
Soft Computing (2019) 23:9537–9549
https://doi.org/10.1007/s00500-018-3517-y

METHODOLOGIES AND APPL ICAT ION

Application of improved ANFIS approaches to estimate bearing
capacity of piles

Hooman Harandizadeh1 ·Mohammad Mohsen Toufigh1 · Vahid Toufigh2

Published online: 6 September 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Anaccurate estimation of deep foundation bearing capacity in different types of soilswith the aid of thefield experiments results
is taken into account as the most important problems in geotechnical engineering. In recent decade, applying a broad range
of artificial intelligence (AI) models has become widespread to solve various types of complicated problems in geotechnics.
In this way, this study presents an application of two improved adaptive neuro-fuzzy inference system (ANFIS) techniques
to estimate ultimate piles bearing capacity on the basis of cone penetration test (CPT) results basically used in analysis of
pile foundations. The first model was combination of ANFIS and group method of data handling (GMDH) and the second
one was related to the integration of fuzzy polynomial (FP) and GMDHmodel. Furthermore, in the ANFIS–GMDH, constant
coefficients of ANFISmodel were optimized using gravitational search algorithm (GSA). To improve the proposed AI models
for carrying out training and testing stages, a reliable database in form of four input variables included information about
different properties of soils and driven piles obtained fromCPTs results. Performance of the proposed approaches indicated that
FP–GMDH had better performance (RMSE�0.0647 and SI�0.378) in comparison with ANFIS–GMDH–GSA (RMSE�
0.084 and SI�0.412). The use of multiple linear regression and multiple nonlinear regression equations showed lower level
of precision in prediction of axial-bearing capacity of driven piles compared to the ANFIS–GMDH–GSA and FP–GMDH
techniques.

Keywords Pile axial-bearing capacity · Deep foundations · Adaptive neuro-fuzzy inference system · Group method of data
handling · Gravitational search algorithm · Fuzzy polynomial · Regression-based equations

1 Introduction

Deep foundations were widely utilized in civil engineering
projects because of their relatively higher level of perfor-
mance both in ascending of bearing capacity and plummeting
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settlement. Axial-bearing capacity of piles has two main ele-
ments including shaft friction and toe bearing (e.g., Alkroosh
and Nikraz 2011a, b; Ebrahimian andMovahed 2017). There
are different research works in terms of analytical and con-
ventional models in order to evaluate bearing capacity of
different types of piles (e.g., Long andWysockey 1999; Józe-
fiak et al. 2015; Xie et al. 2017). Hence, traditional equations
were drawn attention-stricken by geotechnical experts. This
maybe due to the fact that empirical equations do not take
much time to estimate bearing capacity of piles and conse-
quently, in some cases, numerical models giving an exact
solution suffer from not only lack of accuracy, but also being
lower of uncertainty level rater than traditional equations.
Furthermore, some parameters leading to these shortcom-
ings are at themercy of varying physical behaviors in terms of
soil–structure interaction when piles are installed. Basically,
all empirical equations were extracted from applying linear
and nonlinear regression techniques. In fact, general math-
ematical shapes of traditional equations remained constant
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andweighting coefficients of themarefixedwithin regression
analysis. Lowering precision level of bearing capacity of pile
maybe lied in the fact that there are no reliable pieces of infor-
mation about a rational relationship among input and output
variables (e.g., Alkroosh and Nikraz 2011a, b; Fatehnia et al.
2015; Ebrahimian and Movahed 2017).

With the advent of various soft computing tools, all the
sorts of problems in different fields of civil engineering
have been efficiently solved (e.g., Cevik 2007, 2011; Tany-
ildizi and Cevik 2010; Gandomi et al. 2010; Alavi et al.
2011; Alavi and Gandomi 2012; Najafzadeh et al. 2016a,
b; Zahiri and Najafzadeh 2018; Moayedi and Armaghani
2018; Khandelwal et al. 2018). Furthermore, soft comput-
ing techniques, in terms of evolutionary computing models,
have the capability of overcoming complicated nature of
problems along with perception of physical meaning, men-
tioning knowledge extraction of a relationship for a given
input–output system. From previous experience in geotech-
nical engineering, the vast range of artificial intelligence
(AI) approaches such as artificial neural network (ANNs),
gene-expression programming (GEP), evolutionary polyno-
mial regression (EPR), and support vector machine (SVM)
were employed successfully to predict pile bearing capacity
in different soils and pile installation conditions. These AI
models were fed by databases extracted from cone penetera-
tion test (CPT) (e.g., Lee and Lee 1996; Alkroosh and Nikraz
2011a; Ahangar-Asr et al. 2014; Kordjazi et al. 2014). Taking
apart from applications of AI models in solving geotechnical
problems, group method of data handling (GMDH), as a pre-
dictive tool, has been successfully utilized in prediction of
different parameters in various fields of civil engineering, as
evaluation of mechanical properties of soil layers (Kalantary
et al. 2009), prediction of scour depth at hydraulic struc-
tures (Najafzadeh and Barani 2011; Najafzadeh et al. 2013a,
b, c, 2017), and design of stable open channels for water
conveyance (Shaghaghi et al. 2017). From previous investi-
gations, it was found that all the aspects of GMDH model
has not been fully employed to predict bearing capacity of
axial piles.

For this reason, in the current study, two new hybrid
models of GMDH technique are developed to estimate
axial-bearing capacity of pile. The first hybrid model is
a combination of adaptive neuro-fuzzy inference system
(ANFIS) and GMDH approaches which will be optimized
by gravitational search algorithm (GSA). The second one
includes an application of fuzzy polynomial (FP) in gen-
eral structure of traditional GMDH model. Performance of
ANFIS–GMDH and FP–GMDH is evaluated quantitatively
and qualitatively. Moreover, results of the models develop-
ment are compared with those obtained using multiple linear
and nonlinear regression techniques.

2 A survey of AI applications into pile
bearing capacity

Over the two decades, applications of AI models have
become widespread through civil engineering projects in
order to predict bearing capacity of piles in different soils
conditions andphysical properties of piles. In thisway, a large
number of experts in the field of geotechnical engineering
have made rigorous efforts to employ various AI approaches
to generate general traditional equation-based evolutionary
computing so as to obtain more accurate prediction bearing
capacity of piles rather than conventional models based on
CPT databases.

Lee and Lee (1996) estimated ultimate bearing capacity
(UBC) using 28 datasets extracted from pile load tests in
in situ conditions. They used feed forward neural network
based on back-propagation algorithm in order to obtain per-
missible level of accuracy for estimation of UBC. Abu-Kiefa
(1998) presented an accurate prediction of bearing capacity
of driven piles embedded in cohesionless soils using general
regression neural network (GRNN).

Also, Shahin (2010) provided a good estimation of UBC
for driven piles using the ANN model.

Alkroosh and Nikraz (2011a) applied GEP model for pre-
diction of axial-bearing capacity of pile on the basis of CPT
results. They used 58 series datasets which 28 and 30 series
of all the data were related to the concrete and steel piles,
respectively. From their study, GEP has produced an empir-
ical equation with the most level of accuracy. Alkroosh and
Nikraz (2012) utilized GEP model-based equation to obtain
an acceptable level of precision by means of datasets corre-
sponded to the 25piles load tests. Furthermore, they indicated
a good performance of the GEP approach so as to predict
lateral bearing capacity of pile embedded in cohesive soils
(Alkroosh and Nikraz 2013).

Ahangar-Asr et al. (2014) usedEPR technique based equa-
tion for precise prediction of lateral load bearing in cohesive
soils and additionally undrained conditions. Momeni et al.
(2014) applied hybrid models of ANN on the basis of GA
to estimate bearing capacity of driven piles. They utilized
information about five dynamic tests to extract databases for
modeling theANN–GA.Results ofANN–GA technique pro-
vided more accurate estimation than empirical equations.

Also, Samui and Shahin (2014) obtained an accurate pre-
diction of UBC for the driven piles using RVM and MARS.
In Alkroosh and Nikraz (2014) investigation, GEP model
produced higher precision level for pile dynamic bearing
capacity in comparison with ANN models. From Kordjazi
et al. (2014) study, SVM approach was developed to predict
ultimate axial load-bearing capacity of piles on the basis of
CPTdatabases. Results of their study indicated that SVMhad
good performance rather than traditional methods. Alkroosh
et al. (2015) utilized SVM and GEP models for prediction of
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bearing capacity of bored piles. They employed 50 datasets
extracted from CPT databases. Ultimately, results given by
the proposed GEP were in good agreement with the obser-
vation rather than SVM approach. Through Shahin (2015)
study, EPR and ANN techniques were applied for prediction
of bearing capacity on the basis of 79 series datasets of load
tests related to the driven piles in in situ circumstances and
consequently leading perfect performances of EPR andANN
approaches. Fatehnia et al. (2015) applied the GEP model to
predict UBC of driven piles with respect to the flap number.
They found that results of GEP model stood at the highest
level of accuracy rather than ANN and regression equations.
From Ebrahimian andMovahed (2017) research, EPRmodel
produced a precise equation for prediction of axial piles bear-
ing capacity. The databases used in their studywere related to
the coarse and fine grain soils. Results of their investigation
indicated that EPR approach provided more accurate estima-
tion rather than empirical equations. Also, Armaghani et al.
(2017) concluded that hybrid model of ANN and PSO (parti-
cle swarm optimization) presented an accurate prediction of
UBC for rock-socketed piles. Kohestani et al. (2017) demon-
strated thatRFmodel presented permissible level of precision
for estimation of UBC on the basis of 112 datasets extracted
from results of in situ pile tests. Maizir (2017) applied ANN
model, as a reliable predictive tool, to evaluate shaft bearing
capacity based on information obtained from test results of
pile driving analyzer (PDA).Moreover,Mohanty et al. (2018)
concluded that MARS and GP techniques had a successful
performance for prediction of UBC of driven pile embedded
in non-cohesive soils.

3 Description of database

In this investigation, fully reliable datasets were collected
from different sources. In fact, the datasets used in this study
are related to the local precious work experience carried out
by various researchers. All the datasets are on the basis of
CPT for reaching an accurate prediction of bearing capac-
ity of axial piles. Overall, it can said that all the variables
applied in this study can be classified into two main groups
which can have influences on pile bearing capacity extracted
from pile load test (Qt) in in situ circumstances (Ebrahimian
and Movahed 2017). The first category is corresponded to
soil properties which might be cohesive and non-cohesive.
Moreover, these properties contain pieces of information is
provided by means of CPT, including cone tip resistance
(qc) and sleeve friction (f s). The second one is related to
pile geometric properties in terms of length (L) and diame-
ter (D). Hence, to use the proposed intelligence approaches,
four parameters of qc, f s, L, and D are considered as input
variables. In this study, 72 pile load tests related to the in situ

Table 1 Range of input–output parameters

Parameters Minimum Maximum STD

L (m) 5.5 47 9.987

D (m) 0.101 1.1 0.234

qc (Mpa) 1.05 55.51 10.15

f s (Mpa) 0.011 0.3 0.066

Qt (kN) 490 22,700 3503.094

Table 2 Values ofK-fold and corresponding data allocation for training
and testing phases

K-fold values Fraction of data
allocation for
training (%)

Fraction of data
allocation for testing
(%)

3 67 33

4 75 25

6 83.3 16.7

8 87.5 12.5

conditionswere used to develop the proposedmodels.Details
of these datasets are given in Table 1.

4 Database allocation

In this study, with the aid of K-fold conceptions, data allo-
cation was performed. In fact, to use K-fold approach, the
datasets are randomly divided into K subdivisions whose
sizes have the same. From K subdivisions, one subdivision
is considered for performance of testing stage, and the rest
of subdivisions which have K −1 number employed to train
model. Afterward, this process is repeatedK times, introduc-
ing with K iterations. In fact, datasets are divided randomly
K times. Through every iteration, error value for testing stage
is computed and ultimately average of errors for various iter-
ation is computed (McLachlan et al. 2004). In the current
study, to develop the proposed AI, there is a set of 72 series
data. In this way, performance of AI models is investigated
by means of various numbers of K-fold including 3, 4, 6,
and 8. With respect to fourK-fold numbers, 72 datasets were
partitioned into four classes to develop the AI techniques, as
seen in Table 2.

5 Framework of the proposed artificial
intelligencemodels

In this section, in the first place, descriptions of the conven-
tional GMDH model are presented. Next, ANFIS technique
and GSA are introduced separately. As mentioned in intro-
duction section, in the present study, two hybrid models are
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investigated. The first one is representation of an improved
ANFIS–GMDHmodel using GSA. The second hybrid intel-
ligence approach is related to the FP–GMDH.

5.1 Framework of GMDHmodel

The GMDH, whose general structure is on the basis of self-
organized systems, is firstly proposed by Ivahnenko (1971).
This type of artificial intelligence has several operations such
as formation of quadratic polynomial in each neuron, selec-
tion of neurons with good fitness values, filtering partial
description (or neuron), assigning error criterion for training
stage termination, and driving a tree-like structure for solu-
tion of complicated problems (e.g., Amanifard et al. 2008;
Mehrara et al. 2009; Najafzadeh et al. 2013a, b, c, d, e;
Najafzadeh and Saberi-Movahed 2018).

Recent investigations indicated that GMDH network can
be categorized as flexible intelligence approach in a way
that it can be efficiently combined by other evolution-
ary algorithms including genetic algorithm (e.g., Nariman-
Zadeh et al. 2003; Amanifard et al. 2008; Mehrara et al.
2009; Taherkhani et al. 2018), genetic programming (Iba
and deGaris 1996; Najafzadeh et al. 2014a; Najafzadeh
and Saberi-Movahed 2018), particle swarm optimization
(Onwubolu 2008; Najafzadeh et al. 2014a; Najafzadeh and
Tafarojnoruz 2016), and back propagations (Sakaguchi and
Yamamoto 2000; Srinivasan 2008; Najafzadeh et al. 2014a,
b, c).

To find an accurate solution for system identification prob-
lem, a function of f̂ which can be roughly utilized instead
of actual function f, so as to estimate the final output of a
complicated system, ŷ, for a given input vector (or variable)
X � (x1, x2, x3, . . . , xn) as close as possible to its actual (or
observed) output y. Thus, for a given n observations of mul-
tivariables (or inputs), there is single-output as (Amanifard
et al. 2008; Mehrara et al. 2009),

yi � f (xi1, xi2, xi3, . . . , xin) (i � 1, 2, . . . , M) (1)

In the current status, it is feasible to train theGMDHmodel
to prognosticate the final values of output, ŷi , for every given
input vector X � (xi1, xi2, xi3, . . . , xin). In fact, the follow-
ing function is expressed to define a relationship connecting
the final output to input variables as,

ŷi � f̂ (xi1, xi2, xi3, . . . , xin) (i � 1, 2, . . . M). (2)

From the GMDH network, the following relationship
notes error values given by the actual (or observed) final
output and the predicted (or estimated) one as,

M∑

i�1

[
f̂ (xi1, xi2, xi3, . . . , xin) − yi

]2 → min. (3)

In the GMDH model, general relationship for given an
input–output system is presented by the following mathe-
matical expression, as a complicated discrete form of the
Volterra function,

(4)

y � w0 +
n∑

i�1

wi xi

+
n∑

i�1

n∑

j�1

wi j xi x j +
n∑

i�1

n∑

j�1

n∑

k�1

wi jk xi x j xk + · · · ,

Furthermore, Eq. (4) is introduced as the Kolmogorov—
Gabor polynomial (e.g., Ivahnenko 1971; Farlow 1984;
Sanchez et al. 1997; Najafzadeh and Barani 2011). On the
basis of previous experience, over the past decades, results
of studies have demonstrated that applying quadratic poly-
nomial, expressed as follows, provided relatively lower error
of prediction for various problems rather than other types
of polynomials (e.g., Amanifard et al. 2008; Mehrara et al.
2009;Najafzadeh et al. 2013a, b, c, d;Najafzadeh andSaberi-
Movahed 2018).

Quadratic: ŷ � G
(
xi ., x j

)

� w0 + w1xi + w2x j + w3xi x j + w4x
2
i + w5x

2
j

(5)

The weighting coefficients related to Eq. (5) are comput-
ing by means of leas square technique so that the error value
between actual (or observed) output, y, and the calculated
(or computed) one, ŷ, for each pair of xi and x j , as input
variables, is required to be minimized. Moreover, this error
function which can evaluate performance of quadratic poly-
nomial, Gi , by virtue of least-square technique in order to
optimally eliminate some of neurons in each layer, is noted
as,

E �
∑M

i�1 (yi − Gi ())2

M
→ min. (6)

From general structure of the GMDH approach, all the
possibilities of two independent variables (or inputs) out of
total n input variables are considered for construction of
the regression quadratic polynomial in the form of Eq. (5)
whose weighting coefficients are extracted from a least-
square method. Basically, number of neurons (or partial
descriptions) in each (or current) layer can be computed
as, C2

n � n(n − 1)/2, which n is the number of inputs
of previous layer. On the other hand, partial descriptions
would be generated in the first layer of the from observations{(
yi , xip, xiq

)
; (i � 1, 2, . . . M)

}
for various pair of p, q ∈

{1, 2, . . . n}. To put it another way, this is currently fea-
sible to create M triples

{(
yi , xip, xiq

)
; (i � 1, 2, . . . M)

}
,

as input–output systems, from n observation (or event) by
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means of p, q ∈ {1, 2, . . . n}, written as in the following
form (Amanifard et al. 2008; Mehrara et al. 2009):

⎡

⎢⎢⎣

x1p x1q y1
x2p x2q y2
.

xmp

.

xmq

.

ym

⎤

⎥⎥⎦. (7)

From each row ofM data series triples, applying quadratic
polynomial, as seen in Eq. (5), can lead to formmathematical
matrix equation as,

AW � Y (8)

whereW is the vector including six weighting coefficients of
the quadratic polynomial as,

W � {w0, w1, w2, w3, w4, w5}Tr (9)

The superscript T is indicative of matrix transpose. Also,
the vector of observed (or actual) output is obtained as,

Y � {y1, y2, y3, . . . , yM }Tr (10)

From Eq. (8), Amatrix is indicative of combination of two
input variables being constructed in each neuron. Therefore,
for all the number of data series,A can be extracted as follows:

⎡

⎢⎢⎣

1 x1p x1q x1p.x1q x21p x21q
1 x2p x2q x2p.x2q x22p x22q
.

1
.

xmp

.

xmq

.

xmp.xmq

.

x2mp

.

x2mq

⎤

⎥⎥⎦ (11)

As written in Eq. (12), the vector of coefficients is given
by means of the least-squares approach as (Taherkhani et al.
2018),

W � (ATrA)−1ATrY (12)

which defines the vector of the six weighting coefficients of
quadratic polynomial [Eq. (5)] for all the sets ofM data series
triples. Conceivably, it should be absolutely considered that
this step-by-step way of learning the GMDH is repeated for
each neuron of the next layers. The rest of description of the
traditional GMDHmodel is given by relevant literature (e.g.,
Nariman-Zadeh et al. 2003; Amanifard et al. 2008; Mehrara
et al. 2009).

5.2 Description of ANFISmodel

Firstly, general structure of ANFIS model is introduced by
Jang (1993) for an accurate approximation of system mod-
eling. In fact, this technique combines the back propagation
(BP) and the least-squares model (LSM), as learning mod-
els, extracting properties of structure such as number of fuzzy
rules, coefficients of membership functions, and number of
linear and nonlinear parameters by adaptive network (Qin
et al. 2015). As written in the following, typical structure of
a first order Takagi–Sugeno (TS) model is expressed as,

IF x1 is Ai1 and x2 is Ai2 . . . and xn is Ain,

Then y � bi0 + bi1x1 + b2x2i + · · · + b in xn .where x1, x2,
…, xn are the system inputs, y is the final output of system.
Furthermore, Ai1, Ai2, …, Ain are fuzzy sets, bi0, bi1, …, bin
are output parameters of fuzzy system.

The schematic diagram of a simple ANFIS structure for
TS fuzzy system is depicted in Fig. 1. Accordingly, Fig. 1
reflects that ANFIS model has two input variables and one
output variable. From Fig. 1, the basic structure of ANFIS
has five layers. Each node in the same layer indicates the
same membership function and additionally considers that
the square-shaped nodes are indicative of parameters, intro-
duced as an adaptive node, varying within training stages.
Fixed nodes are symbolized by means of circle. The func-
tion of each layer can be illustrated as follows.

Fig. 1 General structure of a
simple ANFIS model with two
input parameters
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In the first Layer 1, known as system fuzzification, all of
the input variables are transformed in terms of meaning as
linguistic labels in the current layer, and the node number of
individual input variables demonstrates the number of mem-
bership functions (MFs). Moreover, reliable shape of MFs is
selected on the basis of trial-and-error process. Generally, it
can be said that, the parameters in the first layer are intro-
duced as premise parameters.

In the second layer, firing strength calculation is carried
out. Each node in the second layer multiplies input signals
(i.e., the MFs) and outputs the product. Every output of indi-
vidual node indicates the firing strength related to the fuzzy
rule. Through the third layer, firing strength is normalized.
Every node pertained to this layer outputs the ratio between
the ith firing strength and the summation of all the firing
strengths, and is known as normalized firing strength. In the
next layer, system is defuzzificated. Every node in the fourth
layer, outputs the crisp value of the corresponding fuzzy rule,
and additionally the output is computed by virtue of the prod-
uct between output of the third layer and linear combination
of input variables. The parameters of this layer are introduced
as consequent parameters.

Ultimately, in the fifth layer, final output of the ANFIS
model is obtained. In fact, the current layer includes merely
one node and outputs the overall crisp output value by means
of summing all of the outputs related to the fourth layer. The
way of training ANFIS model has two main steps of forward
and backward pass. Detailed descriptions of ANFIS model
were mentioned in relevant literature (e.g., Jang 1993; Qin
et al. 2015).

5.3 Description of fuzzy c-means clustering (FCM)

Through data clustering approach, the datasets are catego-
rized into many groups and datasets including the same
properties are in connection with the same clusters and non-
similar data sets to various clusters. TheFCM(Bezdek 1973),
introduced as a development and modification of K-means
clustering, applies a data sample to determine C clusters by
means ofminimizing the objective function (U) (Yaseen et al.
2018). In fact, performance of FCM has four steps. For two
given input variables, xi and xj, in the first step, centers of
clusters are randomly determined using N data samples. The
second step is to calculate membership matrix (wij) as,

Wi j � 1
∑C

k�1

(‖xi−c j‖
‖xi−ck‖

)2/(p−1)
(13)

where p is the fuzzifier exponent (between 0 and 1), C is the
number of clusters.

In the third step, an objective function (U) which should
be minimized, being expressed as,

U �
N∑

i�1

C∑

j�1

W p
i j

∥∥xi − c j
∥∥2 (14)

Ultimately, new fuzzy cluster centers are calculated as
follows:

Ci �
∑N

i�1 W
p
i j x j∑N

i�1 W
p
i j

(15)

In which ci is the centers of clusters.

5.4 Definition of GSA

Gravitational search algorithm (GSA) is relatively new
heuristic search algorithm based on gravitational and motion
laws and has been proposed by Rashedi et al. (2009).

In the case of GSA, a set of agents being introduced as
masses are assigned to extract the optimal solution from
applying gravity and motion Newtonian laws (Rashedi et al.
2009, 2010). The GSA can be indicated as a system with s
masses in which the position of the ith mass is noted as,

Xi �
(
x1i , . . . , x

d
i , . . . , xni

)
, i � 1, 2, . . . , s (16)

Which xdi is the ith position of mass in the dimension of dth
and n is the dimension of search space. Fitness of population
is computed using Eq. (17) as,

qi (t) � fiti (t) − worst(t)

best(t) − worst(t)
(17)

and consequently the mass of each agent is computed by
means of following equation:

Mi (t) � qi (t)∑s
j�1 q j (t)

(18)

In which fiti(t) and Mi(t) are indicative of the fitness and
mass value of the agent i at t, respectively. Furthermore, to
reach an optimal solution of a particular problem, values of
best(t) and worst(t) are expressed as (Rashedi et al. 2011),

best(t) � min
j∈{1,...,s}fit j (t) (19)

worst(t) � max
j∈{1,...,s} fit j (t) (20)
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In order to calculate acceleration of agents, total forces
from a set of agents which have higher masses is required to
be considered on the basis of gravity law [Eq. (21)].

Fd
i (t) �

∑

j∈kbest, j ��i

rand j G(t)
Mj (t)Mi (t)

Ri j (t) + ε

(
xdj (t) − xdi (t)

)

(21)

Afterward, acceleration of agents is calculated with help
of motion law, as written in Eq. (22):

adi (t) � Fd
i (t)

Mi (t)

�
∑

j∈kbest, j ��i

rand j G (t)
Mj (t)

Ri j (t) + ε

(
xdj (t) − xdi (t)

)

(22)

InwhichRij(t) is known as the Euclidian distance between
two agents i and j, computed by Ri j (t) � ∥∥Xi (t), X j (t)

∥∥
2

and additionally value of 2is remarkably low. kbest is a time
function whose initial value is K0 at the beginning of time
period and this value decreases with passing the time. After
that, the velocity related to the next agent is calculated using
Eq. (23) in form of a fraction of its current value of veloc-
ity added to its current value of acceleration (Rashedi et al.
2011),

vdi (t + 1) � randi × vdi (t) + adi (t) (23)

and Eq. (24) is applied to calculate its new position of agent
as,

xdi (t + 1) � xdi (t) + vdi (t + 1) (24)

In which randi and randj (observed in Eq. 22) are a pair
of randomly uniform values being ranged between 0 and 1.
Through GSA, the gravitational constant, G, depends on an
initial value of G0 and time, expressing as,

G(t) � G(G0, t) (25)

Moreover, G(t) will have a downward trend with respect
to t. In the current study, Eq. (26) has been used to evaluate
the gravitational constant as a time-dependent function,

G(t) � G0e
−α t

T (26)

In this study, step-by-step way of applying GSA into the
ANFIS–GMDH is mentioned in the following section.

5.5 Development of ANFIS–GMDH using GSA

The ANFIS–GMDH model is one of the newest hybrid
approacheswhichwas proposedfirstly byQin et al. (2015). In
this section, definition of the ANFIS–GMDH is given briefly
then combination mechanism of GSA with the ANFIS–G-
MDH technique is presented.

In the first place, it should be noted that the ANFIS–G-
MDH is a combination of ANFIS and GMDH in a way that
final output layer ofANFISmodel is considered as input vari-
ables for development of the convectional GMDH approach
in order to reach higher level of precision within training
and testing stages. A schematic diagram of general structure
related to the proposed ANFIS–GMDH model is illustrated
in Fig. 2. FromFig. 2, training performance of theANFIS–G-
MDH can be categorized into seven steps. In the first step,
datasets are classified into two phases of training and testing.
From the second to the fourth steps, the ANFIS model is per-
formed whereas rests of steps (fifth to seventh) are related
performance of the GMDH. This mechanism is expressed
step-by-step as follows.

The first step corresponds to datasets allocation to per-
forming of training and testing stages. Next, in the second
step, all the input variables are fuzzificated in the first layer
of conventional ANFIS approach. In this way, a process of
mapping, introduced as grid partition, is used to transform
input parameters (attributes or variables) into fuzzy sets. Fur-
thermore, the number and particular shape of membership
functions (MFs) are required to be defined. Through the third
step, known as fuzzy implication, general structure and num-
ber of fuzzy rules used in the ANFISmodel are obtained. For
instance, as seen in Fig. 2, nine fuzzy rules are constructed
in this step. In the fourth step, all the parameters related to
the ANFIS model are identified. This step pertains to the
applying hybrid training algorithm in the ANFIS structure.
The premise parameters and the consequent ones given in
the second and third steps are computed by means of LSE
and back-propagation (BP) gradient descent from the train-
ing datasets.

From the fifth step, number of input variables for the
GMDH is determined. As depicted in Fig. 2, the output of
the fourth step related to the ANFIS model is considered as
input variables for the GMDH. As mentioned in the GMDH
descriptions, in this step, all the possible quadratic polyno-
mials are generated. Then, weighting coefficients of PDs are
obtained by virtue of least squared method. As noticeable
example, in Fig. 3, with respect to nine linear descriptions in
the fourth layer of the ANFIS model, 36 partial descriptions
will be generated in the first layer of the GMDH. In the sixth
step, the best models with the lowest computational error
[Eq. (6)] are selected to produce partial descriptions related
to the next layer of the GMDH. Through the seventh step, an
external value of error criterion is considered for evaluation
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Fig. 2 Schematic diagram of ANFIS–GMDH model

Fig. 3 Qualitative performance of theANFIS–GMDH–GSAandFP–G-
MDH models for training stage

of the GMDH performance in the training stage. In this way,
the lowest value of external error criterion corresponded to
PDs of the current layer and previous ones are comparedwith
together. If the value of current error criterion is higher level
than the previous one, the proposed GMDH network with
permissible level of complexity is yielded. If not, fifth and
seventh steps require to be performed again until the lowest
error criterion value is minimized.

In the current investigation, GSA was applied in the gen-
eral structure of the ANFIS model to optimize coefficients
of MFs, as mentioned in the second step. Hence, Gaus-
sian membership function was assigned to set fuzzy models.
The controlling parameters of the GSA such as maximum

Table 3 Values of the GSA properties for predicting axial-bearing
capacity of pile

Parameter Range

Alpha 20

G0 100

Number of variables 6

Maximum iteration 200

Number of agents 10

Weighting coefficients −1: 1

Best fitness value 0.007829

number, agents number, G0 and α are shown in Table 3. In
fact, ANFIS–GMDH–GSA was developed for different K-
fold values and additionally computational error values for
each K-fold number are presented in Table 4. Equation (6)
is considered as an error function to evaluate performance
of various K-fold number. From Table 4, results of assigning
variousK-fold numbers indicated thatANFIS–GMDH–GSA
had the same performance for K-fold values of 3 and 4.
Similarly, using the K �6 and 8, average of computational
errors had the same values. Generally, it can be said that
ANFIS–GMSH–GSAwithK-fold of 6 has provided the low-
est level of error value (AverageE�0.01) in comparisonwith
other K-fold numbers.

Asmentioned in FCM section, FCMmodel was employed
to developed the ANFIS approach. In this way, 10 clusters
were used and consequently 10 fuzzy rules were applied for
carrying out fuzzy implication process and additionally 50
linear descriptions were generated in the fourth step. In this
way, traditional GMDH has 10 input variables and then 45
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Table 4 Results of different K-fold values for the models evaluation

K-fold values Average of E values
(ANFIS–GMD-
H–GA)

Average of E
(FP–ANFIS)

3 0.0114 0.00452

4 0.0117 0.0042

6 0.01 0.0043

8 0.0103 0.00368

partial descriptions in the first layer. Due to value of error
criterion in the first layer of the GMDH, three PDs were
selected to create the second layer and consequently one PD
has been generated in the second layer as final output of
GMDH network.

5.6 Improvement in GMDH using fuzzy polynomial
neuron (FPN)

The FPN was basically composed of a pair of steps. The first
step, FPN is constructed being composed of fuzzy sets that
generate a connection between the input variables and the
processing part perceived by the neuron (Oh and Pedrycz
2006). The second part of FP–GMDH technique is related
to the process of constructing quadratic polynomials as dis-
cussed in principle of the GMDH. In the current, FP–GMDH
has been developed for different K-fold values. As a result,
average of E values related to every K-fold number has been
given in Table 4. Table 4 shows that FP–GMDH had the best
performance (Average Error�0.00368) in terms of accuracy
for K �8 compared with other performances. In contrast,
for K �3, results of FP–GMDH had relatively lower level
of precision in comparison with performance of the FP–G-
MDH for other K-fold numbers. In this study, to develop a
fuzzy polynomial system, again FCMwas used with 10 clus-
ters including 10 fuzzy rules. After that, a two-layer GMDH
model was generated by three neurons in the first layer and
one neuron as final output.

6 Multiple regression-based equations

In this section, multiple linear and nonlinear regression equa-
tions have been developed using least squaredmethod for the
training datasets. All the calculations related to the regression
analysis have been performed in theMATLABprogramming
language.Multiple linear regression (MLR) equation for pre-
diction of COD was acquired as,

Qt � −0.1758 + 0.2452L + 0.2748D + 0.3903qc + 0.168 fs
(27)

and for multiple nonlinear regression analysis, equation was
expressed as,

Qt � 1.09166 × (L)0.715 × (D)0.5 × (qc)
0.476 × ( fs)

0.1015

(28)

7 Results and discussions

The comparative evaluation of the proposed models perfor-
mance is investigated in this section. In this way, coefficient
of correlation (R), root mean square error (RMSE), mean
absolute percentage error (MAPE), BIAS were employed
in order to appraise precision level of ANFIS–GMDH and
FP–GMDH techniques in both training and testing datasets,
as follows:

R �
∑N

i�1

(
(Qt )

i
P − (Qt )

Mean
P

) · (
(Qt )

i
O − (Qt )

Mean
O

)
√∑N

i�1

(
(Qt )

i
P − (Qt )

Mean
P

)2 · ∑N
i�1

(
(Qt )

i
O − (Qt )

Mean
O

)2

(29)

RMSE �
√∑N

i�1

(
(Qt )

i
P − (Qt )

i
O

)2

N
(30)

MAPE �
∑N

i�1

∣∣∣∣
(Qt )

i
P−(Qt )

i
O

(Qt )
i
O

∣∣∣∣
N

× 100 (31)

BIAS �
∑N

i�1(Qt )
i
P − (Qt )

i
O

N
(32)

SI �
√( 1

N

) · ∑N
i�1

(
(Qt )

i
P − (Qt )

Mean
P − (Qt )

i
O + (Qt )

Mean
O

)2

(Qt )
Mean
O

(33)

in which (Qt )P and (Qt)O are the predicted bearing capacity
of driven pile and observed one, respectively, and N is the
number of data sample.

Statistical results of the proposed models are given in
Table 5. In the training stage, FP–GMDH approach pro-
vided more accurate prediction of bearing capacity of driven
pile in terms of R (0.97) and RMSE (0.0594) compared
with the ANFIS–GMDH–GSA (R �0.965 and RMSE�
0.065). Furthermore, in the case of BIAS and SI values,
FP–GMDH (BIAS�0.0001 and SI�0.302) has better per-
formance than combination of theANFIS–GMDHwithGSA
(BIAS�−0.0001 and SI�0.326). In terms of MAPE com-
parison, FP–GMDH model (MAPE�0.49) had relatively
better performance than ANFIS–GMDH–GSA (MAPE�
0.55). Overall, statistical parameters presented in Table 5
were indicative of highering level of accuracy in estimation
of Qt for FP–GMDH rather than ANFIS–GMDH model.
Qualitative results of the proposed artificial intelligence
approaches are illustrated in Fig. 3. All the data points in
Fig. 3 were normalized between 0 and 1.
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Table 5 Performance of the
proposed models for predicting
axial-bearing capacity of pile

Models R RMSE MAPE BIAS SI

ANFIS–GMDH–GSA
(training)

0.965 0.065 0.55 −0.0001 0.326

FP–GMDH
(training)

0.97 0.0594 0.49 0.0001 0.302

ANFIS–GMDH–GSA
(testing)

0.94 0.082 0.656 −0.00285 0.412

FP–GMDH
(testing)

0.96 0.0647 0.601 −0.0005 0.378

MLR (testing) 0.81 0.163 2.61 0.0195 0.523

MNLR (testing) 0.85 0.132 2.146 −0.0105 0.492

Through the testing phase, FP–GMDH model has pro-
vided precise prediction of Qt with R of 0.96 and RMSE of
0.0647 in comparison with those yielded by the ANFIS–G-
MDH(R�0.94 andRMSE�0.082).Moreover,BIASandSI
values extracted from testing stage demonstrated that FP–G-
MDHmodel (BIAS�−0.0005 andSI�0.387) has provided
ultimate bearing capacity of driven pile at higher level of pre-
cision rather thanANFIS–GMDH–GSA (BIAS�−0.00285
andSI�0.412). Similarly, according toTable 5, the proposed
FP–GMDH model had superiority to the ANFIS–GMD-
H–GSA network in terms of MAPE values. Illustrative
comparisons of the proposed techniques for the testing stage
have been shown in Fig. 4. In the present study, with respect
to the general structure of the two proposed models, it can
be inferred that configuration of FP–GMDH network is
simpler than ANFIS–GMDH–GSA model. In other words,
volume of computations in the ANFIS–GMDH–GSA is
muchmore than FP–GMDHmodel. Through development of
the proposed AI approaches, it can be found that ANFIS–G-
MDH–GSAmodel ismore time-consuming than FP–GMDH
network due to application of GSA in the ANFIS–GMDH
structure.

Furthermore, performance of the FP–ANFIS and
ANFIS–GMDHmodelswere comparedwithMLR [Eq. (27)]
and MNLR [Eq. (28)]. Table 5 indicates that MLR given
by Eq. (27) has produced larger computational error of
Qt prediction in terms of RMSE (0.163), MAPE (2.61),
and BIAS (0.00195) than ANFIS–GMDH and FP–GMDH
models. Equation (28) extracted from MNLR technique
has produced more accurate estimation (RMSE�0.132 and
MAPE�2.146) rather than those obtained using Eq. (27)
(RMSE�0.163 and MAPE�1.81). Also, BIAS (−0.0105)
and SI (0.492) values given by MNLR method were indica-
tive of being lower error ofQt prediction in comparison with
MLR (BIAS�0.00195 and SI�0.523). Performance of the
regression-based techniques for the testing stage is demon-
strated in Fig. 5. As seen in Fig. 5, both predicted Qt values
and observed ones have been normalized scaling between 0
and 1.

Fig. 4 Comparative performance of the ANFIS–GMDH–GSA and
FP–GMDH models for testing stage

Fig. 5 Illustrative performance ofMLR and NMLR approaches for pre-
diction of axial-bearing capacity of driven piles
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Table 6 Statistical results of sensitivity analysis

Models R RMSE MAPE BIAS SI

Qt � f (L,
D, qc)

0.951 0.072 0.65 −0.0021 0.391

Qt � f (L,
D, f s)

0.92 0.082 0.741 −0.0035 0.43

Qt � f (L,
qc, f s)

0.89 0.122 0.902 −0.0056 0.62

Qt � f (D,
qc, f s)

0.902 0.102 0.892 −0.0045 0.56

8 Sensitivity analysis

To determine the comparative impact of every input variable
on the axial-bearing capacity of driven pile, the FP–GMDH
model was selected to carry out a sensitivity analysis tech-
nique. This approach has been performed such that, one of
effective parameters including L, D, qc, and f s has been
removed each time to evaluate the impact of that input on
Qt . In this way, FP–GMDH model was redeveloped four
times using three inputs. Quantitative results of sensitivity
analysis indicated that pile diameter (D) is the most effective
parameter on the Qt with R of 0.89 and RMSE of 0.122.
Furthermore, with respect to other statistical parameters,
FP–GMDH approach produced a significant large error in
terms of MAPE (0.902) and BIAS (−0.0056) by neglect-
ing D from developing FP–GMDH technique. In contrast,
sleeve friction (f s) has relatively lower level of influence on
the Qt due to R of 0.524 and RMSE of 0.0513. On the other
hand, FP–GMDHnetwork developed by three inputs ofD, L,
and qc indicated the highest level of precision (MAPE�0.65
and BIAS�−0.0021), obtaining f s as the most insignificant
parameter. The other influential parameters on theQt include
D and L being ranked from higher impacts to lower ones,
respectively. The statistical analysis through the sensitivity
analysis technique is summarized in Table 6.

9 Conclusion

In this study, two developed ANFIS models including
FP–GMDH and ANFIS–GMDH techniques were applied
to predict bearing capacity of driven piles. In this way, 72
datasets in form of an input–output system was composed
of four input variables includes both coarse and fine grain
soils, cone tip resistance and sleeve friction of CPTs, and
geometric characterizations of piles. In the first place, gen-
eral structure of ANFIS–GMDHmodel was optimized using
GSA. In fact, the best ratio of datasets allocation was defined
usingK-folds technique in a way thatK-folds of 8 and 6 have
provided the most accurate prediction for the FP–GMDH

and ANFIS–GMDH–GSA models. Through training phase,
both proposed models were developed using 10 fuzzy rules.
In the both training and testing stages, it can be concluded
that FP–GMDH approach has provided relatively lower level
of computational error when compared with an improved
ANFIS–GMDH–GSA model. Furthermore, for the training
datasets, MLR and MNLR techniques were fitted. Statistical
results demonstrated that FP–GDHM and ANFIS–GMDH
models have provided better performance than regression-
based equations. On the other hand, Qt values predicted by
MNLR approach had higher level of precision than those
obtained using MLR model. Beside, results of sensitivity
analysis showed that diameter of driven plie (D) and sleeve
friction (f s) parameters had the highest and lowest impacts
on the bearing capacity of driven pile.

Generally, performance of integrated models of ANFIS
indicated that these soft computing tools can be employed
efficiently to solve one of the most important subjects in
geotechnical engineering.
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