0.25)0.04(1−0.1)0.12
) 1
0.25

) 1
2

,

1 − (
1−(

(1−0.25)0.02(1−0.1)0.06(1−0.25)0.08(1−0.1)0.03

(1−0.25)0.04(1−0.1)0.12
) 1
0.35

) 1
2
⎞
⎠ � (0.404, 0.429)

Take x2 and IFRWDMSM (k � 3) for example. The com-
prehensive evaluation value can be obtained as follows:

α2 � FRWDMSM(3)(ᾱ21, ᾱ22, ᾱ23, ᾱ24)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛
⎜⎜⎜⎜⎜⎜⎝
1 −

∏
1≤i1<i2<i3≤4

⎛
⎝1 −

3∏
j�1

(1 − μᾱi j
)

⎞
⎠

∑3
j�1 wi j∑

1≤i1<i2<i3≤4
∑3

j�1 wi j

⎞
⎟⎟⎟⎟⎟⎟⎠

1
3

,

⎛
⎜⎜⎜⎝1 −

∏
1≤i1<i2<i3≤4

⎛
⎝1 −

3∏
j�1

υᾱi j

⎞
⎠

∑3
j�1 wi j∑

1≤i1<i2<i3≤n
∑3

j�1 wi j

⎞
⎟⎟⎟⎠

1
3
⎞
⎟⎟⎟⎟⎠

� (
1 − (

1 − (1 − 0.096)0.2(1 − 0.096)0.23

(1 − 0.096)0.3(1 − 0.064)0.267
) 1
3 ,(

1 − (1 − 0.054)0.2(1 − 0.054)0.23(1 − 0.054)0.3

(1 − 0.027)0.267
) 1
3

)
� (0.545, 0.384)

Step 3 Calculate the score values sαi of αi (i � 1, 2, . . . ,
5) by Definition 6. Then rank all the alternatives xi (i � 1,
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Table 5 Decision-making
results k IFRWMSM IFRWDMSM

Score values Ordering Score values Ordering

1 (0.065, 0.221, −0.047,
0.058, 0.104)

x2 � x5 � x1 �
x4 � x3

(−0.073, 0.179, −0.054,
−0.112, 0.043)

x2 � x5 � x3 �
x1 � x4

2 (−0.025, 0.190, −0.047,
−0.085, 0.057)

x2 � x5 � x1 �
x3 � x4

(0.014, 0.190, −0.050,
−0.057, 0.045)

x2 � x5 � x1 �
x3 � x4

3 (−0.055, 0.161, −0.049,
−0.137, 0.024)

x2 � x5 � x3 �
x1 � x4

(0.036, 0.195, −0.048,
−0.027, 0.049)

x2 � x5 � x1 �
x4 � x3

4 (−0.060, 0.151, −0.054,
−0.155, −0.001)

x2 � x5 � x3 �
x1 � x4

(0.051, 0.200, −0.046,
−0.010, 0.058)

x2 � x5 � x1 �
x4 � x3

2, . . . , 5) according to sαi (i � 1, 2, . . . , 5). The results are
shown in Table 5.

Take the comprehensive evaluation values obtained using
the IFRWMSM with k=1 for example. By Definition 6, we
obtain

sα1 � 0.424 − 0.359 � 0.065;

sα2 � 0.566 − 0.345 � 0.221;

sα3 � 0.421 − 0.468 � −0.047;

sα4 � 0.484 − 0.426 � 0.058;

sα5 � 0.444 − 0.340 � 0.104.

Hence, the ranking order of the five alternatives is

x2 � x5 � x1 � x4 � x3.

From Table 5, we can see that the ranking of results
changes along with the changes in parameter k. However, all
results show that x2 is the optimal selection. Furthermore,
the score values change monotonically with parameter k,
which indicates the decision maker’s appetite for risk. When
using the IFRWMSM, we find that the score values tend
to decrease as parameter k increases. However, if we use
the IFRWDMSM, then the score values tend to increase as
parameter k increases. That is to say, the decision makers
should choose a proper value of parameter k based on their
appetite for risk in the actual decision-making process. A
decision maker with a pessimistic decision-making outlook
can use the IFRWMSM with a smaller k, whereas an opti-
mistic decisionmaker can use the IFRWDMSMwith a larger
parameter k.

7 Comparative analyses

In this section, we compare our proposed method with the
existing methods, which are based on different aggregation
operators, such as the intuitionistic fuzzy weighted aver-
aging (IFWA) operator (Xu and Cai 2012), the weighted

Table 6 Comparisons with other operators

Operator Parameter Ordering

IFWA ∼ x2 � x5 � x1 �
x4 � x3

WIFPGA ∼ x2 � x5 � x1 �
x3 � x4

IFWGBM p � q � 1 x2 � x5 � x1 �
x3 � x4

WIFGHM p � q � 1 x2 � x1 � x5 �
x3 � x4

IFRWMSM k � 3 x2 � x5 � x3 �
x1 � x4

IFRWDMSM k � 3 x2 � x5 � x1 �
x4 � x3

intuitionistic fuzzy power geometric averaging (WIFPGA)
operator (Zhang 2013), the intuitionistic fuzzy weighted
GBM (IFWGBM) (Xia et al. 2013), and the weighted intu-
itionistic fuzzy geometric HM (WIFGHM) (Yu 2013). The
rankings of results from the example in Sect. 6 obtained by
different intuitionistic fuzzy aggregation operators are shown
in Table 6.

FromTable 6, we can see that all the methods show that x2
is the optimal selection. This finding indicates the feasibility
and effectiveness of the method proposed in this paper.

1. Comparisons with the IFWA and WIFPGA operators:
The IFWA and WIFPGA operators assume that aggre-
gated elements are independent. They cannot capture the
correlation between the aggregated elements, and this
greatly limits their application in a complicated deci-
sion environment. However, the operators we propose
can solve MADM problems with dependent attributes.
Furthermore, the operators in this paper have a param-
eter k, which reflects the decision maker’s appetite for
risk. This makes the IFRWDMSM and the IFRWMSM
more flexible than IFWA and WIFPGA operators.

2. Comparisons with the IFWGBM and WIFGHM: The
major advantage of the proposed operators is that they
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can capture the correlation between multiple input val-
ues, while the IFWGBM and WIFGHM operators can
only capture the correlation between two input values.
This means that the operators we proposed are more gen-
eral in nature. In addition, the IFWGBM and WIFGHM
operators with two parameters complicate the decision-
making process and cannot reflect the decision maker’s
appetite for risk.

Through the above analysis, it is obvious that the operators
we proposed are more powerful and more flexible than exist-
ing operators in terms of dealing with intuitionistic fuzzy
information. Therefore, they are more suitable for solving
intuitionistic fuzzy MADM problems.

8 Conclusions

In an actual decision-making process, obvious correlations
always exists between attribute variables. Therefore, the
study of an aggregation operator that can capture the cor-
relation between multiple input values has great value both
in theory and practice. Inspired by the earlier studies, in
this paper, we defined the RWMSM and RWDMSM, and
we subsequently extended them to an intuitionistic fuzzy
environment. New aggregation operators have some good
properties, such as monotonicity, boundedness, and idempo-
tency. Furthermore, a number of special cases of the new
operators have been investigated in detail. Based on these
works, we present a novel method for intuitionistic fuzzy
MADM, and we have conducted a practical example study
involving the introductionof a foreign-funded enterprise. The
advantages and disadvantages of the proposed operators and
the decision-making method have been discussed through a
comparative analysis.

The main contributions of this work are listed as follows:

1. We introduced the RWMSM and RWDMSM operators,
which have a reducible weighted form of the MSM and
DMSM operators, respectively.

2. We extended the RWMSM and RWDMSM operators to
intuitionistic fuzzy environment, and proved their reserve
the nice properties of the MSM operator.

3. We proposed a novel method for intuitionistic fuzzy
MADM that has two advantages, as follows: one is that
ourmethod can capture the correlation betweenmultiple-
attribute variables, and the other is that our method can
reflect the decision maker’s risk preference.

We must emphasize that each method has its own strengths
andweaknesses, and none of themethods will always be able
to solve the MADM problem better than the other methods
under any circumstances. The result totally depends on how

we look at things and not on how themethods are themselves.
Therefore, we should rationally select a method based on
the situation as regards the decision problems and decision-
making needs.

In further research, we will extend the RWMSM and
RWDMSM operators to other fuzzy environments, such as
Pythagorean fuzzy language sets and dual hesitant fuzzy sets.
In addition, we will also apply the proposed operators to oth-
ers fields, such as datamining, figure and pattern recognition,
and project management.
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