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Abstract
Traditionally, the edge detection process requires one final step that is known as scaling. This is done to decide, pixel by
pixel, if these will be selected as final edge or not. This can be considered as a local evaluation method that presents practical
problems, since the edge candidate pixels should not be considered as independent. In this article, we propose a strategy to
solve these problems through connecting pixels that form arcs, that we have called segments. To accomplish this, our edge
detection algorithm is based on a more global evaluation inspired by actual human vision. Our paper further develops ideas
first proposed in Venkatesh and Rosin (Graph Models Image Process 57(2):146–160, 1995). These segments contain visual
features similar to those used by humans, which lead to better comparative results against humans. In order to select the
relevant segments to be retained, we use fuzzy clustering techniques. Finally, this paper shows that this fuzzy clustering of
segments presents a higher performance compared to other standard edge detection algorithms.

Keywords Edge detection · Global evaluation · Supervised classification · Fuzzy clustering · Edge segments

1 Introduction

In the last decades, edge detection (Marr and Hildreth 1980)
has been considered one of the main techniques for image
processing. This technique aims to identify significant differ-
ences in intensity values of an image. Human vision works
similarly, and this important part of the visual process has
been called primal sketch (Marr 1982).

Edge detection is quite useful in many fields. For instance,
for the recognition of different pathologies in medical diag-
noses (Bogunovic et al. 2014), a field has grown in recent
years. It is also used in images taken by satellites or drones—
remote sensing—for agricultural purposes. Some other rel-
evant fields of application are the military industry, law
enforcement, among others (Monga et al. 1991; Fathy and
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Siyal 1995; Zielke et al. 1993; Pal and King 1983; Bustince
et al. 2009; Perfilieva et al. 2016; Daňková et al. 2011).

Due to the rapid development of computers, computer
vision, which is the computational approach to human vision,
emerged as a new way of understanding and explaining how
human vision works. Computer vision is based on the under-
lying principle that processes involved in human vision work
like a computer does, or that at least that computers can
imitate the way that human vision works (Goldstein 2009).
The theory of edge detection was proposed in an article by
Marr andHildreth (1980). This new computational technique
allowed different algorithms to be developed. An example of
this is Canny’s (1986). These algorithms were based in dif-
ferent operators—functions—that worked over the picture
elements—pixels—of an image.

Edge detectors are image processing algorithms that
analyze the spectral information of an image. This com-
monly means analyzing each pixel’s brightness intensity
(Bogunovic et al. 2014). When a variation between two
neighboring pixels in the image is located, an edge of
the region (or boundary) containing one of these pixels
is detected (Guada et al. 2016). These boundaries can be
depicted on the digital image drawing a white line onto these
selected pixels and setting the remaining ones as a black
background.
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In the literature, many edge detectors have been devel-
oped. Some of them tried to detect if a certain pixel could
be an edge by using only information provided by adjacent
pixels—neighbors, while others used a different strategy. The
decision of what should become a definitive edge depends on
the strength of luminosity gradient of each edge candidate
pixel (Sect. 2.1). This decision is taken in the second step of
the scaling known as thresholding process, and it is tradition-
ally made pixel by pixel. Then, this decision strategy could
be considered as a local edge evaluation (Kitchen andRosen-
feld 1981). The approach presented in Canny (1986) can
be placed between a local and a global evaluation. Canny’s
approach works with two thresholds, one for the lower bound
of intensity and another for the upper bound—this process is
known as Hysteresis. This technique can be viewed as going
one step beyond the standard of its time, as the edge detec-
tion process traditionally consisted of a simple pixel-by-pixel
evaluation. Nevertheless, it seems that Canny’s technique
could be improved (Venkatesh and Rosin 1995, p. 149). For
example, the behavior inside the noisy areas of the image—
mostly negligible for humans—may change the value of the
thresholds applied and then affect to the selection of defini-
tive edges.

Due to the limitations of local edge evaluation, the global
evaluation approach emerged as a more natural strategy.
In Venkatesh and Rosin (1995), the idea of edge segment
is developed (Sect. 2.1). In Canny (1986) and Kitchen and
Rosenfeld (1981), it is employed a thresholding process that
is based on more global criteria. Canny’s method tended to
connect adjacent edges as far as theywere over a lower bound.
This continuity allowed the edges to be configured in a more
organic way. In practice, this usually leads to a successful
discrimination of fragments of contours that belong to the
objects of the image. Meanwhile, Lowe (1987) set out a dif-
ferent strategy which consisted in using the mean intensities
of the pixels that made up the edge list. In Venkatesh and
Rosin (1995), the concept of edge list was expanded with the
use of another key feature: length.

Thiswork is drawn on the use of edge segments (Sect. 2.1),
and the methodology for creating them was introduced in
Flores-Vidal et al. (2017) although it is expanded in this
paper. From these edge segments, different features were
extracted (Sect. 3.1). These were useful to discriminate the
good from the bad edges. The set of good segments is
expected to be similar to the set of those detected by the
human in the sketches of the ground truth images (University
2017; Martin et al. 2001). Thus, the quality of the compara-
tives between our algorithm’s output and the ground truth’s
is expected to be good.

The next section of this paper is dedicated to the prelimi-
naries,which consists in two subsections, a basic introduction
to edge detection methodology and, more specifically for our
proposal, the Venkatesh–Rosin strategy based on segments

(Venkatesh and Rosin 1995). Section 3 focuses on our pro-
posal, an algorithm based on two main steps, the first one
about building edge segments with different features and the
second one based on selecting the good segments through
fuzzy clustering techniques. The last two sections are dedi-
cated to the comparatives and results, and the final comments.

2 Preliminaries

In this section, some classical concepts of image processing
and the edge extraction problemare introduced. Let us denote
by I a digital image, and by (i, j) the pixel coordinates of
the spatial domain. For notational simplification, the coordi-
nates are integers, where each point (i, j) represents a pixel
with i = 0, . . . , n and j = 0, . . . ,m. Therefore, the size of
an image, n × m, equals the number of its horizontal pix-
els multiplied by its number of vertical ones. Let us denote
by Ii, j the spectral information associated with each pixel
(i, j) (González and Woods 2008). The value range of this
information will depend on the type of image considered, as
shown in Fig. 1.

– Binary map: Ii, j ∈ {0, 255}.
– Grayscale: Ii, j ∈ {0, 1, . . . , 255}.
– RGB: Ii, j ∈ {0, 1, . . . , 255}3. (R = Red; G = Green
and B = Blue).

Most edge detection algorithms are built as a combination
of four sequential sub-tasks (López-Molina et al. 2013):

1. ConditioningDuring this step, the image is well prepared
for the next phases of edge detection. Traditionally, this
consists in smoothing, de-noising, or other similar proce-
dures (Basu 2002; Morillas et al. 2009). In practice, this
phase basically helps making the edges easier to detect.
After the conditioning phase, the resulting image is a
grayscale image that we will denote as I s .

2. Feature extraction Once the image is well prepared, the
spectral differences between adjacent pixels are obtained
(see for example Bezdek et al. 1998; Bustince et al. 2009;
Kim et al. 2004). Then, the output of these differences is
computed for each pixel (i, j) based on an operator func-
tion. For instance, if the operator is the one proposed by
Sobel, for each pixel two values are obtained. Each one of
these values represents the spectral variation (luminosity
variation in grayscale images) in vertical and horizontal
directions as shown below: Given a pixel with coordi-
nates (i, j) and i ≥ 2, j ≥ 2, let

Sx (I
s
i j ) =

i+1∑

a=i−1

j+1∑

b= j−1

Sx I sa,b
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Fig. 1 Three types of images

be the horizontal variation, and let

Sy(I
s
i j ) =

i+1∑

a=i−1

j+1∑

s= j−1

Sy I sa,b

be the vertical variation, where

Sx =
⎛

⎝
1 2 1
0 0 0

− 1 − 2 − 1

⎞

⎠

Sy =
⎛

⎝
− 1 0 1
− 2 0 2
− 1 0 1

⎞

⎠ .

Taking the previous consideration into account, for a
given pixel (i, j) we will denote by X1

i j , . . . , X
k
i j the k

extracted characteristics in this step.
3. Blending aggregationDuring this phase, the information

of the different features is extracted into a single value
denoted as edginess which is usually aggregated. From
now on, let us denote by

I b f = φ(X1, . . . , Xk)

Fig. 2 Four sequential phases of edge detection using Sobel operator

the aggregated image resulting from this step, where φ

denotes an aggregation function. For a given pixel (i, j),

the value I b fi, j represents the total variation of this pixel.
It is common to represent this matrix as a grayscale
image, where for each pixel we have a degree of edginess
(Fig. 2.3). After this phase, our resulting image is I b f .

4. Scaling In this last step, the final outputwith the definitive
edges is necessarily created (Fig. 2.4). Traditionally, after
Canny’s constraints (Canny 1986), there are only two
possibilities: any given pixel has to be declared as an edge
or as a non-edge pixel. This decision is usually made
through a thresholding process. As a result of this, the
final output consists in a binary image. All the edges
have to be as thin as possible, as shown in Fig. 4d. See
Fig. 2 for the whole sequence of edge detection.
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Fig. 3 Two kinds of 3 × 3 pixel windows from an image after going
through the thinning process: a 4 candidates to be edge pixels; b 4
noncandidates to be edge pixels as square structures of 2 × 2 nonzero
intensity pixels are not allowed (they are not thinned)

2.1 Edge detection based on segments

It is important to define the type of pixels our algorithmworks
with. Let c be a candidate to be an edge pixel. Then, c has to
meet two conditions:

1. If (ic, jc) is the position of c in the spatial domain, then
I b fic, jc

> 0. In other words, it has to be a nonzero intensity
pixel.

2. If there are three adjacent pixels to c that meet (1), then
it is not possible that they set up a square shape. This
is then called a thinned image, which idea is shown in
Fig. 3a).

From previous definitions, we are then able to define the
set that contains these pixels. LetC = {c1, . . . , cm} be the set
of all the edge candidate pixels in an image. The connected
pixels’ notion is strongly related to the concept that will be
explained below and that is a key point of our proposal.

In order to explain what an edge segment is, and to show
its importance, let us introduce this concept with an example.
Let us suppose that we want to determine the final edges of
Fig. 4a. After the three aforementioned steps (conditioning,
feature extraction, and blending) and the thinning process,
we have to decide over the edge candidate pixels in order
to create the final output. In this last step, we can appreciate
different gradient intensities—level of grays—of the pixels.
The color differences—white and black—mean that these
pixels are just candidates to become an edge and they are not
yet definitive edges. We have defined them as ci . In order to
obtain the final solution, we have to evaluate each edge can-
didate pixel to decide if it has to be declared as an edge pixel
in the final output or not. Commonly, it is used a threshold
value of the luminosity gradient of the pixel, I b fi, j , in order to
make this decision. The more luminosity the gradient has—
the whiter it is, the more likely that it will be declared as
an edge pixel. If we perform this evaluation pixel by pixel,

Fig. 4 Some limitations in local evaluated edges

which is the traditional way, we can consider it as a local
evaluation process as it is argued in Venkatesh and Rosin
(1995). Following this local evaluation approach, we could
easily end up, for instance, in a situation like the one shown
in Fig. 4.

In Fig. 4d, we see that some contours are extracted in a
way that is too fragmented, losing continuity. Instead, part
of the contours of the objects have been extracted, while
some other have not. We can easily appreciate this thanks
to the details placed inside the red rectangles. If we go back
one step behind in the process (Fig. 4c), we can agree that
the contours of these background lines should be continuous
lines. It seems that something went wrong at the decision of
those pixels being declared as non-edge. Furthermore, this
mistake is not an exception as we can easily find some other
similar discontinuous contours. Moreover, this seems to not
only happen in this image, as López-Molina et al. (2013)
pointed out:One of the most commonmistakes in edge detec-
tion methods is not being able to complete the silhouette of
an object. In order to avoid this while performing edge detec-
tion, we propose the use of a global evaluation method over
the pixels. More precisely, this will be possible thanks to the
evaluation of a list of connected pixels—linked edges—that
will be referred below as edge segments. For instance, in
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Fig. 4, some lines ended up being discontinuous because the
decision did not take into account that the pixels belonged to
a bigger common structure. This idea of connection between
edge candidate pixels in a common structure leads us toward
a fuller definition of an important concept, defined below.

Let S = (c1, . . . , cn) ⊂ C be a subset of edge candidate
pixels set; then, we will call it an edge segment if and only
if:

1. S is connected, i.e., ∀ca, cb ∈ S, there is a path through
adjacent pixels (ci )i∈{1,...,n} ⊂ S from ca to cb.

2. S is maximal, i.e., if S′ ⊂ C is another connected set of
edge candidate pixels, then S ⊂ S′ ⇒ S = S′.

Notice that, given this definition, every edge candidate
pixel belongs to one and only one edge segment since it
is easy to see that the set of such defined edge segments,
S = {Sl : l = 1, . . . , s}, establishes a partition of C , i.e.,
∪l=1,...,s Sl = C and ∩l=1,...,s Sl = ∅.

Another important consideration about the edge segments
is that any candidate to become a final edge will not be just a
single pixel, but the whole segment containing that pixel. In
the next section, we will see how this way of linking pixels
will affect to the binarization process. In Fig. 5, the whole
process of building an edge segment can be seen.

Setting a threshold for the gradient luminosity in order
to decide which edges to retain can be considered the tra-
ditional method. Instead, the edge segment allows the use
of features to make this decision. Following this approach,
the thresholding value would change, depending of the fea-
ture values of the segments. All of this happens for each
image. The strategy of applying the thresholding process was
called as dynamic threshold determination (Venkatesh and
Rosin 1995). However, we will address the idea of thresh-
olding in a more statistical way, instead of using the classical
approach. This newmethodology is also used in Flores-Vidal
et al. (2017), as a problem of clustering between two possi-
ble groups: the “true” edge segments against the “false” edge
segments.

2.2 TheVenkatesh–Rosin algorithm

After explaining the segment building, and before focusing
on the rest of our proposal, we will explain the idea behind
the algorithm proposed by Venkatesh and Rosin (1995), in
which ours is based. After using the concept of edge list—
equivalent to the concept of edge segment that we have
formalized in this section—these authors established two
features that defined the edge segment. The first one was
the length of the edge segment (inspired by Lowe 1987), and
the second one was the average intensity—edginess—of the
pixels that made up the edge segment. Then, they built a two-
dimensional feature space to represent the segment values

Fig. 5 From the original image to the segments

in these two variables. In Fig. 6 (taken from Venkatesh and
Rosin 1995), we can see the scheme for generating the deci-
sion over the edge segments. The logic behind this geometric
approach was to create a curve that separated the diagram in
two parts, one containing the noise and the other containing
the true edge segments. Therefore, on the one hand the true
segments are the most easily distinguishable by the human,
as they are the longest, whether they have medium, high, or
low intensity. Even short ones with medium or high intensity
were distinguishable too. On the other hand, there are dispos-
able segments—the false segments—that will be those not so
easily perceivable, this is, those that in addition to shortness
present little average intensity.

The heuristic method proposed by Venkatesh and Rosin
(1995) to make this decision is questionable, or at least
improvable. From this point onward, we will propose one
of the main differences with the work of these authors. We
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Fig. 6 Geometric approach of Venkatesh and Rosin (1995): the feature
space of the edges (a) and the scheme for deciding over the segments
(b)

will explain how the fuzzy clustering techniques are perfectly
suited to choose which cluster each edge segment belongs to.

In the next section, we will see the difference between
the Venkatesh–Rosin way of making the decision over the
segments compared to the one that we propose.

3 Our proposal: fuzzy clustering based on
edge segments

Our proposal can be expressed as an algorithm that has two
different parts, each one of them having a few steps. The first
part is made of two steps related to the segments (1–2), while
the other focused on performing a fuzzy clustering approach
studied inAmo et al. (2001), specially designed for thiswork.

1. Given an already blended and thinned grayscale image
I b f , we have to obtain the set C (see Sect. 2.1 and Fig. 5)
and the segments set S = {Sl : l = 1, . . . , s} of the image
I b f .

2. For each segment Sl , we obtain the segment’s features
(see Sect. 3.1 for further details). Such features can be
normalized and thus be measured as values in [0, 1]. Let
us denote by xlr the rth associated characteristic of seg-
ment Sl , for l = 1, . . . , s; r = 1, . . . , f , where f is the
number of features extracted for each segment. Thus, the
space of segment features can be defined as F = [0, 1] f
and xl the vector of characteristics of segment Sl .

3. On the space F ,we can apply a fuzzy clustering algorithm
over the segments set, based on relevance, redundancy,
and covering concepts (Amo et al. 2001) (see Sect. 3.2 for
more details) fixing the number of clusters to 2 (bad seg-
ments and good segments). From the defuzzification of
this fuzzy clustering solution, we obtain the classification
between bad and good segments that will give the final
solution. In the following two subsections, we explain
in detail the main two steps of this algorithm: features
segment extraction and the 2-fuzzy clustering process.

3.1 Segment features

In this subsection, the segment features used in our pro-
posal are presented. All such features are eventually mea-
sured by a value in the [0, 1] interval—even length, which
was normalized—hence the notation previously presented,
where the vector of characteristics for segment Sl can be
regarded as a point in the space of segment features: xl =
(xl1, x

l
2, . . . , x

l
f ) ∈ F = [0, 1] f with f the number of char-

acteristics considered. In this work, 8 characteristics ( f = 8)
are taken into account, namely:

– Length For each segment Sl , xl1 = Lengthl = |Sl |.
Therefore, this can be seen as the number of pixels in
the segment.

– Intensity mean. For each segment Sl ,

xl2 = I Ml =
∑

p∈Sl I
b f
p

xl1
,

where I b fp represents the intensity of pixel p, which was
obtained as the intensity gradient between p and its adja-
cent.

– Maximum and minimum edginess For each segment Sl ,
we obtained xl3 = Max{I b fp : p ∈ Sl} and xl4 =
Min{I b fp : p ∈ Sl}.

– Standard deviation of the intensity For each segment Sl ,

xl5 = σl =
∑

p∈Sl
(
I b fp − xl2

)2

xl1
.

– Median of the edginess For each segment Sl ,

xl6 = Median{I b fp : p ∈ Sl}.

– Average position For each segment Sl , we obtained the
coordinates of the pixel that occupies the central position
in the segment:
(xl7, x

l
8) = Centrall , where xl7 is the average vertical

position and xl8 is the average horizontal position of the
pixels in Sl , i.e.,

xl7 =
∑

p=(p1,p2)∈Sl p2
xl1

and xl8 =
∑

p=(p1,p2)∈Sl p1
xl1

.

Once the average position is computed, we get its
Euclidean distance to the intersection points following
the rule of thirds, which is a standard in photography
composition (Goldstein 2009). This rule establishes that
the most important objects in an image are usually placed
close to the intersection of the lines that part the images
in three equal parts. Following this principle, it seemed
interesting to compute the minimum of its four distances,
as there are four intersection points created by the four
lines, as shown in Fig. 7.
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Fig. 7 Rule of thirds. In this example, faces tend to be closer to the
intersection points

Most of these features were created specifically for our
proposal using principles that come from the theory of
human perception (Goldstein 2009). This entails an impor-
tant improvement from our previouswork (Flores-Vidal et al.
2017), as we have employed four new features in this paper.
The last feature, the average position, is especially important
from a theoretical point of view. The objects that a human
recognizes tend to occupy certain positions in the image. This
is why the information related to the position of the segment
Sl inside the image I b f is relevant—this relevance will later
be confirmed in the experiment results—(see Sect. 5).

3.2 A fuzzy clustering

Now, we can use the characteristics that we have defined
above to classify the segments in two sets: the true edges
and the false edges. On the one hand, we consider as the
true edges those segments that a human eye can easily per-
ceive. On the other hand, we can consider the false segments
as non-relevant noise. Being these true edges the segments
perceived by the human, the comparatives that we will show
later should lead to better results. This was, partly, the key
issue that motivated our research: selecting those segments
whose characteristics made them similar to what humans
easily recognize in an image.

Therefore, we seek to find two clusters of segments, one
was expected to include the real edges and the other the
false ones. Let us call them Ctrue and C f alse. Both sets are
a partition of the set of all segments: Ctrue ∪ C f alse = S
and Ctrue ∩C f alse = ∅. In Venkatesh and Rosin (1995), the
authors used heuristic techniques to solve this problem: They
established two regions separated by a curve obtained by a
heuristic method (Figs. 6 and 8). This method can be consid-
ered a linear discriminant type. Employing a thresholding
value is common in the edge detection literature. However,
our approach bases its decision on fuzzy clustering tech-
niques, as we will see below.

Algorithms likeFuzzy C-means orK-means could be used
for this purpose, but they do not consider the nature of the
data, andwhat ismore important for the purpose of this work,
they do not performwell enough when the clusters are unbal-
anced, as is the case when real edges are few when compared
to the non-edge segments (especially when there is too much
noise in the image). In these situations, the mentioned algo-
rithms would consider the real edges as outliers. Moreover,
these clustering techniques try to optimize only one quality
measure at a time.

We propose here an algorithm based on the approach pre-
sented in Flores-Vidal et al. (2017) and Rojas et al. (2014),
which instead of just minimizing the sum of distances of the
segments to their centroids as in fuzzy c-means algorithm, it
is based on a multi-criteria problem that focuses on identify-
ing the cluster centroids by taking into account three quality
measures (Amo et al. 2001):

– Covering Rate of elements which are covered in a certain
degree by any cluster.

– Relevance A cluster will be relevant if it offers much
information, in other words, if it has many elements with
a certain degree of membership (higher than a given min-
imum).

– Redundancy Represents the overlap degree between the
clusters.

Hence, these three quality measures represent the three
different criteria to be optimized. As in any multi-criteria
problem,many approaches can be followed to solve this clus-
tering problem, our proposal is as follows:

Let us consider the following parameters:m ∈ [0, 1] as the
minimum degree of membership to calculate relevance, re as
theminimumdegree ofmembership to calculate redundancy,
and pr as the percentage of allowed redundancy. Thus, the
relevance of a potential cluster can be calculated as the num-
ber of segments belonging to it with a membership degree
of at least m, and two given clusters will be redundant (and
hence incompatible) if a proportion greater than pr of the
segments belong to both clusters with at least degree re. The
steps of the algorithm are as follows:

– Define the set of potential clusters by building a grid
on the space of segment features F , K = {yi : i =
1, . . . , k} ⊂ F ; then, each of the vertices of such grid
will be the centroid of a potential cluster.

– Calculate each centroid’s relevance, ri , as the number of
elements that belong to the ith cluster with amembership
degree of at least m, for i = 1, . . . , k.

– Select the most relevant cluster, i.e.,

i
′ = arg max

i=1,...,k
{ri }.
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Fig. 8 An abbreviated scheme of our proposal

– Calculate the sets of common segments between clusters
i
′
and i , ∀i ∈ {1, . . . , k}\{i ′ }:

Di = {l : min{μi ′ (l), μi (l)} ≥ re},

where μi (l) represents the degree of membership of seg-
ment Sl to the ith cluster, which is calculated as 1

‖xl−yi‖
or, in other words, the inverse of the (Euclidean) dis-
tance between the vector of characteristics of segment
Sl and the centroid of the ith cluster. Then, i

′
and i

are considered as redundant if |Di | ≥ pr . Now, cal-
culate the set of clusters which are not redundant with
i
′
, D = {l ∈ {1, . . . , k} : |Dl | < pr} . Finally, select

the most relevant cluster, i
′′
, among those in D, i.e.,

i
′′ = argmax{rl : l = 1, . . . , k}.

– If ‖yi ′ ‖ < ‖yi ′′ ‖ then interchange them, i.e., , since the
edges should be those with greater norm in F .

We can see the whole approach in Fig. 8.
Let us now study the computational complexity of each

step of the algorithm: The first step is defining the set of
potential clusters, and its time and space requirements are in
the order of O(k) where k represents the initial number of
potential clusters and is an input parameter. The second step
is to calculate the relevance of each cluster, and its time and
space requirements are in the order of O(k · s) and O(k),
respectively, where s is the number of segments. The third
step can be performed parallel to the previous one and, in
any case, requires an O(k) order time. The fourth step, which
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consists of calculating the sets of common segments between
the i1 cluster and the other ones, requires O(k · s) in time. In
short, the complexity of the entire algorithm is in the order
of O(k · s).

Let us study the meaning of this: k depends on the number
of characteristics to be taken into account, and the size we
assign to the grid, if for example 5 characteristics are being
studied and for each of them a grid of 10 steps is considered,
there will be a total of k = 105 potential clusters, in general if
n is the number of steps and f the number of characteristics,
it will be k = n f . Finally, s can vary greatly, depending on
both the image being studied and the algorithm previously
selected to obtain the segments.

4 Comparison and results

For evaluating the performance of our fuzzy cluster of seg-
ments (FCS) algorithm, we have used the image set provided
by the computer vision and pattern recognition group of the
University of South Florida (USF) that is presented in Heath
et al. (1997) (and can be downloaded from University 2017).
This set consists in 60 images between objects and aerial
images, and it is been specially created for comparison in
edge detection. Due to the nature of the USF dataset—having
three different pixel categories—and in order to compute pre-
cision and recall measures, the “non-relevant” pixels were
ignored in the matching process. Then, it did not matter
whether the edge detector detected an edge in a non-relevant
area. Doing it this way, these non-relevant areas would not
affect precision and recall measures. Then, we compared our
FCS algorithm to other five high standard edge detection
algorithms by means of the matching technique proposed by
Estrada and Jepson (2009). This works bymeans of a circular
window ξ that is centered in the pixel that is being compared.
In this case, the parameter employed for circular distancewas
ξ = 5, following these authors advice. Precision, recall, and
F-measure were employed by these authors to evaluate the
quality of the comparatives. These measures have been com-
monly used for edge detection comparisons (see for example
Perfilieva et al. 2016). Precision measures the rate of edges
selected by the algorithm thatmatch to the edges in the human
sketches belonging to the ground truth. Recall computes the
rate of edges detected by the human—ground truth—that are
detected by the algorithms output as well. Let Chuman be the
set of edges detected by the human, then:

Precision = Matched(Ctrue,Chuman)

|Ctrue| ,

Recall = Matched(Chuman,Ctrue)

|Chuman| ,

F = 2 × Precision × Recall

Precision + Recall
.

We have employed the philosophy of Benchmarking
(Martin et al. 2001) for the comparison over the six edge
algorithms. Therefore, we made the comparatives by using
a range of different parameter values for each algorithm.
In Table1 we can see the comparative results for the best
fixed parameter values found. Therefore, the computational
experiments were executed over the 60 images belonging
to the USF dataset (University 2017). Firstly, the dataset
was shortened by name, and then the 35 images placed
in the middle—from “131” to “cone”—were used as the
training set; meanwhile, the other 25 images were used
as the test set—from “101” to “130” and from “egg” to
“woods.” For each edge detector were considered different
parameters and procedures. All of them were applied in two
different versions (all but Gravitation’s and F1-transform’s),
with a Gaussian smooth filter (σs = 1) and without
it (σs = 0):

1. Canny algorithm The “sigma of Canny” parameter
(σCanny) was applied. This is the Gaussian filter that
works in the convolution of Canny’s and produces even
smoother edges. In our algorithm, the higher the param-
eter is, the less amount of edge segments are selected.
Different values were explored for that parameter: 0.5,
1, 2, and 4. After that, the well-known non-maximum
suppression for the “thinning” process was applied. For
the scaling step, the double threshold called “Hysteresis”
was applied (Canny 1986).

2. F1-Transform algorithm This is the F1-transform met-
hod used for preprocessing in Canny’s (Perfilieva et al.
2012, 2016). This algorithm is used for both, smooth-
ing the image first and then doing the convolution.
It requires the use of a h parameter for these two
steps. The higher the h is, the smoother the smoothed
image I s results. Values h = 3, in the first step,
and h = 2 were, respectively, applied. The next steps
were Canny’s usual: non-maximum suppression and
hysteresis.

3. Gravitation algorithm This is an edge detection algo-
rithm based on the Law of Universal Gravity by Isaac
Newton. This algorithm computes the gradient at each
of the pixels using the gravitational approach based on
a t-norm (hence it is named GED-T). See details in
López-Molina et al. (2010). This method does not per-
form any of the other processes of the image needed
to obtain binary edges, e.g., smoothing, binarization.
Unluckily, we could not use this algorithm to generate
any edges when we applied previous smoothing, then it
only worked in the non-smoothed version. Different tri-
angular t-norms were employed following the approach
of López-Molina et al. (2010). In our case, we have used
the Lukasiewicz and the Nilpotent minimum t-norms.
As with the F-transform algorithm, the last steps are
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the usual of Canny’s (non-maximum suppression and
hysteresis).

4. Sobel algorithm This is the classical algorithm that was
proposed by Sobel and Feldman (1968) in a talk . A single
threshold was applied with values ranging from 0.10 to
0.99.

5. Venkatesh and Rosin algorithm This is an slightly
improved version (the code can be found in The Kermit
2017) of the proposal presented in Venkatesh and Rosin
1995 by which our work is inspired (Sect. 2.2). Like with
our algorithm, first steps were the same as Canny’s (until
the non-maximum suppression). The alpha parameter is
the only one specifically required (α = 6).

6. Fuzzy cluster of segments algorithm The first few steps
were the same as Canny’s (until the non-maximum sup-
pression). Then, at the scaling step FCSwas implemented
for three different quality measures that range from 0 to
1 (see Sect. 3.2 for further information). The first of the
parameters related to FCS ism ∈ [0, 1]which is the min-
imum degree of membership to calculate relevance and,
thus, has to be theoretically high enough. The best value
reached was 0.90. Redundancy or re has to be smaller
than relevance, as it represents the maximum member-
ship function value allowed for a certain segment in both
clusters. In this case, the best fixed value for re was
0.60. Finally, we configured a third theoretical param-
eter, the percentage of allowed redundancy, pr = 0.15,
since we noticed in previous experimental proofs that the
output of the algorithm did not change much when this
parameter took values inside the percentage range that
seemed to us reasonable for the redundancy (between 5
and 20%).

Notice that our FCS algorithmhad the best performance—
even slightly better than Canny’s and Sobel’s—compared to
the other five edge detection algorithms (Table 1). The F-
measure values correspond to the F-measure average results
for the 25 images belonging to the test set (see second para-
graph of this section for more details about the training and
test sets) while comparing the algorithms output with the
humans’ ground truth.

We can see in Fig. 9 the output of all the edge detection
algorithms employed. The visual comparative shows that the
edges provided by FCS are cleaner—less noisy—than the
rest of the algorithms, specially in the egg image. It can be
appreciated as well an improvement in F-measure and pre-
cision while comparing FCS with Venkatesh and Rosin’s.
The pillow image shows that FCS is capable as well to retain
most of the relevant edges that were extracted by the ground
truth—the human.
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Fig. 9 Binarized outputs of USF dataset images for different algorithms with best fixed parameters. σs Gaussian smoothness, Tl lower threshold,
Th higher threshold, n operator dimension, m relevance, rev redundancy, pr redundancy % allowed (see Sect. 4 for more details)
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5 Conclusions

The algorithmFCS,whichwe propose in this work, performs
significantly better than the other five algorithms on the USF
image dataset. Only Canny’s performance can be considered
close to ours. Even if FCS performance seems good enough,
we believe that there is enough room for improvement. One
reason for supporting this idea is that for the construction of
the edge segments it is possible to collect other characteris-
tics specially designed to compute a certain visual task. For
instance, building other features related to the shape of the
segment or even its position could be useful for edge detec-
tion. Another interesting aspect for improving this research
would be to contemplate more than two possible clusters to
perform the fuzzy clustering. This seems like a complex line
that could lead to future research. Following this idea, the
output of the comparatives would not be unique, allowing to
establish diffuse hierarchies or partitions, similar to the ones
that arise in Guada et al. (2016) and Gómez et al. (2015a, b).

Finally, we would like to point out that building other
comparatives more suitable for the edge segments would
be a good recommendation for the future evolution of this
research line about edge segments. However, in order to con-
struct this new kind of comparative based on segments, it
seems that adapting the current human ground truth into a
modified version of it would be necessary to. We believe that
this could lead to an interesting future research line about
edge segments, and maybe this could be done as well in a
supervised approach.

For the conducting of this research, the code created by
Kermit Research Unit has been strongly helpful (The Kermit
2017).
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