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Abstract
Credit scoring is an important tool for banks and financial institutions to measure credit risk. Linear discriminant analysis
(LDA) which according to the score of each credit applicant categorizes these applicants by a cutoff is a comprehensible
and robust method in the credit scoring domain. This work presents a novel multi-objective particle swarm optimization for
credit scoring (MOPSO-CS), and MOPSO-CS focuses on enhancing credit scoring models based on LDA in three aspects:
(i) to construct a higher accuracy credit scoring model which is easy to be interpreted; (ii) to find the most suitable cutoff
for discriminating “good credit” customers and “bad credit” customers; and (iii) to improve the sensitivity of the classifier
by using multi-objective particle swarm optimization. Finally, through the experiments with two real-world data sets and two
benchmark data sets, our proposed MOPSO-CS is compared with 11 counterparts: NaiveBayes, LR, SVM, ANN, DT, CART,
bagging-DT, bagging-ANN, RF, MC2 and XGBoost, the results of experiments demonstrate MOPSO-CS outperforms the
above-mentioned counterparts in term of sensitivity while maintaining an acceptable accuracy rate.

Keywords Credit scoring · Linear discriminant analysis · Multiple objective optimization · Particle swarm optimization

1 Introduction

Credit risk evaluation decision is a crucial issue for bank-
ing industry because even a one percent improvement in
early detection of bad credit account may avoid huge amount
of losses (Lee and Chen 2005; He et al. 2010). Credit
scoring is the most successful method that helps financial
institutions to decide whether to grant or refuse a loan (Chi
and Hsu 2012), and it can be formally defined as a sta-
tistical method for categorizing applicants as either “good
credit” group that is likely to repay the financial obligation,
or “bad credit” group, with high probability of defaulting
their loan (Chen and Huang 2003). In this method, the
information of loan applicants (such as age, education, mar-
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riage, occupation, income) are usually modeled by a set
of features, and a credit score is a model-based estimate
of the probability that a borrower will show some unde-
sirable behavior in the future (Lessmann et al. 2015). The
advantages of credit scoring are to reduce the cost and time
of credit evaluation decision, improve cash flow and insure
proper credit corrections (Lee and Chen 2005; Huang et al.
2007).

The popular methods used in building credit scoring mod-
els include:

• Linear discriminant analysis (LDA): Jo and Han (1997),
He et al. (2010) and Kim et al. (2012);

• Logistic regression (LR): Hand and Henley (1997),
Bahnsen and Aouada (2014), Fernandes and Artes
(2016);

• Artificial neural networks (ANN): Nanni and Lumini
(2009), Hajek (2011), West (2011), Blanco et al. (2013)
and Zhao et al. (2015);

• Support vector machines (SVM): Martens et al. (2007),
Bellotti and Crook (2009), Rezac (2011), Farquad and
Bose (2012), Niklis et al. (2014) and Harris (2015);

• Decision tree (DT): Olson et al. (2012) and Xia et al.
(2017);
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• Bagging: Breiman (1996), Wang et al. (2012) and Xiao
et al. (2016);

• Random forest (RF): Yeh et al. (2012) and Lessmann
et al. (2015);

• Evolutionary computation techniques:Huanget al. (2006)
and Aliehyaei and Khan (2014).

LDA and LR are two statistics models commonly used
in credit scoring. LDA which according to the score of
each credit applicant categorizes these applicants by a cut-
off is a comprehensible and robust method in the credit
scoring domain (Lee and Chen 2005). LR is the industry
standard, which is useful to examine how a new classifier
compares to this approach (Lessmann et al. 2015). Because
of assumptions: (i) linear relationship between dependence
and independence variables, (ii) the independence variables
included in the model are multivariate and normally dis-
tributed (Blanco et al. 2013). Both LDA and LR are designed
for linear data sets and lack of enough accuracy, especially
for nonlinear classification problems (Thomas 2000).

Comparedwith LDAandLR,ANNand SVMare reported
to fit data well for nonlinear data sets, but they are also criti-
cized for long consuming time for training data and building
models (Lee and Chen 2002). Even though the accuracy of
the credit scoring model is an important criterion, compre-
hensive and transportability of the model are also significant
(Harris 2015). According to the regulation of banking super-
vision, financial institutions in some countries are obliged to
present a comprehensible justification while the credit appli-
cation is denied (Tomczak and Ziȩba 2015). Unfortunately
ANN and SVM are lack of comprehensive and considered as
black boxes (Martens et al. 2007). DT provides a new alter-
native to ANN and SVM in handling credit scoring tasks,
particularly in situations where the scoring models ought to
be interpretable. However, the rules of DT will be too com-
plicated to be comprehensive if the number of attributes is
immense.

In addition to the above individual models, ensemble
methods such as bagging and RF, and evolutionary computa-
tion techniques, for example genetic programming (GP) and
ant colony optimization (ACO), are recently used to dealwith
credit scoring problems. Based on the results of the experi-
ments inHuang et al. (2006), two-stage genetic programming
(2SGP) can provide better accuracy in credit scoring than
LR, ANN and DT. Aliehyaei and Khan (2014) presented a
hybrid credit scoring approach (GP-ACO) combiningGPand
ACO, and compared the performance of GP-ACO with GP
andACOusing two real-world data sets. Recently, Lessmann
et al. (2015) compared 41 different classification algorithms,
and the results suggested that several classifiers outperformed
the industry standard LR.

The major contributions and significance of this paper are
summarized as follows:

(1) We present a higher accuracy credit scoring model
based on LDA. To improve the accuracy of our model,
two objectives are taken into consideration. The first
objective is to minimize the distance from the sample
misclassified to the cutoff, and the second is to maxi-
mize the distance from the sample classified correctly to
the cutoff.

(2) According to the score of each credit applicant, our credit
scoring model categories “bad credit” customers and
“good credit” customers by a cutoff. Compared with
ANN, SVM and bagging, our credit scoring approach
is more comprehensive and easy to be implemented. By
comparison with the other comprehensive credit scoring
models, for example, DT and CART, the decision rule of
out model is more simple, especially for data sets with a
lot of features.

(3) In order to solve this problem efficiently, a novel multi-
objective particle swarm optimization for credit scoring
(MOPSO-CS) is proposed in this work. In MOPSO-CS,
a procedure is designed to find the most suitable cutoff
for discriminating credit applicants. Then, we provide
two versions of MOPSO-CS. One is MOPSO-CS(ACC)
which is good at handling balanced data sets, and the
other is MOPSO-CS(SEN) which specializes in dealing
with imbalanced data sets.

(4) Former literature usually employed imbalanced data sets
to benchmark their credit scoring models. In this paper,
the experiments employ both imbalanced and balanced
data sets to test our proposed MOPSO-CS and the coun-
terparts. The results of these experiments demonstrate
MOPSO-CSoutperforms the counterparts in termof sen-
sitivity while maintaining an acceptable accuracy rate.

The remainingof this paper is organized as follows. InSect. 2,
the related background on linear discriminant analysis and
particle swarm optimization is reviewed. Section 3 presents a
comprehensive credit scoring model with a higher accuracy.
Section 4 provides a novel multi-objective particle swarm
optimization for credit scoring. The experimental results and
comparisons are reported inSect. 5. Finally, Sect. 6 concludes
the paper.

2 Background information

2.1 Linear discriminant analysis

Linear discriminant analysis (LDA) classifies credit appli-
cants based on their discriminant scores, which are calculated
by a discriminant function (Akkoc 2012).

Scorei = Ai X = ai1x1 + ai2x2 + · · · + ai RxR
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where Scorei is the credit score of sample i , R is the number
of the attributes, X = (x1, . . . , xR)T is the weight set, and
Ai = (ai1, . . . , ai R) is the value set of sample i .

For two-group classification, if Scorei ≥ b, sample i
belongs to class “Good” (negative); and if Scorei < b,
sample i belongs to class “Bad” (positive), where b is a
cutoff (boundary), i = (1, . . . , N ), and N is the sample
size. The aim of credit scoring method based on LDA is
to determine the best coefficients of the variables, denoted
by X = (x1, . . . , xR)T, and value b (a scalar) to separate two
classes. For credit scoring practice, “Bad” means a group of
bankrupt customers, “Good” means a group of normal cus-
tomers.

There are several measures of classification performance
commonly used in the credit industry (Bhattacharyya et al.
2011).

Accuracy = (TP + TN)/(TP + FP + TN + FN),
Sensitivity = TP/(TP + FN),
Specificity = TN/(FP + TN),
Precision = TP/(TP + FP),
Recall = Sensitivity = TP/(TP + FN),
F1-measure = (2 · Precision · Recall)/(Precision +
Recall),

where TP= true positives, FN= false negatives, TN= true
negatives and FP= false positives.

2.2 Particle swarm optimization

Particle swarm optimization (PSO) is one of an evolutionary
computation technology, which was proposed by Kennedy
andEberhart (1995). Similarly as the other evolutionary com-
putation algorithms such as genetic algorithms (GA), GP and
ACO, PSO is population based and considered as an effi-
cient search and optimization technique (Omran et al. 2006;
Das et al. 2008). A particle swarm consist several particles
which fly in search space. The position of particle j denoted
as vector X j = (x j1, . . . , x j R) represents a solution of the
optimization problem.

At each iteration t , the velocity of particle j denoted as
vector Vj = (v j1, . . . , v j R) is influenced by the best of posi-
tion visited by itself (Pbest j ) and the best position of the best
particle in the swarm (Gbest) using the evolution equation as.

v jr (t + 1) = wv jr (t) + c1r1[Pbest jr − x jr (t)]
+c2r2[Gbestr − x jr (t)].

Then the position of particle j is updated as follow.

x jr (t + 1) = x jr (t) + v jr (t + 1).

where r = (1, . . . , R) is the dimension index of particle
velocity or position, w is an inertia weight, c1, c2 are the
acceleration constants and r1, r2 are two random real num-
bers drawn from U (0, 1).

In order to solve multi-objective optimization prob-
lem, many researchers changed a PSO to a multi-objective
PSO (MOPSO). The popular MOPSO includes (i) Pareto-
based (Dehuri and Cho 2009); (ii) Coevolutionary approach
(Omkar et al. 2008; Goh et al. 2010). Compared with other
multi-objective evolutionary algorithms, MOPSO is demon-
strated higher convergence speed and efficiency (Goh et al.
2010).

3 A comprehensive credit scoringmodel
with a higher accuracy

3.1 Improving the accuracy of the credit scoring
models using LDA

For the credit scoring models using LDA, constructing a
linear data set is a useful technique for improving the
accuracy. As shown in Fig. 1, there are four samples
(sample1, sample2, sample3 and sample4) in the data set. Let

J = ( j1, . . . , jR)T, K = (k1, . . . , kR)T be two wight sets,
and Scorei j ,Scoreik is the score of sample i based on the
weight sets J or K .

Scorei j = Ai J = ai1 j1 + ai2 j2 + · · · + ai R jR ,
Scoreik = Ai K = ai1k1 + ai2k2 + · · · + ai RkR .

As shown in Fig. 1a, b, according to weight set J , credit
scoring model builds a linear data set; and in term of weight
set K , credit scoring model constructs a nonlinear data set.
If cutoff = b, the accuracy of weight set J is the same as
the accuracy of weight set K . But as shown in Fig. 2, if we
change the cutoff from b to d, the accuracy of the linear data
set would be improved from 75 to 100%. However, in terms
of the nonlinear data set shown in Fig. 1b, the accuracy is not
able to be improved.

To accurately distinguish linear data sets and nonlinear
data sets, we defined two variables αi , βi for the criteria and
constraints as follows, and a graphical representation of these
parameters is shown in Fig. 3.

• αi : the distance from the score of sample i to the cutoff
while sample i is misclassified;

• βi : the distance from the score of sample i to the cutoff
while sample i is classified correctly;

Furthermore, as shown in Fig. 3, we can see that the sum
of αi in a linear data set is less than that in a nonlinear data
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Fig. 1 Linear data set and
nonlinear data set. a Linear data
set, b nonlinear data set

(a) (b)

Fig. 2 Improving the accuracy
of credit scoring model. a
Accuracy=75%. b
accuracy=100%

(a) (b)

Fig. 3 Graphical representation
of αi , βi . a Linear data set, b
nonlinear data set

(a) (b)

set; and the sum of βi in a linear data set is more than that in
a nonlinear data set.

3.2 A comprehensivemulti-objective credit scoring
model

In this paper, the multi-objective credit scoring problem
based on LDA can be described as how to determine the
best coefficients X = (x1, . . . , xR)T to achieve the follow-
ing objectives:

(1) Minimize the sum of distances between the score of each
sample misclassified and the cutoff

min SMD =
N∑

i=1

αi . (1)

where SMD is the sum of αi .
According to the definition of αi , it is calculated as.

αi = d(i)
√

(Ai X − b)2.

where Ai , b are given, X is unrestricted. d(i) is a 0-1
variable, which d(i) = 1 if Samplei is misclassified and
d(i) = 0 if Samplei is classified correctly.

• d(i) = 0, i f : Ai X < b, Samplei ∈ Bad or Ai X ≥
b, Samplei ∈ Good.

• d(i) = 1, i f : Ai X ≥ b, Samplei ∈ Bad or Ai X <

b, Samplei ∈ Good.

(2) Maximizing the sum of distances between the score of
each sample classified correctly and the cutoff

max SCD =
N∑

i=1

βi . (2)

where SCD is the sum of βi .
According to the definition of βi , it is calculated as.

βi = c(i)
√

(Ai X − b)2.

where c(i) is a 0-1 variable, which c(i) = 0 if Samplei
is misclassified and c(i) = 1 if Samplei is classified
correctly.
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• c(i) = 0, i f : Ai X ≥ b, Samplei ∈ Bad or Ai X <

b, Samplei ∈ Good.

• c(i) = 1, i f : Ai X < b, Samplei ∈ Bad or Ai X ≥
b, Samplei ∈ Good.

These above-mentioned two objectives ensure that our
model can obtain higher accuracy solutions than other credit
scoringmodels based on LDA.Meanwhile, similarly as other
LDA-based credit scoring models, our model is comprehen-
sible and easy to be implemented. According to weight set X
obtained by ourmodel, it is easy for creditmanager to explain
to credit applicants how their credit scores are derived.

On the other hand, in traditional data classification prob-
lem, the accuracy is the main objective to be optimized.With
regard to credit card customer classification, sensitivity is
more important than other metrics. In this paper, we define
a variable MCN to measure the quality of the classification
and locate the trade-off between specificity and sensitivity
through setting two coefficients wG, wB .

MCN =
N∑

i=1

[wGdG(i) + wBdB(i)]. (3)

where dG(i), dB(i) are two 0-1 variables, which dG(i) = 0
if Samplei is a bad credit customer or Samplei is a good
credit customer which is classified correctly; and dG(i) =
1 if Samplei is a good credit customer which is classified
as bad. dB(i) = 0 if Samplei is a good credit customer or
Samplei is a bad credit customerwhich is classified correctly;
and dB(i) = 1 if Samplei is bad credit customer which is
classified as good.

• dG(i) = 0, i f : Samplei ∈ Bad or Ai X ≥
b, Samplei ∈ Good.

• dG(i) = 1, i f : Ai X < b, Samplei ∈ Good.

• dB(i) = 0, i f : Samplei ∈ Good or Ai X <

b, Samplei ∈ Bad.

• dB(i) = 1, i f : Ai X ≥ b, Samplei ∈ Bad.

wG is theweight of the “Good” samples, andwB is theweight
of the “Bad” samples.

wG + wB = 1, wG, wB ∈ (0, 1).

Furthermore bigger weight wG would result in bigger
specificity. Similarly, and bigger weight wB would result in
bigger sensitivity. Obviously, if wG = wB = 0.5, MCN
is equal to half of the number of misclassified samples.
MCN = 0 if all samples are classified correctly, and then
we define the solution which classifies all samples correctly
as the optimal solution.

Define 1 (Optimal solution) the solution X j = (x j1, . . . ,
x j R) which classifies all samples correctly.

F = {X j |MCN(X j ) = 0, X j ∈ �}. (4)

where F is the set of optimal solutions,� is the set of all solu-
tions, and MCN(X j ) is the MCN of solution X j . According
to Objective (1), the SMD of the optimal solution is equal to
0.

Usually, it is not able to obtain an optimal solution if the
data set is linear inseparable. Then the objective of classifi-
cation problem is to find the feasible solution whose MCN
is the minimum.

Define 2 (Feasible solution) the solution with the mini-
mum misclassification coefficient.

S = {X j |MCN(X j ) = MCNmin, X j ∈ �}. (5)

where S is the set of feasible solutions, MCNmin =
min{MCN(Xl)|Xl ∈ �}, and � is the set of all solutions
obtained by the algorithm. Obviously, all optimal solutions
are feasible solutions.

4 Multi-objective particle swarm
optimization for credit scoring

With the deep research on evolutionary computation tech-
nologies, scholars find that GA is usually used to deal with
discrete combinatorial optimization, and PSO is suitable for
solving the optimization problem with continuous variables.
Because each solution X j is continuous in the credit scor-
ing problem, multi-objective particle swarm optimization is
used to deal with this problem. Multiple subswarms and
coevolutionary approach is able to improve the efficiency
and effectiveness of MOPSO (Goh et al. 2010); in this paper,
a coevolutionary MOPSO is transformed for credit scoring
problem, and then we propose a new multi-objective parti-
cle swarm optimization: MOPSO-CS. MOPSO-CS employs
two subswarms (Subswarm1 and Subswarm2) with the same
population J to probe the search space and information is
exchanged between them.

The subswarms are evaluated in an iterative manner:
Subswarm1 evaluates SMD, and Subswarm2 evaluates SCD.
But in terms of data classification, a particle rank inMOPSO-
CS is different from Pareto rank which is usually used in
traditional MOPSO. In this work, a particle rank rank( j) is
given by:

rank( j) = 1 + n j . (6)

where n j is the number of misclassified samples according
to the solution of particle j .
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Fig. 4 Best position selection and updating process

4.1 Best position selection and updating process

Let the position of the particle in Subswarm1 whose value of
SMD is minimum be the personal best position (Pbest1) of
Subswarm1, and let the position of the particle in Subswarm2

whose value of SCD is maximum be the personal best posi-
tion (Pbest2) of Subswarm2.

In order to search optimal solution as soon as possible, we
select two feasible solutions from set S, and let the position
of the feasible solution with maximum SCD be the global
best position (Gbest1) of Subswarm1, and let the position
of the feasible solution with minimum SMD be the global
best position (Gbest2) of Subswarm2. Through this method
(shown in Fig. 4), each swarm can share information from
feasible solutions, so that MOPSO-CS is able to guide the
particles to optimal solution as soon as possible.

MOPSO-CS is similar to coevolutionary MOPSO, and at
each iteration t , particle j in the kth swarmupdates its current
position xk jr (t) and velocity vk jr (t) through each dimension
r by the personal best position Pbestk jr and the global best
position Gbestkr using evolution equation shown in Eqs. (7)
and (8):

vk jr (t + 1) = wvk jr (t) + c1r1[Pbestk jr − xk jr (t)]
+c2r2[Gbestkr − xk jr (t)]. (7)

xk jr (t + 1) = xk jr (t) + vk jr (t + 1). (8)

Because there are perhaps many particles with the same
particle rank, SMDandSCDare also taken into consideration
while each two particles are compared. The detailed criterion
of rank for each particle is as follows:

Particle a is superior to particle b ⇐⇒

rank(a) < rank(b)
Or rank(a) = rank(b) and SMD(a) < SMD(b)
Or rank(a) = rank(b) and SMD(a) = SMD(b) and
SCD(a) > SCD(b).

where SMD(a),SCD(a) are the SMD, SCD of particle a.

4.2 The optimization process

For MOPSO-CS, the scope of the solution is R-dimensional
search space where R is the number of attributes (variables).
The position of particle j in Subswarmk is represented by
xk j = (xk j1, . . . , xk j R), which corresponds to a solution for
the problem. The r th dimension of the position xk jr (k =
1, 2; j = 1, . . . , J ; r = 1, . . . , R) denotes the r th coefficient
used by each sample. The coding design of particle velocity
is similar to the design of particle position, which is denoted
by vk j = (vk j1, . . . , vk j R).

Firstly the algorithm randomly generates two subswarms.
Then the positions and velocities of all particles in these sub-
swarms are initialized. Each element xk jr in particle position
xk j is randomly initializedwithin [− 100, 100]. Each element
vk jr of particle velocity vk j is randomly initialized within
[− 10, 10].

Secondly evaluate these subswarms. According to which
has been initialized, calculate SMD and SCD of each parti-
cle using objective (1), (2). Then, evaluate the particle rank
of each particle using Eq. (6). Moreover, the algorithm ini-
tializes the global best position of each subswarm and the
personal best position of each particle.

In this paper,MOPSO-CS tries to find optimal solutions of
this problem and terminates when the first optimal solution
is found, or the maximum iteration number (T ) is reached.
Before the algorithm finds an optimal solution, all feasi-
ble solutions are used as the best found solutions. At each
iteration of algorithm, MOPSO-CS updates the best found
solutions in term of MCN and reserves the solutions with
minimum MCN found by optimization process.

Thirdly update the position and velocity of each parti-
cle according to Eqs. (7) and (8). Finally, we select top 2J
particles with minimum particle rank from old population
and new population, and use them as the population for the
next generation. The optimization process can be formally
described as Fig. 5.

4.3 Finding the optimal cutoff for linear
discriminant

In traditional credit scoring methods using LDA, the cut-
off is fixed and assigned by experience. Because finding the
optimal cutoff is significant for the accuracy of classifica-
tion, many methods are proposed to find a better cutoff to
improve the precision even if it is time-consuming. In this
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Fig. 5 Algorithmic flow of MOPSO-CS

paper, a misclassification-number-based approach for find-
ing the optimal cutoff is proposed.

InMOPSO-CS, each particle j represents a solution X j =
(x j1, . . . , x j R)T. Then we can calculate the credit score of
each sample i in term of the solution X j , and let Scorei j =∑R

r=1 air x jr be the credit score of sample i based on particle
(solution) j . When the scores of all samples in training set
have been calculated,MOPSO-CS can find the optimal cutoff
with minimum number of misclassification as follows.

Let the number of records in training set be NTRAIN, then
there are up to NTRAIN different scores in training set. Each
score can be used as a candidate to the cutoff. By assigning
each score to the cutoff one by one, MOPSO-CS is able to
test the result of each assignment and select the optimal b
with the minimum misclassification number as the cutoff.
The detailed approach of finding the optimal cutoff is shown
as Fig. 6.

If sample i is a bad credit customer, for example sam-
ple 3 in Fig. 6a, let b = Scorei j + ξ ; and if sample i
is a good credit customer, such as sample 4 in Fig. 6b,
let b = Scorei j − ξ . ξ is a positive minimal real num-
ber, such as 0.0001. Then the number of misclassification
(n j ) of solution X j is able to be calculated in term of
b = Scorei j ± ξ . By the same method, each candidate cutoff
b = Scorei j ±ξ, i ∈ (1, . . . , NT RAI N ) is able to be tested.

For the example in Fig. 6a,

• if b = Score1 j + ξ , n j = 1
• if b = Score2 j − ξ , n j = 1
• if b = Score3 j + ξ , n j = 1
• if b = Score4 j − ξ , n j = 1
• if b = Score5 j − ξ , n j = 2

Finally, MOPSO-CS selects the optimal cutoff with min-
imum misclassification number from all candidate b. In the
example shown in Fig. 6a, we can let b = Score1 j + ξ , and
the precision of this classification is 80%. The pseudocode
of finding cutoff process is shown in Algorithm 1.

Algorithm 1 Finding cutoff
1: for i = 1; i ≤ NT RAI N ; i + + do
2: Evaluate the credit score of sample i in term of the solution X j
3: end for
4: Min = NT RAI N
5: for i = 1; i ≤ NT RAI N ; i + + do
6: Calculate n j in term of b = Scorei j ± ξ

7: if n j < Min then
8: Min = n j
9: Cutof f = b
10: end if
11: end for

Obviously, the complexity of this process isO(NTRAIN2).
Since the process of finding the optimal cutoff is complicated
and time-consuming, we present two versions of MOPSO-
CS. One is MOPSO-CS(ACC) which omits the optimization
on the cutoff, and the other is MOPSO-CS(SEN) which
includes the optimization on the cutoff. Through computa-
tional experiments, we discover that the time of computation
of MOPSO-CS(SEN) is longer than MOPSO-CS(ACC), but
the speed of convergence of MOPSO-CS(SEN) is faster than
MOPSO-CS(ACC).

5 Computational experiments

5.1 The selection and preprocessing of credit data
set

In computational experiments, we use various data sets that
represent the credit behaviors of people from different coun-
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Fig. 6 Finding the optimal
cutoff with minimum
misclassification number. a
Sample3 is a bad credit
customer. b Sample4 is a good
credit customer

(a) (b)

Table 1 Selection and preprocessing of credit data set

Expt. Standardized Feature evaluator Search method

1 No All features None

2 Yes All features None

3 No CorrelationAttributeEval Ranker

4 Yes CorrelationAttributeEval Ranker

5 No cfsSubsetEval BestFirst

6 Yes cfsSubsetEval BestFirst

7 No InfoGainAttributeEval Ranker

8 Yes InfoGainAttributeEval Ranker

9 No WrapperSubsetEval BestFirst

10 Yes WrapperSubsetEval BestFirst

tries which include two real-world data sets fromUKand two
benchmark data sets, i.e., German and Taiwan. All these data
sets classify people as Normal or Bankrupt credit risks based
on a set of attributes (variables). In order to investigate the
effectiveness of the proposed algorithm in imbalanced and
balanced data sets, the real-world credit data from UK are
separated to two date sets. The first is a UK bankruptcy data
set (He et al. 2010), which collects 323 bankrupt and 902 nor-
mal customers with 14 variables. The second is a balanced
data set derived from the first data set, which consists of 323
normal customers and 323 bankrupt customers. The other
two data sets are German (700 normal and 300 bankrupt cus-
tomers with 24 features) and Taiwan (3000 normal and 3000
bankrupt customerswith 23 features), which are all fromUCI
Machine Learning databases (Xia et al. 2017).

Previous research (Koutanaei et al. 2015) has demon-
strated that selecting suitable features can improve the
accuracy in credit scoringproblems, and thenwehaveprepro-
cessed the data before classification. Firstly, we create two
versions of each data set, one is the raw data which is not
standardized, the other is standardized. Secondly, we apply
five different methods to select features. As shown in Table 1,
for each data set, ten experiments are performed. The data in
the experiments with odd index are not standardized, and the
other experiments with even index are standardized.

Table 2 Employed classifiers

Classifier Comprehensible Software

MOPSO-CS(SEN) Yes Visual C++ 6.0

MOPSO-CS(ACC) Yes Visual C++ 6.0

NaiveBayes No WEKA3.8
Bayes(NaiveBayes)

LR No WEKA3.8
Functions(Logistics)

SVM No WEKA3.8
Functions(LibSVM)

ANN No WEKA3.8 Functions
(MultilayerPerceptron)

DT Yes WEKA3.8 Trees(J48)

CART Yes WEKA3.8
Trees(SimpleCart)

Bagging-DT No WEKA3.8 meta(Bagging)

Bagging-ANN No WEKA3.8 meta(Bagging)

RF No WEKA3.8 Trees(Random
Forest)

5.2 Experimental evaluation

5.2.1 Implementation of the classifiers

In this section, our proposed method, MOPSO-CS, is com-
pared with nine classic classification methods: NaiveBayes,
logistics regression (LR), support vector machine (SVM),
artificial neural network (ANN), decision tree (DT), CART,
bagging-DT, bagging-ANN and random forest (RF). In these
classifiers, MOPSO-CS, DT and CART are comprehensible.
MOPSO-CS is conducted by Visual C++ 6.0, and the imple-
mentation software of these counterparts is WEKA 3.8. All
experiments were performed on a PC Core i5 with 2.5GHz
and 4GBRAM running under theWindows 10 operating sys-
tem. Table 2 shows the implementation softwares that were
explored to run the four data sets.

Because the real-world data sets are usually linear insepa-
rable, it is hard forMOPSO-CS to obtain an optimal solution.
We use the maximum iteration as the termination criteria
of MOPSO-CS. The maximum iteration (T ) is decided on
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Table 3 Parameters of
MOPSO-CS

Algorithm Data set wG wB T Population Cutoff

MOPSO-CS(SEN) UK1 0.33 0.67 100 40 Variable

MOPSO-CS(ACC) UK1 0.50 0.50 1000 40 − 1.1

MOPSO-CS(SEN) UK2 0.45 0.55 100 40 Variable

MOPSO-CS(ACC) UK2 0.50 0.50 1000 40 − 1.1

MOPSO-CS(SEN) German 0.40 0.60 100 40 Variable

MOPSO-CS(ACC) German 0.50 0.50 1000 40 − 1.1

MOPSO-CS(SEN) Taiwan 0.33 0.67 100 40 Variable

MOPSO-CS(ACC) Taiwan 0.50 0.50 1000 40 − 1.1

(a)

(b)

Fig. 7 Accuracy ofMOPSO-CS of each data set. aMOPSO-CS(ACC).
b MOPSO-CS(SEN)
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Fig. 8 Specificity of MOPSO-CS of each data set. a MOPSO-
CS(ACC), b MOPSO-CS(SEN)
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Fig. 9 Sensitivity ofMOPSO-CSof each data set aMOPSO-CS(ACC),
b MOPSO-CS(SEN)

stabilization principle which is testified by numerous tests.
In our experiments, the cutoff is set to − 1.1 in MOPSO-
CS(ACC), and it is variable in the MOPSO-CS(SEN) as
shown in Sect. 3.4. The parameters used in MOPSO-CS are
presented in Table 3.

5.2.2 The convergence of MOPSO-CS

We conducted tenfold cross-validation to evaluate the perfor-
mance of these classifiers, and the tenfold cross-validation
process is repeated 10 times. In order to investigate the con-
vergence of the proposed algorithm, we record the accuracy,
specificity and sensitivity of the feasible solutions obtained
by MOPSO-CS at each iteration. Figures 7, 8 and 9 show

the accuracy , specificity and sensitivity of each iteration in
the first tenfold cross-validation process of the experiment,
which contains the highest accuracy.

From Fig. 7, the accuracy obtained by MOPSO-CS is ris-
ing with an increasing number of generation, and it shows
that the multi-objective credit scoring method we proposed
is effective for improving the accuracy of data classification.
Compared with MOPSO-CS(SEN), MOPSO-CS(ACC) per-
forms better in terms of accuracy.

The results of Fig. 8 indicate that specificity fluctuates
with the iterations of MOPSO-CS. Moreover, because wG in
MOPSO-CS(ACC) is bigger than wG in MOPSO-CS(SEN),
the specificity of MOPSO-CS(ACC) is excel than that of
MOPSO-CS(SEN).

Figure 9 indicates that sensitivity increases with the
iterations of MOPSO-CS, and the sensitivity of MOPSO-
CS(SEN) is better than that ofMOPSO-CS(ACC).Moreover,
the results shown in Figs. 7, 8 and 9 reveal that MOPSO-
CS(SEN) has converged to steady solutions within 100
iterations, and MOPSO-CS(ACC) converges more slowly
than MOPSO-CS(SEN).

5.2.3 Results and discussion

In this section, we compare the performance of MOPSO-
CS with nine counterparts. For each date set, we perform
ten experiments and define the experiment which contains
the highest accuracy as standard experiment. In Tables 4, 5,
6, and 7, the last column represents the index of standard
experiment of each classifier.

Table 4 shows the results of tenfold cross-validation of
the UK1 data set (902 normal customers, 323 bankrupt cus-
tomers). As shown in Table 4, the sensitivity and F1-measure
ofMOPSO-CS(SEN) excel all counterparts, and its accuracy
is more than 73%. Although accuracy is not as important as
sensitivity for credit scoring problem, we also try to optimize
the precision of classification by MOPSO-CS. The accuracy
of MOPSO-CS(ACC) is superior to NaiveBayes, LR, ANN,
CART, bagging-DT, bagging-ANNandRF, only belowSVM
and DT.

Table 5 shows the results of tenfold cross-validation of
the UK2 data set (323 normal customers, 323 bankrupt cus-
tomers). Because the number of bankrupt customers is the
same as that of normal customers in a balanced data set,
the accuracy of this data set is harder to be improved than
that of imbalanced data sets.MOPSO-CS(ACC) achieves the
highest accuracy of all classifiers and exhibits the second
best F1-measure after NaiveBayes. Moreover, MOPSO-
CS(SEN) obtains the second best sensitivity, only slightly
below NaiveBayes. DT’s precision is the best, but its F1-
measure is the poorest.

Table 6 shows the results of tenfold cross-validation of
the German data set. The sensitivity and F1-measure of
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Table 4 Results on the UK1 data set over performance measures

Classifier Accuracy (%) Specificity (%) Sensitivity (%) Precision (%) F1-measure (%) Expt.

MOPSO-CS(SEN) 73.19 88.07 31.64 48.71 38.36 1

MOPSO-CS(ACC) 74.79 96.41 14.43 59.66 22.97 1

NaiveBayes 73.88 95.60 13.30 51.80 21.20 10

LR 74.53 97.90 9.30 61.20 16.10 9

SVM 75.18 98.80 9.30 73.20 16.50 3

ANN 74.29 97.30 9.90 57.10 16.90 5

DT 75.10 98.60 9.60 70.50 16.90 5

CART 74.61 97.50 10.80 60.30 18.40 5

Bagging-DT 73.96 96.50 11.10 52.90 18.40 5

Bagging-ANN 74.69 98.40 8.40 65.90 14.80 5

RF 73.71 91.80 23.20 50.30 31.80 1

The bold characters indicate the largest value in a column

Table 5 Results on the UK2 data set over performance measures

Classifier Accuracy (%) Specificity (%) Sensitivity (%) Precision (%) F1-measure (%) Expt.

MOPSO-CS(SEN) 58.58 51.52 65.63 60.02 59.64 2

MOPSO-CS(ACC) 64.32 68.76 59.88 65.93 62.56 10

NaiveBayes 60.06 51.40 68.70 58.60 63.20 9

LR 61.76 60.40 63.20 61.40 62.30 10

SVM 63.31 70.00 56.70 65.40 60.70 10

NN 61.45 62.80 60.10 61.80 60.90 10

DT 60.68 92.00 29.40 78.50 42.80 9

CART 59.75 81.70 37.80 67.40 48.40 2

Bagging-DT 60.53 65.60 55.40 61.70 58.40 5

Bagging-ANN 62.23 66.30 58.20 63.30 60.60 10

RF 63.31 66.90 59.80 64.30 62.00 8

The bold characters indicate the largest value in a column

MOPSO-CS(SEN) excel those of all other counterparts. RF
achieves the highest accuracy and best precision. The accu-
racy of MOPSO-CS(ACC) excel those of NaiveBayes and
DT. Moreover, the accuracy of MOPSO-CS(SEN) is above
75%.

In the case of the Taiwan data set, MOPSO-CS(ACC) per-
formsbetter than all classifies in termsof accuracy, specificity
and precision (see Table 7). Meanwhile, MOPSO-CS(SEN)
achieves the highest sensitivity, and its accuracy is defeated
by most of the counterparts. In this experiment, the accuracy
of MOPSO-CS(SEN) is still acceptable because it is better
than the industry standard LR.

Another conclusion emerges from the results of our exper-
iments. For different data sets, data standardization has
different effects on improving the accuracy of data classi-
fication. For the UK1 data set, data standardization is not
able to improve the accuracy, because most of the indexes
are odd, except for NaiveBayes, as shown in the last col-
umn in Table 4. For the UK2 data set, data standardization
is effective for improving the accuracy, because many of the

indexes are even as shown in the last column in Table 5. For
the German and Taiwan data sets, because the number of odd
index is very close to the number of even index as shown in
Tables 6 and 7, it is hard to say whether standardization is
helpful in improving the accuracy.

5.2.4 Comparing with other algorithms focusing on credit
scoring

In this subsection, MOPSO-CS is compared with two com-
petitive approaches focusing on credit scoring proposed
by former literatures. For the UK1 data set, we compare
MOPSO-CS with multiple criteria and multiple constraint-
level programming (MC2) presented by He et al. (2010).
Similarly as MOPSO-CS, MC2 is an approach based on
linear discriminate model. According to the results shown
in Table 8, MOPSO-CS is able to improve the accuracy
for the classifiers based on linear discriminate model. The
best of accuracy obtained by MC2 (M11) is 65.14%, and
MOPSO-CS(ACC) increases it by 9.65%. Although the best

123



9020 Y. Guo et al.

Table 6 Results on the German data set over performance measures

Classifier Accuracy (%) Specificity (%) Sensitivity (%) Precision (%) F1-measure (%) Expt.

MOPSO-CS(SEN) 75.45 83.03 57.76 59.61 58.37 5

MOPSO-CS(ACC) 76.00 87.71 48.67 62.93 54.89 10

NaiveBayes 75.70 86.60 50.30 61.60 55.40 1

LR 76.90 88.60 49.70 65.10 56.30 1

SVM 77.10 92.00 42.30 69.40 52.60 4

ANN 76.00 89.10 45.30 64.20 53.10 10

DT 74.90 88.30 43.70 61.50 51.10 10

CART 76.40 88.30 48.70 64.00 55.30 10

Bagging-DT 76.30 88.10 48.70 63.80 55.20 9

Bagging-ANN 77.10 88.10 51.30 65.00 57.40 1

RF 77.60 91.70 44.70 69.80 54.50 2

The bold characters indicate the largest value in a column

Table 7 Results on the Taiwan data set over performance measures

Classifier Accuracy (%) Specificity (%) Sensitivity (%) Precision (%) F1-measure (%) Expt.

MOPSO-CS(SEN) 66.91 67.51 66.26 67.78 66.59 4

MOPSO-CS(ACC) 70.42 85.71 55.13 79.63 65.03 5

NaiveBayes 67.20 84.60 49.80 76.40 60.30 6

LR 66.67 76.30 57.00 70.60 63.10 9, 10

SVM 68.92 79.70 58.20 74.10 65.20 4

ANN 68.63 80.90 56.30 74.70 64.20 9, 10

DT 68.93 75.50 62.40 71.80 66.80 3

CART 68.55 74.00 63.10 70.80 66.70 3, 4

Bagging-DT 68.13 75.00 61.20 71.00 65.80 9, 10

Bagging-ANN 68.72 81.40 56.10 75.10 64.20 3, 4

RF 68.55 75.80 61.30 71.70 66.10 7

The bold characters indicate the largest value in a column

of sensitivity of MC2 (M2) is 85.37%, the accuracy of
M2 is unacceptable. The sensitivity of MOPSO-CS(SEN)
is 31.64%, meanwhile its accuracy is above 70%.

For the German and Taiwan data sets, we compare
MOPSO-CS with XGBoost presented by Xia et al. (2017).
From the results shown in Table 9, MOPSO-CS outperforms
XGBoost on sensitivity. The best sensitivity of XGBoost
(XGBoost-GS) is 50.21%, and MOPSO-CS(SEN) improves
it by 7.55%. Meanwhile, the accuracy of MOPSO-CS(SEN)
is only 1.38% lower than XGBoost-GS. Compared with
XGBoost, MOPSO-CS is the best for predicting “Bad” cus-
tomers with a satisfied accuracy rate for the German data
set.

In the case of the Taiwan data set, as shown in Table 10,
MOPSO-CS(ACC) performs better than XGBoost on accu-
racy and specificity. Meanwhile, the accuracy and sensitivity
of MOPSO-CS(SEN) are defeated by XGBoost. It provides
some evidences that MOPSO-CS(SEN) is not good at han-
dling balanced data sets.

5.2.5 Statistical test and computation time

Nonparametric Friedman test is employed to examine
whether the selected eleven classifiers are statistically dif-
ferent. The statistic of Friedman test is calculated as follows:

χ2
F = 12D

K (K + 1)

⎡

⎣
K∑

j=1

(
D∑

i=1

r ij

)2

− K (K + 1)2

4

⎤

⎦ (9)

where D and K denote the numbers of the experiments and
the classifiers and D = 10, K = 11. r ij is the rank of classifier
j on experiment i . In this paper, the rank is based on the
accuracy that each algorithm achieved, to the algorithm with
the highest accuracy, rank 1; to the algorithmwith the second
highest, rank 2, etc.

If χ2
F is larger than a critical value, the null hypothesis is

rejected. From the results shown in the last line of Table 11,
we verify that the classifiers are statistically different.
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Table 8 Results for
MOPSO-CS versus MC2 on the
UK1 data set

Classifier Accuracy (%) Specificity (%) Sensitivity (%)

MOPSO-CS(SEN) 73.19 88.07 31.64

MOPSO-CS(ACC) 74.79 96.41 14.43

M1 63.43 77.82 23.21

M2 37.64 20.53 85.37

M1-1 64.98 72.95 42.70

M1-2 42.13 39.47 49.53

M11 65.14 73.28 42.39

The bold characters indicate the largest value in a column

Table 9 Results for
MOPSO-CS versus XGBoost on
the German data set

Classifier Accuracy (%) Specificity (%) Sensitivity (%)

MOPSO-CS(SEN) 75.45 83.03 57.76

MOPSO-CS(ACC) 76.00 87.71 48.67

XGBoost-MS 76.85 89.23 47.98

XGBoost-GS 76.83 88.24 50.21

XGBoost-RS 77.18 90.43 46.27

XGBoost-TPE 77.34 90.65 46.29

The bold characters indicate the largest value in a column

Table 10 Results for
MOPSO-CS versus XGBoost on
the Taiwan data set

Classifier Accuracy (%) Specificity (%) Sensitivity (%)

MOPSO-CS(SEN) 66.91 67.51 66.26

MOPSO-CS(ACC) 70.42 85.71 55.13

XGBoost-MS 69.15 58.66 79.65

XGBoost-GS 68.95 63.01 74.89

XGBoost-RS 69.35 62.11 72.66

XGBoost-TPE 69.36 62.19 76.54

The bold characters indicate the largest value in a column

With regard to average rank, MOPSO-CS(ACC) achieves
the best average rank for the UK2 data set, and second best
after bagging-ANN for the Taiwan data set. It proves that
MOPSO-CS(ACC) performs well in balanced data sets. For
the UK1 and German data sets, compared with the other
two comprehensible classifiers, MOPSO-CS(ACC) is excel
than DT and below CART. Because MOPSO-CS(SEN) is
focusing on improving the sensitivity of data classification,
the average rank of MOPSO-CS(SEN) is not ideal, and only
above NaiveBayes.

Table 12 shows the computation time of a tenfold cross-
validation process for the classifiers. BecauseMOPSO-CS is
an algorithm based on iteration, and it consumes less com-
putation time than ANN and bagging-ANN, but more than
the other seven counterparts. Furthermore, similarly as SVM,
MOPSO-CS is not sensitive for the number of attributes in
data sets. The number of attributes in the German data set
is approximately twice of that of the UK1 data set, but the
computation time of MOPSO-CS dealing with the German
data set is less than that of MOPSO-CS handling with the
UK1 data set. Because of process for finding cutoff, the

computation time of MOPSO-CS(SEN) is more than that
of MOPSO-CS(ACC).

Through the computation experiments, we can observe
thatMOPSO-CS ismore flexible than all eleven counterparts.
By setting weight wG , wB , MOPSO-CS is able to trade-
off between specificity and sensitivity for data classification.
Compared with NaiveBayes, LR, SVM, ANN, DT, CART,
bagging, RF, MC2 and XGBoost, MOPSO-CS(SEN) can
obtain more superior sensitivity which is important for credit
scoring problem.Moveover,MOPSO-CS(ACC) achieves the
better accuracy, especially for balanced data sets.

6 Conclusion and future work

Traditional credit scoring models are usually based on dis-
tance; in these models, there are two kinds of objectives,
one is to minimize the internal distance and the other is to
maximize the external distance. But the solution with mini-
mum internal distance or maximum external distance is not
able to be proved to classify the samples correctly. In this
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Table 11 Average rank of each
classifier on each data set

Classifier UK1 UK2 German Taiwan

MOPSO-CS(SEN) 8.90 9.20 7.80 9.80

MOPSO-CS(ACC) 4.50 1.70 7.15 3.50

NaiveBayes 10.1 9.80 4.50 9.50

LR 3.70 6.55 2.95 8.40

SVM 2.05 5.65 6.90 5.90

ANN 7.10 5.80 8.30 4.40

DT 4.80 6.35 9.05 5.00

CART 4.30 6.00 5.15 4.40

Bagging-DT 8.10 5.05 5.70 6.10

Bagging-ANN 4.40 5.15 3.70 3.30

RF 8.05 4.75 4.80 5.70

χ2
F (Sig.) 59.429 (.000) 42.872 (.000) 35.606 (.000) 47.473 (.000)

Table 12 Computation time of
the classifiers

Classifier UK1 (s) UK2 (s) German (s) Taiwan (s)

MOPSO-CS(SEN) 38.1 7.9 24.1 567.7

MOPSO-CS(ACC) 17.6 10.1 14.9 73.9

NaiveBayes 0.2 0.2 0.3 1.2

LR 0.6 0.4 0.8 2.5

SVM 4.9 1.5 1.8 256.4

ANN 10.9 6.0 20.0 140.6

DT 0.2 0.2 0.6 3.3

CART 1.2 0.8 1.3 10.5

Bagging-DT 2.9 1.3 1.9 25.7

Bagging-ANN 106.0 55.9 196.1 1315.2

RF 4.1 2.1 2.8 24.2

paper, we define a metric based on misclassification number
to measure the quality of the classification, and then a novel
multi-objective credit scoring model is proposed. By setting
the weight in our model, we can locate the trade-off between
specificity and sensitivity of credit scoring problem.

In the linear discriminant credit scoringmodel, finding the
optimal cutoff is a critical issue. It is difficult to solve this
problemusing linear programming approach (He et al. 2010).
But in our credit scoring approach, because the credit score
of each sample is able to be calculated before the cutoff is
optimized, it is easy to find the optimal cutoff with minimum
misclassification number.

To credit scoring problem, it is important for credit scor-
ing model to provide the credit score which is easy to be
comprehended by credit applicants. Compared with black
box technologies such as ANN and SVM, the credit score
function in our approach is more comprehensible. Finally,
our example and experimental studies based on benchmark
data sets and real-world data sets confirm that our proposed
method outperforms the counterparts in term of sensitivity
while maintaining acceptable accuracy.

Future work can be carried out in several directions.
Firstly, we would like to apply our proposed model to other
application domains: such as life sciences and social sci-
ences. Secondly, our model is designed for dealing with a
two-group classification problem in this paper, and it could
be extended to multi-group classification problems. More-
over, as well as feature selection, feature extraction may lead
to better predictive performance that we would like to study
and apply.
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