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Abstract
Many location-based services are supported by the moving k-nearest neighbour (k-NN) query, which continuously returns
the k-nearest data objects for a query point. Most of existing approaches to this problem have focused on a centralized setting,
which show poor scalability to work around massive-scale and distributed data sets. In this paper, we propose an efficient
distributed solution for k-NN query over moving objects to tackle the increasingly large scale of data. This approach includes
a new grid-based index called Block Grid Index (BGI), and a distributed k-NN query algorithm based on BGI. There are three
advantages of our approach: (1) BGI can be easily constructed and maintained in a distributed setting; (2) the algorithm is
able to return the results set in only two iterations. (3) the efficiency of k-NN query is improved. The efficiency of our solution
is verified by extensive experiments with millions of nodes.

Keywords k-Nearest neighbour query · Distributed query processing · Moving objects

1 Introduction

With the development of GPS technology and embedded
devices, the use of location-based applications is becoming
increasingly wider and deeper. As a fundamental operation
in many location-based applications, processing k-nearest
neighbours (k-NN) query over moving objects has received
much more attention recently. Given a query object and a
set of moving objects, while the objects are moving, the
query keeps its k-nearest neighbours constantly. In this paper,
we handle a large number of different k-NN over large
moving data set efficiently. For example, passengers use taxi-
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hailing applications to catch a taxi. The application needs to
receive the query and return messages about the k-nearest
taxies to the passenger. Taxies on the road change their loca-
tions constantly. It is hardly for a mobile device to keep
updating the locations of all taxies and to compute the k-
nearest ones locally. Thus, a serverwhich can receive location
information of taxies and compute the k-nearest taxies of
the passenger query point is necessary. As the server may
receive requirements from different passengers meanwhile,
the server should return the result set to the passenger quickly
and exactly to guarantee the quality of service. In this exam-
ple, available taxis are data objects, meaning that when a
taxi has a guest, the server should delete it until the taxi is
available again.

Such k-nearest neighbours queries are used in awide array
of location-based services (e.g., location-based advertising).
Due to the increasing prevalence of positioning devices, such
as GPS trackers and smart phones, we are experiencing a
rapid growth in the scale of spatio-temporal data. There-
fore, distributed solutions that can handle large amount of
data processing are necessary. However, most of existing
algorithms are designed for a centralized setting (e.g., in a
single server) and usually only suitable for applications with
a limited data size. These algorithms are not directly applica-
ble for distribute setting, for most existing algorithms using
uncertain iterations to locate the region of k-nearest neigh-
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bours. There is extra communication cost between the nodes
in a distributed setting and uncertain iterations would lead to
expensive communication cost. To address this challenge, we
propose a distributed index to process the k-nearest neigh-
bours query, called the BlockGrid Index (BGI). BGI is a two-
layer grid-based index and can be constructed andmaintained
efficiently in a distributed setting. The top layer of BGI is a
latticed structure and it partitions the region of interest into a
grid of equal-sized cells without overlap. Each cell in the grid
is in charge of indexing the moving objects within its scope.
The bottom layer consists of multiple blocks which are cor-
responding to one or more adjacent cells in the top layer. As
objects move, the blocks can be split/merged when the num-
ber of objects in the block goes out the range we set. There is
a hidden hierarchical structure in each cell for skewed data.
Based on BGI, we propose an algorithm DBGKNN for dis-
tributed k-NN processing. DBGKNN guarantees returning
the query results in only two iterations. Given a query q,
according to BGI, DBGKNN can directly locate the blocks
that contain at least k neighbours of q in the first iteration.
Then in the second iteration, the algorithm determines a
search region and compute the final k-nearest neighbours
of the query q. We implement BGI and DBGKNN in Storm,
which has a common distributed master-workers mode.

Our main contributions can be summarized as follows.

• We propose BGI, a new two-layer grid-based index,
which is able to support k-nearest neighbours query over
moving objects in a distributed setting. The hierarchical
structure of BGI improve query performance and robust-
ness for skewed object distributions.

• We develop DBGKNN, a distributed k-nearest neigh-
bours query algorithm based on BGI. DBGKNN makes
sure that it is able to return the results set in only two
iterations. Thus DBGKNN has a superior and more pre-
dictable performance than other grid-based approaches.

• We implemented BGI and DBGKNN on Strom, and
designed extensive experiments to evaluate the per-
formance of BGI and DBGKNN, which confirm its
superiority over existing approaches.

The rest of the paper is organized as follows. Section 2
surveys related work. Section 3 introduces the BGI index
structure. Section 4 presents the DBGKNN algorithm. Sec-
tion 5 shows the details of implementation on the Storm
platform. Experimental results are presented in Sect. 6. Sec-
tion 7 concludes this paper.

2 Related work

As a fundamental operation, k-nearest neighbours query pro-
cessing has been intensively studied in recent years. Early

k-nearest neighbours query algorithms are for the case where
both the query point and the data points are static. Rous-
sopoulos et al. (1995) solves this problem using the R-tree
associated depth-first traversal and branch-and-bound tech-
niques. An incremental algorithm using traversed R-tree is
developed in Hjaltason and Samet (1999). k-nearest neigh-
bours query over moving objects have also been considered.
The first algorithm for continuous nearest neighbour queries
is proposed in Song and Roussopoulos (2001). It handles
the case that only the query object is moving, while the data
objects remain static. An improved algorithm was proposed
by Tao et al. (2002) which searches the R-tree only once to
find the k-nearest neighbours for all positions along a line
segment.

In the centralized setting, existing k-nearest neighbours
query methods can also be classified based on the structure
of the index used. Tree-based approaches and grid-based
approaches are both widely used. Tree-based approaches
mostly are variants of the R-tree. The first algorithm of
k-nearest neighbours query is based on R-tree as afore-
mentioned. TPR-tree is used to index moving objects and
filter-and-refine algorithms are proposed to find the k-nearest
neighbours query in Raptopoulou et al. (2003), Seidl and
Kriegel (1998), Chaudhuri and Gravano (1999). The B+-
tree structure is employed by Yu et al. (2001) to partition the
spatial data and define a reference point in each partition,
then index the distance of each object to the reference point
to support k-nearest neighbours query.

The grid index partitions the region of interest into equal-
sized cells, and indexes objects and/or queries (in the case of
continuous query answering) in each cell, respectively (Yu
et al. 2005; Zheng et al. 2006; Šidlauskas et al. 2012). Most
of these approaches are designed for the centralized setting
and cannot be directly deployed on a distributed setting.

In order to meet the imperative need of large-scale data
from all fields, distributed technology is increasingly perme-
ating into each corner of the world. Plageras et al. (2017)
propose distributed technology for the purpose of analysis
and management of the huge amounts of health data. Tri-
pathi et al. (2013) focuse on the defense solution based
on Hadoop to handle distributed denial of service (DDoS)
attacks. Malek et al. (2016) propose a Petri net-based frame-
work of parallel model checking to meet the state space
explosion in Model checking. Some works about k-nearest
neighbours query have been done for distributed processing.
Gedik and Liu (2004), Wang et al. (2006) focus on the mov-
ing objects in processing queries.Wu et al. (2007) collaborate
the server and mobile devices to maintain the k-NNs of a
moving query. Bamba et al. (2009) propose the safe region
technique, which enables resource-optimal distribution of
partial tasks from the server to the mobile clients. In some
recent works, Zhang et al. (2012) use MapReduce to process
k-nearest neighbours query based on the R-tree index. Lu
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et al. (2012) partition the sets of objects and queries based
on the Voronoi diagram in the first Map function, and then
find k-nearest neighbours of each query by the second Map
and Reduce operators. Eldawy and Mokbel (2013) propose
a framework called SpatialHadoop to support three kinds
of spatial queries including k-nearest neighbours query. Yu
et al. (2015) propose a distributed k-nearest neighbours query
(DKNN) algorithm based on Dynamic Strip Index, which
are implemented on Apache S4. Cahsai et al. (2017) pro-
pose a approach for processing k-nearest neighbours (kNN)
queries over very large (multi-dimensional) datasets aiming
to ensure scalability using a NoSQL DB (HBase). Xia et al.
(2017) propose a distributed grid index for trajectory data
which partitions the trajectory into grids under MapReduce
framework. Haiqin et al. (2018) propose a secure and effi-
cient kNN query framework for location-based services in
outsourced environments.

3 Block Grid Index

In this paper we consider the problem of monitoring k-
nearest neighbours over moving objects within a region
of interest. In a region of interest at time t , let O(t) =
{o1(t), o2(t), . . . , oNo(t)} be a set of moving objects. Each
object o(t) can be represented by a triple tuple 〈Id, (ox , oy),
(o′

x , o
′
y)〉, where Id is the identifier of the object o(t), (ox , oy)

is the position at time t and (o′
x , o

′
y) represents the previous

position of the object. No is the number of all the objects
in this two dimensional region of interest. Given a query set
Q(t) = {q1(t), q2(t), . . . , qNq (t)} in the same region, which
each query can be represented by (qx , qy), and Nq is the
number of queries in this set. The problem we study in this
work is to get the k-NN of each query in real-time. We adopt
the snapshot semantics, i.e., the answer of q(t) is only valid
for the positions of the objects at time t−�t , where�t is the
latency due to query processing. Apparently, minimizing this
latency�t is critical in our problem and is the main objective
of this work. To make our approach more general, we do not
make any assumptions on the moving patterns of the objects,
i.e., the objects can move without any predefined pattern.

Given a query object, most existing grid-based algorithms
of k-nearest neighbours query follow the similar thought: (1)
locates the query object in the region of interest; (2) enlarges
the search region centred in query object iteratively to get
enough k objects in the search region; (3) finds the farthest
object to query object in (2); (4) takes the distance between
the object in (3) and the query object as the radius, the query
object as the circle centre, drawing a circle; (5) gets the k-
nearest neighbours of the query object from the objectswhich
fall in the circle. In step (2), the number of iterations needed
to get enough k objects is unknown.

We assume a general distributed model that consists of
a single master and multiple workers. This master-workers
model has beenwidely used inmany distributed systems such
as MapReduce, Storm and Google File System. Algorithms
of above-mentioned thought are designed to implement in a
centralized setting and care little about the number of iter-
ations. However, unknown iterations will be a disaster in a
distributed setting because of the high cost of communication
between master and workers. If we implement this kind of
algorithm on a master-workers mode, let the master maintain
the grid index,workers store the data belongs to eachgrid cell,
thenwewill face the uncertain communication times between
the master node and worker nodes, which will lead to low
performance. Beyond that, data turns to be huge and change
fast in the age of big data, and too many updates congest in
the master node is not supposed too. Therefore, in consid-
eration of the above demand and the nature of distributed
systems, the index need to be easily partitioned, efficiently
updated and supporting a controlled iterations when running
the k-nearest neighbours query algorithm. Aim to implement
k-nearest neighbours query algorithm on distributed system,
we design the BGI, a grid-based main-memory index struc-
ture to meet these requirements.

3.1 Structure of BGI

Without loss of generality, we assume that all objects exist in
the [0, 1)2 unit square, through some mapping of the interest
region. BGI is designed into a two-layer structure (see Fig. 1).
The top layer uses a grid structure, which partitions the unit
square into a regular grid of cells of equal size η. Each cell
is denote by c(i, j), corresponding to its row and column
indices. Given a query q(t), we can directly know that it falls
into the cell c(i, j), if i ∗ η ≤ q(t)x ≤ (i + 1) ∗ η and
j ∗ η ≤ q(t)y ≤ ( j + 1) ∗ η. (q(t)x , q(t)y) is the position
of query q at time t . In the top layer, each cell only contains
the id of block which it belongs to, see in Fig. 2. The bottom
layer is a set of blocks, which composed by a certain number
of adjacent cells. Each block stores the objects located in
the corresponding cells, and these objects are organized by
cells’ boundary. Briefly, we take cell as the smallest unit to
partition (without overlap) the region of interest, and objects
are stored by cell size. Each cell has a hidden hierarchical
structure for skewed objects, which is covered in more detail
later in this paper.

B is the set of blocks, and each block can be denoted
as bi (1 ≤ i ≤ Nb)( where Nb is the number of blocks)
and also can be represented by {bid,CL} , where bid is the
unique identifier of bi , and CL (cells list) is a list of cells that
bi contains. The number of objects each block bi has been
represented by Nbi . In the bottom layer, each cell c(i, j) is
represented by {cid,OL}, where cid is the unique identifier
of c(i, j) and OL (objects list) stores the objects which fall
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Fig. 1 The structure of BGI

Fig. 2 The data structure of BGI’s top layer

Fig. 3 The data structure of BGI’s bottom layer

into the cell, see in Fig. 3. The blocks are non-overlapping
and every object must fall into one cell of one block.

We require every block to contain at least ξ and at most θ
objects, i.e., ξ ≤ Nbi ≤ θ for all block bi . Nbi is the num-
ber of objects in block. When the location of objects change,
blocks split or merged as needed to meet this condition. We
call ξ and θ theminimum andmaximum threshold of a block,
respectively. Typically ξ � θ . In some cases, data skewness
may cause the total number of some cell’s objects more than
θ , the block cannot be split to satisfy the maximum thresh-
old requirement. This is handled using a hidden hierarchical

structure for skewed objects, which is covered in more detail
later in this paper. In the rare case where the total number of
objects No is less than ξ , theminimum threshold requirement
cannot be satisfied. This is handled as a special case in query
processing. To simplify our discussion, we assume without
loss of generality that at any time the total number of objects
No ≥ ξ .

3.2 Insertion

When an object comes, BGI gets the block bi where the
object located according to its coordinates. That is, object
oi (t) located in cell c(i, j), oi (t) is inserted into block
bi if cell c(i, j) has bi ’s id. The insertion is done by
appending oi (t) into the corresponding object list OL(i, j).
Initially, there is only one block covering the whole region
of interest.

When an object oi (t) is inserted into a block bi , bi will
be split if the number of objects in it exceeds the maximum
threshold. Theoretically the block can be split into any shape
as long as it meets the minimum and maximum threshold
requirement. We split a block based on the data distribution
of cells in this block.Weused themethodof clustering inAlex
and Alessandro (2014) to choose two centres for splitting the
block. For each cell c(i, j), we compute two quantities: its
local densityρ and its distance dc fromcells of higher density.
Both these quantities depend only on the distances between
cells, which are assumed to satisfy the triangular inequality.
The local density ρ of cell c(i, j) is defined as

ρc(i, j) = Nc ·
∑

Nb

Γ (dc − d) (1)

where Γ (x) = 1 if x < 0 and Γ (x) = 0 otherwise, dc is the
distance from other cells to cell c(i, j), d is a cutoff distance,
Nc is the number of objects in cell c(i, j) and Nb is the
number of cells in the block which the cell c(i, j) in. For the
point with highest density, we conventionally take δc(i, j) be
the minimum distance between the cell c(i, j) and any other
cells with higher density Let γ = ρc(i, j) ·δc(i, j), the two cells
of high γ are chosen to be the new block centres. Basically,
these cells have a high ρ and relatively high δ. After the block
centres have been found, each remaining cell is assigned to
the nearest centre. In a single step, the assignment of cells is
performed. The k-nearest neighbours query algorithm based
on BGI prefers the shape of a block to be square to elongated,
which leads to unnecessary compare cost. As shown in Fig. 4,
the left figure is the data distribution in the block which need
to be split, the right figure is the ρ and δ of cells in this block,
we choose two cells which have the highest γ as the new
centres of blocks, which are represented by solid black spots
in the figure. Figure 5 shows the assignment of cells in the
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Fig. 4 The block need to be split

Fig. 5 The split of block

block. The cells chosen to be centres are represented by black
boxes.

3.3 Deletion

Whenanobject disappears ormoves out of a block, it has to be
deleted from the block that currently holds it. Each objecto(t)
can be represented by a triple tuple {Id, (ox , oy), (o′

x , o
′
y)},

where Id is the identifier of the object o(t), (ox , oy) is the
position at time t and (o′

x , o
′
y) represents the previous posi-

tion of the object. To delete an object o, we need to determine
which block currently holds it, which can be done directly
by BGI using (o′

x , o
′
y).

After deleting an object, if the number of objects in block
bi is less than ξ , it will be merged with another block. First,
Every blockwhich is adjacent to bi compute its γ , and choose
the cell has a highest γ as a reference cell. Second, each cell
in bi is assigned to the block which is adjacent to this cell
and has a nearest reference cell. If the cell has no adjacent
blocks temporarily, this cell will be assigned again after all
the cells is judged. Repeat this process till bi is empty. In
case, the number of objects in the resulting block exceeds
the threshold θ , triggering another split. However, since in
general ξ � θ , such situations rarely happen and their impact
on the overall performance is minimal.

As shown in Fig. 6, the block which needs to be merged
has three adjacent blocks and the cells with grey shadow are
the reference cells in these blocks.

3.4 Hierarchical structure of grids

Under a skew distribution, exactly, the number of objects in
a grid already exceeds the block maximum threshold θ , the
split method of block cannot work in this situation. To solve
skew data, we introduce a hidden hierarchical structure in the
bottom layer of BGI. With this hidden hierarchical structure,
the insert and delete operations can work out as well under a
skew distribution.

The idea of hierarchical structure in grids is simple. When
a cell becomes densely, i.e., the number of objects in the grid
exceeds the block maximum threshold θ , the cell should be
split into sub-grids of finer size. Given a maximal cell load
parameter ζ (ζ should be less than or equal to the block max-
imum threshold θ ) and a split factor λ, for all grids in BGI,
whenever the number of objects in cell exceeds ζ , this cell is
split into λ · λ sub-cells. This process is repeated iteratively
until no cells contain more than ζ objects. The split factor λ

can be changed adaptable. When the split of grids occurs too
frequently, the split factor λ should be bigger. According to
the size of the parameter ζ , when a new object which comes
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Fig. 6 The merge of block

Fig. 7 The hierarchical structure of BGI

in causes the split of cell, the block which this cell belongs to
may split or not. If the block does not exceed the maximum
threshold θ , only the top layer of BGI need to update the
cell location information. If the block needs to be split, we
process the cell split first, then the block which has sub-grids
do the split operation as we described as mentioned before.
Figure 7 is the hierarchical structure of BGI.

3.5 Analysis of the BGI structure

3.5.1 Time cost of maintaining BGI

Remember that No is the number of total objects, Nb is the
number of blocks and let Ncell is the number of cells in a
block. We assume that the objects are uniformly distributed.
Tinsert, Tdelete, Tsplit , and Tmerge are the time costs of the insert,
delete, split and merge operations, respectively, and ai (i =
0, . . . , 5) are constants.

Tinsert ≈ a0 · Ncell (2)

Tdelete ≈ a1 · No

Nb · Ncell
(3)

Tsplit ≈ a2 · Ncell + a3 · No

Nb · Ncell
(4)

Tmerge ≈ a4 · Ncell + a5 · No

Nb · Ncell
(5)

Proof For an insert operation, we need to locate which cell
the object o(t) falls in and appends it to the end of the
cell’s object list. We can locate the right block based on BGI
directly according to the new object’s coordinate. Then we
have to spent some time on finding the right cell in a block
to add this new object in. Therefore, Tinsert ≈ a0 · Ncell.
To delete an object from a cell, we need to locate the cell
and then remove the object from its object list. The location
operation is the same operation as in the insert operation.
Removing the object needs us to scan all the object positions
in the cell, which takes linear time with respect to the num-
ber of objects: No

Nb·Ncell
. Thus, the cost of deletion operation

is Tdelete ≈ a1 · No
Nb·Ncell

.
For a split operation, we need to first calculate the γ of the

block, then choose two cells as the new block centres, which
takes linear time with respect to the number of cells in the
block: Ncell. Then we need to assign every other cells of this
block into two new ones, which takes time No

Nb·Ncell
. Thus, the

costs of these two operations are Tsplit ≈ a2 · Ncell + a3 ·
No

Nb·Ncell
. For a merge operation, first we calculate all the γ s

of the adjacent blocks, then choose one cell as the reference
centres, respectively, which takes linear time with respect
to the number of cells: Ncell. Then we need to assign every
other cells of the block which needed to be merged into new
ones, which takes time No

Nb·Ncell
, the total costs are Tmerge ≈

a4 · Ncell + a5 · No
Nb·Ncell

. 
�

3.5.2 Advantages of BGI

BGI has the following advantages.
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• Parallelism: BGI’s partitioning strategy makes it easy to
be deployed in a distributed system. The blocks do not
overlap, making it possible to perform query processing
in parallel.

• Scalable and Light-weight: Since the top layer, which is a
grid structure that only needs to store the cells boundary
and the block id which the cell belongs to, the capacity
of BGI is directly proportional to the number of servers,
lending it works well to large-scale data processing.

• Efficient: Having a minimum threshold for each block
makes it possible to directly determine the blocks that
contain at least k neighbours of a given query, without
invoking excessive iterations.

• Skew-resistant: The hidden hierarchical structure of grids
makes sure that skew data can be handled easily. The
hidden hierarchical structure only works on the lowest
level of data, thus the upper operations such like insertion,
deletion, split and merge operations do not need change.

4 A distributed block grid K -nearest
neighbours query search algorithm

Based onBGI, we propose a distributed k-nearest neighbours
query algorithm (DBGKNN) to process k-nearest neighbours
query.

4.1 The DBGKNN algorithm

The DBGKNN algorithm follows a filter-and-refine
paradigm. Given a query q, the algorithm (1) identifies the
blocks which are guaranteed to contain at least k neigh-
bours of q through the top layer of BGI; (2) corresponds
blocks return at least k objects near q; (3) computes the
k-th nearest neighbour of query in this return objects set;
(4) takes the distance between this neighbour and query as
the radius, q as centre, draw a circle; (5) among objects
fall in the circle, compute the k-nearest neighbours of the
query object. The algorithm is presented in Algorithm 2.
Now we present the details of the algorithm. Without loss
of generality, we assume that No ≥ k where No is the
number of objects.

4.1.1 Calculating candidate blocks

For a given query q, DBGKNNcan directly identify the set of
blocks that are guaranteed to contain k neighbours ofq, called
the candidate blocks. First, the algorithm gets which cell the
query q falls into. As we partition the region of interest using
grid, it is easy to locate which cell contains q according to
q ′s coordinates. We denote the cell as cq. Second, identify
the candidate blocks. We locate a rectangle R0 centred at the
cell cq, with some size such that R0 encloses cells falling
into at least � ≥ k/ξ candidate blocks. � denote the number

Fig. 8 Determining the set of candidate blocks

Fig. 9 An example of finding 3-NN using DBGKNN

of candidate blocks and satisfy � · ξ ≥ k. This way, we can
guarantee that there are at least k neighbours in the candidate
blocks.

Figure 8 gives an example. Blocks are represented by solid
lines. Query q is presented by a solid black spot, and R0 with
size 1 encloses cells belongs to there different blocks, which
are presented by oblique lines. Assume ξ = 3, k = 6, now
� = 3, � · ξ ≥ k, the candidate blocks are identified.

The algorithm of determining the candidate blocks DCS
is shown in Algorithm 1. This procedure describes the details
of DCS and can be implemented on the master-workers set-
ting as shown in Fig. 10. BGI is maintained in a distributed
fashion by multiple workers, where each worker is responsi-
ble for a set of blocks. The master is the entry point for the
queries. It maintains the top layer, which only records the
block id of each cell. When the master receives a query q, it
can immediately determine the candidate blocks by running
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Fig. 10 Processing queries on the master-workers model

DCS, and then send q to the workers that hold the candidate
blocks.

4.1.2 Determining the final search region

After the candidate blocks are determined, we send query q
to the candidate blocks. Then every block returns ξ objects
which are closest to q. Then we can identify a supporting
object o , which is the k-th closest object to q in the return
of candidate blocks. Let the distance between o and q be rq.
The circle which takes (qx , qy) as the centre and rq as the
radius is thus guaranteed to cover the k-nearest neighbours
of q. Next, we identify the set of cells that intersect with this
circle, and search k-nearest neighbours of q in these cells.
Figure 9 shows an example, where the query q is a 3-NN
query and let ξ = 1. We find the supporting object os in
its candidate blocks and set the radius rq which equals the
distance between q and os. The circle Cq is guaranteed to
contain the 3-NNs of q. After scanning all objects that are
located within Cq, we find that the 3-NNs results.

Figure 10 shows this step in the master-workers setting.
Master sends q to workers who hold candidate blocks. Then
theseworkers send objects nearq to calculationworker.Next,
calculation worker sends the circle Cq to master and identi-
fies the final set of cells C which intersected with Cq. Then
master sends C to the blocks holding cells in C . Finally, k-
nearest neighbours are chosen from each cell in C (or all
the objects in the cell if it contains less than k objects) and
sent to the calculation worker, where the final k-NN of q
are computed.

Algorithm 1 DCS Algorithm
Input:

The query q(qx , qy), BGI , δ, ξ, k;
Output:

The set of candidate blocks, Cb;
1: get the cell c which q located in through BGI. Put the block id of

cell into Cb.
2: while (|Cb| · ξ < k) do
3: make a rectangle R0 centred at cell c with size l.
4: if the block of cells that fall into R0 is not in Cb then
5: add the block id into Cb.
6: else
7: l=l+1;
8: end if
9: end while
10: return Cb

4.2 Analysis of the DBGKNN algorithm

4.2.1 Time cost of the DBGKNN algorithm

Theorem 1 Let No, Nb and Ncell is the number of objects,
blocks and grid cells, respectively, and assume that the
objects are uniformly distributed. For a given k-nearest
neighbours query q, the query processing time (without con-
sidering the communication cost) by DBGKNN is Tquery =
Td + Tc + Tl, where Td ≈ a1, Tc ≈ a2 · ξ No

Nb
+ a3 · k · log k,

Tl ≈ a4 ·Ncell · k
No

· log k, and ai (i = 1, . . . , 4) are constants.

Proof Td is the time of determining the candidate blocks, Tc
is the time of obtaining the circle Cq, and Tl be the time of
searching k-nearest neighbours from the set of cells covered
by Cq. The time of finding the candidate blocks is constant,
forwe canget the set of blocks directly through the grid index.
Therefore, Td ≈ a1. To compute the circle Cq, we need time
a2·ξ No

Nb
to find the ξ closest objects (toq) fromeach candidate

blocks. Obtaining the radius of the circle Cq then takes time
a3 · k · log k. Therefore, Tc ≈ a2 · ξ

√
NoNb + a3 · k · log k.

Finally, as we assume a uniform distribution of the data, the
expected area of Cq is k/No. Thus, the time of obtaining the
k-nearest neighbours is Tl ≈ a4 · Ncell · k

No
· log k. 
�

4.2.2 Effects of � and�

The minimum threshold ξ influences the frequency of the
merge operation. We assume that the No objects are uni-
formly distributed in a unit square for simplicity. When the
number of objects in block is lower than ξ , the merge oper-
ation is running. Thus, when ξ increases, the probability of
merge operations comes higher. However, ξ cannot be too
small. In the candidate blocks notify stage, we need to meet
the condition of ξ · � ≥ k, if ξ is too small, then we need to
enlarge the rectangle R0 to get more candidate blocks. The
maximum threshold θ affects the splitting of blocks. when
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Algorithm 2 DBGKNN Algorithm
Input:

The query q(qx , qy); BGI; The cell size, δ; The set of candidate
blocks, Cb; The minimum threshold of block, ξ ; The maximum
threshold of block, θ ;

Output:
k-nearest neighbours of q;

1: Cb = DCS(qx , qy , BGI , δ, ξ);
2: Find nearest ξ objects in every candidate block, and put them into

Oc.
3: Compute the supporting object o to q which is the k-th nearest object

as in Oc.
4: Taking q as centre and the distance between o and q as the radius,

draw a circle cq.
5: Let Υ be the set of cells which interacts with circle cq.
6: Find k-NNs from the objects covered by cells in Υ ;
7: Return k-NNs;

θ decreases, more blocks need to split. Meanwhile, high θ

means every block has a high number of objects, which may
influences the performance of circle computation.

4.2.3 Advantages of DBGKNN

The most notable advantage of DBGKNN is that it minimize
the probability that the master becomes a bottleneck, for the
master only maintenances a grid structure to index objects
and stores the block id that the object belongs to. Given a
query q, DBGKNN gets the k-nearest neighbours of q in two
steps, first directly determining the candidate blocks using
BGI, and then identifying the final set of cells to search by
computing the circle Cq. This is highly beneficial when the
algorithm is running in a distributed system.

4.2.4 Scalability of DBGKNN

DBGKNN is easily paralleling and scales well with respect
to the number of servers to handle increases in data volumes.
These blocks in BGI in general reside on different servers,
and the process of searching them for the k-nearest neigh-
bours can take place simultaneously on individual servers.
More processing power can be obtained by simply adding
more servers to the cluster.

5 Implementation on the storm platform

We implement our method on Apache Storm, a free and
open source distributed real-time computation system. Storm
makes it easy to reliably process unbounded streams of data,
doing for real-time processing what Hadoop did for batch
processing. The benefits of Storm are, first, that it is fast: a
benchmark clocked it at over a million tuples processed per
second per node; second, that it is scalable: Storm topologies
are inherently parallel and run across a cluster of machines

and different parts of the topology can be scaled individually
by tweaking their parallelism; third, that it is fault-tolerant:
when workers die, Storm will automatically restart them.
Storm can be used with any programming language and we
choose java in our experiments.

The preliminary data are transformed into a “stream” in
Storm, which is an unbounded sequence of tuples. Storm
processes steam according to the topology you create and
submit. A topology is a graph of computation. Each node
in a topology contains processing logic, and links between
nodes indicate how data should be passed around between
nodes. There two kinds of nodes: “spouts” and “bolts”. A
spout is a source of streams. A bolt consumes any number
of input streams, does some processing, and possibly emits
new streams.

BGI is a two-layer structure index. We have a public area
to store the top layer of BGI, which has the cells’ bound-
ary and block information. Every bolts which need the top
layer information in the storm load this data in advance. This
information does not update until the coming object caused
split or merge operation. Each bolt manages the details of a
block.

6 Experiments

We implement experiments to evaluate the proposedBGI and
DBGKNNalgorithm.Wemainly test the performance ofBGI
and the effect of changing the parameters. For DBGKNN,we
implement a distributed grid-based search algorithm accord-
ing to Yu et al. (2005). We store the objects partitioned by
every cell and every worker maintains a set of blocks. We
take this grid-based search algorithm as the baseline, and
compare a lot between them. Every experiment is repeated
ten times, and the average values are recorded as the final
results.

6.1 Experimental set-up

The experiments are conducted on 8 Dell R210 servers, and
each has a 2.4GHz Intel processor and 8GB of RAM. We
simulate three different datasets for our experiments. The
first dataset (Uniform) is consisting of the objects that fol-
low a uniform distribution. In the second dataset (Gaussian),
70% of the objects follow the Gaussian distribution, and the
rest objects are uniformly distributed. In the third database,
objects follow the Zipf distribution. All the objects are nor-
malized to a unit square.

6.2 Experiment performance

Figure 11 shows the time of buildingBGI aswe vary the num-
ber of objects. If other parameters don’t change, the time it
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Fig. 11 The construction time of BGI

takes to build the index increases almost linearly with the
increasing number of objects. As we make a more concen-
trated Gaussian dataset, there will be more split and merge
operations in this dataset, so the time is always highest in
three datasets. Figure 12 demonstrates the time of maintain-
ing BGI with the change of objects’ movement. We choose
100K objects to move continuously with varying velocities.
There is no doubt that the faster the objects move, the more
split and merge operations happen, leading to an increase
in maintenance time. Figure 13 shows the effect of split
operations of different database with changing θ . θ is the
maximum threshold of blocks. In our study, the number of
θ is approximately reversely proportional to the account of
spilt operation. The lower θ is, the higher split operations
are, which also means a longer build time. θ cannot be overly
large. In extreme cases, when θ is too large, the total number
of blocks may be 1, which means we will run the index like
single server. A high θ will also increase the time of query
processing. A higher θ means that the average number of
objects in one block is higher, which brings more time for
calculation in one block. Figure 14 shows the influence of the
minimum threshold, ξ , on the frequency ofmerge operations.
A larger value of ξ means that underflow will occur more
often and thus cause more merge operations. Figures 15, 16,
and 17 compare our algorithm with the baseline method in
the index building time and query time varying the number
of objects and query objects. Baseline method builds index
very fast and the time it costs varies little when the num-
ber of objects changes. The query time of baseline method
increases rapidly alongwith increasing objects number, com-
paring that our algorithm performs stable. When the number
of objects becoming higher, the baselinemethod suffers from
the communication cost of iterations. DBGKNN only need
two iterations to get the result so that it is little unaffected by
objects number.

In the above experiments,wefind that althoughDBGKNN
takes time to build index, it performs better in query process-
ing than the baseline method. The parameter θ in DBGKNN

Fig. 12 The maintenance time of BGI

Fig. 13 The influence on split operations

Fig. 14 The influence on merge operations

matters the index build time and query processing time. A
high θ means more split operations, which leads to fast query
processing time and high cost on indexmaintains. Therefore,
we need to choose the optimal value of θ according to the
actual conditions. In summary, DBGKNN is more suitable
for large volumes of objects in distributed system.

7 Conclusions

With the increasingly widespread use of orientation systems,
k-nearest neighbours query over moving objects calls for
new scalable solutions to tackle the large volume of data and
heavy query workloads. To address this challenge, we pro-
pose a distributed grid index BGI and a distributed k-nearest
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Fig. 15 The time comparison of index construction

Fig. 16 The time comparison changing the number of query objects

Fig. 17 The time comparison changing the number of objects

neighbours query algorithm DBGKNN. BGI is able to adapt
to different data distributions. DBGKNN is based on BGI
and is guaranteed to contain the k-nearest neighbours for a
given query with only two iterations, compared to uncertain
number of iterations in existing approaches. Extensive exper-
iments confirm the efficiency of the proposed conclusion.

For further work, we would like to extend our work on
continuous k-nearest neighbours query over moving objects.
When objects moving along a trajectory, the gird structure
may still offer significant performance. We want to optimize

the index structure for a better result for incrementally updat-
ing the k-NN query as objects move.
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