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Abstract
Amajority of decision-making problems are accompanied by some kinds of predictions and uncertainties. Therefore, interval
data are widely used instead of exact data. The elimination and choice expressing reality methods, referred to as ELECTRE,
belong to the outranking methods. Despite their relative complexity, avoiding compensation between criteria is one of the
main advantages of the ELECTRE methods. However, no version of ELECTRE methods has the capability to deal with both
interval data and target-based criteria. Target-based criteria are applicable in many areas ranging from material selection to
medical decision-making problems. Efficiency of the modified ELECTREmethod (ELECTRE-IDAT) was examined through
two challenging examples. Also, a sensitivity analysis was performed to show advantages of the ELECTRE-IDAT approach.
Additionally, the concept of bounded criteria was explained and applicability of interval data as well as benefit, cost, and
target criteria were described with a biomaterial selection problem.

Keywords Design decision-making · Uncertainty in data · Bounded criteria · Target-based criteria · Materials and design
selection

1 Introduction

Due to limited available information or inadequate under-
standing of the problem, interval data instead of exact
ratios are widely accepted for solving decision-making prob-
lems. The conventional multiple-attribute decision-making
(MADM) frameworks suppose that the ratings and the impor-
tance of the criteria are known exactly, whereas this is an
unrealistic assumption particularly in materials/design selec-
tion environment (Hafezalkotob and Hafezalkotob 2016;
Jahan and Edwards 2013; Jahan et al. 2016). To overcome
uncertainty in determining importance of criteria, differ-
ent solutions were proposed (Alemi-Ardakani et al. 2016;
Baradaran and Azarnia 2013; Yan et al. 2014). A significant
number of real decision-making problems are accompanied
by somekinds of predictions and uncertainties, forwhich rea-
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son the classicalMADMmethods are not suitable for solving
them (Stanujkic et al. 2017).

Grey systems theory is a relatively new methodology that
focuses on the study of problems involving poor information
(Li et al. 2007). Grey numbers have a powerful capacity to
express uncertainty and consequently have been extensively
studied and applied to solve MADM problems that contain
uncertainty. Emergence of various theories and methodolo-
gies of uncertain systems has been significant in the areas
of systems science. Zadeh (1965) established fuzzy math-
ematics, Deng (1982) developed grey systems theory, and
Pawlak (1982) advanced rough set theory. These works rep-
resent someof themost important efforts in uncertain systems
research from different angles. Based on the fuzzy and the
grey set theories (Fang et al. 2016; Liu et al. 2013; Liu and
Forrest 2010; Liu et al. 2016a, b, 2017; Sevastianov 2007),
many ordinary MADMmethods have further been extended
with the aim of applying fuzzy or grey numbers. Perhaps
the imperfect knowledge about the criteria performances and
parameter values may be represented in a more natural and
easyway by interval numbers. Themethods based on interval
data are more suitable, when there are crisp data with high
variability, or when a probabilistic data (Tavana et al. 2016)
set cannot represent the existing uncertainty. Among numer-
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ous MADM methods, ELECTRE, proposed by Roy (1991),
iswell knownandwidely applied (Chatterjee et al. 2009). The
elimination and choice expressing reality methods, referred
to as ELECTRE, belong to the outranking methods. The out-
ranking methods are based on the pairwise comparisons of
the options. They form one of the main methods of MADM
family despite their relative complexity. The ELECTRE I
method is used to develop a partial ranking and choose a
set of the promising alternatives. ELECTRE II is used to
rank all the alternatives, and it might yield more visible
solutions compared to the ELECTRE I due to considering
pure concordances and discordances separately. The main
advantage of the ELECTRE methods over existing MADM
techniques is that they avoid compensation between crite-
ria, which is important in material/design selection problems
(Shanian and Savadogo 2006). For example, in parts of air-
craft, the weak performance of the specific strength should
not be compensated by good price of the material. In the past
decades, considerable efforts have been made to extend the
ELECTRE, and to hybridize it with other MADM methods.
To the best of the author’s knowledge, there is no extension
of the ELECTRE approaches addressing target-based crite-
ria in addition to cost and benefit criteria that are considered
in conventional MADM problems. Therefore, in this paper
a new interval-based ELECTRE method has been proposed
that effectively deal with all types of criteria.

2 Summary of current knowledge
on the considered problem

Over the last decades, various decision-making methods
were proposed. This section presents a brief review of the
literature on normalization methods for target-based criteria,
the grey-based MADM approaches and ELECTRE for inter-
val data. Then, we will discuss research gaps of our literature
study.

2.1 Brief review of normalizationmethods
for target-based criteria

Wu (2002) proposed nominal-is-best normalization method
for target criteria. One of the shortcomings of this method
is that it would not work out when the target value is
higher than the maximum performance rating (available
alternatives). Zhou et al. (2006) suggested a ratio-based nor-
malization method that covers all types of criteria, but the
method causes an asymmetry issue in the normalized val-
ues (Jahan and Edwards 2015). Shih et al. (2007) proposed
non-monotonic normalization approach that also has asym-
metry issue. Jahan et al. (2011) extended VIKOR for point
target-based criteria and addressed shortcomings of Limits
on Properties (LOP) method (Farag 1979). Bahraminasab

and Jahan (2011) used this comprehensiveVIKOR for select-
ing the materials of a knee prosthesis. Jahan et al. (2012)
developed TOPSIS with a more accurate normalization tech-
nique (Linear target-based method) to be used in selection
problems involving point target-based criteria. Zeng et al.
(2013) proposed a newnormalizationmethod for range target
criteria in medical decision-making. Liu et al. (2014) devel-
oped a novel hybrid MADM method for material selection
problem possessing interdependent and point target-based
criteria. Hafezalkotob and Hafezalkotob (2015) developed
the MULTIMOORA method with point target-based criteria
for materials selection. Vafaei et al. (2016) assessed the most
appropriate normalization technique in decision problems,
specifically for the Analytical Hierarchy Process. Perez et al.
(2016) proposed a new MADM method, the reference ideal
method (RIM), which is based on “ideal solution”, that can
occur between the minimum and maximum values (range
target- based criteria). Recently, Cables et al. (2018) devel-
oped the RIM for a fuzzy multi-criteria decision-making
environment. Vafaei et al. (2018) evaluated the effects of
different normalization techniques on the Weighted Average
(WA) or SAW (Simple Additive Weighting) and found the
most suitable normalization technique. Hafezalkotob et al.
(2018) applied an exponential target-based normalization
method for developing Weighted Aggregated Sum Product
Assessment (WASPAS) method in selection of olive har-
vester machines. Liao et al. (2018) introduced an enhanced
target-based linear normalization formula and a target-based
vector normalization formula, called Double Normalization-
Based Multi-Aggregation Method (DNBMA), to deal with
MADMproblems considering the benefit, cost and target cri-
teria. Table 1 shows summary of recent trends in developed
normalization methods for target-based criteria. Together,
these studies indicate that target-based criteria received rapid
attention recently.

2.2 Brief review of grey-basedMADM approaches

Several methods have been reported to solve decision-
making problems involving crisp interval data. Jahanshahloo
et al. (2006) extended the original TOPSIS method for
decision-making problems to include interval data. An
extended VIKOR method for interval data was presented
by Sayadi et al. (2009), and it was shown that the inter-
val VIKOR is better than the interval TOPSIS. In another
research, Jahanshahloo et al. (2009) offered new TOPSIS
method for interval data that can sort alternatives by interval
efficiency. Chen (2012) compared SAW and TOPSIS based
on interval-valued fuzzy sets. Dymova et al. (2013) proposed
a direct interval extension of TOPSIS method to overcome
shortcomings of previous methods. Li et al. (2007) described
the weights and ratings of attributes for all alternatives by
linguistic variables expressed in grey numbers. Also, using a
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Table 1 Recent trend in
target-based normalization
methods

Authors and year MADM method(s) used for
suggested normalization approach

Main property

Wu (2002) TOPSIS Limitation: target value must be
in range of alternatives

Zhou et al. (2006) Weighted product method,
weighted displaced ideal,
simple additive weighting

Limitation: asymmetry of
normalized values around the
target value

Shih et al. (2007) TOPSIS Exponential target-based method

Jahan et al. (2011) VIKOR Exponential target-based method

Jahan et al. (2012) TOPSIS Linear target-based method

Zeng et al. (2013) VIKOR Linear method for range
target-based criteria

Hafezalkotob and Hafezalkotob
(2015)

MULTIMOORA Exponential target-based method

Perez et al. (2016) RIM Linear method for range
target-based criteria

Cables et al. (2018) Fuzzy RIM Linear method for range
target-based criteria

Hafezalkotob et al. (2018) WASPAS Exponential target-based method

Liao et al. (2018) DNBMA Using two target-based
normalization methods

grey possibility degree, the ranking order of all alternatives
was determined. Zavadskas et al. (2009) used a case study to
demonstrate the concept of general contractor choice on the
basis of multiple attributes of efficiency with fuzzy inputs
applying COPRAS-G method. Zavadskas et al. (2010a, b)
proposed SAW-Gmethod and used it for Contractor selection
in construction works. Turskis and Zavadskas (2010) devel-
oped grey additive ratio assessment (ARAS-G) method for
multiple criteria analysis. Zavadskas et al. (2010a, b) applied
TOPSISgrey andCOPRAS-Gmethodswith attributes values
determined at intervals for risk assessment of construction
projects. Hashemkhani Zolfani et al. (2012) evaluated per-
formance of rural ICT centres (telecentres) using SAW-G
and TOPSIS grey. Hajiagha et al. (2012) extended LINMAP
model for multi-criteria decision-making with grey num-
bers. Stanujkic et al. (2012) studied on grey extension of
the MOORA for solving decision-making problems with
interval data. Baradaran and Azarnia (2013) proposed an
approach to test consistency and generate weights from grey
pairwise matrices in grey AHP. Jahan and Edwards (2013)
extended the VIKOR method for interval data and target-
based criteria, but the range target-based criteria were not
taken into account in their work. Kracka and ZAVADSKAS
(2013) presented the process of effective selection of build-
ing elements for renovation which are important for energy
effectiveness of buildings.Multi-criteriaMOORAandMUL-
TIMOORAmethodswere adapted for problems solvingwith
interval data. Yue and Jia (2015) proposed a methodology
for group decision-making problems based on TOPSIS tech-
nique, in which attribute values are characterized in hybrid

formwith exact values and interval data. Chithambaranathan
et al. (2015) proposed a grey-based hybrid framework for
evaluating the environmental performance of service supply
chains by integrating grey-based method with ELECTRE
and VIKOR approaches. Liu et al. (2016a, b) presented
all the new models and techniques in their new book of
Grey Data Analysis: Methods, Models and Applications.
Hafezalkotob et al. (2016) developed the MULTIMOORA
method by applying interval numbers based on the fuzzy
logic concept. Zhou et al. (2017) proposed a grey stochas-
tic MADM approach based on regret theory and TOPSIS
method. Jiang et al. (2017) proposed an I-TODIM method
for multi-attribute decision-making with interval numbers.
Ahn (2017) developed AHP with interval preference state-
ments. Stanujkic et al. (2017) improved the Operational
Competitiveness Rating (OCRA) method based on the use
of interval grey numbers. Khanzadi et al. (2017) developed a
new hybrid MADM model of discrete zero-sum two-person
matrix games with grey numbers as a framework to solve
dispute resolution problems in construction.

These studies would have been more useful if they
had focused on all types of criteria. However, the above-
mentioned grey extensions are successfully used for solving
a large number of different problems, such as the supplier
selection (Liou et al. 2016; Xie and Xin 2014), air traffic
management (Xie and Xin 2014), the supply chain perfor-
mance benchmarking (Kumar Sahu et al. 2014), the selection
of the inside thermal insulation (Zagorskas et al. 2014), the
assessment of the structural systems of high-rise buildings
(Tamošaitienė andGaudutis 2013), the social media platform

123



132 A. Jahan, E. K. Zavadskas

selection (Tavana et al. 2013), the market segment evaluation
(Zavadskas et al. 2015), the building foundation alternatives
selection (Turskis et al. 2016), the robot selection (Datta
et al. 2013) andmaterials selection (Chauhan andVaish 2014;
Hafezalkotob et al. 2016; Jahan and Edwards 2013).

2.3 Brief review of ELECTREmethod for interval data

The criteria information processing is partially compensatory
in ELECTRE methods. An advantage of the ELECTRE
method is that a significantly weak criterion value of an alter-
native cannot directly be compensated by other good criteria
values. On the other hand, the solution mechanism in ELEC-
TRE method is not as extreme as purely non-compensatory
methods. Amiri et al. (2008) developed a new ELECTRE I
method by applying principles of the ELECTRE technique
for interval data. Although the proposed approach is inter-
esting, complex calculations are required. In addition, it is in
contradiction with basics of the classical ELECTRE method
that is expected to accomplish comparisons and calculation
using interval data rather than separating them to real-valued
data. Vahdani et al. (2010) extended the ELECTRE I method
for interval weights and data. Although for all calculations,
the interval arithmetic was used, the method was limited to
the interval datawith no intersection. In otherwords, the com-
parison of alternatives in specifying concordance sets is not
possible for the values of ratings intersect. Balali et al. (2012)
proposed an interval extension of ELECTRE III. In the Bal-
ali’s paper, criterion values, weights, and veto thresholds are
considered interval numbers that replace their corresponding
real values in the formulas of the ELECTRE III model. How-
ever, the credibility index is not contained in the interval [0,
1], which is not meaningful. Heravi et al. (2017) used advan-
tages of integration of utility function, ELECTRE I, and grey
theory to create the new method of grey-utility-ELECTRE
to rank the sustainable industrial building options focused
on petrochemical projects. However, previous studies of the
ELECTRE and the modified versions (Fernández et al. 2018;
Govindan and Jepsen 2016) have not dealt with target crite-
ria.

2.4 Research gaps in the present study

Reviewed studies in Sects. 2.1 and 2.2 indicate that target-
based criteria and grey-based MADM approaches received
increasing attention recently. Studies reviewed in Sect. 2.3
reported that in contrast to the valued outranking methods
that are well documented and have been intensively used in
practice, the ELECTREmethodswith interval data are recent
and are not well documented in the literature. Furthermore,
the research to date has tended to focus on cost and ben-
efit criteria rather than target-based criteria. Generally, the
classical MADM methods deal only with cost and benefit

criteria, while target criteria (Bahraminasab and Jahan 2011;
Hafezalkotob and Hafezalkotob 2015, 2017; Liu et al. 2014;
Perez et al. 2016; Zeng et al. 2013) are applicable in many
areas including biomedical engineering, aerospace and even
rehabilitation of reinforced concrete structures in the main-
tenance of infrastructures where the repair materials should
have similar properties to the main material in some criteria.
The contribution of this paper has four aspects: (1) addressing
the gap in the ELECTRE literature for problems involving
imperfect knowledge in shape of intersecting interval-based
data; (2) extending the ELECTRE method to consider target
criteria in addition to cost and benefit; (3) improving rank-
ing capability of the ELECTRE method; and (4) showing
superiority of the proposed method using test problems and
sensitivity analysis.

3 ELECTREmethod for interval data
and target-based criteria (ELECTRE-IDAT)

3.1 Structure of data and objectives in material
and design selection problems

Multi-criteria decision analysis supports designers with a
comprehensive collection of approaches. Numerical values
are used to express the absolute measure of a material
property such as density, modulus, strength and thermal
conductivity. However, the values of material properties are
often imprecisely measured due to the stochastic nature of
material processing operations. Material properties are usu-
ally ranged between two values; for example, the tensile
strength of cobalt-chromium alloy is approximately [450,
1000] MPa. In materials selection problems, the research to
date has tended to have more focus on fixed values of mate-
rials’ properties rather than ranges. The same issue arises in
design selection problems. Computer-aided engineering has
become a demanded tool in engineering design process, but
usually there is a difference between finite element analysis
(FEA) predictions and real experimental results. Therefore,
after minimizing the errors in the acceptable range, designers
have to rely on either simulation outputs or experimen-
tal data (Rezvani and Jahan 2015). Both approaches lead
to missing some essential information in selecting optimal
shapes/dimensions for the design of components, but a rea-
sonable approach to tackle this issue could be using interval
data.

Let
[
x Li j , x

U
i j

]
be an interval value of jth criterion for ith

alternative in which x Li j and xUi j are the lower and upper
bounds of interval, respectively. Meanwhile, as shown in
Table 2, W � {w1, w2, . . . , wn} is the weight vector that
shows importance of criteria.
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Table 2 MADM problem with interval data

Weights w1 w2 . . . wn

Criteria C1 C2 . . . Cn

A1
[
x L11, x

U
11

] [
x L12, x

U
12

]
. . .

[
x L1n, x

U
1n

]

A2
[
x L21, x

U
21

] [
x L22, x

U
22

]
. . .

[
x L2n, x

U
2n

]

A3
[
x L31, x

U
31

] [
x L32, x

U
32

]
. . .

[
x L3n, x

U
3n

]

...
...

...
...

Am
[
x Lm1, x

U
m1

] [
x Lm2, x

U
m2

]
. . .

[
x Lmn, x

U
mn

]

Figure 1 demonstrates ratings of alternatives for a criterion
in format of interval data. Intersect between data was shown
for An−1 and An . Data belong to a universe of discourse
(Ai ∈ [A, B]).

Figure 2 shows four types of criteria in design decision-
making problems. Objectives in decision matrix consist of
target criteria, bounded criteria, cost, and benefit criteria.

Target criteria are applicable inmany areas, particularly in
implant materials selection in which the material must pos-
sess close properties to those of human tissues. Moreover,
in patch repair material selection applications, ranging from
aerospace to rehabilitation of reinforced concrete structures
in the maintenance of infrastructures where the repair mate-
rials should have similar properties to the main material in
some criteria.

Bounded criteria are divided into upper/lower bounds for
a property or design requirement. They can be converted to
benefit or cost criteria through subtracting rate of alterna-
tives from upper/lower bounds. For example, in selecting an
insulating material for a flexible electrical cable, lower limit
property to insulate resistance can be 1014 O.cm. Therefore,
this bounded attribute will be benefit criterion if the crite-
rion is converted from xi j to xi j − 1014. Design selection
problem for femoral component of knee prosthesis is another
example in which a bounded criterion was used along with
cost and benefit criteria (Jahan andBahraminasab 2015). The
criteria were extracted from computer simulation based on
the finite element analysis of the different designs (alter-

Fig. 2 Four types of criteria in design selection problems

natives) of femoral component. The bounded criterion, in
this example, was the maximum contact slip at the femoral
component–bone interface as a measure of implant micro-
motion relative to the adjoining bone, which should be less
than 150 µm not to cause bone loss. The benefit criterion
was range of stress in critical region of femoral bone, i.e.,
mean stress±STDV (standard deviation) in the region with
the highest coefficient of variation in the femur as a mea-
sure of stress shielding where the mean and STDV were
estimated for several random points in different regions of
the bone. Although the points in each region were extremely
close, every point had its own value of stress as it was located
in different coordinates and experienced a slightly different
stress level. Therefore, the best way to show the value of this
criterion for candidate design can be using a range indicat-
ing the distribution and uncertainty of the data. Furthermore,
maximum peg stress, area of cross section, and maximum
stress at corner points of inner contour were also used as cost

Fig. 1 Universe of data for the
criterion j and intersection
between the interval data

jxBA

A1

Ai

An

An-1

Universe of data for selection criterion (j)

L
ijx

U
ijx
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Table 3 Performance metrics of different designs of femoral component of knee prosthesis

Type of criteria Benefit Bounded
(Less than 150)

Cost Cost Cost

Criteria
Range of 
stress in 

critical region 
(MPa)

Maximum contact 
slip at femoral 

component-bone 
interface (μm)

Maximum 
peg stress 

(MPa)

Area of 
cross 

section 
(mm2)

Maximum 
stress at 

corner points 
of inner 

contour (MPa)

4.365–

10.625
30.61 20.16 900.79 14.4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3.294–5.568 19.25 14.97 867.89 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1.082–3.595 58.56 7.88 866.49 13.6

criteria. Table 3 presents these criteria, and alternatives are
shown in.

Figure 3 shows the possible location for target value in
universe of data. When target value is B or A, the target cri-
terion becomes benefit or cost, respectively. In other words,
cost and benefit criteria are the special subset of target crite-
ria.

3.2 Brief definition of interval numbers

Most of theMADM problems require crisp data as input. We
can assume a crisp value to represent the average outcome
when the degree of uncertainty is low. However, in the oppo-
site condition (high uncertainty), it is better to report the data
in a range format (Chauhan and Vaish 2014). The interval is
a bounded subset of real numbers (Eq. 1), in particular aL or
aU cannot be infinite here.

(
Ā �

⌊
aL , aU

⌋
is an interval

)
⇔

(
Ā �

{
x ∈ R

∣∣∣aL ≤ x ≤ aU
})

(1)

Three useful functions defined on intervals are (see
Eqs. 2–4)

Center : mid( Ā) � 1

2

(
aL + aU

)
(2)

Ā + B̄ �
[
aL + bL , aU + bU

]
(3)

Ā − B̄ �
[
aL − bU , aU − bL

]
(4)

To compare intervals, the quantitative indices are usually
used (Sevastianov 2007). As Wang et al. (2005) explained,
most of the proposed methods for interval comparison
are “totally based on the midpoints of interval numbers”.
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Fig. 3 Possible location for
target value (Tj) of criterion j in
universe of data

jxBA

A≤ Tj ≤ B

Therefore, the midpoint of interval number obtained from
subtraction of A and B (ΔA−B) can be used for the compar-
ison of the interval numbers. Dymova et al. (2013) clarified
(Eq. 5) that the sign of midpoints in interval numbers indi-
cates which interval is greater/lesser ( Ā or B̄).

(5)

(ΔA−B) � 1

2

((
aL − bU

)
+

(
aU − bL

))

� 1

2

(
aL + aU

)
− 1

2

(
bL + bU

)

Moreover, the values of abs (Δ Ā−B̄) may be treated as
distances between intervals, since these values are close to

the other methods either when intervals have a common area
(intersect between data) or when the there is no such an area.

Furthermore, a simple heuristic method was used for
comparing and ranking in order to provide the degree of
possibility that an interval is greater/lesser than another one
(Dymova et al. 2013; Hafezalkotob et al. 2016; Wang et al.
2005). For intervals B̄ � [bL , bU ] and Ā � [aL , aU ], the
possibilities of B̄ ≥ Ā and Ā ≥ B̄ are defined in Eqs. (6, 7):

P(B̄ ≥ Ā) � Max
{
0, bU − aL

} − Max
{
0, bL − aU

}

aU − aL + bU − bL
(6)

P( Ā ≥ B̄) � Max
{
0, aU − bL

} − Max
{
0, aL − bU

}

aU − aL + bU − bL
(7)

In the subsequent parts of this paper, the definitions pre-
sented in this sectionwill be used for all algebraic operations.

3.3 The proposed algorithmic ELECTRE-IDATmethod

In the classical ELECTRE methods, the ratings of alterna-
tives are presented by real values, but sometimes it is difficult
to precisely determine the real values of ratings of alterna-
tives with respect to criteria, and as a result, these ratings
are presented by intervals. A systematic approach to modify
the ELECTRE method in the presence of interval data and
target-based criteria is proposed in this section.

Step 1 Convert the decision matrix into normalized val-
ues using Eqs. 8 and 9, while i � 1, 2, . . . ,m and j �
1, 2, . . . , n.

nLi j � Min

⎡
⎣1 −

∣∣∣x Li j − Tj

∣∣∣
max

{∣∣B − Tj
∣∣, ∣∣A − Tj

∣∣} , 1 −
∣∣∣xUi j − Tj

∣∣∣
max

{∣∣B − Tj
∣∣, ∣∣A − Tj

∣∣}
⎤
⎦ (8)

nUi j � Max

⎡
⎣1 −

∣∣∣x Li j − Tj

∣∣∣
max

{∣∣B − Tj
∣∣, ∣∣A − Tj

∣∣} , 1 −
∣∣∣xUi j − Tj

∣∣∣
max

{∣∣B − Tj
∣∣, ∣∣A − Tj

∣∣}
⎤
⎦ (9)

where the interval [A, B] is a range belonging to a universe
of discourse (x Li j&xUi j ∈ [A, B]).

Tj �

∣∣∣∣∣∣∣∣

A Less isbetter(Cost criteria)
B Less isbetter(Cost criteria)
Between A and B Approaching to specificvalue

isdesirable(Target criteria)

Perhaps, the most serious disadvantage of vector normal-
ization method (Eq. 10) used in the traditional version of
ELECTRE is failing to remove the scales of criteria com-
pletely (Eq. 11).

ni j (xi j ) � xi j√∑m
i�1 (xi j )

2

i � 1, 2, . . . ,m
j � 1, 2, . . . , n

(10)

ϕi j � αxi j + β, α > 0 (11)
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Considering the vector normalization method, it can be
observed in Eq. (12) that different result is achieved.

ni j (ϕi j ) � ni j (αxi j + β) � αxi j + β√∑m
i�1 (αxi j + β)2

(12)

The equation holds true only if

β � 0 ⇒ ni j (ϕi j ) � ni j (xi j )

However, there is not such an issue using the normalization
method proposed in Eqs. (8, 9).

Step 2Determine the weighted normalized interval matrix
Construct the weighted normalized interval decision

matrix using Eqs. (13, 14) where w j is the importance of
criteria j(W � {w1, w2, . . . , wn}).

V L
i j � w j nLi j

i � 1, 2, . . . ,m
j � 1, 2, . . . , n

(13)

VU
i j � w j nUi j

i � 1, 2, . . . ,m
j � 1, 2, . . . , n

(14)

Then, V̄i j �
⌊
V L
i j , V

U
i j

⌋
will be weighted normalized

decision matrix. The interval
⌊
V L
i j , V

U
i j

⌋
will have always

positive utility using the newproposed normalizationmethod
(Eqs. 8, 9).

V̄ �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
V L
11, V

U
11

]
. . .

⌊
V L
1 j , V

U
1 j

⌋
. . .

[
V L
1n, V

U
1n

]

. . . . . . . . .

. . . . . . . . .

. . . .
⌊
V L
i j , V

U
i j

⌋
. . . .

. . . . . . . . .

. . . . . . . . .[
V L
m1, V

U
m1

]
. . .

⌊
V L
mj , V

U
mj

⌋
. . .

[
V L
mn, V

U
mn

]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Step 3 Specify concordance and discordance interval sets
Referring to Eqs. (6, 7) presented in Sect. 2.2 concordance

and discordance interval sets for each interval pair of k and l,
alternatives can be specified (k, l � 1, 2, . . . ,m; l 	� k). The
set of available interval indicators (J � { j | j � 1, 2, . . . n})
is divided into two different sets of concordance interval set
(Sk,l ) and discordance interval set (Dk,l ). Concordance set of
alternatives Ak and Al consists of all indicators (criteria) for
each of them, and Ak is superior to Al (Eq. 15).

Sk,l � {
j |V̄k j ≥ V̄l j

} �
{
j |
⌊
V L
kj , V

U
kj

⌋
≥

⌊
V L
l j , V

U
l j

⌋}

(15)

Table 4 Guideline for determining concordance interval sets

If Then

If
(
V L
kj � V L

l j and VU
kj � VU

l j

)
→

P(V̄k j ≥ V̄l j ) � 1

j is added to Sk,l

If
(
V L
kj ≥ VU

l j

)
→ P(V̄k j ≥ V̄l j ) � 1 j is added to Sk,l

If
(
P(V̄k j ≥ V̄l j ) ≥ 0.5

)
j is added to Sk,l

Table 4 and Eq. (16) help to find the concordance interval
sets.

P(V̄k j ≥ V̄l j ) � P
([

V L
kj , V

U
kj

]
≥

[
V L
l j , V

U
l j

])

�
Max

{
0, VU

kj − V L
l j

}
− Max

{
0, V L

kj − VU
l j

}

VU
kj − V L

kj + VU
l j − V L

l j

(16)

Vice versa, the complementary subset named discordance
set is a set of indicators that for each of them, we have

Dk,l �
{
j |
⌊
V L
kj , V

U
kj

⌋
<

⌊
V L
l j , V

U
l j

⌋}
� J − Sk,l (17)

Step 4 Calculate the concordance interval matrix
The concordance matrix for each pairwise comparison of

the actions is defined as

CI �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− CI1,2 CI1,3 . . . CI1,m
CI2,1 − . . . . CI2,m
CI3,1 . − . . . CI3,m

. . . . . . .

. . . . . . CIm−1,m

. . . . . . − .

CIm,1 CIm,2 CIm,3 . . . CIm,m−1 −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where

CIk,l �
∑
j∈Sk,l

W j (18)

Step 5 Calculate the discordance interval matrix
The discordance matrix is defined as

DI �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− DI1,2 DI1,3 . . . DI1,m
DI2,1 − . . . . DI2,m
DI3,1 . − . . . DI3,m

. . . . . . .

. . . . . . .

. . . . . . − DIm−1,m

DIm,1 DIm,2 DIm,3 . . . DIm,m−1 −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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where

DIk,l �
Max
j∈Dk,l

∣∣∣
[
V L
kj , V

U
kj

]
−

[
V L
l j , V

U
l j

]∣∣∣

Max
j∈J

∣∣∣
[
V L
kj , V

U
kj

]
−

[
V L
l j , V

U
l j

]∣∣∣
(19)

Referring to Eq. (5), the distance between intervals can be
measured to obtain discordance matrix elements.

Step 6 Specify the pure concordance and discordance
indices using Eqs. (20, 21), respectively.

Pureconcordance index (Ci )

�
m∑

k�1

CIi,k −
m∑

k�1

CIk,i (i 	� k) (20)

Pure discordance index (Di )

�
m∑

k�1

DIi,k −
m∑

k�1

DIk,i (i 	� k) (21)

Here, an alternative with a higher net concordance and
lower discordance is preferred.

Step 7 Compute the index values Ei .
Once the two indices are estimated, obtain final rankings

on the basis of these indices using Eq. (22) where C− �
Min Ci , C+ � Max Ci , D− � Min Di , D+ � Max Di , and
γ is introduced as a weight to balance between concordance
and discordance indices. The value of γ lies in the range of
0–1, γ � 0.5 determining an average ranking from the two
indices. Select the alternative with the maximum Ei .

Ei �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
Di−D−
D+−D−

]
if C+ � C−

[
Ci−C−
C+−C−

]
if D+ � D−

[
Ci−C−
C+−C−

]
γ +

[
D+−Di
D+−D−

]
(1 − γ ) Otherwise

(22)

4 Results

4.1 Test problems to evaluate effectiveness
of the proposedmethod

To describe the advantages of the proposed method, two
challenging examples were extracted from the literature for
comparison. The first one includes many intervals represent-
ing the values of ratings intersect. In the second one, there are
no intersecting intervals in the columns of decision matrix.

Example 1 Suppose the problem includes three alternatives
Ai , i � 1, 2, 3 and four criteria C j , j � 1, 2, 3, 4 presented
by intervals in Table 5, where C1 and C2 are benefit criteria
and C3 and C4 are cost criteria. This example was used by

Table 5 Interval decision matrix for Example 1

Weight (W) 0.25 0.25 0.25 0.25

Objectives Max Max Min Min

Criteria C1 C2 C3 C4

A1 [6, 22] [10, 15] [16, 21] [18, 20]

A2 [15, 18] [8, 11] [20, 30] [19, 28]

A3 [9, 13] [12, 17] [42, 48] [40, 49]

Table 6 Interval decision matrix for Example 2

Weight (W) 0.5 0.5

Objective Min Max

Criteria C1 C2

A1 [0.75, 1.24] [2784, 3192]

A2 [1.83, 2.11] [3671, 3857]

A3 [4.9, 5.73] [4409, 4681]

Dymova et al. (2013) in order to demonstrate the validity of
the direct interval extension of the TOPSIS method. Since
this case includes intersecting interval data (for example, see
C2 for alternatives A1 and A2 which are [10, 15] and [8, 11]
respectively), it is not possible to apply the available interval
ELECTREmethodproposed byVahdani et al. (2010) in order
to choose the best alternative.

Using W � (0.25, 0.25, 0.25, 0.25) and the method of
ELECTRE-IDAT, it was obtained that A1>A2>A3. The
ranking order is exactly the same as that gained by Dymova
et al. (2013).

Example 2 This example was adopted from Sayadi et al.
(2009). It was assumed that there are three alternatives (A1,
A2, and A3) and two criteria (C1, C2) with the same impor-
tance (C1�0.5, C2�0.5). The decision-maker wants to
choose an alternative with minimum C1 and maximum C2.
As it can be observed in Table 6, there are no intersecting
intervals.

Using the proposed method here, A2>A3>A1 was
obtained. Using the compromise solution from the extended
VIKOR method (Sayadi et al. 2009), the ranking was
A2>A1>A3. Although the top-rank alternative is the same
in both approaches, we can observe that there is a slight dif-
ference between the final ranking obtained by Sayadi et al.
(2009) and using our method based on the ELECTRE-IDAT.
This can be explained by the fact that the ELECTRE meth-
ods are in a group of non-compensatory techniques, while
the VIKOR is in the group of compensatory approaches.
Table 7 shows that assigning different weights to criteria
(seven scenarios) leads to changes in the rankings of alter-
natives. However, sensitivity of the methods to changes in
weight is quite different. From Figs. 4 and 5, it can be seen
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Table 7 A sensitivity analysis
on ranking of alternatives with
respect to changing the weights

Scenarios Weights (importance of
criteria)

Proposed method
(ELECTRE-IDAT)

Sayadi et al. (2009)
method (VIKOR)

No. 1 C1�0.7, C2�0.3 A1>A2>A3 A2>A1>A3

No. 2 C1�0.6, C2�0.4 A1>A2>A3 A2>A1>A3

No. 3 C1�0.55, C2�0.45 A2>A1>A3 A2>A1>A3

No. 4 C1�0.5, C2�0.5 A2>A3>A1 A2>A1>A3

No. 5 C1�0.45, C2�0.55 A2>A3>A1 A2>A3>A1

No. 6 C1�0.4, C2�0.6 A3>A2>A1 A2>A3>A1

No. 7 C1�0.3, C2�0.7 A3>A2>A1 A3>A2>A1

Fig. 4 Strong and symmetrical sensitivity of alternatives to criteria
weights in ELECTRE-IDAT method

Fig. 5 Weak sensitivity of alternatives to criteria weights in VIKOR
method

that changes in importance of criteria in VIKOR method
have not too much effect on the ranking orders, while using
ELECTRE-IDAT method, the top-rank alternative (A2) will
be changed symmetrically (Fig. 4).

Results of the above analysis indicate strong and sym-
metrical sensitivity of ELECTRE-IDAT method to criteria
weights which is another advantage compared to VIKOR
method. Nevertheless, we cannot claim that the ELECTRE-
IDAT method produces a better solution because differ-
ent MADM methods involve various types of underlying
assumptions, and evaluation principles (Hwang and Yoon
1981). For a given problem, there are both compatibilities
and incompatibilities using eachmodel. There are no specific
rules on which MADM method(s) should be used. Different

MADM approaches are introduced for different decision sit-
uations (Hwang and Yoon 1981). There are many MADM
methods and models, but none can be considered the “best”
and/or appropriate for all situations.

4.2 Demonstrating application of the proposed
method: knee prosthesis

A total knee implant usually has three main parts, includ-
ing femoral component, tibial component comprised of tray
and insert, and patellar component. The femoral component
and the tibial tray substitute the distal femur and the proxi-
mal tibia, respectively. The tibial insert is implanted between
these two components, and the patellar part replaces the
posterior part of the patella for which polymers such as ultra-
high molecular weight polyethylene are used to manufacture
them. The insert and the patellar component both provide
articular surfaces against the prosthetic femur attempting to
mimic the natural knee constraints and motion. The femoral
part and the tibial tray aremostlymade frommetals and alloys
such as Co–Cr and Ti alloys and sometimes from ceramic
materials including Al2O3 and ZrO2. These components are
either cemented or press-fitted into place. Figure 6 shows the
components of the knee prosthesis.

This example ranks the candidate materials for the
femoral component of the knee implant using the proposed
method. This example was taken from our previous study in
which in-use and newly developed (potential) metals were
considered candidate materials (Bahraminasab and Jahan
2011). The candidate metallic materials were stainless steel
L316 (annealed), stainless steel L316 (cold worked), Co–Cr
alloys (wrought Co–Ni-Cr–Mo), Co–Cr alloys (cast able
Co–Cr–Mo), Ti alloys (pure Ti), Ti alloys (Ti–6 Al–4V),
Ti–6Al–7Nb (IMI-367wrought), Ti–6Al–7Nb (Protasul-100
hot-forged),NiTi shapememory alloy, and porousNiTi shape
memory alloy. However, in the present study, only top-rank
materials identified in the prior research (Bahraminasab and
Jahan 2011) (see Table 8) were used for ranking with the pro-
posed modified method. The material properties considered
here as criteria include tensile strength, modulus of elasticity,
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Fig. 6 Components of total knee
implant

Table 8 Properties of candidate materials for femur component materials selection

Type of criteria Target (1.3) Benefit Target (16) Benefit Benefit Benefit Benefit
Criteria (weight) C1 (0.065) C2 (0.106) C3 (0.138) C4 (0.106) C5 (0.179) C6 (0.219) C7 (0.187)
Material number Density (g.cc) Tensile strength

(MPa)
Modulus of
elasticity (GPa)

Elongation (%) Corrosion
resistance

Wear
resistance

Osseointegration

M1 4.5 550 100 54 0.955 0.59 0.745

M2 4.43 985 112 12 0.955 0.665 0.745

M3 4.52 ≥900 105–120 ≥10 0.955 0.665 0.745

M4 4.52 1000–1100 110 10–15 0.955 0.665 0.745

M5 6.50 ≥1240 ≥48 12 0.955 0.955 0.5

M6 <4.3 1000 15 12 0.745 0.955 0.955

A 4.3 550 15 10 0.75 0.59 0.5

B 6.5 1240 120 54 0.955 0.955 0.955

T 1.3 1240 16 54 1 1 1

M1: pure Ti, M2: Ti–6Al–4V, M3: Ti–6Al–7Nb (IMI-367 wrought), M4: Ti–6Al–7Nb (Protasul-100 hot-forged), M5: NiTi shape memory alloy
comprised of Ni 55.0–56.0%, Ti 43.835 and 0.165–1.165% alloying elements, andM6: porous NiTi shape memory alloy comprised of Ni–49.0 at.%
Ti, 16% porosity

ductility, corrosion resistance, wear resistance and osseoin-
tegration ability. Table 8 shows the properties of top-rank
materials evaluated in the previous study. This case study
includes interval data, incomplete data, linguistic terms and
target criteria. Among the criteria, corrosion resistance, wear

resistance, and osseointegration are linguistic terms con-
verted into their respective fuzzy numbers and used to assign
the values of the attributes on a qualitative scale. In Table 8,
the interval data with infinite bound are converted into exact
value equal to limited bound (for example replacing ≥900
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Table 9 Normalized interval matrix

C1 C2 C3 C4 C5 C6 C7

M1 0.38 0.38 0.00 0.00 0.19 0.19 1.00 1.00 0.82 0.82 0.00 0.00 0.49 0.49

M2 0.40 0.40 0.63 0.63 0.08 0.08 0.05 0.05 0.82 0.82 0.18 0.18 0.49 0.49

M3 0.38 0.38 0.51 0.51 0.00 0.14 0.00 0.00 0.82 0.82 0.18 0.18 0.49 0.49

M4 0.38 0.38 0.65 0.80 0.10 0.10 0.00 0.11 0.82 0.82 0.18 0.18 0.49 0.49

M5 0.00 0.00 1.00 1.00 0.69 0.69 0.05 0.05 0.82 0.82 0.89 0.89 0.00 0.00

M6 0.42 0.42 0.65 0.65 0.99 0.99 0.05 0.05 0.00 0.00 0.89 0.89 0.91 0.91

Table 10 Weighted normalized interval matrix

C1 C2 C3 C4 C5 C6 C7

M1 0.025 0.025 0.000 0.000 0.027 0.027 0.106 0.106 0.147 0.147 0.000 0.000 0.092 0.092

M2 0.026 0.026 0.067 0.067 0.011 0.011 0.005 0.005 0.147 0.147 0.040 0.040 0.092 0.092

M3 0.025 0.025 0.054 0.054 0.000 0.020 0.000 0.000 0.147 0.147 0.040 0.040 0.092 0.092

M4 0.025 0.025 0.069 0.084 0.013 0.013 0.000 0.012 0.147 0.147 0.040 0.040 0.092 0.092

M5 0.000 0.000 0.106 0.106 0.096 0.096 0.005 0.005 0.147 0.147 0.195 0.195 0.000 0.000

M6 0.028 0.028 0.069 0.069 0.137 0.137 0.005 0.005 0.000 0.000 0.195 0.195 0.170 0.170

Table 11 Concordance and discordance sets

Concordance set Discordance set

M1 versus M2 C1, C2, C6 C3, C4, C5, C7

M1 versus M3 C2, C6 C1, C3, C4, C5, C7

M1 versus M4 C2, C6 C1, C3, C4, C5, C7

M1 versus M5 C2, C3, C6 C1, C4, C5, C7

M1 versus M6 C1, C2, C3, C6, C7 C4, C5

M2 versus M3 – C1, C2, C3, C4, C5,
C6, C7

M2 versus M4 C2, C3, C4 C1, C5, C6, C7

M2 versus M5 C2, C3, C6 C1, C4, C5, C7

M2 versus M6 C1, C2, C3, C6, C7 C4, C5

M3 versus M4 C2, C3, C4 C1, C5, C6, C7

M3 versus M5 C2, C3, C4, C6 C1, C5, C7

M3 versus M6 C1, C2, C3, C4, C6,
C7

C5

M4 versus M5 C2, C3, C6 C1, C4, C5, C7

M4 versus M6 C1, C3, C6, C7 C2, C4, C5

M5 versus M6 C1, C3, C7 C2, C4, C5, C6

with 900) meaning that the interval data with infinite bound
([a,∞], [∞,a]) are exact value equal to limited bound (a). The
target criteria are density and modulus of elasticity, which
should be near to those of human bone, and for all the other
properties, the higher is the better.

The application of the ELECTRE-IDAT described in the
previous section is illustrated in this case, step by step, as
follows:

Table 12 Matrix of concordance index

– 0.578 0.643 0.643 0.537 0.285

0.422 – 0.968 0.65 0.537 0.285

0.357 0.032 – 0.65 0.431 0.179

0.357 0.35 0.35 – 0.537 0.391

0.463 0.463 0.569 0.463 – 0.61

0.715 0.715 0.821 0.609 0.39 –

Table 13 Matrix of discordance index

– 0.660 0.507246 0.768291 1 1

1 – 0 1 1 1

1 1 – 1 1 1

1 0.112663 0.00 – 1 1

0.519 0.591534 0.591534 0.591534 – 1

0.756 0.951643 0.951643 0.951643 0.866262 –

Table 9 shows the normalized decision obtained based on
Eqs. 8, 9. Table 10 presents the weighted normalized interval
matrix. Table 11 summarizes concordance and discordance
sets according to Eqs. 15–17. Tables 12 and 13 show matrix
of concordance and discordance indices.

Table 14 highlights the similarity of ranking in the pro-
posedmethod and comprehensiveVIKOR (CVIKOR) for the
top and worst ranks. The differences can be explained by the
effect of interval data that neglected in Bahraminasab and
Jahan (2011) and logic of the proposed method compared to
the CVIKOR.
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Table 14 Final ranking

Ci Di

[
Ci−C−
C+−C−

] [
Di−D−
D+−D−

]
Ei Ranking CVIKOR

(Bahraminasab and
Jahan 2011)

M1 0.372 −0.33909 0.64772 0.727217 0.687468 3 4

M2 0.724 0.684 0.757651 0.501049 0.62935 4 5

M3 −1.702 2.950 0 0 0 6 6

M4 −1.03 −1.199 0.209869 0.917325 0.563597 5 3

M5 0.136 −1.573 0.574016 1 0.787008 2 2

M6 1.5 −0.523 1 0.767821 0.883911 1 1

We considered an application to demonstrate the details
of the proposed ELECTRE-IDAT method explained in the
previous section. This step-by-step demonstration of the pro-
posed method was not intended to compare our results with
those of Bahraminasab and Jahan (2011). Such a comparison
may be pointless as different multi-criteria decision-making
methods may yield inconsistent results when applied to the
same problem. Zanakis et al. (1998) explained that the incon-
sistency in results occurs because (1) the techniques use
weights differently; (2) algorithms differ in their approach to
selecting the “best” solution; (3) many algorithms attempt to
scale the objective; and (4) some algorithms introduce addi-
tional parameters that affect which solution will be chosen.
There is no one optimal method for a given MADM prob-
lem, and the numerical comparison is not usually enough to
determine which method is the most appropriate.

In other words, our approach provides more meaningful
and useful information by revealing which material is prefer-
able, with respect to uncertainty in data, whereas previous
method (CVIKOR) only can deal with crisp data.

5 Conclusion

The increasing complexity of the rapidly evolving materials
and design selection problems entails making right decisions
in considering a diversity of factors. The MADM supports
designers with a comprehensive collection of approaches.
Eachmaterial/design criterionmayhave special units ofmea-
surement, and relativeweight. Some criteria can bemeasured
numerically, and other criteria can only be described subjec-
tively. Materials properties or design selection parameters
vary so widely in practice. Due to uncertainty of data, in
many circumstances, exact data are not enough to model
the design decision-making problem. For these situations,
researchers developed some structures, such as interval data,
ordinal data, and fuzzy numbers. In the ELECTRE methods,
a significantly weak criterion value of an alternative can-
not be directly compensated by other good criteria values.
This paper focused on modifying the ELECTRE method for

interval data coupled with target-based criteria (ELECTRE-
IDAT). Superiorities of the modified ELECTRE method
demonstrated through applying that to a material selection
problem including both exact and interval data as well as
dealing with benefit, cost, and target criteria. This com-
bination of findings provides some support for developing
different version of the ELECTRE in the same direction.
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