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Abstract
In this paper, we develop intuitionistic fuzzy data envelopment analysis (IFDEA) and dual IFDEA (DIFDEA) models based
on α- and β-cuts. We determine intuitionistic fuzzy (IF) efficiencies based on α- and β-cuts. We develop an IF correlation
coefficient (IFCC) between IF variables to validate the DIFDEA models. We propose an index ranking approach to rank
the decision making units (DMUs). Also, we propose an approach to find the IF input–output targets which help to make
inefficient DMUs as efficient DMUs in IF environment. Finally, an example and a health sector application are presented to
illustrate and compare the proposed methods.

Keywords Data envelopment analysis · Intuitionistic fuzzy efficiencies · Ranking · Intuitionistic fuzzy input–output targets

1 Introduction

Data envelopment analysis (DEA) is a linear programming
based nonparametric technique for measuring the relative
efficiencies of decision making units (DMUs) which utilize
multiple inputs to produce multiple outputs. Charnes et al.
(1978) proposed the CCR DEA model which determines
the performance efficiencies of DMUs. DMUs can be any
governmental agencies and nonprofitable organizations like
hospitals, educational institutions, banks, transportation etc.
The relative performance efficiency of a DMU is defined as
the ratio of its performance efficiency to the largest perfor-
mance efficiency. The relative performance efficiency of a
DMU lies in the range (0, 1]. There are some studies of crisp
DEA in different areas (Banker et al. 1984; Barnum et al.
2011; Charnes et al. 1978; Hollingsworth et al. 1999; Mogha
et al. 2014; Ramanathan and Ramanathan 2010).

The conventional DEA is limited to crisp input and crisp
output data. But real world applications have some input
and/or output data which possess some degree of fluctuation
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or imprecision or uncertainties. The fluctuation can take the
form of intervals, ordinal relations and fuzzy numbers. Fuzzy
set theory (Zadeh 1965) is an important tool to handle fluctu-
ations/uncertainties in real world problems. There are some
studies of fuzzy DEA (FDEA) in different areas (Moheb-
Alizadeh et al. 2011; Dotoli et al. 2015; Jahanshahloo et al.
2009;Kao andLiu 2000; Tsai et al. 2010). In fuzzy set theory,
sum of the degree of membership (acceptance) and degree
of non-membership (rejection) of an element is equal to one,
i.e. the rejection value is equal to one minus the acceptance
value (Zou et al. 2016). But in real world problems, there is
possibility that the sum of the acceptance and rejection val-
ues of an element may come out to be less than one. Thus,
there remains some degree of hesitation. Fuzzy set theory
(Zimmermann 2011) is not appropriate to deal with such
problems; rather intuitionistic fuzzy set (IFS) theory is more
suitable.

IFS theory, proposed byAtanassov (1986), is an extension
of fuzzy set theory and has been found to be more useful
to deal with vagueness/uncertainty. The IFS considers both
the acceptance value and rejection value of an element such
that the sum of both values is less than one, i.e. it may have
hesitation. Since its invention/inception, the IFS theory has
receivedmore andmore attention and has been used in awide
range of applications, such as reliability (Shu et al. 2006),
logic programming (Atanassov and Gargov 1998), decision
making (Li 2005), medical diagnosis (De et al. 2001), and
pattern recognition (Dengfeng and Chuntian 2002). Puri and
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Yadav (2015) proposed an intuitionistic fuzzy optimistic and
pessimistic DEA models. Otay et al. (2017) proposed a new
multi-expert IFDEA and IF analytic hierarchy process (IF-
AHP) to determine the performance evaluation of healthcare
institutions. Hajiagha et al. (2013) proposed IFDEA model
with IF inputs and IF outputs using the aggregation operator.

Beauty of IFS theory over fuzzy set theory is that IFS
theory separates the degree of membership (acceptance) and
the degree of non-membership (rejection) of an element in
the set. With the help of IFS theory, we can decide about
the degree of acceptance, degree of rejection and degree of
hesitation for some quantity. For example, in health sector,
there exist two inputs: (i) number of beds and (ii) sum of
number of pathologists and laboratory technicians and two
outputs: (i) number of pathology operations and (ii) sum of
number of plaster and tubal ligation which possess some
degree of hesitation due to the difference in thought at the
management level and the hospital level. Moreover, under
the mentioned reasons, hospital management would be more
interested in running a hospital with less number of beds,
pathologist and doctors (employees) in order to reduce the
cost on beds, pathologist and doctors, whereas the hospital
manager may be interested in having more beds, patholo-
gist and doctors at the disposal of the hospital in order to
accommodate more patients, handle day-to-day increased
workload and overcome the profit reductions due to the inef-
ficiency of some existing beds, pathologist and doctors, i.e.
the number of beds, pathologist and doctors is likely to be
an undesirable attribute for the hospital management, how-
ever a desirable attribute for the hospital manager. So, the
difference of thought at management level and hospital level
may lead to the existence of hesitation in the patients, and
availability of beds, pathologist and doctors at hospital level.
This hesitation is responsible for both the membership and
non-membership degrees of the data for the number of beds
and doctors of a hospital. Hence, the number of beds, pathol-
ogist and doctors possesses IF behaviour at hospital level and
thus can be taken as IF input in DEA. The inputs and out-
puts possess some degree of hesitation due to the difference
in thought at the management level and the actual hospital
level. So, uncertainty in inputs and outputs can be well taken
as IFN.

In this paper, we develop DIFDEA models using α−, β-
cut to determine the IF efficiency and IF correlation coef-
ficient (IFCC) between IF variables and propose a ranking
approach to rank the DMUs. Also, this study determines the
IF input target and IF output target for inefficient DMUs.

The rest of the paper is organized as follows: Section 2
presents the preliminaries. Section 3 presents the extension
ofDEA toDIFDEA. Section 4 presents the proposed IFCC to
validate the proposed DIFDEA models. Section 5 presents
the proposed IF ranking approach. Section 6 presents the

illustrative example and a health sector application. Last sec-
tion of the paper concludes the findings of this paper.

2 Preliminaries

This section includes some basic definitions and notions.

Definition 1 (Arya and Yadav (2017)) The performance effi-
ciency of aDMU is defined as the ratio of theweighted sumof
outputs (called virtual output) to the weighted sum of inputs
(called virtual input). Thus,

Performance efficiency = vir tual output

vir tual input
.

The relative performance efficiency of a DMU is defined as
the ratio of its performance efficiency to the largest perfor-
mance efficiency. The relative performance efficiency of a
DMU lies in the range (0, 1]. DEA evaluates the relative per-
formance efficiency of a set of homogeneous DMUs (Arya
and Yadav 2017).

Definition 2 (Zimmermann 2011) A fuzzy number (FN) Ã
is defined as a convex normalized fuzzy set Ã of the real line
R with membership function μ Ã such that

• there exists exactly one x0 ∈ R with μ Ã(x0) = 1. x0 is
called the mean value of Ã,

• μ Ã is a piecewise continuous function on R.

Definition 3 (Arya and Yadav 2017) The triangular FN
(TFN) Ã is a FN denoted by Ã = (al , am, au) and is defined
by the membership function μ Ã given by

μ Ã(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − al

am − al
, al < x ≤ am,

au − x

au − am
, am ≤ x < au,

0, elsewhere,

for all x ∈ R, where am is called themodal value and (al , au)
is called support of the TFN (al , am, au).

Definition 4 (Arithmetic operations on TFN) (Arya and
Yadav 2017) Let Ã1 = (a1l , a1m, a1u) and Ã2 = (a2l ,
a2m, a2u) be two TFNs. Then, the arithmetic operations on
TFNs are given as follows:

• Adition: Ã1 ⊕ Ã2 = (a1l + a2l , a1m + a2m, a1u + a2u).
• Subtraction: Ã1� Ã2 = (a1l−a2u, a1m−a2m, a1u−a2l).
• Multiplication: Ã1⊗ Ã2 ≈ (min(a1la2l , a1la2u, a1ua2l ,
a1ua2u), a1ma2m,max(a1la2l , a1la2u, a1ua2l , a1ua2u)).
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• Scalar multiplication:

λ Ã1 =
{

(λa1l , λa1m, λa1u), for λ ≥ 0,
(λa1u, λa1m, λa1l), for λ < 0.

Definition 5 (Intuitionistic fuzzy set (IFS)) (Arya andYadav
2018) Let us suppose that X is a universe of discourse. Then,
an IFS in X is denoted by ÃI and is defined by ÃI =
{(x, μ ÃI (x), ν ÃI (x))∀x ∈ X}, where μ ÃI : X → [0, 1]
and ν ÃI : X → [0, 1] represent the membership and non-
membership functions, respectively, of an element x in ÃI .
The valuesμ ÃI (x) and ν ÃI (x) represent themembership and
non-membership values of x being in ÃI with the condition
that 0 ≤ μ ÃI (x) + ν ÃI (x) ≤ 1. The hesitation (indeter-
minacy) degree of an element x being in ÃI is defined as
π ÃI (x) = 1 − μ ÃI (x) − ν ÃI (x) ∀x ∈ X . Obviously 0 ≤
π ÃI (x) ≤ 1. Ifπ ÃI (x) = 0, then ÃI is reduced to a fuzzy set.

Definition 6 (Normal IFS) (Arya andYadav 2018)Let ÃI =
{(x, μ ÃI (x), ν ÃI (x)) : x ∈ X} be an IFS. Then, ÃI is called
the normal IFS if ∃ an x ∈ X such that μ ÃI (x) = 1 and
ν ÃI (x) = 0.

Definition 7 (Convex IFS) (Arya andYadav 2018) Let ÃI =
{(x, μ ÃI (x), ν ÃI (x)) : x ∈ X} be an IFS. Then, ÃI is called
the Convex IFS if

(i) min (μ ÃI (x), μ ÃI (y)) ≤ μ ÃI (λx + (1−λ)y), ∀x, y ∈
X and λ ∈ [0, 1], i.e., μ ÃI is quasi-concave function
over X .

(ii) max (ν ÃI (x), ν ÃI (y))≥ν ÃI (λx + (1−λ)y), ∀x, y∈ X
and λ∈[0, 1], i.e., ν ÃI is quasi-convex function over X .

Definition 8 (α-cut) The α-cut of an IFS ÃI is denoted by
AI

α and defined as AI
α = {x : μ ÃI (x) ≥ α}; α ∈ [0, 1].

Definition 9 (β-cut) The β-cut of an IFS ÃI is denoted by
BI

β and defined as BI
β = {x : ν ÃI (x) ≤ β}; β ∈ [0, 1].

Definition 10 (Intuitionistic fuzzy number (IFN)) (Arya and
Yadav 2018) The IFN is an extension of a FN (Zimmermann
2011) in IF environment. This is defined as follows:
Let ÃI = {(x, μ ÃI (x), ν ÃI (x)) : x ∈ R} be an IFS, where
R is the set of all real numbers. Then, ÃI is called the IFN if
the following conditions hold:

(i) There exists a unique x0 ∈ R such that μ ÃI (x0) = 1
and ν ÃI (x0) = 0,

(ii) ÃI is convex IFS,
(iii) μ ÃI and ν ÃI are piecewise continuous functions on R.

Mathematically, an IFS ÃI = {(x, μ ÃI (x), ν ÃI (x)) : x ∈
R} is an IFN if μ ÃI and ν ÃI are piecewise continuous func-
tions fromR to [0, 1] and0 ≤ μ ÃI (x)+ν ÃI (x) ≤ 1, ∀x ∈ R

given by

1 

x( )IA

x( )IA

0 

'la la ma ua 'ua

Fig. 1 Membership and non-membership functions of IFN ÃI

μ ÃI (x) =

⎧
⎪⎪⎨

⎪⎪⎩

g1(x), al ≤ x < am,

1, x = am,

h1(x), am < x ≤ au,
0, elsewhere,

ν ÃI (x) =

⎧
⎪⎪⎨

⎪⎪⎩

g2(x), a
′l ≤ x < am,

0, x = am,

h2(x), am < x ≤ a
′u,

1, elsewhere,

where am is called the mean value of ÃI ; am − al and
au −am are called the left and right hand spreads of member-
ship function μ ÃI , respectively; am − a

′l and a
′u − am are

called the left and right hand spreads of hesitation function
π ÃI , respectively; g1 and h1 are called piecewise contin-
uous, increasing and decreasing functions in [al , am) and
(am, au], respectively; and g2 and h2 are called piecewise
continuous, strictly increasing and strictly decreasing func-
tions in [a′l , am) and (am, a

′u], respectively. The IFN ÃI

is represented by ÃI = (al , am, au; a′l , am, a
′u), where

a
′l ≤ al ≤ am ≤ au ≤ a

′u . Its graphical representation
is given in Figure 1.

Remark 1 For an IFN ÃI , the α- and β-cuts are closed inter-
vals as follows:

AI
α = {x : μ ÃI (x) ≥ α} = [a(α), b(α)]; α ∈ (0, 1],

BI
β = {x : ν ÃI (x) ≤ β} = [a′(β), b′(β)]; β ∈ [0, 1),

where a(α), b′(β) are increasing functions of α and β,
respectively, and b(α), a′(β) are decreasing functions of α

and β, respectively.

Definition 11 (Triangular intuitionistic fuzzy number
(TIFN)) (Arya andYadav2018)TheTIFN ÃI = (al , am, au;
a

′l , am, a
′u) is an IFNwith themembership functionμ ÃI and

non-membership function ν ÃI given by
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IA

1 IA

0
'la la ma ua 'ua

Fig. 2 TIFN ÃI = (al , am , au; a′l , am , a′u)

μ ÃI (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − al

am − al
, al < x ≤ am,

au − x

au − am
, am ≤ x < au,

0, elsewhere,

ν ÃI (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − am

a′l − am
, a

′l < x ≤ am,

am − x

am − a′u , am ≤ x < a
′u,

1, elsewhere,

where al , am, au, a
′l , a

′u ∈ R such that a
′l ≤ al ≤ am ≤

au ≤ a
′u . Its graphical representation is given in Figure 2.

Definition 12 (Positive IFN) Let ÃI = (al , am, au; a′l ,
am, a′u) be an IFN. Then, ÃI is called a positive IFN if
a′l > 0.

Definition 13 (Arithmetic operations on TIFN) (Arya and

Yadav 2018) Let Ã1
I = (a1l , a1m, a1u; a1 ′l , a1m, a1

′u) and

Ã2
I = (a2l , a2m, a2u; a2 ′l , a2m, a2

′u) be two TIFNs. Then,
the arithmetic operations on TIFNs are given as follows:

(i) Addition: Ã1
I ⊕ Ã2

I = (a1l + a2l , a1m + a2m, a1u +
a2u; a1 ′l + a2

′l , a1m + a2m, a1
′u + a2

′u).

(ii) Multiplication: Ã1
I ⊗ Ã2

I ≈ (a1la2l , a1ma2m, a1ua2u;
a1

′la2
′l , a1ma2m, a1

′ua2
′u), where Ã1

I
, Ã2

I
> 0.

(iii) Scalar multiplication: If λ ∈ R, then

λ Ã1
I =

{
(λa1l , λa1m, λa1u; λa1

′l , λa1m, λa1
′u), λ ≥ 0,

(λa1u, λa1m, λa1l; λa1
′u, λa1m, λa1

′l), λ ≤ 0.

3 Extension of DEA to DIFDEAmodels

DEA is a linear programming basedmethodology tomeasure
the relative efficiencies of DMUs when the production pro-

cess consists of multiple inputs and outputs. Assume that the
performance of a set of n homogeneous DMUs (DMUj; j =
1, 2, 3, . . . , n) is to be measured (Arya and Yadav 2017). Let
us suppose that each DMUutilizes m inputs to produce s out-
puts. Consider the jth DMU: DMU j , j = 1, 2, 3, ..., n. Let
xi j be the amount (value) of the ith input utilized and yr j be
the amount (value) of the rth output producedby the jthDMU,
j = 1, 2, 3, . . . , n, i = 1, 2, 3, . . . ,m, r = 1, 2, 3, . . . , s.
Then, the efficiency of DMU j is given by Charnes et al.

(1978)

E j =

s∑

r=1
vr j yr j

m∑

i=1
ui j xi j

, j = 1, 2, . . . , n,

where ui j and vr j are the weights corresponding to ith input
and rth output of DMU j , respectively.

In the CCR fractional program (FP) (Charnes et al. 1978),
the efficiency of the DMU jo is to be maximized subject to
the condition that the ratio of the virtual output to the virtual
input of every DMU should be less than or equal to unity. The
CCR (ratio) fractional DEA program and the corresponding
linear program (LP) for DMU jo are given in Table 1. In these
models, the efficiency ofDMU jo is denoted by E jo and ε > 0
is a non-Archimedean infinitesimal constant.

If DMUs have IF input and IF output data, then we
develop intuitionistic fuzzy DEA (IFDEA) models to deter-
mine the efficiencies of DMUs.Assume that the performance
of DMU j ( j = 1, 2, . . . , n) is characterized by a production
process of m IF inputs x̃ Ii j ; i = 1, 2, 3, . . . ,m to yield s IF

outputs ỹ Ir j ; r = 1, 2, 3, . . . , s. Let IF efficiency of DMU jo

be represented by Ẽ I
jo
. Then, IFDEA model (Model 1) is

given as follows:

Model 1 (IFDEA)

max Ẽ I
jo =

s∑

r=1

vr jo ỹ
I
r jo

subject to
m∑

i=1

ui jo x̃
I
i jo = 1̃I ,

s∑

r=1

vr jo ỹ
I
r j −

m∑

i=1

ui jo x̃
I
i j ≤ 0̃I , j = 1, 2, 3, . . . , n,

ui jo , vr jo≥ε, ∀i=1, 2, 3, . . . ,m; ∀r=1, 2, 3, . . . , s; ε

> 0 is a non-Archimedean infinitesimal constant,

where ui jo and vr jo are the weights corresponding to the ith
IF input and rth IF output, respectively.
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Table 1 Crisp DEA Models:
Fractional and LP forms

Fractional DEA LP DEA

max E jo =
∑s

r=1 vr jo yr jo∑m
i=1 ui jo xi jo

max E jo = ∑s
r=1 vr jo yr jo

subject to subject to
∑s

r=1 vr jo yr j∑m
i=1 ui jo xi j

≤ 1, j = 1, 2, 3, . . . , n
∑m

i=1 ui jo xi jo = 1

∑s
r=1 vr jo yr j − ∑m

i=1 ui jo xi j ≤ 0, j = 1, 2, 3, . . . , n

ui jo , vr jo ≥ ε, ∀i, r ui jo , vr jo ≥ ε, ∀i, r

3.1 Methodology for solving IFDEAmodel

Assume that IF input x̃ Ii j and IF output ỹ Ir j are TIFNs. Let

x̃ Ii j = (x Li j , x
M
i j , xUi j ; x ′L

i j , xMi j , x ′U
i j ) and ỹ Ir j = (yLr j , y

M
r j , y

U
r j ;

y′L
r j , y

M
r j , y

′U
r j ). Then,Model 1 is transformed to the following

model (Model 2):

Model 2

max Ẽ I
jo =

s∑

r=1

vr jo

(
yLr jo , y

M
r jo , y

U
r jo ; y′L

r jo , y
M
r jo , y

′U
r jo

)

subject to
m∑

i=1

ui jo
(
x Li jo , x

M
i jo , x

U
i jo ; x ′L

i jo , x
M
i jo , x

′U
i jo

)
=(1, 1, 1; 1, 1, 1),

s∑

r=1

vr jo

(
yLr j , y

M
r j , y

U
r j ; y′L

r j , y
M
r j , y

′U
r j

)

−
m∑

i=1

ui jo
(
x Li j , x

M
i j , xUi j ; x ′L

i j , xMi j , x ′U
i j

)

≤ (0, 0, 0; 0, 0, 0), j = 1, 2, 3, . . . , n,

ui jo , vr jo ≥ ε, ∀i, r .

3.2 Models based on˛-cut

Replacing IF input x̃ Ii j and IF output ỹ Ir j by their α-cuts

[αxMi j + (1 − α)x Li j , αx
M
i j + (1 − α)xUi j ] and [αyMr j + (1 −

α)yLr j , αy
M
r j + (1−α)yUr j ], respectively. Let the α-cut of Ẽ I

jo
be [EL

jo,α
, EU

jo,α
]. Then, Model 2 is reduced to the following

model (Model 3):

Model 3

max
[
EL

jo,α, EU
jo,α

]
=

s∑

r=1

vr jo

[
αyMr jo

+(1 − α)yLr jo , αy
M
r jo + (1 − α)yUr jo

]

subject to

m∑

i=1

ui jo
[
αxMi j0+(1 − α)x Li jo , αx

M
i jo+(1 − α)xUi jo

]
=[1, 1],

s∑

r=1

vr jo

[
αyMr j + (1 − α)yLr j , αy

M
r j + (1 − α)yUr j

]

−
m∑

i=1

ui jo
[
αxMi j + (1 − α)x Li j , αx

M
i j + (1 − α)xUi j

]

≤ [0, 0], j = 1, 2, 3, . . . , n,

ui jo , vr jo ≥ ε, ∀i, r .

Model 3 is given in lower and upper bound model. The lower
bound model of Model 3 is given as below:

Model 4

max EL
jo,α =

s∑

r=1

vr jo

(
αyMr jo + (1 − α)yLr jo

)

subject to
m∑

i=1

ui jo
(
αxMi j0 + (1 − α)xUi jo

)
= 1,

s∑

r=1

vr jo

(
αyMr jo + (1 − α)yLr jo

)

−
m∑

i=1

ui jo
(
αxMi j0 + (1 − α)xUi jo

)
≤ 0,

s∑

r=1

vr jo

(
αyMr j + (1 − α)yUr j

)

−
m∑

i=1

ui jo
(
αxMi j + (1 − α)x Li j

)

≤ 0, j = 1, 2, 3, . . . , n, j 
= jo,

ui jo , vr jo ≥ ε, ∀i, r .

Model 4 is a DEAmodel, and the levels of inputs and outputs
are now adjusted unfavourably to the evaluated DMU jo and
in favour of the other DMUs. For DMU jo , the outputs are
adjusted at their lower bounds and the inputs are adjusted at
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their upper bounds. For other DMUs, the outputs are adjusted
at their upper bounds and the inputs are favourably adjusted
at their lower bounds. Thus, the DMU jo comes to the worst
possible position comparedwith otherDMUsbased onα-cut.

The upper bound model of Model 3 is given as below:

Model 5

max EU
jo,α =

s∑

r=1

vr jo

(
αyMr jo + (1 − α)yUr jo

)

subject to
m∑

i=1

ui jo
(
αxMi j0 + (1 − α)x Li jo

)
= 1,

s∑

r=1

vr jo

(
αyMr jo + (1 − α)yUr jo

)

−
m∑

i=1

ui jo
(
αxMi j0 + (1 − α)x Li jo

)
≤ 0,

s∑

r=1

vr jo

(
αyMr j + (1 − α)yLr j

)

−
m∑

i=1

ui jo
(
αxMi j + (1 − α)xUi j

)

≤ 0, j = 1, 2, 3, . . . , n, j 
= jo,

ui jo , vr jo ≥ ε, ∀i, r .

Model 5 is also a DEA model, where the levels of inputs
and outputs are adjusted in favour of the evaluated DMU jo
and in unfavour of other DMUs. For the evaluated DMU,
the outputs are adjusted at their upper bounds and the inputs
are adjusted at their lower bounds. Unfavourably for the other
DMUs, the outputs are adjusted at their lower bounds and the
inputs are adjusted at their upper bounds. Thus, the DMU jo
comes to the best possible position compared with the other
DMUs based on α-cut.

The dual of Model 4 is written as follows:

Model 6

min ξ Ljo,α = θ Ljo − ε

⎛

⎝
s∑

r=1

S+
r jo,α

+
m∑

i=1

S−
i jo,α

⎞

⎠

subject to

θ Ljo

(
αxMi j0 + (1 − α)xUi jo

)
− λLjo

(
αxMi j0 + (1 − α)xUi jo

)

−
n∑

j=1,
= jo

λLj

(
αxMi j + (1 − α)xLi j

)
− S−

i jo,α
= 0, ∀i

λLjo

(
αyMr jo + (1 − α)yLr jo

)
+

n∑

j=1,
= jo

λLj

(
αyMr j + (1 − α)yUr j

)

− S+
r jo,α

=
(
αyMr jo + (1 − α)yLr jo

)
, ∀r

λLj , S−
i jo,α

, S+
r jo,α

≥ 0, ∀ j = 1, 2, 3, . . . , n,

j 
= jo, θ Ljo is unrestricted in sign.

In Model 6, S−
i jo,α

and S+
r jo,α

are the slack variables, λL
j is

the non-negative dual variable corresponding to the jth pri-
mal (Model 4) constraints, =1,2,3,…,n and θ L

jo
is unrestricted

dual variable corresponding to the equation constraint in the
primal problem (Model 4).

The dual of Model 5 is written as follows:

Model 7

min ξUjo,α
= θUjo

− ε

⎛

⎝
s∑

r=1

S+
r jo,α

+
m∑

i=1

S−
i jo,α

⎞

⎠

subject to

θUjo

(
αxMi jo + (1 − α)xLi jo

)
− λUjo

(
αxMi j0 + (1 − α)xLi jo

)

−
n∑

j=1,
= jo

λUj

(
αxMi j + (1 − α)xUi j

)
− S−

i jo,α
= 0, ∀i

λUjo

(
αyMr jo + (1 − α)yUr jo

)
+

n∑

j=1,
= jo

λUj

(
αyMr j + (1 − α)yLr j

)

− S+
r jo,α

=
(
αyMr jo + (1 − α)yUr jo

)
, ∀r

λUj , S−
i jo,α

, S+
r jo,α

≥ 0, ∀ j, θUjo
is unrestricted in sign,

where λUj is the non-negative dual variable corresponding to

the jth primal (Model 5) constraints, j=1,2,3,…,n and θUjo
is unrestricted dual variable corresponding to the equation
constraint in the primal problem (Model 5). Models 6 and 7
are the proposed DIFDEA models based on α-cut and will
be denoted as PDI FDE A jo,α .

Definition 14 Efficient and inefficientDMUsbased onα-cut,

DMU jo is fully efficient if ξ L∗
jo,α

= 1 for any α ∈ (0, 1].
DMU jo is efficient if ξU∗

jo,α
= 1 and ξ L∗

jo,α
< 1 for any

α ∈ (0, 1].
DMU jo is inefficient if ξU∗

jo,α
< 1 for any α ∈ (0, 1].

Axiom 3.1 The lower bound efficiency is less than or equal
to upper bound efficiency of DMU jo , i.e. ξ

L∗
jo,α

≤ ξU∗
jo,α

∀α ∈
(0, 1].

3.3 Models based onˇ-cut

Replacing IF input x̃ Ii j and IF output ỹ Ir j by their β-

cuts x̃ Ii j = [βx ′L
i j + (1 − β)xMi j , βx ′U

i j + (1 − β)xMi j ] and

ỹ Ir j = [β y′L
r j + (1 − β)yMr j , β y

′U
r j + (1 − β)yMr j ], respec-

tively, Model 2 is reduced to the following model:
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Model 8

max
[
EL
jo,β , EU

jo,β

]
=

s∑

r=1

v′
r jo

[
β y′L

r jo

+(1 − β)yMr jo , β y
′U
r jo

+ (1 − β)yMr jo

]

subject to
m∑

i=1

u′
i jo

[
βx ′L

i jo + (1 − β)xMi jo , βx
′U
i jo

+ (1 − β)xMi jo

]
= [1, 1],

s∑

r=1

v′
r jo

[
β y′L

r j + (1 − β)yMr j , β y
′U
r j + (1 − β)yMr j

]

−
m∑

i=1

u′
i jo

[
βx ′L

i j + (1 − β)xMi j , βx ′U
i j + (1 − β)xMi j

]

≤ [0, 0], j = 1, 2, 3, . . . , n, j 
= jo,

u′
i jo , v

′
r jo ≥ ε, ∀i, r .

Model 8 is given in lower and upper bound model. The lower
bound model of Model 8 is given as below:

Model 9

max EL
jo,β =

s∑

r=1

v′
r jo

(
β y′L

r jo + (1 − β)yMr jo

)

subject to
m∑

i=1

u′
i jo

(
βx ′U

i jo + (1 − β)xMi jo

)
= 1,

s∑

r=1

v′
r jo

(
β y′L

r jo + (1 − β)yMr jo

)

−
m∑

i=1

u′
i jo

(
βx ′U

i jo + (1 − β)xMi jo

)
≤ 0,

s∑

r=1

v′
r jo

(
β y′U

r j + (1 − β)yMr j

)

−
m∑

i=1

u′
i jo

(
βx ′L

i j + (1 − β)xMi j

)
≤ 0,

j = 1, 2, 3, . . . , n, j 
= jo, u′
i jo , v

′
r jo ≥ ε, ∀i, r .

Model 9 is a DEA model, the levels of inputs and outputs
are now adjusted unfavourably to the evaluated DMU jo and
in favour of the other DMUs. For DMU jo , the outputs are
adjusted at their lower bounds and the inputs are adjusted at
their upper bounds. For other DMUs, the outputs are adjusted
at their upper bounds and the inputs are favourably adjusted
at their lower bounds. Thus, the DMU jo comes to the worst
possible position compared to other DMUs based on β-cut.

The upper bound model of Model 8 is given as below:

Model 10

max EU
jo,β =

s∑

r=1

v′
r jo

(
β y′U

r jo + (1 − β)yMr jo

)

subject to
m∑

i=1

u′
i jo

(
βx ′L

i jo + (1 − β)xMi jo

)
= 1,

s∑

r=1

v′
r jo

(
β y′U

r jo + (1 − β)yMr jo

)

−
m∑

i=1

u′
i jo

(
βx ′L

i jo + (1 − β)xMi jo

)
≤ 0,

s∑

r=1

v′
r jo

(
β y′L

r j + (1 − β)yMr j

)

−
m∑

i=1

u′
i jo

(
βx ′U

i j + (1 − β)xMi j

)
≤ 0,

j = 1, 2, . . . , n, j 
= jo, u′
i jo , v

′
r jo ≥ ε, ∀i, r .

Model 10 is also a DEA model, where the levels of inputs
and outputs are adjusted in favour of the evaluated DMU jo
and in unfavour of other DMUs. For the evaluated DMU jo ,
the outputs are adjusted at their upper bounds and the inputs
are adjusted at their lower bounds. Unfavourably for the other
DMUs, the outputs are adjusted at their lower bounds and the
inputs are adjusted at their upper bounds. Thus, the DMU jo
comes to the best possible position compared to other DMUs
based on β-cut.

The dual of Model 9 is written as follows:

Model 11

min ξ
′L
jo,β = θ

′L
jo − ε

(
s∑

r=1

S+
r jo

+
M∑

i=1

S−
i jo

)

subject to

θ
′L
jo

(
βx ′U

i jo + (1 − β)xMi jo

)
− λ

′L
jo

(
βx ′U

i jo − (1 − β)xMi jo

)

−
n∑

j=1, 
= jo

λ
′L
j

(
βx ′L

i j + (1 − β)xMi j

)
− S−

i jo,β
= 0, ∀i

λ
′L
jo

(
β y′L

r jo + (1 − β)yMr jo

)
+

n∑

j=1, 
= jo

λ
′L
j

(
β y′U

r j + (1 − β)yMr j

)

− S+
r jo,β

=
(
β y′L

r jo + (1 − β)yMr jo

)
, ∀r

λ
′L
j ≥ 0 ∀ j; S−

i jo
, S+

r jo
≥ 0,∀i, r; θ

′L
jo is unrestricted in sign.

The dual of Model 10 is written as follows:
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Model 12

min ξ
′U
jo,β = θ

′U
jo − ε

(
s∑

r=1

S+
r jo

+
m∑

i=1

S−
i jo

)

subject to

θ
′U
jo

(
βx ′L

i jo + (1 − β)xMi jo

)
− λ

′U
jo

(
βx ′L

i jo + (1 − β)xMi jo

)

−
n∑

j=1, 
= jo

λ
′U
j

(
βx ′U

i j + (1 − β)xMi j

)
− S−

i jo
= 0, ∀i,

λ
′U
j

(
β y′U

r jo + (1 − β)yMr jo

)
+

n∑

j=1, 
= jo

λ
′U
j

(
β y′L

r j + (1 − β)yMr j

)

− S+
r jo

=
(
β y′U

r jo + (1 − β)yMr jo

)
, ∀r ,

λ
′U
j ≥ 0 ∀ j; S−

i jo
, S+

r jo
, ≥ 0 ∀i, r; θ

′U
jo is unrestricted in sign.

Models 11 and 12 are the proposed dual IFDEA (DIFDEA)
models based on β-cut and will be denoted as
PDI FDE A jo,β .

Definition 15 Efficient and inefficientDMUsbasedonβ-cut,

DMU jo is fully efficient if ξ
′L∗
jo,β

= 1 for any β ∈ [0, 1).
DMU jo is efficient if ξ

′U∗
jo,β

= 1 and ξ
′L∗
jo,β

< 1 for any
β ∈ [0, 1).
DMU jo is inefficient if ξ

′U∗
jo,β

< 1 for any β ∈ [0, 1).

Axiom 3.2 The lower bound efficiency is less than or equal
to upper bound efficiency of DMU jo , i.e. ξ

′L∗
jo,β

≤ ξ
′U∗
jo,β

∀β ∈
[0, 1).

3.4 IF input targets and IF output targets

The main objective of DEAmodels is to identify the efficient
and inefficient DMUs and to suggest to make the inefficient
DMUs as efficient DMUs. An inefficient DMU can become
efficient using adjusting inputs (called input targets) and/or
adjusting outputs (called output targets). The ith input target
and rth output target for DMU j0 are denoted by x̄i j0 and ȳr j0 ,
respectively, and are defined by Agarwal (2014)

x̄i j0 = θ∗
i j0xi j0 − S−

i j0
, ȳr j0 = yr j0 + S+

r j0

If inputs and outputs are IFNs, then the adjusting IF inputs
(called IF input target) and/or adjusting IF outputs (called
IF output target) for DMU j0 are denoted by ¯̃x Ii j0 and ¯̃yr j0 ,
respectively, and are defined by

¯̃x Ii j0 = θ̃ I∗
j0 x̃

I
i j0 − S−

i j0
, ¯̃y Ir j0 = ¯̃y Ir j0 + S+

r j0
.

4 Proposed IF correlation coefficients (IFCCs)
to validate the proposed DIFDEAmodels

Definition 16 (Isotonicity test) If positive correlation coef-
ficients between input–output data are found (Avkiran et al.
2008), the selection of inputs and outputs is justified.

Avkiran et al. (2008) and Tsai et al. (2006) proposed the iso-
tonicity test to validate the conventional DEA models. Puri
and Yadav (2013) proposed the fuzzy correlation coefficients
between fuzzy input–output data. In this paper, we are con-
cerned with the evaluation of ξ L

jo,α
, ξUjo,α, ξ

′L
jo,β

and ξ
′U
jo,β

on
the basis of the IF input–output data. To ensure the validity of
the proposed DIFDEA models, we find the IFCCs between
IF variables. To the best of our knowledge, in the literature,
nobody has proposed the IFCCs. Therefore, in this paper,
we propose the IFCCs between IF variables using expected
values (Hung and Wu 2001).

4.1 Expected interval and expected value of an IFN

Let ÃI = (am; am − al , au − am; am − bl , bu − am) be
an IFN with membership and non-membership functions
μ ÃI (x) and ν ÃI (x), respectively, given by

μ ÃI (x) =

⎧
⎪⎪⎨

⎪⎪⎩

g1(x), al ≤ x < am,

1, x = am,

h1(x), am < x ≤ au,
0, elsewhere.

ν ÃI (x) =

⎧
⎪⎪⎨

⎪⎪⎩

g2(x), bl ≤ x < am,

0, x = am,

h2(x), am < x ≤ bu,
1, elsewhere.

The expected interval (Grzegorzewski 2003) of ÃI is the
crisp interval E I ( ÃI ) given by E I ( ÃI ) = [E∗L( ÃI ),

E∗U ( ÃI )], where

E∗L( ÃI ) = bl + am

2
+ 1

2

∫ am

bl
g2(x)dx − 1

2

∫ am

al
g1(x)dx,

(4.1)

E∗U ( ÃI ) = am + bu

2
+ 1

2

∫ au

am
h1(x)dx − 1

2

∫ bu

am
h2(x)dx .

(4.2)

The expected value of an IFN is given by

EV ( ÃI ) = E∗L( ÃI ) + E∗U ( ÃI )

2
. (4.3)

Theorem 1 Let ÃI = (al , am, au; bl , am, bu) be a TIFN.
Then, EV ( ÃI ) = al+bl+4am+au+bu

8 .
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Proof Using (4.1), we have E∗L( ÃI ) = al+2am+bl
4 .

Using (4.2), we have E∗U ( ÃI ) = au+2am+bu
4 .

Therefore, EV ( ÃI ) = al+bl+4am+au+bu
8 . ��

4.2 Proposed IFCC between IF variables

Definition 17 (correlation coefficients between variables)
Let x and y be two crisp variables and (x, y) assume the
values (xi , yi ), i = 1, 2, 3, . . . , n. Then, the correlation
coefficient between x and y is denoted by C(x, y) and is
defined by

C(x, y) =
n

n∑

i=1
xi yi −

n∑

i=1
xi

n∑

i=1
yi

√

n
n∑

i=1
xi 2 −

(
n∑

i=1
xi

)2

.

√

n
n∑

i=1
yi 2 −

(
n∑

i=1
yi

)2
.

(4.4)

Let x̃ I and ỹ I be two IF variables and (x̃ I , ỹ I ) assume the
values (x̃ Ii , ỹ Ii ), i = 1, 2, 3, . . . , n. Then, the IFCC between
x̃ I and ỹ I is denoted by C̃ I (x̃ I , ỹ I ) and is defined by

C̃ I (x̃ I , ỹ I )

=
n

n∑

i=1
x̃i

I ỹi
I −

n∑

i=1
x̃i

I
n∑

i=1
ỹi

I

√

n
n∑

i=1

(
x̃i

I
)2 −

(
n∑

i=1
x̃i

I
)2

.

√

n
n∑

i=1

(
ỹi

I
)2 −

(
n∑

i=1
ỹi

I
)2

.

(4.5)

The square of a positive TIFN ÃI is given by

( ÃI )2 = ÃI . ÃI

= (al , am, au; a′l , am, a′u).(al , am, au; a′l , am, a′u)
= ((al)2, (am)2, (au)2; (a′l)2, (am)2, (a′u)2). (4.6)

It is difficult to apply (4.5) if data are large. To obtain the
IFCC between the IF variables, we propose a new method
using the expected value approach as described below:

Let x̃ Ii = (xli , x
m
i , xui ; x ′l

i , xmi , x
′u
i ) and ỹ Ii = (yli , y

m
i , yui ;

y
′l
i , ymi , y

′u
i ) be TIFNs. Then, the α-cut of x̃ Ii is the interval

[x Li,α, xUi,α], where x Li,α = αxmi + (1 − α)xli , and xUi,α =
αxmi + (1 − α)xui , α ∈ (0, 1].

Similarly, the α-cut of ỹ Ii is the interval [yLi,α, yUi,α], where
yLi,α = αymi + (1 − α)yli , and yUi,α = αymi + (1 − α)yui ,
α ∈ (0, 1].

The expected interval (EI) of the IFCC C̃ I (x̃ I , ỹ I )
based on α-cuts of x̃ Ii and ỹ Ii is defined as the interval
CE I

α (x̃ I , ỹ I ) = [CL
α (x̃ I , ỹ I ),CU

α (x̃ I , ỹ I )], where

CL
α

(
x̃ I , ỹ I

)

=
n

n∑

i=1
xLi,α y

L
i,α −

n∑

i=1
xLi,α

n∑

i=1
yLi,α

√
√
√
√n

n∑

i=1

(
xLi,α

)2 −
(

n∑

i=1
xLi,α

)2

.

√
√
√
√n

n∑

i=1

(
yLi,α

)2 −
(

n∑

i=1
yLi,α

)2
.

(4.7)

CU
α

(
x̃ I , ỹ I

)

=
n

n∑

i=1
xUi,α y

U
i,α −

n∑

i=1
xUi,α

n∑

i=1
yUi,α

√
√
√
√n

n∑

i=1

(
xUi,α

)2 −
(

n∑

i=1
xUi,α

)2

.

√
√
√
√n

n∑

i=1

(
yUi,α

)2 −
(

n∑

i=1
yUi,α

)2
.

(4.8)

Observe that CL
α (x̃ I , ỹ I ) and CU

α (x̃ I , ỹ I ) are the correlation
coefficients based on the data (x Li,α, yLi,α) and (xUi,α, yUi,α),
respectively, i = 1, 2, 3, . . . , n. These correlation coeffi-
cients satisfy the following properties:

1. CL
α (x̃ I , ỹ I ) ∈ [−1, 1] and CU

α (x̃ I , ỹ I ) ∈ [−1, 1]
∀α ∈ (0, 1].

2. CL
α (x̃ I , ỹ I ) = 1 and CU

α (x̃ I , ỹ I ) = 1 if x̃ I = ỹ I

∀α ∈ (0, 1].

3. CL
α (x̃ I , ỹ I )=CL

α (ỹ I , x̃ I ) andCU
α (x̃ I , ỹ I )=CU

α (ỹ I , x̃ I )
∀α ∈ (0, 1].

The expected value (EV) of IFCC C̃ I (x̃ I , ỹ I ) based on α-cut
is denoted by CEV

α (x̃ I , ỹ I ) and is defined by

CEV
α (x̃ I , ỹ I ) = 1

2

[
CL

α (x̃ I , ỹ I ) + CU
α (x̃ I , ỹ I )

]
, α ∈ (0, 1].

(4.9)

The β-cut of x̃ Ii is the interval [x ′L
i,β , x

′U
i,β ], where x

′L
i,β =

βx
′l
i +(1−β)xmi , and x

′U
i,β = βx

′u
i +(1−β)xmi ∀β ∈ [0, 1).

Similarly, the β-cut of ỹ Ii is the interval [y ′L
i,β , y

′U
i,β ], where

y
′L
i,β = β y

′l
i +(1−β)ymi , and y

′U
i,β = β y

′u
i +(1−β)ymi ∀β ∈

[0, 1).
The EI of IFCC C̃ I (x̃ I , ỹ I ) based on β-cuts of x̃ Ii and

ỹ Ii is defined as the interval C
′E I
β (x̃ I , ỹ I ) = [C ′L

β (x̃ I , ỹ I ),

C
′U
β (x̃ I , ỹ I )], where

C
′L
β (x̃ I , ỹ I )

=
n

n∑

i=1
x

′L
i,β y

′L
i,β −

n∑

i=1
x

′L
i,β

n∑

i=1
y
′L
i,β

√
√
√
√n

n∑

i=1

(
x

′L
i,β

)2 −
(

n∑

i=1
x

′L
i,β

)2

.

√
√
√
√n

n∑

i=1

(
y
′L
i,β

)2 −
(

n∑

i=1
y
′L
i,β

)2
.

(4.10)
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C
′U
β (x̃ I , ỹ I )

=
n

n∑

i=1
x

′U
i,β y

′U
i,β −

n∑

i=1
x

′U
i,β

n∑

i=1
y
′U
i,β

√
√
√
√n

n∑

i=1

(
x

′U
i,β

)2 −
(

n∑

i=1
x

′U
i,β

)2

.

√
√
√
√n

n∑

i=1

(
y
′U
i,β

)2 −
(

n∑

i=1
y
′U
i,β

)2
.

(4.11)

Observe thatC
′L
β (x̃ I , ỹ I ) andC

′U
β (x̃ I , ỹ I ) are the correlation

coefficients based on the data (x
′L
i,β , y

′L
i,β) and (x

′U
i,β , y

′U
i,β),

respectively, i = 1, 2, 3, . . . , n. These correlation coeffi-
cients satisfy the following properties:

1. C
′L
β (x̃ I , ỹ I ) ∈ [−1, 1] and C

′U
β (x̃ I , ỹ I ) ∈ [−1, 1]

∀β∈[0, 1).
2. C

′L
β (x̃ I , ỹ I ) = 1 and C

′U
β (x̃ I , ỹ I ) = 1 if x̃ I =

ỹ I ∀β ∈ [0, 1).
3. C

′L
β (x̃ I , ỹ I ) = C

′L
β (ỹ I , x̃ I ) and C

′U
β (x̃ I , ỹ I ) =

C
′U
β (ỹ I , x̃ I ) ∀β ∈ [0, 1).

The EV of IFCC C̃ I (x̃ I , ỹ I ) based on β-cut is denoted by
C

′EV
β (x̃ I , ỹ I ) and is defined by

C
′EV
β (x̃ I , ỹ I ) = 1

2

[
C

′L
β (x̃ I , ỹ I )

+C
′U
β (x̃ I , ỹ I )

]
, β ∈ [0, 1). (4.12)

The EV of IFCC C̃ I (x̃ I , ỹ I ) based on α- and β-cuts is
denoted by CEV

α,β (x̃ I , ỹ I ) and is defined by

CEV
α,β (x̃ I , ỹ I ) = CEV

α (x̃ I , ỹ I ) + C
′EV
β (x̃ I , ỹ I )

2
(4.13)

Theorem 2 Let [CL
α (x̃ I , ỹ I ),CU

α (x̃ I , ỹ I )]and [C ′L
β (x̃ I , ỹ I ),

C
′U
β (x̃ I , ỹ I )] be the EIs of the IFCC C̃(x̃ I , ỹ I ) based

on α- and β-cuts, respectively. Then, CEV
α,β (x̃ I , ỹ I ) =

CL
α (x̃ I , ỹ I ) + CU

α (x̃ I , ỹ I ) + C
′L
β (x̃ I , ỹ I ) + C

′U
β (x̃ I , ỹ I )

4
.

Proof The EV of IFCC C̃ I (x̃ I , ỹ I ) based on α- and β-cuts
is given by

CEV
α,β (x̃ I , ỹ I ) = CEV

α (x̃ I , ỹ I ) + C
′EV
β (x̃ I , ỹ I )

2

Using (5.9) and (5.12), we get

CEV
α,β (x̃ I , ỹ I ) = 1

2

[
CL

α (x̃ I , ỹ I ) + CU
α (x̃ I , ỹ I )

2

+
C

′L
β (x̃ I , ỹ I ) + C

′U
β (x̃ I , ỹ I )

2

⎤

⎦

=
CL

α (x̃ I , ỹ I ) + CU
α (x̃ I , ỹ I ) + C

′L
β (x̃ I , ỹ I ) + C

′U
β (x̃ I , ỹ I )

4

��
CEV

α,β (x̃ I , ỹ I ) satisfies the following properties:

1. CEV
α,β (x̃ I , ỹ I ) ∈ [−1, 1].

2. CEV
α,β (x̃ I , ỹ I ) = 1 if x̃ I = ỹ I .

3. CEV
α,β (x̃ I , ỹ I ) = CEV

α,β (ỹ I , x̃ I ).

Remark If the value of CEV
α,β (x̃ I , ỹ I ) for each x̃ I and ỹ I

is positive, then the proposed DIFDEAmodels are consistent
and inclusion of IF variables is justified.

5 Proposed intuitionistic fuzzy ranking
approach

Ranking has an important role in DEA. Some definitions are
as follows:

Definition 18 In DEA, the ranking index (Chen and Klein
1997) for the j th DMU is:

R j =
∑n

i=0

(
(E j )

U
αi

− c
)

∑n
i=0

(
(E j )Uαi − c

) − ∑n
i=0

(
(E j )Lαi − d

) ; n → ∞,

where (E j )
L
αi

and (E j )
U
αi

are the lower bound and upper
bound efficiencies of the jth DMU, respectively, for αi ∈
(0, 1]; c = min

αi
(E j )

L
αi

and d = max
αi

(E j )
U
αi
.

Definition 19 Let A = [a, b] and B = [c, d] be two inter-
vals. Then, the difference A − B of A and B is defined as
A − B = [a − d, b − c].

5.1 Methodology

The proposed index ranking (PIR) method evaluates the effi-
ciencies of DMUs.

To the best of our knowledge, in the DEA literature, there
is no ranking approach for IFNs.

The proposed method uses α- and β-cuts to rank the
DMUs.
(i) Index based on α-cut
Suppose aαi = min

j
ξ L
j,αi

and bαi = max
j

ξUj,αi for α ∈ (0, 1].
Obviously, ξUj,αi − aαi is positive for all j for any α ∈ (0, 1]
and (ξ L

j,αi
−bαi ) is negative for all j for any αi ∈ (0, 1]. Thus,

the index value is defined by

I j =
∑n

i=0 (ξUj,αi
− aαi )

∑n
i=0 (ξUj,αi

− aαi ) − ∑n
i=0 (ξ L

j,αi
− bαi )

. (5.1)
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(ii) Index based on β-cut
Suppose cβi = min

j
ξ

′L
j,βi

and dβi = max
j

ξ
′U
j,βi

.

Obviously, ξ
′U
j,βi

− dβi is negative and ξ
′L
j,βi

− cβi is positive
for all j for any βi ∈ [0, 1). Thus, the index value is defined
by

I
′
j =

∑n
i=0 (ξ

′U
j,βi

− dβi )
∑n

i=0 (ξ
′U
j,βi

− dβi ) − ∑n
i=0 (ξ

′L
j,βi

− cβi )
. (5.2)

(iii) Now, we construct the composite index of IF efficiencies
based on I j and I

′
j for the jth DMU is given by

IC j = η I j + (1 − η) I
′
j (5.3)

where η ∈ (0, 1) is a parameter depending on the decision-
maker’s intention. Generally, η is taken as 0.5.

5.1.1 Algorithm for the PIR approach

Based on the above analysis, we suggest the following algo-
rithm for ranking:

Step 1 Determine both ξ L
jo,α

and ξUjo,α given by Model 6
and Model 7, respectively, for each DMU jo , jo =
1, 2, 3, . . . , n.

Step 2 Determine both ξ
′L
jo,β

and ξ
′U
jo,β

given by Model 11
and Model 12, respectively, for each DMU jo , jo =
1, 2, 3, . . . , n.

Step 3 Determine both I jo and I
′
jo
given by (5.1) and (5.2),

respectively for each DMU jo , jo = 1, 2, 3, . . . , n.
Step 4 Determine IC jo given by (5.3) for each DMU jo ,

jo = 1, 2, 3, . . . , n.
Step 5 Rank the DMUs according to the decreasing values

of IC jo .

This PIR method is suitable for the IFN efficiencies because
it is based on α- and β-cut and it can handle the large quantity
of IFNs.
Theflowchart showing the overviewof the proposedmethods
is given in Figure 3.

5.2 Merits of the proposedmethods over existing
methods

The proposed method determines the efficiencies of DMUs
in interval form based on α-cut and β-cut. The proposed
IFCC is used to validate the proposed models based on IF
variables. But, the fuzzy DEA (FDEA) models determine
the efficiencies of DMUs based on α-cut only. The proposed
methodusesα-cut andβ-cut to rank theDMUs.Theproposed
ranking method gives the aggregate rank for all α-cuts and
β-cuts. But, the existing ranking methods in FDEA (Arya

and Yadav (2017, 2018)) of DMUs based on α-cut only and
existing ranking methods in IFDEA (Puri and Yadav (2015),
Daneshvar Rouyendegh (2011)) do not use α-cut and β-cut.

6 Numerical examples

In this section, to ensure the validity of the proposed models,
we consider an illustrative example and a health sector appli-
cation. The efficiencies obtained by the proposedmodels will
be termed as proposed efficiencies (PEs).

6.1 An illustrative example:

Let there be 5DMUs having two IF inputs and two IF outputs
which are represented as TIFNs. The IF input and IF output
data are listed in Table 2.

6.1.1 Determining efficiencies of DMUs

The IFCCbetween IF variables (IF inputs–outputs) are deter-
mined using (4.13) and are shown in Table 3. Table 3 shows
the lower and upper bounds of each expected interval based
on α- and β-cuts. Also, the corresponding expected values
come out to be positive. Therefore, the inclusion of the IF
input and IF output data are justified, and the DIFDEAmod-
els are consistent.

The ξ L
j,α, ξUj,α, ξ

′L
j,β and ξ

′U
j,β for each DMU j are calcu-

lated using Models 6, 7, 11 and 12 for different α and β ∈
[0, 1], respectively. The results are shown inTable 4.Byusing
the softwareLingo, the values of the ξ L

j,α, ξUj,α, ξ
′L
j,β and ξ

′U
j,β

for α, β = 0(0.25)1.0 are calculated (see Table 4) for each
DMU.

The composite index values for 5 DMUs are IC(DMU1)
= 0.3569; IC(DMU2) = 0.38; IC(DMU3) = 0.3587;
IC(DMU4) = 0.455; IC(DMU5) = 0.3435. The DMUs
are ranked by using PIR discussed in Sect. 5 as DMU4 >

DMU2 > DMU3 > DMU1 > DMU5.

6.1.2 Comparison of proposed efficiencies and crisp
efficiencies

To validate the proposed efficiencies through PDIFDEA, the
proposed efficiencies are compared with the efficiencies of
crisp DEA (crisp efficiencies) and are given in Table 5. In
Table 5, the efficiencies of DMUs are found to be smaller by
PDIFDEA compared to crisp DEA. In Table 5, DMUs 2, 4
and 5 are efficient in crisp DEA, but these are inefficient with
efficiency scores 0.38, 0.455 and 0.3435 using PDIFDEA,
respectively. Therefore, PDIFDEA is more realistic rather
than crisp DEA. Crisp DEA and PDIFDEA may give the
same efficiencies for certain data. Crisp DEA does not deal
with the uncertainty/vagueness, but PDIFDEA deals with the
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Sources: 
Literature review 
Experts’ opinion

Selection of the relevant input 
and output data variables for 
performance evaluation of the 
DMUs Selection Approaches: 

Data Collection 

Identify crisp/ fuzzy/intuitionistic fuzzy Data 

Representation of crisp data in 
intuitionistic fuzzy form 

Final input and output data 
set in the form of TIFNs 

Fuzzification of data using 
Experts’ opinions

Performance evaluation using dual intuitionistic fuzzy DEA (DIFDEA) approach

Selection of DIFDEA models 
( -cut,  -cut method) 

Lower and upper bound DIFDEA 
models based on -cut 

Lower and upper bound DIFDEA 
models based on -cut 

Intuitionistic fuzzy efficiencies based on - cut Intuitionistic fuzzy efficiencies based on -cut 

Rank the DMUs  

ation

d

Proposed ranking approach on the basis of IF efficiencies 

Proposed intuitionistic fuzzy correlation coefficients (IFCCs) 
between IF variables

Proposed IF input target and 
IF output target

Fig. 3 Overview of the proposed method

uncertainty/vagueness. Therefore, PDIFDEA is more effi-
cient rather than crisp DEA.

6.1.3 Determining IF input–output targets of DMUs

Finally, we obtain the IF input targets and IF output targets
discussed in Sect. 3.4 which are shown in Table 6.

From input targets, we conclude that

(i) for DMU 1, the IF inputs have to be decreased
from (3.5, 4, 4.5; 3.2, 4.0, 4.7) and (1.9, 2.1, 2.3; 1.7,
2.1, 2.5) to (2.18, 3.4, 4.5; 1.57, 3.4, 4.7) and (1.18,
1.8, 2.3; 0.93, 1.8, 2.5), respectively, to become
efficient,

(ii) for DMU 2, the IF inputs have to be decreased from
(2.9, 2.9, 2.9; 2.9, 2.9, 2.9) and (1.4, 1.5, 1.6; 1.3,
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Table 2 IF inputs and IF outputs for 5 DMUs

DMUs IF inputs IF outputs

x̃1
I x̃2

I ỹ1
I ỹ2

I

1 (3.5, 4.0, 4.5; 3.2, 4.0, 4.7 ) (1.9, 2.1, 2.3; 1.7, 2.1, 2.5) (2.4, 2.6, 2.8; 2.2, 2.6, 3) (3.8, 4.1, 4.4; 3.6, 4.1, 4.6)

2 (2.9, 2.9, 2.9; 2.9, 2.9, 2.9) (1.4, 1.5, 1.6; 1.3, 1.5, 1.8) (2.2, 2.2, 2.2; 2.2, 2.2, 2.2) (3.3, 3.5, 3.7; 3.1, 3.5, 3.9)

3 (4.4, 4.9, 5.4; 4.2, 4.9, 5.6) (2.2, 2.6, 3.0; 2.1, 2.6, 3.2) (2.7, 3.2, 3.7; 2.5, 3.2, 3.9) (4.3, 5.1, 5.9; 4.1, 5.1, 6.2)

4 (3.4, 4.1, 4.8; 3.1, 4.1, 4.9) (2.2, 2.3, 2.4; 2.1, 2.3, 2.6) (2.5, 2.9, 3.3; 2.4, 2.9, 3.6) (5.5, 5.7, 5.9; 5.3, 5.7, 6.1)

5 (5.9, 6.5, 7.1; 5.6, 6.5, 7.2) (3.6, 4.1, 4.6; 3.5, 4.1, 4.7) (4.4, 5.1, 5.8; 4.2, 5.1, 6.6) (6.5, 7.4, 8.3; 5.6, 7.4, 9.2)

Table 3 IFCCs between IF inputs–outputs

CL
0.1 CR

0.1 C
′L
0.1 C

′R
0.1 CEV

0.1,0.1

x̃ I1 x̃ I2 ỹ I1 ỹ I2 x̃ I1 x̃ I2 ỹ I1 ỹ I2 x̃ I1 x̃ I2 ỹ I1 ỹ I2 x̃ I1 x̃ I2 ỹ I1 ỹ I2 x̃ I1 x̃ I2 ỹ I1 ỹ I2

x̃ I1 1 0.95 0.96 0.77 1 0.97 0.96 0.96 1 0.93 0.94 0.63 1 0.97 0.95 0.94 1 0.96 0.95 0.83

x̃ I2 0.95 1 0.97 0.92 0.97 1 0.90 0.96 0.93 1 0.96 0.85 0.97 1 0.99 0.97 0.96 1 0.95 0.92

ỹ I1 0.96 0.97 1 0.83 0.96 0.90 1 0.92 0.94 0.96 1 0.72 0.95 0.99 1 0.99 0.95 0.96 1 0.87

ỹ I2 0.77 0.92 .83 1 0.96 0.96 0.93 1 0.63 0.85 0.72 1 0.94 0.97 0.99 1 0.83 0.92 0.87 1

Table 4 The IF efficiencies for α, β = 0(0.25)1.0

α, β DMU 1 DMU 2 DMU 3 DMU 4 DMU 5

[ξ L
jo,α

, ξUjo,α] [ξ ′L
jo,β

, ξ
′U
jo,β

] [ξ L
jo,α

, ξUjo,α] [ξ ′L
jo,β

, ξ
′U
jo,β

] [ξ L
jo,α

, ξUjo,α] [ξ ′L
jo,β

, ξ
′U
jo,β

] [ξ L
jo,α

, ξUjo,α] [ξ ′L
jo,β

, ξ
′U
jo,β

] [ξ L
jo,α

, ξUjo,α] [ξ ′L
jo,β

, ξ
′U
jo,β

]

0 [0.62,1] [0.85,0.85] [0.83,1] [1,1] [0.57,1] [0.86,0.86] [0.85,1] [1,1] [0.64,1] [1,1]

0.25 [0.7,1] [0.77,0.97] [0.91,1] [1,1] [0.64,1] [0.75,0.98] [0.94,1] [0.91,1] [0.73,1] [0.91,1]

0.5 [0.76,0.96] [0.68,1] [0.99,1] [0.87,1] [0.72,1] [0.64,1] [1,1] [0.84,1] [0.84,1] [0.75,1]

0.75 [0.81,0.9] [0.58,1] [1,1] [0.75,1] [0.79,0.93] [0.53,1] [1,1] [0.76,1] [0.97,1] [0.62,1]

1.0 [0.85,0.85] [0.48,1] [1,1] [0.65,1] [0.86,.86] [0.45,1] [1,1] [0.68,1] [1,1] [0.52,1]

1.5, 1.8) to (2.4, 2.9, 2.9; 1.89, 2.9, 2.9) and (1.17, 1.5,
1.6; 0.84, 1.5, 1.8), respectively, to become efficient,

(iii) for DMU 3, the IF inputs have to be decreased
from (4.4, 4.9, 5.4; 4.2, 4.9, 5.6) and (2.2, 2.6, 3; 2.1,
2.6, 3.2) to (2.5, 4.21, 5.4; 1.84, 4.21, 5.6) and (1.25,
2.24, 3.0, 0.94, 2.24, 3.2), respectively, to become effi-
cient,

(iv) for DMU 4, the IF inputs have to be decreased from
(3.4, 4.1, 4.8; 3.1, 4.1, 4.9) and (2.2, 2.3, 2.4; 2.1,
2.3, 2.6) to (2.89, 4.1, 4.8; 2.11, 4.1, 4.9) and (1.87,
2.3, 2.4; 1.43, 2.3, 2.6), respectively, to become effi-
cient,

(v) for DMU 5, the IF inputs have to be decreased from
(5.9, 6.5, 7.1; 5.6, 6.5, 7.2) and (3.6, 4.1, 4.6; 3.5,
4.1, 4.7) to (3.77, 6.5, 7.1; 3.38, 6.5, 7.2) and (2.3, 4.1,
4.6; 1.82, 4.1, 4.7), respectively, to become efficient.

6.2 Health sector application

This is a real life application in health sector. Themost impor-
tant role in the economy of any country is health care of

Table 5 Comparison of proposed efficiencies and crisp efficiencies

DMUs Proposed efficiency Crisp efficiency Difference

1 0.3569 0.8548 0.4979

2 0.38 1 0.62

3 0.3587 0.8607 0.502

4 0.455 1 0.545

5 0.3435 1 0.6565

rural and urban areas. Health care is of three types: primary
(in which individuals and families are directly connected to
health system), secondary (in which patients from primary
health care are referred to specialists in higher hospitals for
treatment) and tertiary health care (in which specialized con-
sultative care is provided usually on referral from primary
and secondary medical care). The performance of hospitals
has become amajor concern of planners and policy-makers in
India. TheUttar Pradesh (U.P) state is one of the largest states
of India. It has 18 divisions. Meerut is one of themwhich has
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Table 6 IF input target and IF output target for 5 DMUs

DMUs IF input targets IF output targets

¯̃x I1 ¯̃x I2 ¯̃y I1 ¯̃y I2
1 (2.18, 3.4, 4.5; 1.57, 3.4, 4.7 ) (1.18, 1.8, 2.3; 0.93, 1.8, 2.5) (2.4, 2.6, 2.8; 2.2, 2.6, 3) (3.8, 4.1, 4.4; 3.6, 4.1, 4.6)

2 (2.4, 2.9, 2.9; 1.89, 2.9, 2.9) (1.17, 1.5, 1.6; 0.84, 1.5, 1.8) (2.2, 2.2, 2.2; 2.2, 2.2, 2.2) (3.3, 3.5, 3.7; 3.1, 3.5, 3.9)

3 (2.5, 4.21, 5.4; 1.84, 4.21, 5.6) (1.25, 2.24, 3.0; 0.94, 2.24, 3.2) (2.7, 3.2, 3.7; 2.5, 3.2, 3.9) (4.3, 5.1, 5.9; 4.1, 5.1, 6.2)

4 (2.89, 4.1, 4.8; 2.11, 4.1, 4.9) (1.87, 2.3, 2.4; 1.43, 2.3, 2.6) (2.5, 2.9, 3.3; 2.4, 2.9, 3.6) (5.5, 5.7, 5.9; 5.3, 5.7, 6.1)

5 (3.77, 6.5, 7.1; 3.38, 6.5, 7.2) (2.3, 4.1, 4.6; 1.82, 4.1, 4.7) (4.4, 5.1, 5.8; 4.2, 5.1, 6.6) (6.5, 7.4, 8.3; 5.6, 7.4, 9.2)

Table 7 Hospital notations S.No. Hospital Code Hospital names

1 BC Baghpat under CMO

2 BD Baghpat District Hospital

3 BLC Bulandshahr under CMO

4 BLD Bulandshahr District Hospital

5 BLFD Bulandshahr Female District Hospital

6 BLK Bulandshahr Ch- Khurja

7 GC Ghaziabad under CMO

8 GD Ghaziabad District Hospital

9 GFD Ghaziabad Female District Hospital

10 GS Ch- Sanjay Nagar

11 GBC Gautam Budh Nagar under CMO

12 GBD Gautam Budh Nagar District Hospital

13 MC Meerut under CMO

14 MD Meerut District Hospital

15 MFD Meerut Female District Hospital

16 HCM Hapur under CMO

Table 8 IF input and IF output data for 16 hospitals. Source: Administrative Office, Meerut district, Uttar Pradesh, India.

DMUs IF inputs IF outputs

x̃1
I x̃2

I ỹ1
I ỹ2

I

BC (140,144,150;135,144,155 ) (2,2,8;1,2,15) (83085,83089,83092;83082,83089,83096) (6,7,9;5,7,12)

BD (18,20,25;15,20,28) (2,3,5;1,3,10) (14105,14107,14110;14103,14107,14115) (897,900,904;895,900,908)

BLC (442,446,449;440,446,451) (2,3,6;1,3,10) (115855,115858,115862;115852,115858,115865) (1910,1913,1915;1908,1913,1919)

BLD (145,149,152;140,149,155) (1,1,4;1,1,8) (165120,165121,165125;165118,165121,165129) (1560,1563,1567;1558,1563,1570)

BLFD (58,60,63;55,60,65) (1,1,6;1,1,10) (34095,34099,340105;34092,34099,340110) (1620,1622,1626;1617,1622,1630)

BLK (65,68,70;62,68,75) (1,1,6;1,1,10) (12185,12189,12195;12180,12189,12199) (1280,1283,1287;1277,1283,1290)

GC (122,124,126;120,124,130) (6,7,10;4,7,15) (65290,65293,65298;65286,65293,652102) (215,218,222;210,218,227)

GD (162,166,168;160,166,172) (3,5,8;2,5,12) (258750,258754,258758;258745,258754,258765) (423,426,428;420,426,432)

GFD (65,68,75;62,68,80) (1,1,5;1,1,10) (77852,77856,77859;77850,77856,77865) (1160,1164,1168;1155,1164,1175)

GS (98,100,105;95,100,115) (2,2,6;1,2,12) (79720,79725,79729;79718,79725,79735) (910,913,916;905,913,920)

GBC (130,132,135;125,132,145) (2,2,7;1,2,13) (25385,25387,25392;25380,25387,25397) (1756,1761,1765;1750,1761,1770)

GBD (97,100,105;95,100,110) (2,3,8;1,3,14) (297445,297449,297453;297440,297449,297458) (4000,4004,4008;3995,4004,4012)

MC (248,250,255;245,250,260) (6,8,12;5,8,15) (61190,61192,61196;61185,61192,611102) (635,638,642;630,638,648)

MD (248,250,255;245,250,258) (6,8,13;4,8,15) (129432,129435,129438;129430,129435,129445) (1050,1052,1057;1046,1052,1062)

MFD (90,93,95;85,93,100) (2,2,8;1,2,13) (78275,78278,78282;78272,78278,78288) (1600,1606,1610;1595,1606,1610)

HCM (100,104,110;95,104,120) (1,1,5;1,1,10) (44902,44906,44909;44900,44906,44916) (2110,2113,2116;2106,2113,2120)
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Table 9 IFCCs between IF variables

CL
0.1 CR

0.1 C
′L
0.1 C

′R
0.1 CEV

0.1,0.1

x̃1
I x̃2

I ỹ1
I ỹ2

I x̃1
I x̃2

I ỹ1
I ỹ2

I x̃1
I x̃2

I ỹ1
I ỹ2

I x̃1
I x̃2

I ỹ1
I ỹ2

I x̃1
I x̃2

I ỹ1
I ỹ2

I

x̃ I1 1 0.39 0.23 0.002 1 0.36 0.023 0.001 1 0.41 0.23 0.001 1 0.33 0.23 0.001 1 0.37 0.18 0.0012

x̃ I2 0.39 1 0.08 0.003 0.36 1 0.026 0.002 0.41 1 0.19 0.003 0.33 1 0.57 0.003 0.37 1 0.22 0.0002

ỹ I1 0.23 0.08 1 0.38 0.023 0.026 1 0.37 0.23 0.19 1 0.38 0.23 0.57 1 0.001 0.18 0.22 1 0.28

ỹ I2 0.002 0.003 0.38 1 0.001 0.002 0.37 1 0.001 0.003 0.38 1 0.001 0.003 0.001 1 0.0012 0.0002 0.28 1

Table 10 The IF efficiencies
based on α, β = 0(0.25)0.5 of
16 hospitals

α, β → 0 0.25 0.5

DMUs [ξ L
jo,α

, ξUjo,α] [ξ ′L
jo,β

, ξ
′U
jo,β

] [ξ L
jo,α

, ξUjo,α] [ξ ′L
jo,β

, ξ
′U
jo,β

] [ξ L
jo,α

, ξUjo,α] [ξ ′L
jo,β

, ξ
′U
jo,β

]

BC [0.094,0.99] [0.34,0.34] [0.12,0.82] [0.19,0.79] [0.18,0.63] [0.17,0.99]

BD [0.87,1] [1,1] [0.92,1] [1,0.99] [0.98,1] [0.91,0.99]

BLC [0.16,1] [0.35,0.35] [0.2,1] [0.23,0.99] [0.24,1] [0.14,0.99]

BLD [0.27,1] [1,1] [0.36,1] [0.5,1] [0.55,1] [0.33,1]

BLFD [0.53,1] [0.99,0.99] [0.56,1] [0.62,1] [0.59,1] [0.53,1]

BLK [0.38,1] [0.75,0.75] [0.41,1] [0.44,1] [0.44,1] [0.38,1]

GC [0.08,0.28] [0.18,0.18] [0.11,0.23] [0.17,0.62] [0.16,0.18] [0.16,1]

GD [0.26,1] [0.52,0.52] [0.34,1] [0.51,1] [0.49,1] [0.47,1]

GFD [0.37,1] [0.76,0.76] [0.38,1] [0.39,1] [0.392,1] [0.37,1]

GS [0.22,1] [0.37,0.37] [0.23,0.84] [0.25,0.8] [0.25,0.67] [0.24,1]

GBC [0.29,1] [0.52,0.52] [0.31,1] [0.31,1] [0.32,1] [0.28,1]

GBD [0.94,1] [1,1] [1,1] [1,1] [1,1] [1,1]

MC [0.064,0.25] [0.082,0.082] [0.068,0.19] [0.08,0.48] [0.077,0.15] [0.075,1]

MD [0.12,0.52] [0.17,0.17] [0.13,0.41] [0.17,0.32] [0.16,0.31] [0.16,0.58]

MFD [0.37,1] [0.54,0.54] [0.38,1] [0.4,1] [0.4,1] [0.37,1]

HCM [0.44,1] [1,1] [0.46,1] [0.48,1] [0.48,1] [0.42,1]

Table 11 The IF efficiencies
based on α, β = 0.75(0.25)1.0
of 16 hospitals

α, β → 0.75 1.0 Composite index Rank

DMUs [ξ L
jo,α

, ξUjo,α] [ξ ′L
jo,β

, ξ
′U
jo,β

] [ξ L
jo,α

, ξUjo,α] [ξ ′L
jo,β

, ξ
′U
jo,β

] IC j0

BC [0.21,0.47] [0.12,0.99] [0.34,0.34] [0.086,0.99] 0.5253 6

BD [1,1] [0.83,0.99] [1,1] [0.76,0.99] 0.3963 12

BLC [0.28,0.71] [0.1,0.99] [0.35,0.35] [0.09,1] 0.5301 5

BLD [0.87,1] [0.28,1] [1,1] [0.25,1] 0.3259 14

BLFD [0.62,0.68] [0.46,1] [0.65,0.65] [0.43,1] 0.2308 16

BLK [0.46,1] [0.31,1] [0.75,0.75] [0.28,1] 0.3872 13

GC [0.17,0.18] [0.11,1] [0.18,0.18] [0.081,1] 0.6765 1

GD [0.52,0.77] [0.32,1] [0.52,0.52] [0.24,1] 0.4342 9

GFD [0.41,1] [0.35,1] [0.76,0.76] [0.3,1] 0.4017 11

GS [0.26,0.49] [0.21,1] [0.37,0.37] [0.18,1] 0.5428 3

GBC [0.36,0.83] [0.24,1] [0.52,0.52] [0.2,1] 0.4707 8

GBD [1,1] [0.91,1] [1,1] [0.79,1] 0.4167 10

MC [0.081,0.11] [0.065,1] [0.082,0.082] [0.057,1] 0.6517 2

MD [0.17,0.23] [0.12,0.91] [0.17,0.17] [0.11,1] 0.5155 7

MFD [0.42,0.81] [0.35,1] [0.54,0.54] [0.34,1] 0.5345 4

HCM [0.72,1] [0.35,1] [1,1] [0.29,1] 0.2979 15
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Table 12 Comparison of
proposed efficiencies and crisp
efficiencies

DMUs Proposed efficiency Crisp efficiency Difference

BC 0.5253 0.3427 −0.1826

BD 0.3963 1 0.6037

BLC 0.5301 0.3512 −0.1789

BLD 0.3259 1 0.6741

BLFD 0.2308 0.6505 0.4197

BLK 0.3872 0.7474 0.3602

GC 0.6765 0.177 −0.4995

GD 0.4342 0.524 0.0898

GFD 0.4017 1 0.5983

GS 0.5428 0.3672 −0.1756

GBC 0.4707 0.519 0.0483

GBD 0.4167 1 0.5833

MC 0.6517 0.0825 −0.5692

MD 0.5155 0.174 −0.3415

MFD 0.5345 0.5426 0.0081

HCM 0.2979 1 0.7021

6 districts named as Baghpat, Bulandshahr, Ghaziabad, GB
Nagar, Meerut and Hapur. Each district has some public hos-
pitals. Total number of public hospitals in Meerut division is
16. In this paper, we discuss the performance efficiency of
public hospitals which are in Meerut division. Table 7 gives
the public hospitals in Meerut division.

6.2.1 Variables and data selection

In this study, we have taken two inputs: (i) total number of
beds (say x̃1

I ) and (ii) sum of number of pathologists and
number of laboratory technicians (say x̃2

I ) and two outputs:
(i) number of pathology operations (say ỹ1

I ) and (ii) sum
of number of plaster and number of tubal ligation (say ỹ2

I )
of 16 hospitals which possess some degree of hesitation due
to the difference in thought at the management level and the
actual hospital level. So, uncertainty in input data and output
data at hospital level can be well taken as TIFN. The IF input
and IF output data are provided by the administrative office,
Meerut district, Uttar Pradesh, India, for the calender year
2013–2014, and it is shown in Table 8.

6.2.2 Determining efficiencies of hospitals

The IFCCs between IF variables (IF inputs–outputs) are
determined using (4.13) and are shown in Table 9. Table 9
shows the lower and upper bounds of each expected interval
based on α- and β-cuts. Also, the corresponding expected
values come out to be positive. Therefore, the inclusion of
the IF input and IF output data is justified and the DIFDEA
models are consistent.

The IF efficiencies of all hospitals are evaluated using
Models 6, 7, 11 and 12 for different α and β− values, which
are shown in Tables 10 and 11. The composite index IC j

of IF efficiencies ξ L
j,α, ξUj,α, ξ

′L
j,β and ξ

′U
j,β for each DMU j

is calculated and shown in Tables 10 and 11. The ranks of
the hospitals using the PIR approach are obtained as GC >

MC > GS > MFD > BLC > BC > MD > GBC > GD >

GBD > GFD > BD > BLK > BLD > HCM > BLFD.
Thus, GC is the best performer hospital and BLFD is the
worst performer hospital.

6.2.3 Comparison of proposed efficiencies and crisp
efficiencies

To validate the proposed efficiencies of hospitals through
PDIFDEA, the proposed efficiencies are compared with the
efficiencies of crisp DEA (crisp efficiencies) and are given
in Table 12. Table 12 shows that the efficiencies of hospi-
tals are smaller by PDIFDEA compared to crisp DEA. In
Table 12, hospitals BD, BLD, GFD, GBD and HCM are effi-
cient in crisp DEA, but these hospitals are inefficient with
efficiency scores 0.3963, 0.3259, 0.4017, 0.4167 and 0.2979
using PDIFDEA, respectively. Therefore, PDIFDEA is more
realistic rather than crisp DEA. Crisp DEA and PDIFDEA
may give same efficiencies for certain data. Crisp DEA
does not deal with the uncertainty/vagueness, but PDIFDEA
deals with the uncertainty/vagueness. Therefore, PDIFDEA
is more efficient rather than crisp DEA. Hence, we preferred
PDIFDEA rather than crisp DEA.
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6.2.4 Determining IF input–output targets of hospitals

Finally, we obtain the IF input target and IF output target data
which are shown in Table 13. Using these IF input target and
IF output target, we make the inefficient hospitals as effi-
cient hospitals. For the inefficient hospital BC, the IF inputs
have to be decreased from (140, 144, 150; 135, 144, 155)
and (2, 2, 8; 1, 2, 15) to (13.16, 48.96, 148.5; 11.61, 48.96,
153.45) and (0.18, 0.68, 7.92; 0.07, 0.68, 14.85), respec-
tively, to become efficient. Similarly, we find the IF inputs
decreased values for other inefficient hospitals and are shown
in Table 13.

Conclusion

In this paper, we have determined the performance efficien-
cies of DMUs. The real world applications data have some
degree of uncertainties. To deal with such data, we have con-
sidered them as TIFNs. We have developed IFDEA models
based on α−, β-cuts. Four DIFDEA models (Models 6, 7,
11 and 12) have been developed to determine the perfor-
mance efficiencies of the DMUs. Next, we have developed
IF index ranking approach for DIFDEA models. This rank-
ing approach is efficient and effective for the large number of
IF input–output data. We have also proposed the targets for
the DMUs with IF inputs–outputs. Finally, an example and
a health sector application are presented to illustrate the pro-
posed models. To ensure the validity of the proposed models,
we have considered the performance of 16 hospitals in the
Meerut zone of Indiawith two IF inputs: total number of beds,
sum of number of pathologists and number of laboratory
technicians, and two IF outputs: number of pathology opera-
tions, sum of number of plaster and number of tubal ligation.
GC is determined as the best performer hospital with high
level of efficiencies, and BLFD is the worst performer hospi-
tal with low level of efficiencies. We also determined the IF
input–output targets data for inefficient DMUs by which it is
found that how an inefficient hospital is made efficient hospi-
tal. PDIFDEA has realistic point of view better representing
inefficient performance efficiencies, but crisp DEA has an
optimistic point of view to the same problem. By extending
to IF environment, the DEA method is more effective for
real world applications in the sense that it covers hesitation
also.

Limitations and Future Research Plan

This paper has some limitations. The proposed models are
studied under the constant returns to scale (CRS). We plan to
extend these models to the variable returns to scale (VRS).
The uncertainty in this paper is limited to TIFNs. We plan

to use the trapezoidal IFNs and interval valued intuitionistic
fuzzy sets to determine the efficiencies of real world appli-
cations.
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