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Abstract
Distributed generation (DG) technology has proved to be an efficient and economical way of generation of power. DGs are
intended to generate power near the load centers. Optimal allocation of DG resources enhances the overall performance of
distribution systems. This paper presents a hybrid teaching–learning-based optimization (HTLBO) technique for the optimal
allocation of DGs in distribution systems. The proposed technique is proficient in handling continuous as well as discrete
variables and has the capability to escape strong local minima/maxima trappings. The validity and effectiveness of HTLBO
are tested on well-defined standard mathematical benchmark functions. The proposed method is further implemented for
optimal allocation of DGs in the IEEE 33-bus, 69-bus and 118-bus radial distribution test systems for minimization of power
losses, voltage deviation and maximization of voltage stability index. The multi-objective function for DG allocation uses the
2-constraints approach. The obtained results reveal improved convergence characteristics over both teaching–learning-based
optimization and quasi-oppositional teaching–learning-based optimization.

Keywords Distributed generation · Optimization technique · TLBO · QOTLBO · HTLBO

1 Introduction

As compared to centralized bulk power generation, transmis-
sion and distribution of power at the load centers constitute
major challenges for the utilities. Hence, distributed gen-
eration (DG) is a viable option where power is generated
near the load centers. DG comprises both fossil fuel-based
conventional and nonconventional energy sources like solar
power, hydro-, biofuel, geothermal, etc., ranging from few
kilowatts to about 50 MW (Singh et al. 2009). Competi-
tive markets, environmental issues and reliability of power
sources are some of the major criteria for the selection of
energy sources. Depletion of fossil fuel sources and contin-
uous improvement in the area of nonconventional ones have
been the motivating factors for the utilities to go for DG.

Proper siting and sizing of DGs is crucial for better distri-
bution system performance. Optimal sizing and placement of
DGs play a crucial role in the reduction of power losses, line
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loading and system operating costs along with improvement
in system reliability and prevention of voltage collapse. Ear-
lier, for the voltage profile improvement in power systems,
capacitor banks and synchronous condensers were predom-
inantly used (Nagrath and Kothari 2007). But nowadays, to
improve the performance of power systems, both active and
reactive power injections are carried out using DGs. There-
fore, finding the optimal location and size of DGs has been
a global challenge for both the academia and the industry.

Several comprehensive researchworks have been reported
in the area of optimal allocation of DGs to improve distribu-
tion system performance. A noniterative analytical method
for single DG placement in both radial and meshed systems
has been presented in Wang and Nehrir (2004) to minimize
system power losses for both time-variant- and -invariant-
type loads in the IEEE 6-bus and IEEE 30-bus distribution
systems. A very efficient analytical method employing BIBC
approach for siting and sizing of DGs in the IEEE 12-bus,
34-bus and 69-bus system has been proposed in Gözel and
Hocaoglu (2009). However, Gözel and Hocaoglu (2009) is
limited to placement of a single DG. An analytical method
for multiple DG placements based on the active and reac-
tive components of the branch currents has been reported
in Gopiya Naik et al. (2015). Hung et al. (2010) have pre-
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sented an improved analytical (IA) method for single DG
placement and has highlighted its superiority over existing
methods based on the assumption that the DG power factor is
same as the aggregate load power factor. Thismethod reduces
the computational time significantly while considering var-
ious types of DGs to minimize power losses and improve
the voltage profile of the network. Although analytical meth-
ods for siting and sizing of DGs have fast convergence, with
increase in the types and number of DGs, the computational
complexity increases and may lead to nonoptimal solutions.

Advances in soft computing techniques have led to the
development of several optimization algorithms for opti-
mal allocation of DGs. In this perspective, Singh et al.
(2008), Ameli et al. (2014), Gomez-Gonzalez et al. (2012),
Moradi and Abedini (2012), Niknam et al. (2011), Saha
and Mukherjee (2016), Abu-Mouti and El-Hawary (2011),
Sheng et al. (2016),Mohanty and Tripathy (2016) andMartín
García and Gil Mena (2013) have presented some compre-
hensive research works on the optimal allocation of Type
1 DGs. Singh et al. (2008) have carried out DG place-
ment using genetic algorithm (GA) in the IEEE 16-bus,
37-bus and 75-bus radial distribution networks with different
loading conditions. However, GA requires more computa-
tional time while suffering from premature convergence.
Multi-objective particle swarm optimization (PSO) for DG
placement in the IEEE-33-bus radial distribution system
(RDS) has been proposed by Ameli et al. (2014) for power
loss reduction, improvement of voltage profile and stability.
Gomez-Gonzalez et al. (2012) have employed discrete PSO
for optimal DG allocation to reduce power losses in the IEEE
30-bus radial distribution network. A hybrid GA-PSO-based
algorithm for optimal DG allocation to reduce power losses
and improve voltage profile and stability has been presented
in Moradi and Abedini (2012). A multi-objective, modified
honeybeematingoptimization algorithm for siting and sizing
of DG has been reported in Niknam et al. (2011). The pro-
posed method avoids strong local convergence as compared
to the original honey bee mating optimization algorithm.
Several nature-inspired algorithms have also been proposed
by researchers for siting and sizing of DGs. Some notable
ones include the chaotic symbiotic organism search (CSOS)
algorithm (Saha and Mukherjee 2016) and the artificial bee
colony (ABC) algorithm (Abu-Mouti and El-Hawary 2011).
Sheng et al. (2016) have implemented multi-objective har-
mony search algorithm (HSA) for optimal DG allocation in
the 33-bus RDS. TLBO method for the optimal siting and
sizing of DGs has been reported in Mohanty and Tripathy
(2016).Amulti-objective,modified teaching–learning-based
optimization algorithm for the optimal allocation of DGs in
the 33-bus, 69-bus and 118-bus RDS has been presented in
Martín García and Gil Mena (2013).

1.1 Motivation and aim

Although analytical methods have no convergence issues,
with an increase in the number and type of DGs, their
complexity increases, with a consequent increase in the com-
putational time. This is particularly true for multi-objective
formulations with a large number of equality and inequality
constraints. Analytical approaches for optimal DG alloca-
tion in distribution systems require more robust algorithms
(Arqub and Abo-Hammour 2014; Abu Arqub et al. 2016;
Arqub et al. 2017; Abu Arqub 2017) to solve differential
and nonlinear equations. In this respect, heuristic methods
for siting and sizing of DGs do not involve differential equa-
tions. However, the algorithms need to be tuned properly
to reach the global solution for DG sizing and placement.
Recently, TLBOmethod (Rao et al. 2011) has beendeveloped
which is almost independent of the optimization parame-
ters and possesses excellent convergence characteristics for
lesser number of variables. However, it has the tendency to be
trapped in strong local minima when the number of variables
increases. A modified TLBO algorithm for DG placement
has been reported in Martín García and Gil Mena (2013)
where additional mutation phase is considered for finding
the global solution. Sultana and Roy (2014) have presented a
quasi-oppositional TLBO (QOTLBO) for DG placement in
RDS. However, these features add complexity to the TLBO
and increase the computational time.An improvedTLBOhas
been reported in Kanwar et al. (2015) in which a crossover
rate and a crossover parameter have to be specified. How-
ever, both of them need to be tuned to achieve a satisfactory
convergence. Harmony search (HS) is another swarm intel-
ligence algorithm which shows good exploration capability
but poor exploitation capability for global solutions. Several
HS variants have been suggested to solve complex opti-
mization problems, such as SGHS (Self-Adaptive Global
Harmony Search Algorithm) (Pan et al. 2010), IHS (Mah-
davi et al. 2007), ITHS (Intelligent Tuned Harmony Search
algorithm) (Yadav et al. 2012), EHS (Enhanced Harmony
Search) (Das et al. 2011), NGHS (Nobel Global Harmony
Search) (Zou et al. 2010), DIHS (Tuo et al. 2015), NDHS
(Chen et al. 2012) and DSHS (Kattan and Abdullah 2013).
However, these improved versions of HS are also unable to
handle complex optimization problems of high dimensional-
ity and modality. IHS lacks in precise solution. It is observed
that NGHS, SGHS and NDHS get easily trapped into strong
local minima/maxima. Although solutions provided by EHS
and DSHS are satisfactory, they require more convergence
time for global solution with high-dimensional problems. It
is observed that TLBO exhibits good search space exploita-
tion capability while HS has good exploration capability. So,
a proper integration of the merits of TLBO and HS would
result in a better optimization technique for high-dimensional
and multimodality problems.
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To get a good balance of exploration and exploitation of
the search space, a new optimization algorithm based on the
hybridization of HS and TLBO is presented in this paper. In
this algorithm, at first the HS algorithm is utilized to explore
the search space with a high probability of finding the global
solution. Subsequently, TLBO carries out exploitation of the
search space for the global solution. For choice of TLBO
or HS, the proposed algorithm uses self-adaptive selection
probability.

In thiswork, at the outset, the performance of the proposed
algorithm is tested on standard mathematical benchmark
functions. Subsequently, a multi-objective problem of opti-
mal DG allocation in the IEEE 33-bus, 69-bus and 118-bus
RDS is solved by the 2-constraint method using HTLBO.
The proposed HTLBO is compared with existing TLBOs
and QOTLBO. The results validate the proposed method.

The contribution of the paper can be summarized as fol-
lows:

• Development of a HTLBO algorithm which is competent
in handling continuous as well as discrete variables with
constrained and unconstrained optimization problems.

• HTLBO utilizes the exploration quality of HS and the
exploitation quality of TLBO. It has the capability to
escape strong local maxima/minima convergence, thus
yielding a global solution.

• A comparative analysis for solving multi-objective prob-
lems based on two approaches—the weighted sum and the
2-constraint method—is presented. The later is indepen-
dent of penalty coefficients.

• HTLBO is validated with standard mathematical bench-
mark functions (both single- and multi-objective). The
results are compared with global best ABC (g-ABC),
parallel ABC (P-ABC) and improved TLBO (ITLBO)
for single-objective functions. On the other hand, for
multi-objective functions, the results are compared with
NSGA-II.

• The impact of parameter variations of the proposed algo-
rithm on the solution is investigated, which shows that
proper tuning of algorithm parameters is required for
global solution.

• Optimal siting and sizing of DGs is analyzed in the IEEE
33-bus, 69-bus and 118-bus radial distribution test systems
to improve the network active power losses, voltage profile
and voltage stability index.

1.2 Paper layout

The paper is organized as follows. Section 2 presents the
mathematical problem formulation of the work carried out
in this paper. Section 3 illustrates the basics of TLBO and
HS algorithms. Section 4 presents several modifications car-
ried out in the TLBO and HS algorithms to improve their

performance. Section 5 illustrates the flowchart of the pro-
posed HTLBO. Section 6 demonstrates the effectiveness and
validity of the proposed HTLBO on mathematical bench-
mark function. The simulation results of DG allocation in
various distribution networks are also presented in this sec-
tion. Finally, conclusions are presented in Sect. 7.

2 Problem formulation

The proposed work has considered the following assump-
tions:

a. All RDS are balanced.
b. Unity power factor DGs have been employed in RDS.
c. Nominal load level and constant power load model is

assumed.
d. The outputs of all DGs are time invariant.

2.1 Single-objective function (SOF)

The objective of allocation of DGs in RDS is to reduce the
network active power losses and enhance the voltage profile
and VSI while satisfying all working constraints. Descrip-
tions of these SOF are given below:

2.1.1 Real power loss Ploss

The real power loss of the network is the primary concern
while allocating DGs in RDS. Various formulations (Das
et al. 1994; Teng 2003; Goswami and Basu 1991) exist in
the literature for load flow studies of RDS. The Ploss can be
calculated as shown below (Gözel and Hocaoglu 2009):

Ploss �
nb∑

j�1

I 2j R j where I j �
m∑

k�1

((
PL,k − PDG,k

)2 + Q2
L,k

)
/
∣∣V 2

k

∣∣

(1)

So, SOF to minimize real power loss is shown below:

F1 � Minimize Ploss (2)

In Eq. (1), PL,k and QL,k are the real and reactive load
demand at the kth bus, PDG,k is the real power injected by
the DG at the kth bus, ‘|Vk |’ is the voltage magnitude at the
kth bus, ‘Rj’ is the resistance of the jth line, ‘n’ is the total
number of buses in the network, ‘nb’ is the total number
of branches in the network and ‘m’ is the number of buses
beyond branch ‘j.’
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Fig. 1 Equivalent circuit of the
jth branch of the network
between buses ‘k’ and ‘(k +1)’

Sending end Receiving end

kth bus (k + 1 )th bus

Rj + j Xj

Pk+1 + j Qk +1

Vk Vk+1I( j )

2.1.2 Voltage profile

It is desirable to keep the voltage magnitude (Vk) at a bus
between 1.05 p.u. (maximum) and 0.95 p.u. (minimum). Real
power injections by DGs allocated optimally enhance the
voltage profile of the RDS. So, SOF (F2) to minimize voltage
deviation index (VDI) is formulated as shown below:

F2 �
n∑

k�1

(Vk − Vrated)
2,

where ‘Vk’ and ‘Vrated’ are expressed in p.u.

2.1.3 Voltage stability index (VSI)

The characterization of voltage profile of RDS is analyzed
by its VSI. For stable operation of the network, the VSI must
be greater than zero. So, VSI should be maximum to ensure
maximum stability of RDS. The VSI formulation of a RDS
is represented by Eq. (4) (Chakravorty and Das 2001) and is
shown in Fig. 1.

V SIk+1 � |Vk |4 − 4
{
Pk+1X j − Qk+1R j

}2 − 4
{
Pk+1R j + Qk+1X j

}|Vk |2
(4)

The SOF (F3) to maximize the VSI is shown below:

F3 � maximizeVSI, (5)

where VSIk and VSIk+1 are the VSI of the kth and (k +
1)th bus, respectively and ‘Rj’ and ‘Xj’ denote the resistance
and reactance, respectively, of the branch ‘j’ incorporated
between the kth and the (k +1)th nodes as shown in Fig. 1a.
Similarly, ‘Pk+1’ and ‘Qk+1’ are the real and reactive power
demands, respectively, at the (k +1)th node of the RDS.

2.2 Multi-objective function

A multi-objective function (MOF) considers all the objec-
tive functions simultaneously for either maximization or
minimization, while satisfying the equality and inequality
constraints. In this paper, a MOF (Sultana and Roy 2014)
simultaneously minimizes power loss (F1) and VDI (F2) and
maximizesVSI (F3) by the 2-constraintsmethod (Deb 2001),
satisfying operational constraints like bus voltage limits, line

thermal limits, DGs penetration limits and network power
balance as given below:

MOF � Minimize f μ(x) (6)

Subject to fm(x) ≤ εm m � 1, 2, 3 . . . . and m �� μ;

g j (x) ≥ 0, j � 1, 2, 3 . . . .;

hl(x) � 0, l � 1, 2, 3 . . . .;

x (L)
i ≤ xi ≤ x (U )

i , i � 1, 2, 3 . . . .;

where one of the objectives of the MOF is maxi-
mized/minimized, keeping the remaining objectives as con-
straints. Here, f μ(x) is the power loss while fm(x) com-
prises both the VDI and the inverse of VSI as constraints.
The parameter εm represents the upper bound of the value of
fm . g j comprise the bus voltage limits, line thermal limits,
DGs penetration limits while hk constitutes equality con-
straints (i.e., power balance), respectively. x (L)

i and x (U )
i are

the variables’ lower and upper limits, respectively.

2.2.1 Equality constraints

TheSOFand theMOFare subject to the following constraints
for the optimal allocation of DGs in the RDS as given below.

2.2.2 Active and reactive power balance constraints

Psub + PDG � Ploss + PD and Qsub + QDG � Qloss + QD

(7)

Qloss �
nb∑

j�1

I 2j X j (8)

where Psub/Qsub are the active/reactive powers supplied by
the substation, PD/QD are the total active/reactive power
demands of the load and Qloss is the reactive power loss in
the distribution network.

2.2.3 Voltage limit constraint

The voltage magnitudes (Vk) of all the buses of RDS must
be within limits of Vmax (1.05 p.u.)) and Vmin (0.95 p.u.)

Vmin ≤ Vk ≤ Vmax k � 1, 2, 3, 4 . . . n (9)
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2.2.4 Thermal limit (Kanwar et al. 2017)

I j ≤ Imax
j j � 1, 2, 3, 4 . . . nb (10)

where I j and Imax
j are the actual and the permissible loading

of the branch ‘j’ of RDS.

2.2.5 Real power limit and reactive power limit (Moravej
and Akhlaghi 2013)

Pmin
DG,k ≤ PDG,k ≤ Pmax

DG,k (11)

Qmin
DG,k ≤ QDG,k ≤ Qmax

DG,k (12)

where Pmin
DG,k and Pmax

DG,k are the minimum and maximum
injected active power limits, respectively, of the kthDGwhile
Qmin

DG,k and Qmax
DG,k are the minimum and maximum injected

reactive power limits, respectively, of the kth DG.

2.2.6 Maximum penetration of DG units in the system
(Zhang et al. 2015)

n∑

k�1

PDG,k � %J ∗
nb∑

k�1

PL,k, (13)

where J is maximum penetration of DGs in the RDS.

2.3 TLBO algorithm

TLBO algorithm was first introduced by Rao et al. (2011).
TLBO is a nature-inspired algorithm and is comprised of two
stages, i.e., Teaching phase and Learning Phase. In ‘teaching
phase’, the best learner, i.e., teacher, transfers his knowledge
to the other remaining learners to enhance their knowledge.
Subsequently, in the ‘learning phase’, each learner interacts
with other fellow learners to further improve his/her own
knowledge. These two stages are repeated till the TLBO pro-
ceeds toward the global best knowledge (global solution).

2.3.1 Teaching phase

The teacher keeps on trying to transfer his knowledge to
the remaining learners, to the best of his capacity. Transfer
of the teacher’s knowledge can be utilized to improve the
remaining learners/variables. It is mathematically expressed
by Eq. (14). This can be illustrated with an example that
to fulfill the objective of improving the knowledge of the
students of a particular class in a particular subject. The stu-
dent having the maximummarks is considered as the teacher
(XTeacher,i ). The teacher’s duty is to improve the old marks
(XHMS

old,i ) of other students to new marks (XHMS
new,i ) toward the

meanmarks (Mi ) of that particular subject/variables utilizing
his own marks (XTeacher,i ). So, a random process takes place

to improve the marks of the remaining students of the class.
For each individual, new marks are generated by:

XHMS
new,i � XHMS

old,i + rand ∗ (XTeacher,i − TFMi
)
, (14)

where ‘TF’ is defined as ‘Teaching factor’ which is randomly
selected as either 1 or 2 (Rao et al. 2011). The newly gener-
ated solution vector (Xnew) is accepted if its fitness (marks)
is better than the old solution vector. In Eq. (14), XHMS

old,i and

XHMS
new,i are the old and the new variables, respectively, while

‘rand’ is a randomly generated number between 0 and 1.

2.3.2 Learner phase

Learners’ knowledge can be further improved by one’s own
effort. Students of the class coordinate with each other ran-
domly which enhances their perceptive about a particular
subject. Mathematically, the learner phase can be explained
as per Eqs. (15, 16):

XHMS
new,i � XHMS

old,i + rand ∗ (X j − Xk
)

if F
(
X j

)
< F(Xk),

(15)

XHMS
new,i � XHMS

old,i + rand ∗ (Xk − X j
)

if F
(
X j

)
> F(Xk),

(16)

where ‘i’, ‘j’, ‘k’ are different learners in the class. F(X)
shows the fitness/knowledge (marks) of a particular learner
in a subject. If the fitness corresponding to the set of ‘XHMS

new,i ’

is better than that corresponding to the set of ‘XHMS
old,i ’, a set

of XHMS
new,i is considered; otherwise, it is discarded.

So these two phases, i.e., teaching and learning phases,
constitute an iteration. Several iterations of knowledge trans-
ferring and sharing ensure the global solution/best knowledge
by the TLBO algorithm. Although this algorithm is almost
parameter independent compared to other population-based
optimization techniques, premature convergence may occur
due to strong localmaxima/minima trappings formultimodal
problems.

2.4 Harmony search algorithm (HSA)

HSAmimics the improvisation of music players. The sounds
for better aesthetic estimation can be improved throughmore
and more practice just as the value of an objective function
improves iteration by iteration.

The steps of the HSA are as follows:

Step 1 Initialize the harmony memory (HM) and algorithm
parameters

At the beginning, a matrix of HM is formed, where each
row represents a set of decision variables (XHMS

new,i ) for the
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objective function F (XHMS
new,i ) defined for the optimization

problem. Each decision variable XHMS
new,i is computed using

Eq. (17).

XHMS
new,i � Xi min + rand ∗ (Xi max − Xi min)

∀i,� 1, 2, 3 . . . N (number of variables), (17)

where Xi min and Xi max are the minimum and the maximum
value of marks (variable), respectively.

Harmonic memory size (HMS) represents numbers of the
set of decision variables in HM, harmony memory consid-
eration rate (HMCR) represents the probability of the new
value of decision variables for HM, pitch adjustment rate
(PAR) represents the probability of shifting the decision vari-
ables to neighboring values within the possible range and NI
represents the stopping criterion.

HM �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1
1 X1

2 X1
3 · · · X1

N−1 X1
N

X2
1 X2

2 X2
3 X2

N−1 X2
N

...
...

... · · ·
...

...

XHMS−1
1 XHMS−1

2 XHMS−1
3 · · · XHMS−1

N−1 XHMS−1
N

XHMS
1 XHMS

2 XHMS
3 XHMS

N−1 XHMS
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

Step 2 Improvise new harmony

Anewset of decision variables is generated based on the three
parameters: (1) HMCR, (2) PAR and (3) random selection.
The generation of the new decision variable of HM is known
as improvisation. The probability of HMCRvaries between 0
and 1. It is the probability of choosing the variable value from
the HM, while (1-HMCR) is the probability of selecting the
variable from the possible range of values, as given below:

if rand < HMCR

XHMS
new,i ← XHMS

old,i ∈ {
X1
i X2

i · · · · · · · · · XHMS
i

}
(19)

else

XHMS
new,i � Xi min + rand ∗ (Xi max − Xi min) where

i,� 1, 2, 3 . . . N

end (20)

HMCR decides whether to adjust the pitch of each deci-
sion variable or not. After considering the decision variable
by HMCR, the pitch adjustment is decided by PAR as given
below:

if rand < PAR

XHMS
new,i ← XHMS

old,i + rand ∗ BW (21)

Else

XHMS
new,i ← XHMS

old,i − rand ∗ BW

end (22)

where BW is known as the bandwidth. The value of BW lies
between 0 and 1.

Step 3 Update harmony memory

If the new set of decision variables, i.e.,

XHMS
new � {

XHMS
1 XHMS

2 · · · · · · · · · XHMS
N

}
(23)

gives better objective function F (XHMS
new ) values than the

worst set of decision variables in HM, the worst set of deci-
sion variables is replaced by the new set of decision variables.

Step 4. Termination

The HSA keeps on repeating steps 1, 2 and 3, till maximum
number of improvisation (NI) is met, which is set during the
parameter initialization process.

There are several modifications proposed in TLBO and
HS, so that the individual algorithm has better exploration
and exploitation capabilities before hybridization of TLBO
and HS is carried out.

3 Alterations in the TLBO and HS algorithms

3.1 Alterations in the TLBO algorithm

The following alterations are adopted to enhance the global
convergence of the TLBO and evade strong local min-
ima/maxima trapping.

3.1.1 Alteration in teaching phase

In basic TLBO, the new set of variables is based on the mean
marks of the particular subject and the teacher’s knowledge.
In the suggested algorithm, the solution vector with the worst
fitness is considered instead of the mean (Mi). This ensures
knowledge improvement of the weakest student of the class,
resulting in better knowledge transfer to every student of the
class. Thus, the new generated vector ‘XHMS

new,i ’ will have a
higher probability of reaching theglobal solution/knowledge.

This modification can be mathematically represented by
Eq. (24):

XHMS
new,i � XHMS

old,i + rand ∗ (XTeacher,i − TFXworst,i
)
, (24)

where Xworst,i is the vector having the worst fitness function
within the population.
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3.1.2 Alteration in TF

‘TF ’ is randomly considered as 1 or 2; i.e., knowledge trans-
ferred from the best learner (teacher) to the remaining learner
is either 0% or 100%, respectively. But practically knowl-
edge transfer could be in between 0–100%. Hence, the ‘TF’
is altered between 0 and 1, to account for practical knowledge
transfer, as given below:

TF �
(
1/
rand

)a
, (25)

where ‘a’ is defined as the teaching factor rate. High value
of ‘a’ ensures larger search space which increases the prob-
ability of reaching the global solution. It is observed from
several case studies (Sect. 6) that the value of ‘a’ between
0–5 ensures global solution.

3.1.3 Alteration in the HS algorithm

In basic HSA, the parameters HMCR, PAR and BW are
constant values. The proposed algorithm adopts dynamic
strategies to select the values of HMCR and PAR (Yadav
et al. 2012). Dynamic selection of HMCR and PAR provides
better balance in exploration and exploitation of search space
in the hybrid algorithm:

HMCR � HMCRmax − (HMCRmax − HMCRmin) ∗
(
current iteration

max iteration

)
,

(26)

PAR � PARmax − (PARmax − PARmin) ∗
(
current iteration

max iteration

)
, (27)

BW � BWmax ∗ exp

[
ln

(
BWmax

BWmin

)
∗ current iteration

max iteration

]
, (28)

where HMCRmin and HMCRmax are the minimum
and the maximum values of HMCR, respectively,
PARmin and PARmax are the minimum and the maximum
values of PAR, respectively, while BWmin and BWmax are
the minimum and maximum values of BW, respectively.

4 Proposed HTLBO algorithm

It is observed that the characteristics of TLBO and HS
algorithms are complimentary to each other; i.e., HSA has
excellent exploratory behavior but slow convergence while
TLBO exhibits very good exploitation characteristics and
fast convergence. Hence, the proposedmethod aims to utilize
the merits of both algorithms and reach the global solution
quickly. So, for themaximumexploration of the search space,
initially, HSA is employed and then exploitation of the search
space is donewith the help of TLBO. In the proposedmethod,
selection of the teaching phase of the TLBO algorithm and

local pitch adjustment by HMCR of HSA are based on the
ratio autoselection rate (ASR) defined as

ASR � Best fitness ofHM

Worst fitness of HM
(29)

As the value of ASR changes in each iteration, ASR is
dynamic in nature and is self-adaptive for the selection of
either of these two algorithms for the improvisation of the
harmony vector. For minimization problems, as the value of
best fitness will always be less than the worst fitness value,
ASR will be less than 1. For maximization problems, ASR
is obtained by minimizing the inverse of the fitness function
values, which will also lead to ASR less than 1. Initially,
ASR will be low which gives preference to the HS algorithm
for better exploration of the search space. As ASR moves
toward unity, teaching phase is selected for better tuning of
the variables.

To minimize the demerits of HS and TLBO, the HTLBO
initially utilizes the exploration characteristics of HS. Sub-
sequently, the TLBO algorithm is implemented for better
tuning and fast convergence of the solution vector. The fol-
lowing steps are considered for the HTLBO algorithm.

A. Target vector selection: XHMS
new � XHMS

old is the harmony
vector.

B. Generation of target vector XHMS
new,i in each iteration is

comprised of four steps.

Step 1 Autoselection rate

The selection of teaching phase or HMCR for the generation
of target vector XHMS

new depends upon the autoselection rate.
ASR is found using Eq. (29).

Step 2 Teaching phase/harmony memory consideration rate
and local pitch adjustment/mutation phase

WhenASR is less than ‘r’, (‘r’ is a number between 0 and 1),
the teaching phase is selected and Eq. (24) is used to generate
XHMS
new,i . If ASR is more than ‘r,’ HS algorithm is selected for

the generation of XHMS
new . The probability of tuning the target

vector is decided by the HMCR. If the random number is less
than HMCR, local pitch adjustment of XHMS

new,i is carried out
by using Eq. (27); otherwise, mutation phase is carried out
according to Eq. (20) to generate the new target vector XHMS

new
in the feasible space. If the fitness of the target vector XHMS

new
is better than that of the worst fitness vector, then Xworst,i is
replaced by XHMS

new .
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Fig. 2 Flowchart for the
proposed HTLBO algorithm Start

Run Base case load flow and find out 
Active power Loss

Enter the Type and number of DG

Initialize the optimization parameters

Randomly gererate the initial population
And find its objective function

Ite=1

Find ASR

If ASR> r Teaching Phase

If rand<HMCR

Mutation Phase

Local Pitch adjustment

Learning Phase

If Xnew is better than Xold

Termination criterion satisfied

End

Update HM 

Ite = Ite + 1

YES

YES

YES

YES

NO

NO

NO

NO

Update HM

Step 3 Learning phase

This phase enhances the knowledge (fitness) of the target
vector XHMS

new,i by interacting with the randomly selected har-

mony vector from harmony memory. Improvement of XHMS
new

is done according to Eqs. (15, 16). If the fitness of the target
vector XHMS

new is better than the fitness of the worst fitness
vector, then Xworst,i is replaced by XHMS

new .

Step 4 Dynamic adjustment of parameters

For the efficient operation of the HTLBO algorithm, the
HMCR, PAR and the BW parameters are dynamically tuned,
in each iteration, as per Eqs. (26), (27) and (28).

C. If the target vector generated has better fitness, then the
HM is updated; otherwise, the next iteration is started. If the
number of iterations satisfies the condition for termination,

the algorithm is terminated and the best solution vector of
HM is selected as the solution of the objective function.

The HTLBO algorithm parameters are detailed in Table 5.
The above steps of the proposed algorithm can be well

understood by the flowchart shown in Fig. 2.

5 Case studies and results

The suggested HTLBO algorithm is first validated on stan-
dard mathematical benchmark functions. The HTLBO algo-
rithm is tested for 20, 30 and 50 variables, and the results
are shown in Table 1. Subsequently, the suggested HTLBO
was used for optimal allocation of Type 1 DGs in the IEEE
33-bus, 69-bus and 118-bus RDS using 2-constraints method
for the MOF. The MOF considers all the three SOFs simul-
taneously and results in better F1, F2 and F3 than TLBO and
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Table 1 Mathematical benchmark functions (Rao et al. 2011)

S. no. Function Formulation D Search
range

1. Sphere F(x)min �
D∑
i�1

x2i 30 [−100,
100]

2. Schwefel
2.22

F(x) �
D∑
i�1

|xi | +
n∏

i�1
|xi | 30 [−10, 10]

3. Schwefel 1.2 F(x) �
D∑
i�1

(
i∑

j�1
x j

)2

30 [−100,
100]

4. Schwefel
2.21

F(x) � max
1 ≤ i ≤ D

|xi | 30 [−100,
100]

5. Rosenbrock F(x)min �
D∑
i�1

[
100

(
x2i − xi+1

)2
+ (1 − xi )2

]
30 [−2.048,

2.048]

6. Step 2 F(x) �
D∑
i�1

([xi + 0.5])2 30 [−100,
100]

7. Rastrigin F(x)min �
d∑

i�1

[
x2i − 10 cos(2πxi ) + 10

]
30 [−5.12,

5.12]

8. Ackley F(x)min � −20e

(
−0.2

√
1
D

D∑
i�1

x2i

)

− e

(
1
D

D∑
i�1

cos(2πxi )

)

+ 20 + e1 30 [−32.768,
32.768]

9. Griewank F(x)min � 1
4000

D∑
i�1

x2i −
D∏
i�1

cos
(

xi√
i

)
+ 1 30 [−600,

600]

10. Penalized

F(x) � π

D

[
10 sin2(πy1) +

D−1∑

i�1

(yi − 1)2
{
1 + 10 sin2(πyi+1)

}
+ (yD − 1)2

]

+
D∑

i�1

u(xi , 10, 100, 4)

30 [−50, 50]

u(xi , ak,m) �
⎧
⎨

⎩

k(xi − a)m , xi > a,

0, −a ≤ xi ≤ a, yi � 1 + 1/4(xi + 1)
k(−xi − a)m xi < −a

11. Penalized 2

F(x) �
[
0.110 sin2(πx1) +

D−1∑

i�1

(xi − 1)2
{
1 + sin2(3πxi+1)

}

+(xD − 1)2 +
(
1 + sin2(2πxD)

)]
+

D∑

i�1

u(xi , 5, 100, 4)

30 [−50, 50]

u(xi , ak,m) �
⎧
⎨

⎩

k(xi − a)m , xi > a,

0, −a ≤ xi ≤ a
k(−xi − a)m xi < −a

QOTLBO, respectively, as shown in subsequent tables. The
proposed HTLBO algorithm was implemented in MATLAB
R2015a environment on a Intel i5-4570, 3.2 GHz processor,
4 GB RAM, desktop PC.

5.1 Test case 1: Mathematical benchmark validation

The performance of the proposed HTLBO algorithm
is validated on 11 mathematical benchmark test functions
(Martín García and Gil Mena 2013) as given in Table 1. A

comparison of the proposed HTLBO vis-à-vis other algo-
rithms (Rao et al. 2011) is shown in Table 2. It is observed
that the proposed method gives the best results with Penal-
ized, Penalized 2 and Rosenbrock functions, while it yields
results identical to ITLBO (improved TLBO) with Sphere,
Schwefel 2.22, Schwefel 1.2, Griewank, Ackley and Rastri-
gin functions. However, it is observed that for the Schwefel
2.21 and Step 2 functions, ITLBO gives the best result.
For the purpose of demonstration, Pareto sets are obtained
for some multi-objective test functions (unconstrained and
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Table 3 Mathematical benchmark functions for multi-objective functions (Deb 2001)

S. no. Function Objective function D Search range Comment

1 SCH f1(x) � x2

f2(x) � (x − 2)2
1 [−103, 103] Convex

2 KUR f1(x) �
n−1∑
i�1

[
−10 exp

(
−0.2

√
x2i + x2i+1

)]

f2(x) �
n−1∑
i�1

(|xi |0.8 + 5 sin x3i
)

3 [−5, 5] Nonconvex

3 ZDT3 f1(x) � x1
f2(x) � g(x)[1 − √

x1/g(x) − x1
g(x) sin(10πx1)

g(x) � 1 + 9

(
n∑

i�2
xi

)
/(n − 1)

30 [0, 1] Convex,
disconnected

4 ZDT4 f1(x) � x1
f2(x) � g(x)

[
1 − √

x1/g(x)
]

g(x) � 1 + 10(n − 1) +
n∑

i�2

[
x2i − 10 cos(4πxi )

]

10 x1 ∈ [0, 1]
xi ∈ [−5, 5],i � 2, 3 . . . , n

Nonconvex

5 BNH f1(x) � 4x21 + 4x22
f2(x) � (x1 − 5)2 + (x2 − 5)2

Subject to
C1(x) � (x1 − 5)2 + x22 ≤ 25,
C2(x) � (x1 − 8)2 + (x2 + 3)2 ≥ 7.7

2 0 ≤ x1 ≤ 5,
0 ≤ x2 ≤ 3

Convex

6 TNK f1(x) � x1
f2(x) � x2
Subject to
C1(x) � x21 + x22 − 1 − 0.1 cos

(
16 tan−1(x1/x2)

) ≥ 0,
C2(x) � (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

2 0 ≤ x1 ≤ π,

0 ≤ x2 ≤ π

Discontinuous

7 OSY f1(x) �
−[

25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2
]

f2(x) � x21 + x22 + x23 + x24 + x25 + x26
Subject to
C1(x) � x1 + x2 − 2 ≥ 0,
C2(x) � 6 − x1 − x2 ≥ 0
C3(x) � 2 + x1 − x2 ≥ 0
C4(x) � 2 − x1 + 3x2 ≥ 0
C5(x) � 4 − (x3 − 3)2 − x4 ≥ 0
C6(x) � (x5 − 3)2 + x6 − 4 ≥ 0

6 0 ≤ x1, x2, x6 ≤ 10
1 ≤ x3, x5 ≤ 5
0 ≤ x4 ≤ 6

Continuous

constrained) shown in Table 3, when HTLBO is integrated
with non-dominating sorting algorithm (Deb 2001). From
Fig. 3a, it is observed that for unconstrained problems,
HTLBO yields similar results with SCH and KUR, infe-
rior results with ZDT3 and better results with ZDT4, as
compared to NSGA-II (Deb 2001). For constrained prob-
lems, HTLBO gives similar result with TNK, while better
results are obtained with BNH and OSY than NSGA-II, as
shown in Fig. 3b. Table 4 shows the impact of variations of
HTLBO parameters on the solution of the Sphere function.
The parameters considered are the teaching factor rate ‘a’,
HMS, maximum iteration (NI) and the number of variables
(X). It is observed from Table 4 that for HMS�10 and max-
imum iteration�6000, HTLBO algorithm gives best results
for all ‘a.’ Similarly, for HMS�20 and 30, HTLBO gives
best results with ‘a �0.2.’ For HMS�40 and 50, HTLBO
gives best results with ‘a �0.1’ while considering number

of variables�20. On the other hand, with number of vari-
ables�30 and 50, ‘a �0.2’ gives better result.

5.2 Test case 2: Selection of optimal size
and location of distributed generation (DG)
resources in different RDSs

5.2.1 IEEE 33-bus RDS

The suggested HTLBO is first implemented for optimal allo-
cation of DGs in the IEEE 33-bus RDS using two methods.
The first one is the weighted sum method (Sultana and Roy
2014), where theMOF is formulated as aweighted sumof the
three SOFs as detailed in ‘Appendix.’ The second approach
comprises the modification of the MOF into a SOF using the
2-constraints method (Deb 2001). In both the methods, the
objective is simultaneous minimization of the network active
power losses and voltage deviation together with VSI maxi-
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mization. The detailed network data are given in Baran and
Wu (1989). It has 33 nodes, three laterals, 37 branches with
five tie switches normally kept open. The nominal voltage
rating is 12.66 kV. The nominal load demand of the RDS is
3.72 MW and 2.3 MVAr, respectively. The base case total
active power losses are 210.998 kW while the total reactive
power losses are 143 kVAr. The base case VSI of this RDS

is 0.667168 (Injeti and Prema Kumar 2013). The network
base KVA is 1000 KVA (Baran and Wu 1989). Three DGs
(Type 1) are selected for optimal allocation in this RDS. The
HTLBO parameters are selected as shown in Table 5.

The weight factors ‘b1’, ‘b2’ and ‘b3’ (detailed in
‘Appendix’) corresponding to the three SOFs are shown in
Table 6 (Sultana and Roy 2014). As shown in Table 6, when
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Table 5 HTLBO algorithm
parameters

Parameter Values

a 0.2

HMCRmin 0.7

HMCRmax 0.95

PARmin 0.3

PARmax 0.5

r 0.9

BWmin 0.0001

BWmax 0.1

Maxiteration 500

HMS 90

b1 �1.0 b2 �0.6 and b3 �0.0.35, the suggested HTLBO
shows reduction in the active power losses to 82.815 kW
(from 210.998 kW in the base case). On the other hand,
results of MOF with 2-constraints method give simultane-
ous improvement in all three SOFs, i.e., F1, F2 and F3

(97.5330 kW, 0.0009 p.u. and 0.9653 p.u., respectively), in
comparison with both TLBO and QOTLBO, as shown in
Table 6. Figure 4a shows the voltage profile enhancement
of the IEEE 33-bus RDS with DGs vis-a-vis that without
DG. From Fig. 4a, minimum network voltage magnitude of
0.9836 p.u. at node 33 is noticed in the presence of DGs. The
network voltage profile shows a remarkable improvement
than that without DG (voltage magnitude of 0.9038 p.u. at
bus 18).

Figure 3b shows the convergence characteristics of the
MOF corresponding to the TLBO, QTLBO and the proposed
HTLBO algorithm. It is observed from Fig. 4b that the pro-

posed algorithm (HTLBO) has the lowest fitness value, i.e.,
0.4590 p.u., and the fastest convergence rate.

5.2.2 69-bus RDS

The proposed algorithm (HTLBO) is now implemented on
the IEEE 69-bus RDS for optimal allocation of DGs. Again,
three DGs (Type 1) have been considered. Similar to the
case of the IEEE 33-bus RDS above, theMOF (forminimiza-
tion of the network active power losses and voltage deviation
together with maximization of VSI) is evaluated using both
the weighted sum method and the 2-constraints method. The
HTLBO parameters are again selected as shown in Table 5.
The detailed network data are given inDas et al. (1994). It has
69 nodes, seven laterals, 73 branches with five tie switches
normally kept open. The nominal voltage rating is 12.66 kV.
Nominal load demand on theRDS is 3.8MWand2.69MVAr.
The base case real and reactive power losses are 224.9 kW
and 102.13 kVAr, respectively. The base case VSI of this
RDS is 0.6833 (Injeti and Prema Kumar 2013). The network
base is 1000 KVA (Baran and Wu 1989).

As shown in Table 7, when b1 �1.0, b2 �0.6 and b3
�0.0.35, HTLBO shows reduction in active power losses to
76.938 kWand improvement in theVDI to 0.0006 p.u.On the
other hand, results of MOF with 2-constraints method give
simultaneous improvement in all the three SOFs (F1, F2 and
F3) to 79.431 kW, 0.0003 p.u. and 0.9770 p.u., respectively,
in comparison with both TLBO and QOTLBO, as shown in
Table 6. Figure 5a shows the voltage profile enhancement of
the IEEE 69-bus RDS with DGs over that without DG. From
Fig. 5a, it is observed that the minimum network voltage

Table 6 Simulation results for
optimal DG allocation in 33
BUS RDS using TLBO,
QOTLBO and HTLBO

TLBO (Sultana and
Roy 2014)

QOTLBO (Sultana
and Roy 2014)

HTLBO HTLBO

Penalty factors (b1 �1.0, b2 �0.6, b3 �0.0.35) 2-Constraints
methods

Optimal DG Optimal DG Optimal DG Optimal DG

Location Size
(MW)

Location Size
(MW)

Location Size
(MW)

Location Size
(MW)

12 1.1826 13 1.0834 13 1.0229 13 1.2043

28 1.1913 26 1.1876 25 0.9016 25 0.8573

30 1.1863 30 1.1992 30 1.4567 30 1.6480

Ploss
(kW)

124.695 103.403 82.815 97.5330

VDI
(p.u.)

0.0011 0.0011 0.0026 0.0009

VSI−1 1.0523 1.0493 1.0684 1.0383

VSI 0.9503 0.9530 0.9360 0.9653

MOF
(p.u.)

0.4936 0.4713 0.4590 –

Bold indicates the better obtained result
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Fig. 4 a Bus voltage profile of the 33-bus radial distribution system without and with DG. b Convergence characteristics of 33-bus RDS for
multi-objective function for TLBO, QOTLBO and HTLBO

magnitude of 0.9942 p.u. occurs at bus 56 in the presence of
DGs. Thus, with DGs, the network voltage profile shows a
remarkable improvement than that without DG (0.9092 p.u.
at bus 65). Figure 5b shows the convergence characteristics of
the MOF corresponding to the TLBO, QTLBO and the pro-
posed HTLBO algorithm. It is observed from Fig. 5b that the
proposed algorithm (HTLBO) has the lowest fitness value,
i.e., 0.4389 p.u., and the fastest convergence rate.

5.2.3 118-bus RDS

The proposed algorithm (HTLBO) is now implemented on
the IEEE 118-bus RDS for optimal allocation of DGs. Seven
DGs (Type 1) have been considered. Similar to the case of
the IEEE 33- and 69-bus RDS above, the MOF (for min-
imization of the network active power losses and voltage
deviation together with maximization of VSI) is evaluated
using both the weighted sum method and the 2-constraints
method. TheHTLBOparameters are again selected as shown
in Table 5. The detailed network data are given in Zhang et al.
(2007). It has 119 nodes, 16 laterals, 132 branches with 15
tie switches normally kept open. The nominal voltage rating
is 11 kV. Nominal load demand on the RDS is 22.709 MW
and 17.041 MVAr. The base case real and reactive power

losses are 1298.0916 kW and 978.736 kVAr, respectively.
The base case VSI of this RDS is 0.569734 (Injeti and Prema
Kumar 2013). The network base is 100 MVA (Zhang et al.
2007).

As shown in Table 8, when b1 �1.0, b2 �0.6 and b3 �
0.0.35, HTLBO shows improvement in both VDI and VSI as
compared to both TLBO and QOTLBO, although the active
power losses are inferior to both TLBO and QOTLBO. On
the other hand, results of MOF with 2-constraints method
give simultaneous improvement in all the three SOFs (F1,
F2 and F3) to 658.756 kW, 0.0225 p.u. and 0.8978 p.u.,
respectively, in comparison with both TLBO and QOTLBO,
as shown in Table 8. Figure 4a shows the voltage profile
enhancement of the IEEE 118-bus RDS with DGs over that
without DG.

From Fig. 6a, it is observed that the minimum network
voltage magnitude of 0.97344 p.u. occurs at node 56 in the
presence of DGs. The network voltage profile again shows a
remarkable improvement over that without any DG (voltage
magnitude of 0.86879 p.u. at bus 80). Figure 6b shows the
convergence characteristics of theMOF corresponding to the
TLBO, QTLBO and the proposed HTLBO algorithm. It is
observed from Fig. 6b that the proposed algorithm (HTLBO)
has the lowest fitness value of 0.4104 p.u.
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Table 7 Simulation results for
MOF using TLBO, QOTLBO
and HTLBO of 69-bus RDS

TLBO (Sultana and
Roy 2014)

QOTLBO (Sultana
and Roy 2014)

HTLBO HTLBO

Penalty factors (b1 �1.0, b2 �0.6, b3 �0.0.35) 2-Constraints
methods

Optimal DG Optimal DG Optimal DG Optimal DG

Location Size
(MW)

Location Size
(MW)

Location Size
(MW)

Location Size
(MW)

13 1.0134 15 0.8114 12 0.9424 12 0.9956

61 0.9901 61 1.1470 25 0.2306 20 0.2398

62 1.1601 63 1.0022 61 2.0508 61 2.1123

Ploss
(kW)

82.172 80.585 76.938 79.431

VDI
(p.u.)

0.0008 0.0007 0.0006 0.0003

VSI−1 1.0262 1.0236 1.0334 1.0235

VSI 0.9745 0.9769 0.9677 0.9770

MOF
(p.u.)

0.4418 0.4393 0.4389 –

Bold indicates the better obtained result
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Fig. 5 a Voltage distribution of 69-bus radial distribution system with and without DG. b Convergence characteristics of 69-bus RDS for multi-
objective function for TLBO, QOTLBO and HTLBO
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Table 8 Simulation results for
MOF using TLBO, QOTLBO
and HTLBO of 118-bus RDS

TLBO (Sultana and
Roy 2014)

QOTLBO (Sultana
and Roy 2014)

HTLBO HTLBO

Penalty factors (b1 �1.0, b2 �0.6, b3 �0.0.35) 2-Constraints
method

Optimal DG Optimal DG Optimal DG Optimal DG

Location Size
(MW)

Location Size
(MW)

Location Size
(MW)

Location Size
(MW)

35 3.2462 43 1.5880 25 2.0833 22 2.0526

48 2.8864 49 3.8459 43 1.2457 44 1.1217

65 2.4307 54 0.9852 52 4.9877 51 4.5526

72 3.3055 74 3.1904 80 2.6429 77 2.6456

86 1.9917 80 3.1632 82 34.6417 81 4.6412

99 1.6040 94 1.9524 93 3.8135 93 3.7620

111 3.5984 111 3.6013 115 3.2830 115 3.2836

Ploss
(kW)

705.8980 677.5881 774.946 658.756

VDI
(p.u.)

0.0327 0.0233 0.0172 0.0225

VSI−1 1.1699 1.1372 1.1090 1.0940

VSI 0.8548 0.8794 0.9017 0.8978

MOF
(p.u.)

0.4361 0.4187 0.4062 –

Bold indicates the better obtained result
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Fig. 6 a Voltage distribution of 118-bus radial distribution system with and without DG. b Convergence characteristics of 118-bus RDS for multi-
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6 Conclusions

A HTLBO technique has been presented in this paper. Its
computational capability with continuous variables is first
demonstrated on standard mathematical benchmark func-
tions in the form of mean value and standard deviations.
Subsequently, the proposed algorithm is implemented for
optimal allocation of multiple DGs in the IEEE 33-, 69- and
118-bus RDS to validate their capability with mixed-integer
variables (i.e., DGs sizes belong to continuous domain while
DG locations are in the discrete domain). The allocation of
DGs in RDS is carried out using two methodologies, i.e.,
weighted sum approach and 2-constraints method, to solve
the MOF, which includes the minimization of real power
losses and voltage deviations along with maximization of
VSI. The 2-constraints approach yields better results than
the weighted sum approach in all the objectives over TLBO
and QOTLBO. The results authenticate the global conver-
gence competence of the HTLBO. The impact of the various
parameters of the proposed algorithm is also investigated. It
is observed that for a certain level of DGpenetration, a proper
tuning of the algorithm parameters ensures global solution.
It is also observed that optimal allocation of DGs results in
substantial performance improvement of RDS, along with
better network congestion management.
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Appendix

AMOFoptimizes all the SOFs at the same time, subject to the
equality and the inequality constraints. In this proposedwork,
a MOF (Sultana and Roy 2014) simultaneously minimizes
F1 and F2 along with maximization of F3.

MOF � Minimize[b1 ∗ F1 + b2 ∗ F2 + b3 ∗ (1/F3)] (A.1)

If ‘m’ is total number of objective functions and bi are penalty
coefficients,

bi ∈ ([0, 1]) and
m∑

i�1

bi � 1

If DGs are allocated in RDS with the purpose of meeting
a particular objective, the corresponding penalty coefficient
value is increased. The priority of objective function in the
MOF decides the value of the penalty coefficient. However,
the sum of the penalty coefficients must be unity for a nor-
malized objective function.
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